Capitulo 3

Sequéncias e Séries Numéricas

3.1 Sequéncias Numéricas

Uma sequéncia numérica é uma func¢ao real com dominio N que, a cada n associa um
numero real a,. Os ntmeros a, sao chamados termos da sequéncia.

E comum indicar uma sequéncia escrevendo apenas uma lista ordenada de seus termos:
A1,09,03,...,0p, ...
Alguns autores também denotam uma sequéncia usando paréntesis:
(a1,as,as,...,an,...) ou (ay)nen, Ou simplesmente (a,,)

Também podemos descrever uma sequéncia por meio da féormula do termo geral a,, quando

houver. Por exemplo, a sequéncia (1, %, %, 4117 e ) pode ser representada da forma (%)n ou ainda
por meio da expressao a, = %,‘v’n eN

A imagem da sequéncia é formada pelo conjunto de todos os valores a,, e pode ser um
conjunto finito ou infinito.

Uma sequéncia (ay,), € limitada superiormente se existir um namero N tal que

a, < N, para todon > 1



Ela é limitada inferiormente se existir um namero M tal que
M < a,, paratodon > 1

Se uma sequéncia for limitada superior e inferiormente, diremos que ela é uma sequéncia

limitada.

Exemplos 3.1.1 Alguns exemplos importantes de sequéncias sao estudados ja no Ensino Fun-

damental e no Ensino Médio:

e Uma Progressao Aritmética (PA) é uma sequéncia de nimeros tais que a diferenga entre

dois termos consecutivos quaisquer é sempre a mesma. Por exemplo, a sequéncia 10, 13,

16, 19, ...é uma PA.

Se o termo inicial da PA é a; e a diferenca entre os termos é r, entao o n-ésimo termo é dado
por a, = a; + (n — 1)r. O professor deve ensinar alguns fatos importantes sobre as PAs,
tais como, se r > 0, entdo a sequéncia cresce indefinidamente (isto é, tende a infinito).
Também costuma-se ensinar como obter o valor da soma de uma quantidade finita de
termos consecutivos de uma PA: uma féormula facil de ser obtida e bastante instrutiva, que

pode ser motivada por meio de problemas (ou perguntas) interessantes.

e Uma Progressao Geomeétrica (PG) é uma sequéncia de ntimeros em que o quociente entre

um termo e seu antecessor é constante. Esse quociente é uma constante nao nula chamada

razao. Por exemplo, a sequéncia 2,4, 8,16,32,... é uma progressao geométrica de razao
At 11 1 1 . ~ 1
2. A sequéncia 1,—3, 5, =57, 37, - - - ¢ uma PG de razao —3. Em geral, uma PG pode ser

escrita na forma

n

a,ar,ar® ar®, ... ar",..., parar # 0 e termo inicial a

H4 muitos aspectos interessantes e fatos importantes sobre as PGs que devem ser ensinados,
para preparar melhor os alunos do ensino médio para muito do que eles terao que enfrentar
no futuro. Por exemplo, usa-se PG para se calcular o valor, depois de n meses, do capital
investido a juros compostos. Também é muito importante saber que se —1 <r < 1,7 # 0,
a soma dos infinitos termos da PG é finita. Voltaremos a esse assunto quando formos

estudar séries, isto €, somas com infinitas parcelas.



e Uma sequéncia famosa é a Sequéncia de Fibonacci. Trata-se da sequéncia cujos dois
primeiros termos sao iguais a 1 e, todo ntimero a partir do terceiro termo é a soma dos

dois que o precedem, isto é:
fi=f=1 e fo=fo1+ fa2Vn>3
Assim, os primeieros termos da sequéncia de Fibonacci sao:
1,1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,

H4 uma quantidade surpreendente de fatos relacionados a sequéncia de Fibonacci, tanto
em Matematica (a razdao aurea, o Triangulo de Pascal), como fora dela (em botéanica,

musica, arquitetura, por exemplo)?.

Exemplos 3.1.2 Nos exemplos de sequéncias abaixo, cada sequéncia esta descrita de mais de

uma maneira.

1. (a) (2,4,6,...) (b) an = 20,1 € N

2. (a) (g,g %) (b) (=)™, (c) by =" n>2

3. (a) (1,=1,1,—1,... (=1)"1 ..) M) e, =(-1)""1neN

4. (a)(5555...,5,...) (b) dp =5,neN

5. (a) (=1,—-4,-9,-16,...,—n%*...) (b)r,=-n*neN

6. (a) (%,% ,...,nLH,...) (b) sp = t5,meN (©) (29),en

7. (@)ta="7—neN (b) (5o (©) (53 350 S

Nos exemplos acima, a sequéncia 1 nao é limitada (superiormente) pois os valores de a,
crescem arbitrariamente. A sequéncia 5 também nao ¢ limitada (inferiormente), pois os valores
de r, decrescem arbitrariamente, nao existindo M tal que M < r, para todo n. Todas as demais

sao sequéncias limitadas. De fato,

e Na sequéncia 2 vale que 1 < b, < 2,Vn (verifique!) e sua imagem é um conjunto infinito

(por que?);

veja, por exemplo, https://en.wikipedia.org/wiki/Fibonacci_numbers_in_popular_culture



e Na 3, o conjunto imagem tem apenas dois elementos, —1 e 1. A sequéncia é limitada, ja

que —1<¢, <1,Vn;

A imagem da sequéncia 4 é o conjunto {5 }. Logo, a sequéncia é limitada;
e Na 6, tem-se 0 < s, < 1,Vn (verifique!). A imagem é um conjunto infinito (justifique!).

e O que vocé pode dizer sobre a sequéncia 77

Defini¢ao 3.1.3 Dizemos que uma sequéncia (a,), converge para um nimero real L se para

qualquer € > 0, for possivel encontrar um indice ng tal que

|L — a,| < e, para todo n > ng

a; ag---L—e an L L+e¢

Observacao: Quando testamos a convergéncia de uma sequéncia, nos interessam os valores
pequenos de e. De fato, se para cada €y > 0 dado existir ng tal que |L—a,| < &y, para todo n >

ng, € se € > gg entao |L — a,| < €9 < €, para todo n > ny.
O nimero L é chamado limite da sequéncia. Usamos as notagoes
L =lima, ou a,—L

para indicar que a sequéncia (a,) converge para L.

Exemplo 3.1.4 Vamos demonstrar que a sequéncia (niﬂ)n converge para 1.

Rascunho: (Nosso objetivo é provar que, dado um niamero € > 0 qualquer, consigo determinar

ng com a propriedade ‘ — | < &, paratodon > no. Ou seja, precisamos resolver uma

1 1

inequagao em n.)
M! = <%eﬁ < e <= n > <. Logo, se tomarmos um

n —
Mas [1 — 55| = [55 nt1
natural maior do que %, o problema estara resolvido. Uma tltima questao é: existe um natural

maior do que 1, para qualquer ¢ dado? A resposta afirmativa ¢ consequéncia da Propriedade
15

Arquimediana, vista no capitulo 1.



Solucao: Seja € > 0 dado. Pela Propriedade Arquimediana, existe ng € N tal que ng > %
Para todo n > ng, teremos:

-
n+1

1 1 1
= < =< — <&
n+1 n ng

n+1—n
n+1

g

Observagao: Esse exemplo ilustra o fato que, quanto menor o nimero ¢, maior o indice ng
AT i do limite L. P 1 = 107! i
necessario para aproximar o termo a, do limite L. Por exemplo, se ¢ = 107", precisamos

escolher ng > 10; se ¢ = 1072, precisamos de ny > 100.

Exemplo 3.1.5 A sequéncia (—1,1,—1,...,(=1)",...) ndo converge.

Intuitivamente, como ha infinitos termos da sequéncia iguais a 1 e infinitos termos iguais
a —1, é impossivel que, a partir de algum indice, os termos se aproximem de algum valor L.
Mas como provar, de modo rigoroso, que nao existe L com a propriedade desejada? A ideia é
tomar e pequeno, de modo que qualquer que seja L, o intervalo |L — e, L 4 €[ ndo possa conter

todos os termos da sequéncia a partir de algum indice.

1
1

Solucao: Seja ¢ =
Qualquer que seja o nimero real L e para qualquer natural ng, existirao termos a,, com

n > ng tal que a, ¢ |L—1 L+ 1 ja que o intervalo tem comprimento e, para n par, teremos
0 q n 1 2l:Jaq p 26D par,

a, = 1 e para n impar, teremos a, = —1.
Uma outra forma de dizer isso é:

1»
1

“Dado € = 7, para todo L € R e todo ng € N, existe n > ng tal que |L — a,| >

1
4

Quando uma sequéncia nao converge, dizemos que ela diverge.

Se para qualquer namero M > 0 dado, existir um indice ng tal que a, > M, Vn > ny,
dizemos que a sequéncia “tende a +00” e escrevemos lima, = 400 ou a, — +0o0. E o que
acontece com a sequéncia 1 do exemplo 3.1.2.

Analogamente, se para cada M > 0 dado, existir ng € N tal que a, < —M, VYn > ny,
escrevemos lim a,, = —oco. Um exemplo para esse caso é o da sequéncia 5 em 3.1.2.

Se uma sequéncia tende a +00 ou a —oco ela também ¢é considerada divergente.



Proposicao 3.1.6 (Propriedades do limite)
Se (an)n € (by)n sdo sequéncias convergentes tais que a = lima,,, b = limb,, e se k& ¢ um ntmero

real qualquer, entao
(a) a sequéncia (a, + by,), ¢ convergente e lim(a,, + b,) = a + b;
(b) a sequéncia (k + a,), é convergente e lim(k + a,,) = k + a.
(c) a sequéncia (kay), é convergente e lim(ka,) = ka.
(d) a sequéncia (a,b,), é convergente e lim(a,b,) = ab;
(e) se a, # 0, ¥n e a # 0 entao a sequéncia (i)n é convergente e lim i = %

Demonstracao.

(a) Seja e > 0. (Precisamos encontrar ng tal que |(a, +b,) — (a +b)| < €, para todo n > nyg.)

Por hipétese, como a = lima,, existe n; € N tal que |a, — a| < 5, para todo n > n;.

Analogamente, como b = lim b,,, existe ny € N tal que |b, — b| < 5, para todo n > na.

Seja ng = max{ny,ny}. Para todo n > ng temos:

€

(@ +bn) = (@ +b) = |(@n = @) + (b = )| < an —al + [bw = b < 5 + 2

=¢
(b) Exercicio.
(c) Exercicio.

(d) (Rascunho: precisamos provar que, a partir de algum indice nyg, |a,b, — ab| se torna tao
pequeno quanto se queira, sabendo que |a,, —a| e |b, —b| podem ser escolhidos tao pequenos
quanto quisermos. Um dos problemas ¢é relacionar |a,b, — ab| com as diferengas |a,, — a| e
|b, — b|. O que fazer? Uma ideia pode ser a seguinte:

(an —a)(b, —b) = apb, — a,b— ab, + ab = a,b, — (a,, — a)b — a(b, — b) — ab
= (apb, —ab) — (a, — a)b— (b, — b)a

Equivamentemente podemos escrever:

anb, —ab = (a, —a)(b, — ) + (a, —a)b+ (b, — b)a (3.1)



Pronto: conseguimos relacionar a diferenga a,,b, — ab com as diferengas |a,, — a| e |b, —b|.

Agora basta finalizar alguns detalhes.)
Solugdo. Seja ¢ > 0. Existem indices ny e ny tais que |a, — a] < /&, Vn > n; e
|b, — b] < /g, ¥n > ny. Logo, para todo n > max{n,ny}, temos |(a, — a)(b, — b)| < e.

Isso prova que
lim(a, —a)(b, —b) =0 (3.2)
Portanto, da expressao (3.1) temos:

limanb, —ab = lim|(ay — a)(by — b) + (an — a)b + (b, — b)a]

9 lim|(ay — a) (b, — b)] + lim[(ay — a)b] + lim[(b, — b)d]
20 4 lim[(ay — a)b] + lim[(b, — b)a]

9 plim(a, — a) + alim(b, — b) = 0

(Rascunho: precisamos provar que, a partir de algum indice ng, |-~ — 1| se torna tao
) ’ lap a

pequeno quanto se queira, sabendo que |a, — a| pode ser tdo pequeno quanto quisermos.

Facamos algumas contas para ver como ¢é possivel relacionar essas desigualdades:

_ la — ay|

laay,|

Se conseguirmos garantir que |a a,| > M para alguma constante M, conseguiremos concluir

la — ay| la — ay|
la a,| M

encontrarmos um niamero M adequado, tal que |aa,| > M, para indices n suficientemente

que < e, se |a — a,| < eM. Assim, o problema estara resolvido se

grandes.

Como a # 0, sabemos que |a| > 0.

] ] ]
T T T

0 2l ja,| af 3lal

lal

Como lima, = a, existe ny tal que |a — a,| < 5 para todo n > n;. Com isso, é

possivel provar (exercicio) que |a,| > %, Vn > ny. (Veja a figura acima.) Portanto



2
a . e . -
5 para todo n > ny. Essa foi a parte dificill Vamos entao escrever a
~
demonstragao formal.

Demonstracao. Fixemos € > 0 qualquer. Existe n; tal que

lal

la,| > o Vn > n (%)

Além disso, existe ny tal que

la — an| < %aQ, v > n, (%)

Seja ng = max{n,ny}. Para todo n > ng temos:

1 1 la —an| & |la—a,| 2 () 2 € ,
a, a la| |an| " la| a? a? 2
2

g

A seguir, enunciamos alguns resultados bastante uteis para o calculo de limites de sequén-

cias.

Proposicao 3.1.7 Seja f uma fungao real, definida em um intervalo da forma [K, +oo[ e su-

ponha que exista lir+n () = L. Se a, = f(n), para todo n € N, entao
T—>+00

lima, = L

0l 1234

(figura copiada da pagina 695 do livro Calculus: early transcendentals, de James Stewart, 4a. ed.)

Demonstragao. Exercicio.



Inn
Exemplo 3.1.8 Calcule lim —
n
Solucao. Observe que tanto o numerador quanto o denominador tendem a +oo quando n cresce. Mas
nao podemos usar a regra de L’Hospital para calcular o limite da sequéncia, ja que nao tem sentido usar

nx
derivadas neste contexto. Entretanto, podemos considerar a funcao f(x) = ——, definida no intervalo
x

1, +o0l.
. 1
E claro que a,, = an_ f(n). Usando a regra de L’Hospital para f, podemos agora calcular
n
1 1
lim f(z)= lim 2T fm z=0
z——+00 z—+00 I z——+oo 1
.. . . Inn
Logo, pela proposicao 3.1.7, podemos concluir que lim — = 0.
n

Proposicao 3.1.9 Se lima, = L e se f é uma fung¢ao continua em L, entdo o limite de f(ay) existe e

lim f(an) = f(L)

Exemplo 3.1.10 Calcule lim sen (%)
Solugao. A fungdo seno é continua em todos os pontos. Em particular, é continua em 0, que é o limite

da sequéncia dada por a, = % Assim, a proposic¢ao 3.1.9 nos permite concluir:

1 1
lim sen () = sen (lim —) =sen0 =0
n n

Proposicao 3.1.11 (Teorema do confronto) Sejam (ay), (by), € (¢n) trés sequéncias tais que a, <

by, < ¢n. Suponha que lima, = L = lim¢,. Entao a sequéncia (b,) converge e seu limite é L.

n

2
Exemplo 3.1.12 Calcule lim —
n
i 2 22 2 /2)°
Solucao. Paran =1, temos a; = 1= 2;sen = 2, temos ag = 52 = 1; se n = 3, temos a3z = 3= |3 ;

4
Portanto, para n > 3, vale:

4 n—1 n—1
2 . . 2/(2 2
ag = (=] , e assim por diante. Notamos que a, = —| — e que, paran > 3, | — < 1.
n\n n

2
0<a, < —
n

2 n
Como lim — = 0, pela proposicao 3.1.11, concluimos que lim — =0
n n



Exemplo 3.1.13 Um exemplo importante, cujo resultado sera util mais adiante, é a sequéncia dada
por a, = {/n. Vamos provar que seu limite é 1.

Solugao. Uma maneira de provar é por meio da proposicao 3.1.7, calculando o limite, para
x — 400 da funcdo f(z) = zz,z > 1, e é deixada como exercicio.

Vamos mostrar uma maneira direta de provar que o limite da sequéncia é 1. Inicialmente notamos
que as = v/2,a3 = V/3,..., ¥n, ... sdo todos nimeros maiores do que 1. (Por qué?)

Logo, podemos escrever ¥/n = 1+ h,,, para algum h,, > 0. Assim,

(”_1)h2

1
n=(14hp)" =1+nh, + = " nn=1)

R

j4 que todos os termos sao positivos.
Portanto "T_lh% < 1, ou, equivalentemente, h2 < %, que tende a 0 quando n cresce.

Assim, dado ¢ > 0, existe, pela propriedade Arquimediana, ng € N tal que ng > 6% + 1. Se

2 \? P
[/n—1=h,) < | —= ) < <e
n—1 ng — 1

n > ng, teremos:

N

Definigao 3.1.14 Dizemos que uma sequéncia (a,), € crescente, se a1 < as < ag < ---, isto &, se
an < ant1, para todo n > 1. Ela é dita decrescente se a, > an+1, para todo n > 1. Se uma sequéncia

for ou crescente ou decrescente, diremos que ela é mondtona.

Exemplos 3.1.15 (a) A sequéncia < ) ¢ decrescente pois, como 2n +5 < 2(n+ 1) + 5, temos
n

2n+5

1 1
>
n+5 " 2n+1)+5

(=n"

n

, paratodon € N

nao é mondétona. De fato, os primeiros termos dessa

(b) A sequéncia dada por a, = 2+
sequéncia sao 2 — 1,2 + %, 2 — %, 2+ i,
De um modo geral, se n é impar, temos a,, = 2 — % < 24 n%_l = ap41; se n €& par, temos

1 1
an:2+5>2—n—+1:an+1.

A seguir apresentamos um dos principais resultados deste capitulo. A ideia da demonstracao é

simples. Tente nao se intimidar com os €’s e apreciar a ideia bacana.

Teorema 3.1.16 Toda sequéncia mondtona limitada é convergente.

10



Demonstragao. Faremos a demonstracdo supondo a sequéncia crescente e limitada superiormente. A
demonstracao do caso de sequéncia decrescente e limitada inferiormente é analoga e fica como exercicio.
Por hipotese, a1 <ag < ---a, < --- e existe uma constante M tal que a,, < M, para todo n.
Seja A = {ay, a9, ,an -} o conjunto de todos os valores da sequéncia. Entao A é nao vazio e
limitado superiormente (por M). Portanto, pelo axioma do supremo, existe um numero real s = sup A.
Vamos provar que lima, = s.
Seja € > 0. Pela defini¢ao de supremo, a, < s para todo n. Além disso, existe um elemento ay,
em A tal que s — e < ap, < s (caso contrario, o supremo seria menor do que s — ¢).
Como a sequéncia ¢ nao-decrescente, para todo n > ng vale a,, < a,. Mas a,, < s.

Portanto, para todo n > ng, vale s — e < a, < s < s+ ¢, ou seja, |s — a,| < ¢.

s—¢€ Ang An s s+¢

Exemplo 3.1.17 Considere a sequéncia

1
ap =1, apy1 =3 — —
Qn

Existe lim a,,? Em caso afirmativo, calcule-o.

Solugao. Para podermos perceber propriedades que a sequéncia possa ter, vamos calcular alguns termos:

1 5
=1: =3-1=2;: =3—-—=—=-=205;
al ;o ag 5 as 9 9 39y
1 13 1 5 34 -
—3__-_-—""_96: =3—-——==3—-—=—=2615384:
4 555 0 W E 13 13 ° ’

Observando esses ntmeros, percebemos que eles estao aumentando, mas cada vez mais devagar.

Serd a sequéncia crescente? Serd limitada?

e Vamos provar, por indugdo, que a sequéncia é crescente, isto é, que a, < a,y1 para todo n. A

desigualdade vale paran =1 pois a1 =1 < 2 = ao.

Suponhamos a1 < aj para algum k. Como os termos da sequéncia sao todos positivos, temos:

1 1
Z R
Q-1 ag
1 1
= - < ——
ap—1 ag
1 1
=3 — < 3——
ap—1 ag



Portanto,

ap < apq1
Assim, pelo Principio de Indugao Finita, podemos concluir que a, < a,11 para todo n.
e Vamos provar, também por inducao, que a sequéncia é limitada, mostrando que
1 <a, <3, para todon (*)

O primeiro passo da demonstragao é apenas a constatacao de que 1 = a; < 3.

Vamos supor que 1 < a; < 3 para algum k. Entao

1 1
1> — >-
- ag -3
1 1
1< —— < —=
- ar ~ 3
Portanto,
1 1
3—1<3——<3—-
af 3

Dessa forma, vale 1 < agqq < 3.
Pelo Principio de Inducgao Finita, podemos concluir que 1 < a,, < 3 para todo n € N.
Sendo crescente e limitada, o teorema 3.1.16 nos garante que (a,) converge para algum nimero

L. Mas o teorema nao nos conta qual é o valor do limite. Entretanto, sabemos que existe L = lima,, e

que L # 0 (por qué?). Isso nos permite calcular o seguinte:

1 1 1
liman+1zlim<3—>:3—lim:3— -
Qn an lim a,,

Como a,, converge para L, é claro que a,41 também converge para L. Portanto, termos:
) + )

L=3-

SIS

3+v5 3-5
e :
2 2
Como todos os termos da sequéncia sao maiores do que 1, seu limite necessariamente é maior

-5
2

A tltima equacdo ¢ equivalente a L2 — 3L + 1 = 0, cujas raizes sio

ou igual a 1. Portanto, a raiz ~ 0,38 nao pode ser o limite. Dessa forma, concluimos que

3+

L
2

12



Exercicios 3.1.18 1. Determine se a sequéncia (a,) dada é convergente ou divergente. Se for

convergente, calcule seu limite:
1 —n+2nt 1

a) an = 9 1+ 301 b) a, =vn+5—+/n c)an:seng
senn \/ﬁ n
d) a, = - e)an—3+\/ﬁ f)an—3+ =
g) an =ne " h) a, = arctgn i) a, = cos(n)27"
! 7l 2
) an = D) a, = m) a, = —
(n+2)! 107 en

2. Se (ap), € uma sequéncia convergente tal que a, > 1 para todo n, mostre que lima,, > 1.

3. Se (an)n € uma sequéncia convergente, mostre que lim a,, = lim ay4+1

fn+1

fa

4. 2Seja (fn)n a sequéncia de Fibonacci definida no exemplo 3.1.1. Defina a,, =
(i) Determine os 10 primeiros termos de (ay,).
(ii) Verifique que a,—1 =1+ ﬁ para todo n > 3.
(iii) Supondo que (a, ), seja convergente, calcule seu limite.

5. Seja f uma funcdo continua e seja x um ponto qualquer de seu dominio. Defina a sequéncia

a1 =z, az = f(x), as = f(a2), ...ant1 = f(an). Mostre que se lima,, = L entdao f(L) = L. (Por

esse motivo, o namero L é chamado ponto fixo de f.)

6. Encontre uma aproximagao com 5 casas decimais para a solu¢ao da equagdo cosx = z. Sugestao:

Use o exercicio anterior tomando f(x) =cosz e a = 1.

2Exercicio extraido do livro [5]
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