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Abstract. In this work we are interested in the asymptotic behavior of a family of solutions
of a semilinear elliptic problem with homogeneous Neumann boundary condition defined in
a 2-dimensional bounded set which degenerates to the unit interval as a positive parameter
ε goes to zero. Here we also allow that upper and lower boundaries from this singular region
present highly oscillatory behavior with different orders and variable profile. Combining
results from linear homogenization theory and nonlinear analyzes we get the limit problem
showing upper and lower semicontinuity of the solutions at ε = 0.

1. Introduction

In this paper we analyze the asymptotic behavior of the solutions of a semilinear elliptic
problem with homogeneous Neumann boundary condition posed in a 2-dimensional bounded
region Rε which degenerates to the unit interval as the positive parameter ε → 0. Here we
allow that upper and lower boundaries of this thin domain present highly oscillatory behavior
with different orders of oscillations and variable profile following previous works as [6, 22].

The thin domain Rε is given by

Rε = {(x, y) ∈ R2 : x ∈ (0, 1) and − εGε(x) < y < εHε(x)} (1.1)

where the functions Gε and Hε : (0, 1) 7→ R are suppose to be positive, smooth and uniformly
bounded in ε > 0. They set the lower and upper boundary of the thin domain Rε which
possesses thickness of order ε. Also, we take Gε and Hε depending on ε in such way that Rε

presents different orders of oscillations with variable profile. We establish this assuming

Gε(x) = G(x, x/εβ), for some β > 1, and Hε(x) = H(x, x/ε), (1.2)

where G and H : [0, 1] × R 7→ (0,∞) are smooth functions such that y → G(·, y) and
y → H(·, y) are periodic in variable y, that is, there exist positive constants lg and lh such
that G(x, y + lg) = G(x, y) and H(x, y + lh) = H(x, y) for all (x, y) ∈ (0, 1)× R. Note that
the upper boundary of Rε defined by εHε possesses same order of amplitude, period and
thickness. On the other hand, the lower boundary given by εGε presents oscillation order
larger than the compression order ε. For instance see Figure 1.
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Figure 1. A thin domain with double oscillatory boundary.

In the thin domain Rε we consider the following semilinear elliptic equation{ −∆wε + wε = f(wε) in Rε

∂νεw
ε = 0 on ∂Rε (1.3)

where νε is the unit outward normal to ∂Rε, ∂νε is the outwards normal derivative and the
function f : R 7→ R is supposed to be a bounded C2-function satisfying

|f(w)|+ |f ′(w)|+ |f ′′(w)| ≤ Cf for all w ∈ R. (1.4)

We note that from the point of view of investigating the asymptotic behavior of the solutions
given by (1.3) to assume f bounded with bounded derivatives does not imply any restriction
since we are interested in solutions uniformly bounded in L∞ norms. See also [9].

Now, in order to analyze problem (1.3) we first perform a change of variables consisting
in stretch Rε in the y-direction by a factor of 1/ε. Following the pioneering works [15, 26],
we set x1 = x, x2 = y/ε to transform Rε into the region

Ωε = {(x1, x2) ∈ R2 : x1 ∈ (0, 1) and −Gε(x1) < x2 < Hε(x1)}. (1.5)

By doing so, we get a domain which is not thin anymore although it still presents very
oscillatory behavior. Indeed upper and lower boundaries of Ωε are the graph of the oscillating
functions Gε and Hε. Consequently we transform problem (1.3) into

− ∂2uε

∂x1
2 −

1

ε2
∂2uε

∂x2
2 + uε = f(uε) in Ωε

∂uε

∂x1

N ε
1 +

1

ε2
∂uε

∂x2

N ε
2 = 0 on ∂Ωε

(1.6)

where N ε = (N ε
1 , N

ε
2 ) is the outward normal to the boundary ∂Ωε.

Observe the factor 1/ε2 in front of the x2-derivative stablishes a very fast diffusion in the
vertical direction. In some way, we are substituting the thin domain Rε with a non thin
domain Ωε but with a very strong diffusion mechanism in the x2-direction. The presence of
this very strong diffusion mechanism implies that the solutions of (1.6) become homogeneous
in the x2-direction as ε→ 0. Hence the limiting solution will not have a dependence in this
direction being solution of a 1-dimensional limiting problem. Indeed, this is in agreement
with the intuitive idea that (1.6) approaches an equation in a line segment.
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It is known from [22] that the limit problem to (1.6) is given by −
1

p(x)
(q(x)ux)x + u = f(u), x ∈ (0, 1),

ux(0) = ux(1) = 0,
(1.7)

where functions p and q : (0, 1) 7→ (0,∞) are smooth an positive given by

q(x) =
1

lh

∫
Y ∗(x)

{
1− ∂X(x)

∂y1

(y1, y2)

}
dy1dy2,

p(x) =
|Y ∗(x)|
lh

+
1

lg

∫ lg

0

G(x, y) dy −G0(x),

G0(x) = min
y∈R

G(x, y).

(1.8)

X(x) is the unique solution of the auxiliary problem
−∆X(x) = 0 in Y ∗(x)
∂NX(x) = 0 on B2(x)
∂NX(x) = N1 on B1(x)
X(x) lh-periodic on B0(x)∫
Y ∗(x)

X(x) dy1dy2 = 0

(1.9)

in the representative cell Y ∗(x) given by

Y ∗(x) = {(y1, y2) ∈ R2 : 0 < y1 < lh, −G0(x) < y2 < H(x, y1)}, (1.10)

where B0, B1 and B2 are lateral, upper and lower boundary of ∂Y ∗ for each x ∈ (0, 1).
Note that the auxiliary solution X and the representative cell Y ∗ depend on x setting a non
constant and positive homogenized coefficient q for the homogenized equation (1.7).

Several are the works in the literature concerned with partial differential equations posed
in thin domains with oscillatory boundaries. In [19] the authors have studied the solutions of
linear elliptic equations in thin perforated domains. Stokes and Navier-Stokes problems are
also consider in thin channels [20, 21]. In [10, 12] the asymptotic description of nonlinearly
elastic thin films with fast-oscillating profile was obtained in a context of Γ-convergence [14].

Recently we have studied different classes of oscillating thin domains discussing limit
problems and convergence properties [2, 4, 5, 23, 24]. See also [7] where the authors considere
linear problems with varying period and [6, 8] where they deal with linear elliptic problems
in thin channels presenting doubly oscillatory behavior and constant profile. In [22] we have
gotten the upper semicontinuity of the attractors of the parabolic problem associated to
problem (1.3) also proving the upper semicontinuity of the equilibria set.

Our main goal here is to show the lower semicontinuity of the family of solutions given by
(1.3) under the assumption that all the solutions of the limit problem (1.7) are hyperbolic.
Indeed we combine upper and lower semicontinuity to get continuity also approaching the
problem with a kind of fixed point functional setting. In some sense, we are discussing
here some conditions in order to approximate the singular equation (1.3) to the regular one
(1.7) showing how the geometry and the oscillatory behavior of the thin domain affect the
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problem. Recall that a solution u of a nonlinear boundary value problem is called hyperbolic
if the eigenvalues of the linearized equation around u are all different from zero.

Finally we note that different conditions in the lateral boundaries of the thin domain may
be set preserving the Neumann type boundary condition in the upper and lower boundary of
Rε. Dirichlet or even Robin homogeneous can be set in the lateral boundaries of (1.6). The
limit problem will preserve this boundary condition as a point condition. On the other hand,
if we assume Dirichlet boundary condition in whole ∂Rε, the family of solutions converges
to the null function. See for example [25].

2. Basic facts and notations

We assume that functions Gε and Hε : (0, 1)→ (0,∞) satisfy the following assumption:
(H) there exist nonnegative constants G0, G1, H0 and H1 such that

0 < G0 ≤ Gε(x) ≤ G1 and 0 < H0 ≤ Hε(x) ≤ H1,

for all x ∈ (0, 1) and ε ∈ (0, ε0), for some ε0 > 0, with Gε and Hε given by expressions (1.2)
where the functions H and G : [0, 1] × R 7→ (0,+∞) are periodic in the second variable,
in such a way that there exist positive constants lg and lh such that G(x, y + lg) = G(x, y)
and H(x, y + lh) = H(x, y) for all (x, y) ∈ [0, 1] × R. We also suppose G and H are
piecewise C1 with respect to the first variable, it means, there exists a finite number of
0 = ξ0 < ξ1 < · · · < ξN−1 < ξN = 1 such that G and H restricted to the set (ξi, ξi+1)×R are
C1 with G, H, Gx, Hx, Gy and Hy uniformly bounded in (ξi, ξi+1) × R having limits when
we approach ξi and ξi+1.

Observe that hypothesis (H) set the geometric conditions on the thin domain Rε, and
consequently, on the oscillating domain Ωε where problems (1.3) and (1.6) are posed. Also,
it is worth noting that any function defined in the unit interval (0, 1) can be seen as a function
in Rε or Ωε just extending it as a constant in the vertical direction.

In order to investigate the asymptotic behavior of solutions of the semilinear problem (1.6)
we first need to study the associated linear elliptic equation

−∂
2uε

∂x1
2 −

1

ε2
∂2uε

∂x2
2 + uε = f ε in Ωε

∂uε

∂x1

N ε
1 +

1

ε2
∂uε

∂x2

N ε
2 = 0 on ∂Ωε

. (2.1)

Indeed, if we assume f ε ∈ L2(Ωε) satisfying the uniform condition

‖f ε‖L2(Ωε) ≤ C, ∀ε > 0, (2.2)

for some C > 0 independent of ε, we get from [22, Theorem 4.1] the following outcome

Theorem 2.1. Let uε be the solution of (2.1) with f ε ∈ L2(Ωε) satisfying condition (2.2),
and assume that the function

f̂ ε(x) =

∫ Hε(x)

−Gε(x)

f ε(x, s) ds, x ∈ (0, 1), (2.3)

satisfies that f̂ ε ⇀ f̂ , w-L2(0, 1), as ε→ 0.
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Then, there exists û ∈ H1(0, 1), such that

‖uε − û‖L2(Ωε) → 0, as ε→ 0, (2.4)

where û is the unique solution of the Neumann problem∫ 1

0

{
q(x)ux(x)ϕx(x) + p(x)u(x)ϕ(x)

}
dx =

∫ 1

0

f̂(x)ϕ(x) dx (2.5)

for all ϕ ∈ H1(0, 1), where p and q are positive functions given by (1.8), X is the auxiliary
solution defined in (1.9) and Y ∗ is the representative cell (1.10).

Remark 2.2. (i) If q is continuous, (2.5) is the weak formulation of
1

p(x)
(q(x)ux(x))x + u(x) = f(x), x ∈ (0, 1),

ux(0) = ux(1) = 0,

with f(x) = f̂(x)/p(x).

(ii) Furthermore, if we initially assume that f ε does not depend on the vertical variable y,
that is, f ε(x, y) = f0(x), then it is not difficult to see that

f̂ ε(x) = (Hε(x) +Gε(x)) f0(x)

and so, due to the Average Theorem discussed for example in [5, Lemma 4.2], we have

Hε(x) +Gε(x) ⇀
1

lh

∫ lh

0

H(x, y) dy +
1

lg

∫ lg

0

G(x, y) dy, w∗ − L∞(0, 1),

as ε→ 0, and then, Hε(x) +Gε(x) ⇀ p(x), w∗ − L∞(0, 1), and f̂(x) = p(x)f0(x).

(iii) The variational formulation of (2.1) is find uε ∈ H1(Ωε) such that∫
Ωε

{∂uε
∂x1

∂ϕ

∂x1

+
1

ε2
∂uε

∂x2

∂ϕ

∂x2

+ uεϕ
}
dx1dx2 =

∫
Ωε
f εϕdx1dx2, ∀ϕ ∈ H1(Ωε). (2.6)

Thus, taking ϕ = uε in (2.6), we get that the solutions uε satisfy∥∥∥∂uε
∂x1

∥∥∥2

L2(Ωε)
+

1

ε2

∥∥∥∂uε
∂x2

∥∥∥2

L2(Ωε)
+ ‖uε‖2

L2(Ωε) ≤ ‖f ε‖L2(Ωε)‖uε‖L2(Ωε). (2.7)

Consequently, it follows from (2.2) that

‖uε‖L2(Ωε),
∥∥∥∂uε
∂x1

∥∥∥
L2(Ωε)

and
1

ε

∥∥∥∂uε
∂x2

∥∥∥
L2(Ωε)

≤ C, ∀ε > 0. (2.8)

Hence, we can combine (2.8), (2.4) and interpolation inequality [16, Section 1.4] to get

‖uε − û‖Hα(Ωε) → 0, as ε→ 0, for all α ∈ [0, 1).
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3. Abstract setting and existence of solutions

Now let us write the problems (1.6) and (1.7) in an abstract form. Here we adopt the
convergence concept introduced in [27] and successfully applied in [1, 9, 13] to deal with
boundary perturbation problems.

3.1. Existence of solutions. We first consider the family of Hilbert spaces {Zε}ε>0 defined
by Zε = L2(Ωε) under the canonical inner product

(u, v)ε =

∫
Ωε
u(x1, x2) v(x1, x2) dx1dx2

and by Z0 = L2(0, 1) the limiting Hilbert space with the inner product (·, ·)0 given by

(u, v)0 =

∫ 1

0

p(x)u(x) v(x) dx

where

p(x) =
|Y ∗|
lh

+
1

lg

∫ lg

0

G(x, y) dy −G0(x)

is the positive function introduced in (1.8).
Next we look at the linear elliptic problem associated to (1.6) as an abstract equation

Lεu = f ε where Lε : D(Lε) ⊂ Zε 7→ Zε is given by

D(Lε) =

{
u ∈ H2(Ωε) :

∂u

∂x1

N ε
1 +

1

ε2
∂u

∂x2

N ε
2 = 0 on ∂Ωε

}
Lεu = − ∂2u

∂x1
2 −

1

ε2
∂2u

∂x2
2 + u, u ∈ D(Lε).

(3.1)

It follows from [15, Corollary A.9] that Lε is selfadjoint and positive with compact resolvent.
Analogously, we associate the limit elliptic problem given by (1.7) to the limit linear

operator L0 : D(L0) ⊂ Z0 7→ Z0 defined by

D(L0) =
{
u ∈ H2(0, 1) : u′(0) = u′(1) = 0

}
L0u = − 1

p(x)
(q(x)ux)x + u, u ∈ D(L0)

(3.2)

where p and q are the homogenized coefficients introduced in (1.8). Due to [22, Remark
4.3], it is clear that L0 is a positive selfadjoint operator with compact resolvent. In fact, by
(3.1) and (3.2), we have established here a family of selfadjoint and positive linear operators
{Lε}ε≥0 with compact resolvent.

Now let us consider the Nemitiskii map Fε corresponding to nonlinearity f

Fε : Zα
ε 7→ Zε : uε → f(uε(x)), ∀x ∈ Ωε, (3.3)

wherever ε > 0, and for ε = 0

F0 : Zα
0 7→ Z0 : u→ f(u(x)), ∀x ∈ (0, 1), (3.4)

where
Zα
ε := Hα(Ωε), ε > 0, and Zα

0 := Hα(0, 1) at ε = 0.
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In this work we will usually take α ∈ [0, 1) since the oscillatory behavior of the domains Ωε

does not allow convergence of the solutions in H1-norm [11].

Lemma 3.1. For each ε ≥ 0 and 0 < α < 1, we have that the Nemitiskii map Fε satisfies

a) There exists K > 0, independent of ε, such that

‖Fε(uε)‖L∞(Zαε ,Zε) ≤ K ∀uε ∈ Zα
ε .

b) There exists θ ∈ (0, 1] and L > 0, independent of ε, such that Fε ∈ C1+θ(Zα
ε , Zε),

‖Fε(uε)− Fε(vε)‖Zε ≤ L‖uε − vε‖Zαε
‖DFε(uε)−DFε(vε)‖L(Zαε ,Zε) ≤ L‖uε − vε‖θZαε

for all uε, vε ∈ Zα
ε and ε ∈ [0, ε0).

c) There exists C > 0, independent of ε, such that

‖Fε(uε)− Fε(vε)−DFε(vε)(uε − vε)‖Zε ≤ C‖uε − vε‖1+α
Zαε

for all uε, vε ∈ Zα
ε and ε ∈ [0, ε0).

Proof. The proof of itens a) and b) is essentially the same one given in [3, Lemma 3.3.1] since

the embedding Zα
ε ↪→ L

2
1−α (Ωε) can be taken independent of ε for each α ∈ (0, 1). Indeed,

if Ωε is a family of Lipschitz domains uniformly bounded in ε ≥ 0, then, it follows from [17,
Remark 6.8] that there exists C > 0, independent of ε, such that

‖uε‖
L

2
1−α (Ωε)

≤ C‖uε‖Hα(Ωε), for all uε ∈ Hα(Ωε). (3.5)

The exponent 2
1−α is called fractional critical exponent. Here we show item c). First note

that Mean Value Theorem implies

|f(uε(x))− f(vε(x))− f ′(vε(x))(uε(x)− vε(x))| = |(f ′(ξ(x))− f ′(vε(x)))(uε(x)− vε(x))|

for some ξ(x) between uε(x) and vε(x). On the one hand, we get from (1.4) that

|f ′(ξ(x))− f ′(vε(x))| ≤ 2Cf .

On the other hand, we have once more by Mean Value Theorem that

|(f ′(ξ(x))− f ′(vε(x)))(uε(x)− vε(x))| ≤ Cf |uε(x)− vε(x)|.

Thus, if we call γε(x) = min{1, |uε(x)− vε(x)|}, we conclude

|f(uε(x))− f(vε(x))− f ′(vε(x))(uε(x)− vε(x))| ≤ 2Cf |γε(x)||(uε(x)− vε(x))|. (3.6)

Also, ‖γε‖L∞(Ωε) ≤ 1 and ‖γε‖L2(Ωε) ≤ ‖uε− vε‖L2(Ωε) implies ‖γε‖Lp(Ωε) ≤ ‖uε− vε‖2/p

L2(Ωε) for

any p > 2. Hence, due to (3.5) and (3.6), there exists Ĉ > 0 independent of ε such that

‖Fε(uε)− Fε(vε)−DFε(vε)(uε − vε)‖2
L2(Ωε) ≤ 2Cf‖γε(uε − vε)‖2

L2(Ωε)

≤ 2Cf‖γε‖2

L
2
α (Ωε)
‖uε − vε‖2

L
2

1−α (Ωε)
≤ Ĉ‖uε − vε‖2(1+α)

Zαε

for all α ∈ (0, 1). �
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Now we can write problems (1.6) and (1.7) as Lεu = Fε(u) for each ε ≥ 0. More, we have
that uε is a solution of (1.6) or (1.7), if only if uε ∈ Zα

ε satisfies uε = L−1
ε Fε(u

ε). Then, uε

must be a fixed point of the nonlinear map

L−1
ε ◦ Fε : Zα

ε 7→ Zα
ε . (3.7)

Consequently, the existence of solutions of problems (1.6) and (1.7) follows from Schauder’s
Fixed Point Theorem.

We introduce the set Eε in order to denote the family of solutions given by equations (1.6)
and (1.7) for each ε ≥ 0, that is,

Eε = {uε ∈ Zε : Lεu
ε = Fε(u

ε)}.
Note that Eε is the equilibria set of the parabolic equation associated to (1.6) and (1.7). Here
we investigate the asymptotic behavior of Eε at ε = 0.

We also recall that a solution u of a boundary value problem is called hyperbolic if the
eigenvalues of the linearized equation around u are all different from zero. In particular, we
call a solution u of (1.7) hyperbolic if λ = 0 is not an eigenvalue of the eigenvalue problem

1

p(x)
(q(x) vx)x + v = f ′(u) v + λv, x ∈ (0, 1),

vx(0) = vx(1) = 0.

Finally we observe that assumption (1.4) implies Eε is uniform bound in L∞.

Proposition 3.2. Let uε ∈ H1(Ωε) be a solution of (1.6) with nonlinearity f satisfying
(1.4). Then, there exists K > 0, independent of ε > 0, such that

‖uε‖L∞(Ωε) ≤ K.

Proof. Let uε ∈ H1(Ωε) be a solution of (1.6). Then, for all ϕ ∈ H1(Ωε),∫
Ωε

{∂uε
∂x1

∂ϕ

∂x1

+
1

ε2
∂uε

∂x2

∂ϕ

∂x2

+ uεϕ
}
dx1dx2 =

∫
Ωε
f(uε)ϕdx1dx2. (3.8)

Now let us take ϕ = U ε = (uε − k)+ in (3.8) for some k > 0 where f+ denotes the positive
part of a function f . Hence, adding and subtracting k in an appropriated way, we obtain

‖U ε‖2
L2(Ωε) +

∥∥∥∂U ε

∂x1

∥∥∥2

L2(Ωε)
+

1

ε2

∥∥∥∂U ε

∂x2

∥∥∥2

L2(Ωε)
=

∫
Ωε

(f(uε)− k)U εdx1dx2.

Consequently, if we pick k ≥ Cf given in (1.4), we get

‖U ε‖H1(Ωε) = 0, for any ε > 0,

and then, uε ≤ k. Finally we can argue in a similar way for −uε getting the desired result. �

3.2. E-convergence notion. Now we introduce the concept of compact convergence to
discuss the convergence of the solutions uε of (1.6). For this, we consider the family of linear
continuous operators Eε : Z0 7→ Zε

(Eεu)(x1, x2) = u(x1) on Ωε

for each u ∈ Z0. Since

pε(x) = Hε(x) +Gε(x) ⇀ p(x), w∗ − L∞(0, 1), (3.9)
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we have

‖Eεu‖2
Zε =

∫
Ωε
u2(x1) dx1dx2 =

∫ 1

0

{Hε(x1) +Gε(x1)}u2(x1) dx1

→ ‖u‖Z0 as ε→ 0.

Analogously, if we set Eε : L1
0 → L1

ε with L1
ε = D(Lε) taking in L1

0 the norm ‖u‖Z1
0

=

‖ − uxx + u‖Z0 we have
‖Eεu‖L1

ε
→ ‖u‖L1

0
.

Consequently, since
sup

06ε61
{‖Eε‖L(Z0,Zε), ‖Eε‖L(L1

0,L
1
ε )
} <∞,

we get by interpolation that

C = sup
ε>0
‖Eε‖L(Zα0 ,Z

α
ε ) <∞ for 0 6 α 6 1.

Remark 3.3. Note that Eε is a kind of inclusion operator from Zα
0 into Zα

ε .

Now we are in condition to introduce the concept of E-convergence.

Definition 3.4. We say that a sequence of elements {uε}ε>0 with uε ∈ Zε is E-convergent

to u ∈ Z0, if ‖uε − Eεu‖Zε → 0 as ε→ 0. We write uε
E→ u.

Definition 3.5. A sequence {un}n∈N with un ∈ Zεn is said to be E-precompact if for any

subsequence {un′} there exist a subsequence {un′′} and u ∈ Z0 such that un′′
E→ u as n′′ →∞.

Definition 3.6. We say that a family of operators {Bε ∈ L(Zε) : ε > 0} E-converges to

B ∈ L(Z0) as ε→ 0, if Bεf
ε E→ Bf whenever f ε

E→ f ∈ Z0. We write Bε
EE→ B.

Definition 3.7. We say that a family of compact operators {Bε ∈ L(Zε) : ε > 0} converges
compactly to a compact operator B ∈ L(Z0), if for any family {f ε}ε>0 with ‖f ε‖Zε ≤ 1, we

have that the family {Bεf
ε} is E-precompact and Bε

EE→ B. We write Bε
CC→ B.

Next we note this notion of convergence can also be extended to sets.

Definition 3.8. Let Oε ⊂ Zα
ε , ε ∈ [0, 1], and O0 ⊂ Zα

0 , α ∈ [0, 1].

(a) We say that the family of sets {Oε}ε∈[0,1] is E-upper semicontinuous or just upper
semicontinuous at ε = 0 if

sup
wε∈Oε

[
inf
w∈O0

{
‖wε − Eεw‖Zαε

} ]
→ 0, as ε→ 0.

(b) We say that the family of sets {Oε}ε∈[0,1] is E-lower semicontinuous or just lower
semicontinuous at ε = 0 if

sup
w∈O0

[
inf

wε∈Oε

{
‖wε − Eεw‖Zαε

} ]
→ 0, as ε→ 0.

(c) If {Oε}ε∈[0,1] is upper and lower semicontinuous at ε = 0, we say that is continuous.

We also recall an useful characterization of upper and lower semicontinuity of sets:
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(a) If any sequence {uε} ⊂ Oε has a E-convergent subsequence with limit belonging to
O0, then {Oε} is E-upper semicontinuous at zero.

(b) If O0 is a compact set and for each u ∈ O there exists a sequence {uε} ⊂ Oε such
that uε is E-convergent to u, then {Oε} is E-lower semicontinuous at zero.

4. Convergence results

On the framework introduced in section 3.2 we have from [22, Corollary 5.7] that the
family of compact operators {L−1

ε ∈ L(Zε)}ε>0 converges compactly to the compact operator
L−1

0 ∈ L(Z0) as ε → 0. Indeed, it follows from [22, Corollary 5.9] that there exist ε0 > 0,
and a function ϑ : (0, ε0) 7→ (0,∞), with ϑ(ε)→ 0 as ε→ 0, such that

‖L−1
ε − EεL−1

0 Mε‖L(Zε) ≤ ϑ(ε), ∀ε ∈ (0, ε0), (4.1)

where Mε : Lr(Ωε) 7→ Lr(0, 1) is the projection operator

(Mεf
ε)(x) =

1

pε(x)

∫ Hε(x)

−Gε(x)

f ε(x, s) ds x ∈ (0, 1), 1 ≤ r ≤ ∞,

which satisfies ‖Mεf
ε‖Lr(0,1) ≤ C‖f ε‖Lr(Ωε) for some C > 0 depending only on r, G0, H0, G1

and H1. Inequality (4.1) is a direct consequence of Theorem 2.1 and means the convergence
of the resolvent operators L−1

ε .
In this section, we show the continuity of the family {Eε}ε≥0 at ε = 0. In order to do that,

we first discuss some properties of the nonlinear maps L−1
ε Fε.

Lemma 4.1. Let L−1
ε Fε be the map defined in (3.7) for ε ∈ [0, 1). Then

i) L−1
ε Fε is a compact operator.

ii) L−1
ε Fε converges compactaly to L−1

0 F0, that is, if ‖uε − Eεu‖Zαε → 0 as ε→ 0, then

‖L−1
ε Fε(u

ε)− EεL−1
0 F0(u)‖Zαε → 0.

Proof. First we observe that i), for each ε ≥ 0 fixed, is a consequence of the continuity of
Fε : Zα

ε 7→ Z0 and L−1
ε ∈ L(Z0), as well as, the compact imbedding of Zα

ε ↪→ Z0 for α > 0.
Next we prove ii). To do so, let us denote

wε = L−1
ε Fε(u

ε). (4.2)

Hence, wε ∈ H2(Ωε) and satisfies the equation Lεw
ε = Fε(u

ε). Consequently, we have∫
Ωε

{∂wε
∂x1

∂ϕ

∂x1

+
1

ε2
∂wε

∂x2

∂ϕ

∂x2

+ wεϕ
}
dx1dx2 =

∫
Ωε
f(uε)ϕdx1dx2, ∀ϕ ∈ H1(Ωε). (4.3)

Now let {gε}ε≥0 ⊂ L2(0, 1) be the following family of functions

gε(x) =

∫ Hε(x)

−Gε(x)

f(uε(x, s))ds, for ε > 0, and g(x) = p(x) f(u(x)), at ε = 0,

where p is the function given by (1.8). Since uε
E→ u, we have gε ⇀ g, w-L2(0, 1). In fact,∫ 1

0

gε(x)ϕ(x)dx =

∫
Ωε

(f(uε)− f(u))ϕ(x1) dx1dx2 +

∫
Ωε
f(u)ϕ(x1)dx1dx2,
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with the last integral satisfying∫
Ωε
f(u)ϕ(x1)dx1dx2 =

∫ 1

0

f(u)ϕ(x1)

∫ Hε(x1)

−Gε(x1)

dx2 =

∫ 1

0

(Hε(x) +Gε(x))f(u)ϕdx

→
∫ 1

0

p f(u)ϕdx, as ε→ 0,

due to (3.9). Also, from (1.4) we have∫
Ωε
|f(uε)− f(u)ϕ| dx1dx2 ≤ ‖f ′‖∞‖uε − Eεu‖Zε‖ϕ‖Zε → 0, as ε→ 0.

Therefore,

gε ⇀ g, w − L2(0, 1). (4.4)

Now let us observe that (4.3) implies Lεw
ε = gε for all ε > 0. Then, we can conclude from

(4.3), (4.4) and Theorem 2.1 that there exist w ∈ H1(0, 1), such that,

‖wε − Eεw‖Zε = ‖wε − w‖Zε → 0, as ε→ 0, (4.5)

where w is the unique solution of problem (2.5) with f̂ = pf(u) ∈ L2(0, 1). Consequently,
we obtain from Remark 2.2, (4.2) and (4.5) that

L0w = f(u) and ‖L−1
ε Fε(u

ε)− L−1
0 F0(u)‖Zε → 0. (4.6)

Finally we observe that proof can be concluded if we show that wε is uniformly bounded in
Z1
ε . In fact, if wε is uniformly bounded in Z1

ε , then wε−Eεw is also. Thus, we can extract a
convergent subsequence of {wε−Eεw}ε>0 in Zα

ε for any α ∈ [0, 1). Therefore, we can conclude
from (4.5) and (4.6) that ‖wε − Eεw‖Zαε → 0, and then, ‖L−1

ε Fε(u
ε) − L−1

0 F0(u)‖Zαε → 0 as
ε→ 0 for all α ∈ [0, 1).

Thus, let us prove wε is uniformly bounded in Z1
ε . If we take ϕ = wε in (4.3), we get∥∥∥∂wε

∂x1

∥∥∥2

L2(Ωε)
+

1

ε2

∥∥∥∂wε
∂x2

∥∥∥2

L2(Ωε)
+ ‖wε‖2

L2(Ωε) ≤ ‖f(uε)‖L2(Ωε)‖wε‖L2(Ωε).

Hence, since f is bounded,

‖wε‖2
L2(Ωε) +

∥∥∥∂wε
∂x1

∥∥∥2

L2(Ωε)
+

1

ε2

∥∥∥∂wε
∂x2

∥∥∥2

L2(Ωε)
≤ Cf (G1 +H1)1/2‖wε‖L2(Ωε),

and then, we obtain that there exists K > 0, independent of ε, such that

‖wε‖L2(Ωε),
∥∥∥∂wε
∂x1

∥∥∥
L2(Ωε)

and
1

ε

∥∥∥∂wε
∂x2

∥∥∥
L2(Ωε)

≤ K, ∀ε ∈ (0, 1].

�

Now we are in condition to get the continuity of the equilibria set Eε at ε = 0. First we
show the upper semicontinuity using the compactness of the problems (1.6). Next, assuming
all solutions of (1.7) are hyperbolic, we obtain the lower semicontinuity as a consequence of
Lemma 4.1 and [27, Theorem 3].
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Proposition 4.2. Let uε be a family of solutions of problem (1.6) satisfying ‖uε‖L∞(Ωε) ≤ R
for some positive constant R independent of ε.

Then there exists a subsequence, still denoted by uε, and u ∈ H1(0, 1), solution of (1.7),
such that

‖uε − Eεu‖Zαε → 0, as ε→ 0,

for any α ∈ [0, 1).

Proof. The variational formulation of (1.6) is find uε ∈ H1(Ωε) such that∫
Ωε

{∂uε
∂x1

∂ϕ

∂x1

+
1

ε2
∂uε

∂x2

∂ϕ

∂x2

+ uεϕ
}
dx1dx2 =

∫
Ωε
f(uε)ϕdx1dx2, ∀ϕ ∈ H1(Ωε). (4.7)

Thus, if we take ϕ = uε in (4.7), we get∥∥∥∂uε
∂x1

∥∥∥2

L2(Ωε)
+

1

ε2

∥∥∥∂uε
∂x2

∥∥∥2

L2(Ωε)
+ ‖uε‖2

L2(Ωε) ≤ ‖f(uε)‖L2(Ωε)‖uε‖L2(Ωε). (4.8)

Hence, since ‖uε‖L∞(Ωε) ≤ R, that there exists C > 0, independent of ε, such that

‖uε‖L2(Ωε),
∥∥∥∂uε
∂x1

∥∥∥
L2(Ωε)

and
1

ε

∥∥∥∂uε
∂x2

∥∥∥
L2(Ωε)

≤ C, ∀ε > 0. (4.9)

Now, let us take Ω0 = {(x1, x2) : x1 ∈ (0, 1), −G0 < x2 < H0} ⊂ Ωε for all ε ≥ 0. Since
Ω0 is an open set independent of ε and uε|Ω0 ∈ H1(Ω0) is uniformly bounded, we can extract
a subsequence, still denoted by uε, such that for some u ∈ H1(Ω0)

uε ⇀ u w −H1(Ω0),

uε → u s−Hα(Ω0), for all α ∈ [0, 1),

∂uε

∂x2

→ 0 s− L2(Ω0).

(4.10)

Observe that u(x1, x2) does not depend on the variable x2. Indeed, for all ϕ ∈ C∞0 (Ω0),
we have from (4.10) that∫

Ω0

u
∂ϕ

∂x2

dx1dx2 = lim
ε→0

∫
Ω0

Pεu
ε ∂ϕ

∂x2

dx1dx2 = − lim
ε→0

∫
Ω0

∂Pεu
ε

∂x2

ϕdx1dx2 = 0,

and then, u(x1, x2) = u(x1) for all (x1, x2) ∈ Ω0 implying u ∈ H1(0, 1).
Also, from (4.10) we have that the restriction of uε to coordinate axis x1 converges to u.

If Γ = {(x1, 0) ∈ R2 : x1 ∈ (0, 1)}, then

uε|Γ → u s−Hα(Γ), ∀α ∈ [0, 1/2). (4.11)

Now, using (4.11) with α = 0, we obtain the L2-convergence of uε to u in Ωε. In fact, due
to (4.11), we have

‖uε|Γ − u‖2
L2(Ωε)

=

∫ 1

0

∫ Hε(x1)

−Gε(x1)

|uε(x1, 0)− u(x1)|2 dx2dx1

≤ (G1 +H1) ‖uε|Γ − u‖2
L2(Γ) → 0, as ε→ 0.
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Moreover,

|uε(x1, x2)− uε(x1, 0)|2 =

∣∣∣∣∫ x2

0

∂uε

∂x2

(x1, s) ds

∣∣∣∣2 ≤
(∫ x2

0

∣∣∣∣∂uε∂x2

(x1, s)

∣∣∣∣2 ds
)
|x2|.

Then, integrating in Ωε and using (4.9), we get

‖uε − uε|Γ‖2
L2(Ωε) ≤

∫ 1

0

∫ Hε(x1)

−Gε(x1)

(∫ x2

0

∣∣∣∣∂uε∂x2

(x1, s)

∣∣∣∣2 ds
)
|x2| dx2dx1

≤ (G1 +H1)2

∥∥∥∥∂uε∂x2

∥∥∥∥2

L2(Ωε)

→ 0 as ε→ 0.

Hence, since

‖uε − u‖L2(Ωε) ≤ ‖uε − uε|Γ‖L2(Ωε) + ‖uε|Γ − u‖L2(Ωε),

we obtain that uε
E→ u. Consequently we get

‖uε − Eεu‖Zαε → 0, as ε→ 0, (4.12)

for any α ∈ [0, 1), since uε
E→ u and ‖uε − Eεu‖H1(Ωε) is uniformly bounded in ε.

Finally we conclude the proof using ii) from Lemma 4.1. Since uε is a fixed point of L−1
ε Fε

if and only if is a solution of (1.6), we get from (4.12) and Lemma 4.1 that

‖uε − EεL−1
0 F0(u)‖Zαε = ‖L−1

ε Fε(u
ε)− EεL−1

0 F0(u)‖Zαε → 0.

Therefore, u = L−1
0 F0(u), and then, u ∈ H1(0, 1) is a solution of the limit problem (1.7)

proving the proposition.
�

Proposition 4.3. Let u be a hyperbolic solution of problem (1.7) satisfying ‖u‖L∞(0,1) ≤ R
for some positive constant R.

Then there exists a sequence of solutions uε of problem (1.6) such that for any α ∈ [0, 1)

‖uε − Eεu‖Zαε → 0, as ε→ 0.

Proof. First we note that if u is a hyperbolic solution of (1.7), then it is isolated. Hence,
there exists δ > 0 such that u is the unique solution of (1.7) in B0(u, δ) ⊂ Zα

0 , where B0(u, δ)
is the open ball of radius δ centered at u. Also, its fixed point index, relatively to map L−1

0 F0,
satisfies |ind(u, L−1

0 F0)| = 1. We refer to [18] for an appropriated definition of fixed point
index. Now, since the family of compact operators L−1

ε Fε satisfies items i) and ii) of Lemma
4.1, it follows from [27, Theorem 3] that there exists ε0 > 0 such that for each ε ∈ (0, ε0) the
operator L−1

ε Fε has at least one fixed point uε ∈ Zα
ε satisfying ‖uε − Eεu‖Zαε → 0 as ε→ 0.

Finally we observe that Eε is called a connection system in [27]. The proof of the proposition
is completed. �

Theorem 4.4. If the solutions of the limiting problem (1.7) are hyperbolic, then the family
of steady state solutions Eε is continuous at ε = 0.
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Proof. Let u be a solution of (1.7), then u ∈ H1(0, 1) and satisfies∫ 1

0

{q(x)uxϕx + p(x)uϕ}dx =

∫ 1

0

p(x)f(u)ϕdx, ∀ϕ ∈ H1(0, 1).

Taking ϕ = u we get ∫ 1

0

{q(x)ux
2 + p(x)u2}dx ≤ ‖p‖∞‖f(u)‖Z0‖u‖Z0 .

Note p and q are positive functions. Then, it follows from (1.4) that there exists K > 0
depending just on the functions H, G and f such that ‖u‖H1(0,1) ≤ K. Thus, the equilibria
set E0 is discrete and bounded in H1(0, 1) since we are assuming all solutions of (1.7) are
hyperbolic. Then E0 is finite and we conclude the proof due to Proposition 4.2 and 4.3. �

We still can prove a uniqueness result.

Corollary 4.5. Let u ∈ E0 be hyperbolic and α ∈ (0, 1). Then there exists δ > 0 and ε0 > 0
such that, for each ε ∈ (0, ε0), there exists one and only one uε ∈ Eε with ‖uε − Eεu‖Zαε < δ.

Proof. From Proposition 4.3, for δ > 0 small enough, there exists ε0 > 0 such that uε ∈ Eε
and ‖uε−Eεu‖Zαε < δ for all ε ∈ (0, ε0). In order to prove the result, we just have to show the
uniqueness of the fixed point uε proving ‖wε − L−1

ε Fε(w
ε)‖Zαε > 0 wherever ‖uε −wε‖Zαε < δ

and uε 6= wε. Since uε is hyperbolic, it follows from Lemma 3.1, [22, Corollary 5.7] and [1,
Lemma 4.7] that, there exist M > 0 and m > 0, independent of ε, such that ‖L−1

ε ‖Zε ≤ M
and ‖I − L−1

ε DFε(u
ε)‖Zαε ≥ m. Then, adding and subtracting appropriated terms, we get

from Lemma 3.1 that

‖wε − L−1
ε Fε(w

ε)‖Zαε ≥ ‖(wε − uε)− L−1
ε DFε(u

ε)(wε − uε)‖Zαε
−‖L−1

ε (Fε(w
ε)− Fε(uε)−DFε(uε)(wε − uε)) ‖Zαε

≥ (m−MC‖wε − uε‖αZαε )‖wε − uε‖Zαε .
Then, if we take δ small enough, we obtain ‖wε−L−1

ε Fε(w
ε)‖Zαε > 0, proving the result. �
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