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Abstract. Motivated by the applications from chemical engineering, in this paper we present a derivation

of the effective model describing the convection-diffusion-reaction process in a thin domain. The problem

is described by a nonlinear elliptic problem with nonlinearity appearing both in the governing equation as
well in the boundary condition. Using rigorous analysis in appropriate functional setting, we show that the

starting singular problem posed in a two-dimensional region can be approximated with one which is regular,

one-dimensional and captures the effects of all relevant physical processes which took place in the original
problem.

1. Introduction

Convection-diffusion-reaction problems naturally appear if physical processes in chemical engineering are
modeled and, thus, are of great interest both from the theoretical and practical point of view. Depending
on the problem we want to model, different types of equations and boundary conditions can be considered.
In the present paper, we study a stationary convection-diffusion equation in a thin (or long) channel with
nonlinear reaction term concentrated in a narrow (oscillating) strip near one part of the channel wall. On
the opposite part of the channel boundary, a nonlinear condition is prescribed modeling the reaction cat-
alyzed by the wall. This type of elliptic boundary value problem describes, for instance, a transport of the
solute by convection and diffusion where the solute particles undergo an irreversible chemical reaction on
the one part of the boundary1 and react among themselves in the vicinity of the other one. Our goal is to
rigorously derive the effective model described by the one-dimensional boundary-value problem providing a
good approximation of the governing problem when the ratio between channel’s thickness and its length is
small.

The study of the solute transport problem goes back to the celebrated work of Taylor [1] who first dis-
cussed the dispersion of a passive solute in a laminar flow. Extending Taylor’s analysis, Aris [2] formally
derived the effective equations describing the problem in the absence of the chemical reaction. Rigorous
derivation of the asymptotic model for a solute transport in the presence of the first-order (linear) chemical
reaction on the channel wall was given in [3]. With same type of boundary condition, a general model of
convection-diffusion with reaction was treated in [4] via homogenization. The effects of the curved geometry
and fluids microstructure on solute dispersion were investigated in [5, 6]. Let us also mention some contri-
butions in the engineering literature as [7, 8, 9].

In the above mentioned papers, the problems under consideration were linear. In the present paper, we
deal with a nonlinear elliptic problem with nonlinearity appearing both in the governing equation as well
in the boundary condition. Diffusion problems with reaction terms concentrating in the neighborhood of
the boundary were successfully addressed in recent papers by the second author of this paper. Combining
techniques from geometric theory of parabolic problems, perturbation of linear operators and concentrated
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1The reaction mechanism is assumed to be weak ensuring that the loss of the solute at the boundary is not considerable.
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2 I. PAŽANIN AND M. C. PEREIRA

integrals the authors have discussed in [10, 11] the continuity of the dynamics given by dissipative reaction-
diffusion equations posed in fixed domains (independent of the small parameter). In thin channels and with
homogeneous Neumann boundary condition, a nonlinear diffusion elliptic problem has been considered in
[12]. It is important to emphasize that here we consider a more general situation. On the one hand we allow
convection, diffusion and nonlinear reactions concentrated close to a portion of the boundary. On the other
hand, we combine homogeneous and nonlinear Neumann boundary conditions on the domain boundary. Our
main result provides a way how to replace a singular nonlinear elliptic problem posed in a two-dimensional
region with one which is regular, one-dimensional and captures the effects of all physical processes which
took place in the original problem. As far as we know, this is the first attempt to carry out such rigorous
analysis and we believe that the result could be instrumental for creating more efficient numerical algorithms
for approximating the solution of the convection-diffusion-reaction problems.

2. Formulation of the problem and the statement of the main result

We study the the asymptotic behavior of a family of solutions given by the nonlinear elliptic equation

−D∆wε +Qε(y)
∂wε

∂x
+ cwε =

1

εα
χθε f(wε) in Rε (2.1)

with the following boundary conditions

D
∂wε

∂νε
= ε g(wε) on Γ and

∂wε

∂νε
= 0 on ∂Rε \ Γ. (2.2)

The domain Rε is a simple thin (or long) channel given by

Rε = {(x, y) ∈ R2 : x ∈ (0, 1), 0 < y < εH}, 0 < ε� 1 . (2.3)

We denote by Γ ⊂ ∂Rε the lower wall of the channel, namely

Γ = {(x, 0) ∈ R2 : x ∈ (0, 1)}. (2.4)

In the governing equation, the given velocity field is assumed to be incompressible. Since we are studying
the process in a thin domain, it is reasonable to take the velocity to be unidirectional implying Qε = Qε(y),
due to the incompressibility condition. We set

Qε(y) = Q(y/ε) ,

where Q ∈ L∞(0, H) is a non-negative function. D > 0 is the molecular diffusion, c is the reaction coefficient,
the vector νε = (νε1, ν

ε
2) is the unit outward normal to ∂Rε and ∂

∂νε is the outside normal derivative. Observe
that the reaction mechanism on the boundary Γ is taken to be weak and we model that by assuming that
the wall absorbtion parameter is of order O(ε) (see (2.2)1). In case of the weak wall absorbtion, the loss of
the solute at Γ is not considerable and, consequently, the effects of the reaction at the boundary remain in
the limit problem.2

Nonlinearities f and g : R 7→ R are supposed to be C2-functions with bounded derivatives. Indeed, under
the point of view of investigating the asymptotic behavior of problems as (2.1)-(2.2), to assume f and g
bounded with bounded derivatives does not imply any restriction since we are interested here in solutions
uniformly bounded in L∞-norms.

The function

χθε : R2 7→ R
is the characteristic function of the narrow strip θε defined by (see Fig. 1)

θε = {(x, y) ∈ R2 : x ∈ (0, 1), ε (H − εαGε(x)) < y < εH)},

2If we write the problem in non-dimensional form (see e.g. [3]), such assumption would imply that the Damkohler number

Daε is of order O(ε). It can be easily verified that Daε = O(ε) is, in fact, the critical (and the most interesting) case. Indeed, if

we took Daε � O(ε), the effects of the (chemical) reaction on Γ would disappear from the effective model. On the other hand,
by assuming Daε � O(ε), the reaction on the wall would dominate the process keeping almost all solute in a small region near

the left end of the channel.
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where α is a positive parameter, Gε : (0, 1) 7→ R+ is smooth and non-negative satisfying 0 ≤ Gε(x) < H for
all x ∈ (0, 1) and ε > 0.

θϵ

Γ

Figure 1. The domain under consideration.

We allow Gε to oscillate when ε→ 0 expressing it as

Gε(x) = G(x, x/εβ), for some β > 0. (2.5)

The function G : (0, 1) × R 7→ R is non-negative, continuous in x uniformly in the second variable y, that
is, we suppose that for each η > 0, there exists δ > 0 such that |G(x, y)−G(x′, y)| ≤ η for all x, x′ ∈ [0, 1],
|x − x′| < δ, and y ∈ R. We still assume that G is l(x)-periodic in y for each x ∈ (0, 1): H(x, y + l(x)) =
H(x, y), for all y, with the period function l positive and uniformly bounded, 0 < l0 ≤ l(x) ≤ l1 in (0, 1).

Clearly the open set θε is a neighborhood for the upper boundary of Rε whose thickness and oscillatory
behavior depend on the positive parameters α and β respectively. Note that α and β set the thickness and
oscillating order when ε goes to zero. Also, if G only depends on the first variable x, then the function Gε
is independent of ε and the narrow strip θε does not possess oscillatory behavior.

In order to model the concentration of reactions in the small region θε ⊂ Rε, we will proceed as in [13, 14].
We will combine the characteristic function χε, the parameter ε and the nonlinear reaction f by the term

1

εα
χθεf ∈ L∞(Rε).

Moreover, since Rε ⊂ (0, 1)×(−ε b1, εG1) is thin and degenerates into the unit interval as ε goes to zero, it
is reasonable to expect that the family of solutions wε converges to a solution of a one-dimensional equation
capturing the variable profile of the oscillatory behavior of the narrow strip θε as well as the effect of the
nonlinear boundary condition.

We will show that the limit problem for (2.1)-(2.2) is the following one:−Duxx + q ux + c u =
1

H
(µ(x)f(u) + g(u)) in (0, 1) ,

ux(0) = ux(1) = 0 ,
(2.6)

where the constant q and the function µ : (0, 1) 7→ (0,∞) are given by

q =
1

H

∫ H

0

Q(y)dy,

µ(x) =
1

l(x)

∫ l(x)

0

G(x, y) dy.

(2.7)

Notice that the positive constant q is the average of the velocity Q and the non-negative coefficient
µ ∈ L∞(0, 1) is related to the oscillating strip θε set by the function Gε. In view of that, we conclude that
the asymptotic model (2.6) captures all the effects we seek for: the effects of convection, the reactions on
the boundary and inside the oscillating strip and also the effect of the geometry of the region where those
reactions take place.
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In our analysis we combine the results from [12, 13, 15]. We apply methods from [15] to deal with the
thin channel, and we use the concentrated integrals discussed in [14, 16, 12, 13] in order to obtain µ(x),
which is the mean value of G(x, ·) for each x ∈ (0, 1). The coefficient µ captures the oscillatory behavior and
the geometry of the narrow strip where the reactions are concentrated. If G does not depend on the second
variable y, then the narrow neighborhood does not have oscillatory behavior, and so, µ(x) = G(x) in (0, 1).

In order to study problem (2.1) in the thin domain Rε, we perform a convenient change of variable
obtaining the following problem

−D
(
∂2uε

∂x1
2 +

1

ε2
∂2uε

∂x2
2

)
+Q(x2)

∂uε

∂x1
+ c uε =

1

εα
χoε f(uε) in Ω

∂uε

∂x1
N1 +

1

ε2
∂uε

∂x2
N2 = 0 on ∂Ω \ Γ

D

(
∂uε

∂x1
N1 +

1

ε2
∂uε

∂x2
N2

)
= g(uε) on Γ

(2.8)

where the function χoε : R2 7→ R is the characteristic function of the narrow strip oε given by

oε = {(x1, x2) ∈ R2 : x1 ∈ (0, 1), (H − εαGε(x1)) < x2 < H}. (2.9)

The vector N = (N1, N2) is the outward unit normal to ∂Ω and Ω ⊂ R2 is the set

Ω = {(x1, x2) ∈ R2 : x1 ∈ (0, 1), 0 < x2 < H}.
The equivalence between problems (2.1)-(2.2) and (2.8) can be observed by changing the scale of the

channel Rε and the narrow strip θε through the isomorphism (x1, x2) → (x1, ε
−1x2) which consists in

stretching the x2-direction by a factor of ε−1. The factor ε−2 establishes a very fast diffusion in the x2-
direction. Indeed, we have rescaled the neighborhood θε into the strip oε ⊂ Ω and substituted the thin
domain Rε for a domain Ω independent on ε, at a cost of introducing a very strong diffusion mechanism in
the x2-direction.

Due to this strong diffusion mechanism it is expected that solutions of (2.8) will become more and more
homogeneous in the x2-direction when ε decreases, such that the limit solution will not depend on x2 and
therefore the limit problem will be one dimensional. This is in fully agreement with the intuitive idea that
an equation in a thin domain should approach one in a line segment.

Now we are in position to state our main result:

Theorem 2.1. Assume the reaction coefficient c in problem (2.8) satisfies c > ‖Q‖2L∞(0,H)/4D.

a) Then, if {uε}ε>0 is a family of solutions of problem (2.8), there exists a subsequence, still defined by
uε, and a function u ∈ H1(Ω) with u(x1, x2) = u(x1), solution of the problem (2.6), such that

‖uε − u‖H1(Ω) → 0, as ε→ 0.

b) On the other hand, if a solution u of (2.6) is hyperbolic, then there exists a sequence uε of solutions
of problem (2.8) satisfying

‖uε − u‖H1(Ω) → 0, as ε→ 0.

Remark 2.2. Recall that a steady state solution u of a nonlinear differential equation is called hyperbolic if
λ = 0 is not an eigenvalue of the linearized problem around u. For instance, if u satisfies equation (2.6) and
is hyperbolic, then λ = 0 is not an eigenvalue of the eigenvalue problem−Dvxx + q vx + c v =

1

H
(µf ′(u) + g′(u)) v + λv in (0, 1)

vx(0) = vx(1) = 0
.

Remark 2.3. Let us call Eε = {uε ∈ H1(Ω) : uε is a solution of (2.8)} for each ε > 0. Thus assertions a)
and b) at Theorem 2.1 respectively mean upper and lower semicontinuity of the equilibria set of the parabolic
problem associated to (2.8) at ε = 0. In this sense we are proving the continuity of the stead state solutions
given by (2.8) at ε = 0 which reach the limit equation (2.6) as ε→ 0.
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3. Basic facts

In this section we state basic results, introducing notations and writing our problem in an abstract setting.
We also discuss how concentrating integrals converge to boundary integrals taking results from [12, 13, 14, 16].

Throughout this work we call H1
ε (U) the Hilbert space set by H1(U) with the equivalent norm

‖w‖2H1
ε (U) = ‖w‖2L2(U) +

∥∥∥ ∂w
∂x1

∥∥∥2

L2(U)
+

1

ε2

∥∥∥ ∂w
∂x2

∥∥∥2

L2(U)
(3.1)

defined by the inner product

(φ, ϕ)H1
ε (U) =

∫
U

{
∂φ

∂x1

∂ϕ

∂x1
+

1

ε2
∂φ

∂x2

∂ϕ

∂x2
+ φϕ

}
dx1dx2

where U is an arbitrary open set of R2. Note that ‖ · ‖H1
ε (U) ≥ ‖ · ‖H1(U) wherever ε ∈ [0, 1]. As we will see,

the strong diffusion mechanism in front of the second derivative makes this space a suitable one to deal with
thin domain problems.

Remark 3.1. Due to (3.1) it is clear that any sequence uε ∈ H1
ε (Ω) with ‖uε‖H1

ε (Ω) ≤ C for some positive
constant C independent of ε satisfies ∥∥∥∥∂uε∂x2

∥∥∥∥
L2(Ω)

≤ εC, ∀ε > 0.

Consequently we get ∥∥∥∥∂uε∂x2

∥∥∥∥
L2(Ω)

→ 0, as ε→ 0.

Lemma 3.2. If Gε is defined as in (2.5), then

Gε(·)→ µ(·) =
1

l(·)

∫ l(·)

0

G(·, s) ds, w∗ − L∞(0, 1).

Proof. See [13, Lemma 2.3] or [17, Lemma 4.2]. �

3.1. Abstract settings and existence of solutions. In order to write problems (2.6) and (2.8) in an
abstract form, we introduce the bilinear forms aε : H1

ε (Ω)×H1
ε (Ω) 7→ R and a0 : H1(0, 1)×H1(0, 1)→ R

aε(u, v) =

∫
Ω

{
D

(
∂u

∂x1

∂v

∂x1
+

1

ε2
∂u

∂x2

∂v

∂x2

)
+Q

∂u

∂x1
v + c u v

}
dx1dx2, for ε > 0,

a0(u, v) = H

∫ 1

0

{Dux vx + q uxv + c u v} dx, at ε = 0,

(3.2)

where the constant q is given by (2.7) and the constant H comes from the domain Ω.
It is not difficult to see that aε is continuous for all ε > 0. Moreover, for each ε > 0, we can define the

linear operators Aε : H1
ε ⊂ H−1(Ω) 7→ H−1(Ω) by the expression

〈Aεu, v〉−1,1 = aε(u, v), for all v ∈ H1(Ω).

Hence, we can write the problem (2.8) in the abstract form Aεu = Fε(u), for ε > 0, where

Fε : H1
ε (Ω) 7→ H−s(Ω), 1/2 < s < 1,

is given by

Fε = Fε,f + Fg,

〈Fε,f (u), v〉 =
1

εα

∫
oε

f(u) v dx1dx2 and 〈Fg(u), v〉 =

∫
Γ

γ(g(u)) γ(v) dS, for all v ∈ Hs(Ω).
(3.3)

Recall that f and g are C2-nonlinearities, bounded with bounded derivatives, and oε is the narrow strip
defined in (2.9). Here γ : Ht(Ω) 7→ L2(Γ) is the trace operator with 1/2 < t < 1.
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In a similar way we can write the limit problem (2.6) in an abstract form A0u = F0(u) where

F0 : H1(0, 1) 7→ H−s(0, 1), 1/2 < s < 1,

is defined by

F0 = F0,f + F0,g

〈F0,f (u), v〉 =

∫ 1

0

µ f(u) v dx and 〈F0,g(u), v〉 =

∫ 1

0

g(u) v dx, for all v ∈ Hs(0, 1),
(3.4)

where µ ∈ L∞(0, 1) is the coefficient introduced in (2.7).

Remark 3.3. Under our assumptions, it is known that functions Fε and F0 are Fréchet differentiable. The
proof can be seen for example in [10, Lemma 3.6 and 3.7].

Lemma 3.4. The continuous bilinear form aε is uniformly coercive for all c > ‖Q‖2L∞(0,H)/4D and ε ∈ [0, 1].

Proof. We just prove the case aε with ε > 0. An analogous argument shows the result to the bilinear form
a0 since |q| ≤ ‖Q‖L∞ . Using Holder and Young’s inequality, we can get∫

Ω

D

{(
∂u

∂x1

2

+
1

ε2
∂u

∂x2

2)
+ c u2

}
dx1dx2 = aε(u, u)−

∫
Ω

Q
∂u

∂x1
u dx1dx2,

≤ aε(u, u) + ‖Q‖L∞
∥∥∥∥ ∂u∂x1

∥∥∥∥
L2

‖u‖L2

≤ aε(u, u) +
1

2
‖Q‖L∞

(
δ

∥∥∥∥ ∂u∂x1

∥∥∥∥2

L2

+
1

δ
‖u‖2L2

)
for all u ∈ H1(Ω), ε and δ > 0. Thus,

aε(u, u) ≥
(
D − δ

2
‖Q‖L∞

)∥∥∥∥ ∂u∂x1

∥∥∥∥2

L2

+
D

ε2

∥∥∥∥ ∂u∂x2

∥∥∥∥2

L2

+

(
c− 1

2δ
‖Q‖L∞

)
‖u‖2L2 .

Now let us take δ > 0 such that c/‖Q‖L∞ > 1/2δ > ‖Q‖L∞/4D, and so, such that

c > ‖Q‖L∞/2δ > ‖Q‖2L∞/4D.
Then,

aε(u, u) ≥ min

{
D − δ

2
‖Q‖L∞ , D, c−

1

2δ
‖Q‖L∞

}
‖u‖2H1

ε (Ω), ∀u ∈ H1(Ω),

and we can conclude that there exists k > 0, independent of ε ∈ [0, 1], such that

aε(u, u) ≥ k‖u‖2H1
ε (Ω), ∀ε ∈ [0, 1] and u ∈ H1(Ω).

�

Remark 3.5. Since ‖ · ‖H1
ε (Ω) ≥ ‖ · ‖H1(Ω) for all ε ∈ [0, 1], we also get from Lemma 3.4 that

aε(u, u) ≥ k‖u‖2H1(Ω), ∀ε ∈ [0, 1] and u ∈ H1(Ω).

As a consequence of Lemma 3.4 we have that the unbounded operator Aε is invertible, and then, we have
that uε ∈ H1(Ω) is a solution of (2.8), if and only if satisfies uε = A−1

ε Fε(u
ε). That is, uε must be a fixed

point of the nonlinear map
A−1
ε ◦ Fε : H1

ε (Ω) 7→ H1
ε (Ω) (3.5)

wherever c > ‖Q‖2L∞(0,H)/4D. Under our assumptions the existence of solutions of (2.8) follows from

Schauder’s Fixed Point Theorem.
Analogously, we have the solutions of the limit problem (2.6) can be obtained as fixed points of the map

A−1
0 ◦ F : H1(0, 1) 7→ H1(0, 1). (3.6)

Moreover, as a consequence of Theorem 2.1, the solutions of (2.6) also can be obtained as limits of the
solutions of the perturbed problem (2.8).
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Remark 3.6. It follows from [18, Theorem 3.2.1.3] and Remark 3.5 that operator A−1
ε defines an isomor-

phism from L2(Ω) into H2(Ω). Hence, due to the compact imbedding of H2−s(Ω) into H1(Ω), for 0 < s < 1,
and the continuity of Fε, we can conclude that A−1

ε Fε is a continuous and compact mapping for all ε > 0.
Note that we have the same to A−1

0 F0 since a similar argument can be used to show that.

3.2. Concentrating integrals. Next we colect some results that we need in order to prove the main result.

Lemma 3.7. Suppose v ∈ Hs(Ω) with 1/2 < s ≤ 1 and s − 1 ≥ −1/q. Then, for small ε0, there exists a
constant C > 0 independent of ε and v, such that for any 0 < ε ≤ ε0, we have

1

εα

∫
oε

|v(ξ)|q dξ ≤ C ‖v‖qHs(Ω) .

Proof. Performing a simple change of variable we get

1

εα

∫
oε

|v(ξ)|q dξ =
1

εα

∫ 1

0

∫ εαHε(x1)

0

|v(x1, G(x1)− x2)|q dx2dx1.

Now from [13, Lemma 2.1] we know that there exist ε0 and C > 0 independent of ε such that

1

εα

∫
oε

|v(ξ)|q dξ ≤ C ‖w‖qHs(τ−1(Ω)) , ∀ε ∈ (0, ε0),

where w = v ◦ τ and τ : R2 7→ R2 is given by τ(x1, x2) = (x1, G(x1)−x2). Hence, we can conclude the proof
of the result using that norms ‖w‖Hs(τ−1(Ω)) and ‖v‖Hs(Ω) are equivalents (for instance, see [14, Section 2]).

�

Now we evaluate the convergence of the integrals with nonlinear terms.

Lemma 3.8. Let uε, ϕε ∈ H1
ε (Ω), and u, ϕ ∈ H1(0, 1) satisfying uε ⇀ u and ϕε ⇀ ϕ, w −H1(Ω). Then,∫

Γ

γ(g(uε)) γ(ϕε) dS →
∫ 1

0

g(u)ϕdx, (3.7)

1

εα

∫
oε

f(uε)ϕε dx1dx2 →
∫ 1

0

µ f(u)ϕdx, (3.8)

as ε→ 0, where µ is given by (2.7) and γ : Ht(Ω) 7→ L2(Γ) is the trace operator for any 1/2 < t < 1.
As a consequence we have that 〈Fε(uε), ϕε〉 → 〈F0(u), ϕ〉 as ε→ 0.

Proof. Since g is bounded with bounded derivatives, it is clear that g is globally Lipschitz. Hence it is not
difficult to see that g(uε)→ g(u) in L2(Ω) as ε→ 0. Moreover,∫

Γ

γ(g(uε)) γ(ϕε) dS −
∫ 1

0

g(u)ϕdx =

∫ 1

0

γ (g(uε)− g(u)) γ(ϕε)dx−
∫ 1

0

γ (ϕε − ϕ) g(u)dx.

Thus, we obtain (3.7) combine continuity of the trace with uε ⇀ u and ϕε ⇀ ϕ, w −H1(Ω).
Now let us evaluate

1

εα

∫
oε

f(uε)ϕε dx1dx2 −
∫ 1

0

µ f(u)ϕdx =
1

εα

∫
oε

f(uε) (ϕε − ϕ) dx1dx2 +
1

εα

∫
oε

(f(uε)− f(u))ϕdx1dx2

+

∫ 1

0

(Gε(x)− µ(x))f(u)ϕdx = I1 + I2 + I3

where Ii sets the integrals in an obvious way. We will get Ii → 0 as ε→ 0 for each i = 1, 2, 3 proving (3.8).
Due to Lemma 3.2, we have I3 → 0. On the other hand, Lemma 3.7 implies for any s ∈ (1/2, 1] that

|I1| ≤ C ‖f‖L∞ ‖ϕε − ϕ‖Hs(Ω).

Thus, since from ϕε ⇀ ϕ, w −H1(Ω), we have ϕε → ϕ, s−Hs(Ω), for all 0 ≤ s < 1, then we get I1 → 0.
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Finally, we use that f is globally Lipschitz, as well as Lemma 3.7 to obtain

|I3| ≤
(

1

εα
‖f(uε)− f(u)‖2L2(oε)

) 1
2
(

1

εα
‖ϕ‖2L2(oε)

) 1
2

≤ LfC‖uε − u‖Hs(Ω)‖ϕ‖Hs(Ω).

Hence, since uε → u, s−Hs(Ω) for all 0 ≤ s < 1, we also obtain I3 → 0 as ε→ 0. �

Remark 3.9. For now on, we will omit the trace operator symbol aiming to simplify the written.

We still need to discuss some properties of the maps A−1
ε Fε. They will be necessary in order to prove the

lower semicontinuity of the solutions at ε = 0.

Lemma 3.10. Let A−1
ε Fε be the maps defined in (3.5) and (3.6). Then

i) A−1
ε Fε are compact for each fixed ε ≥ 0.

ii) {A−1
ε Fε(u

ε)}ε∈[0,1) is a pre-compact family whenever ‖uε‖H1
ε (Ω) is uniformly bounded. Indeed, there

exist a subsequence, still denoted by A−1
ε Fε(u

ε), and u ∈ H1(0, 1), such that

‖A−1
ε Fε(u

ε)−A−1
0 F0(u)‖H1

ε (Ω) → 0, as ε→ 0.

iii) If ‖uε − u‖H1
ε (Ω) → 0 as ε→ 0, then ‖A−1

ε Fε(u
ε)−A−1

0 F0(u)‖H1
ε (Ω) → 0.

Proof. Assertion i) is given by Remark 3.6.
To prove ii) we take uε ∈ H1

ε (Ω) such that ‖uε‖H1
ε (Ω) ≤ C. Consequently,∥∥∥∂uε

∂x1

∥∥∥2

L2(Ω)
+

1

ε2

∥∥∥∂uε
∂x2

∥∥∥2

L2(Ω)
+ ‖uε‖2L2(Ω) ≤ C

2,

and so, we have

‖uε‖L2(Ω),
∥∥∥∂uε
∂x1

∥∥∥
L2(Ω)

and
1

ε

∥∥∥∂uε
∂x2

∥∥∥
L2(Ω)

≤ C ∀ε > 0. (3.9)

Thus, due to (3.9), we can extract a subsequence of solutions, still denoted by uε, such that as ε→ 0

uε ⇀ u, w −H1(Ω), and
∂uε

∂x2
→ 0, s− L2(Ω), (3.10)

for some u ∈ H1(Ω). Furthermore, from (3.10) we have that u(x1, x2) = u(x1) in Ω, and then, u ∈ H1(0, 1).
In fact, we get that ∂u

∂x2
(x1, x2) = 0 a.e. Ω, since for all ϕ ∈ C∞0 (Ω)∫

Ω

u
∂ϕ

∂x2
dx1dx2 = lim

ε→0

∫
Ω

uε
∂ϕ

∂x2
dx1dx2 = − lim

ε→0

∫
Ω

∂uε

∂x2
ϕdx1dx2 = 0. (3.11)

Now let us call wε = A−1
ε Fε(u

ε). Then, wε satisfies Aεw
ε = Fε(u

ε), that is,

aε(w
ε, wε) =

1

εα

∫
oε

f(uε)wε dx1dx2 +

∫
Γ

g(uε)wε dx1dx2.

Since we are taking f and g bounded with bounded derivatives, it follows from Lemma 3.4 and 3.7 that wε

is a uniformly bounded sequence in H1
ε (Ω). Indeed, since f and g are bounded, it follows from Lemma 3.7

k‖wε‖2H1
ε (Ω) ≤ aε(w

ε, wε) ≤ C1/2H1/2 ‖f(uε)‖L∞ ‖wε‖L2(Ω) + ‖g(uε)‖L2(Γ) ‖wε‖L2(Γ) ≤ Ĉ‖wε‖H1(Ω).

where Ĉ(Ω, f, g, C, k) = Ĉ > 0 is independent of ε. Hence, since ‖ · ‖H1
ε (Ω) ≥ ‖ · ‖H1(Ω) for ε ∈ [0, 1], we have

‖wε‖L2(Ω),
∥∥∥∂wε
∂x1

∥∥∥
L2(Ω)

and
1

ε

∥∥∥∂wε
∂x2

∥∥∥
L2(Ω)

≤ Ĉ/k ∀ε ∈ (0, 1].

Then, we can also argue as in (3.10) and (3.11) extracting a subsequence, still denoted by wε, such that

wε ⇀ w, w −H1(Ω), and
∂wε

∂x2
→ 0, s− L2(Ω), (3.12)
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for some w ∈ H1(0, 1). Hence, we can pass to the limit in 〈Aεwε, ϕ〉 = 〈Fε(uε), ϕ〉 taking ϕ ∈ H1(0, 1).
In fact, due to (3.10), (3.12) and Lemma 3.8, we obtain 〈A0w,ϕ〉 = 〈F0(u), ϕ〉 for all ϕ ∈ H1(0, 1), which
implies w = A−1

0 F0(u). Moreover, using Lemma 3.8 we obtain

aε(w
ε, wε) = 〈Fε(uε), wε〉 → 〈F0(u), w〉 = a0(w,w) as ε→ 0,

proving ii).
Finally let us prove iii). Since we are supposing ‖uε − u‖H1

ε (Ω) → 0, we have ‖uε‖H1
ε (Ω) ≤ C for some

C > 0 independent of ε. Hence, arguing as in the proof of item ii), for any subsequence, we still can extract
another subsequence such that ‖A−1

ε Fε(u
ε)−A−1

0 F0(u)‖H1
ε (Ω) → 0 as ε→ 0, with ‖uε−u‖H1

ε (Ω) → 0. Thus,
since this has been shown for any arbitrary sequence, the proof of item iii) is complete.

�

4. Continuity of the equilibria set

In order to prove Theorem 2.1, we break its two assertions concerning to upper and lower semicontinuity of
the equilibria set Eε into Lemma 4.1 and 4.2. Initially we consider the upper semicontinuity of the solutions.

Lemma 4.1. Let uε be a family of solutions of problem (2.8).
Then there exist a subsequence, still denoted by uε, and a function u ∈ H1(Ω), depending only on the first

variable, that is, u(x1, x2) = u(x1), solution of the problem (2.6), such that

‖uε − u‖H1(Ω) → 0, as ε→ 0.

Proof. First we note that the solutions uε of (2.8) are uniformly bounded in H1(Ω) with respect to ε. In
fact, uε ∈ Eε satisfies (2.8), if and only if∫

Ω

D

{(
∂u

∂x1

∂ϕ

∂x1
+

1

ε2
∂u

∂x2

∂ϕ

∂x2

)
+Q

∂u

∂x1
ϕ+ c uϕ

}
dx1dx2 =

1

εα

∫
oε

f(uε)ϕdx1dx2 +

∫
Γ

g(uε)ϕdS (4.1)

for all ϕ ∈ H1(Ω). Hence, taking ϕ = uε in (4.1), we get from Lemma 3.4 and 3.7 that

k‖uε‖2H1
ε (Ω) ≤ C

1/2H1/2 ‖f(uε)‖L∞ ‖uε‖L2(Ω) + ‖g(uε)‖L2(Γ) ‖uε‖L2(Γ) ≤ Ĉ‖uε‖H1(Ω),

for some Ĉ > 0 independent of ε. Recall that f and g are bounded functions. Thus, since ‖·‖H1
ε (Ω) ≥ ‖·‖H1(Ω)

for ε ∈ [0, 1], we have

‖uε‖L2(Ω),
∥∥∥∂uε
∂x1

∥∥∥
L2(Ω)

and
1

ε

∥∥∥∂uε
∂x2

∥∥∥
L2(Ω)

≤ Ĉ/k ∀ε ∈ (0, 1].

Arguing as in (3.10) and (3.11), we can extract a subsequence, still denoted by uε, such that

uε ⇀ u, w −H1(Ω), and
∂uε

∂x2
→ 0, s− L2(Ω), (4.2)

for some u ∈ H1(0, 1). Now we can easily pass to the limit in the variational formulation (4.1). Using Lemma
3.8 and (3.10) we obtain∫

Ω

{Duxϕx +Q(x2)ux ϕ+ uϕ} dx1dx2 =

∫ 1

0

µ f(u)ϕdx+

∫ 1

0

g(u)ϕdx,

whenever ϕ ∈ H1(0, 1). Hence, since u and ϕ do not depend on x2, we have that∫ 1

0

H {Duxϕx + q ux ϕ+ uϕ} dx1dx2 =

∫ 1

0

µ f(u)ϕdx+

∫ 1

0

g(u)ϕdx, (4.3)

where q and µ are given by (2.7). (4.3) is the variational formulation of problem (2.6). Also, we note that
aε(u

ε, ϕ)→ a0(u, ϕ), as ε→ 0, for all ϕ ∈ H1(0, 1).
Finally we prove convergence of the H1-norm in order to show strong convergence in H1(Ω). We use that

the norm is lower semicontinuous with respect to the weak convergence:

‖u‖H1(Ω) ≤ lim inf
ε
‖uε‖H1(Ω). (4.4)
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In fact, from (4.1), (3.10), (4.3) and (4.4) we obtain∫ 1

0

H
du

dx

2

dx =

∫
Ω

|∇u|2 dx1dx2 ≤ lim inf
ε∈(0,1)

∫
Ω

|∇uε|2 dx1dx2 ≤ lim sup
ε∈(0,1)

∫
Ω

|∇uε|2 dx1dx2

≤ lim sup
ε∈(0,1)

∫
Ω

{
∂uε

∂x1

2

+
1

ε2
∂uε

∂x2

2}
dx1dx2

≤ 1

D

{
−
∫ 1

0

H
{
q ux u+ u2

}
dx+

∫ 1

0

{p f(u) + µ g(u)}u dx
}

=

∫ 1

0

H
du

dx

2

dx.

Therefore ‖uε‖H1(Ω) → ‖u‖H1(Ω) and the proof is complete.
�

Finally we will show the lower semicontinuity of the state stead solutions uε at ε = 0. As we will see, it
is a direct consequence of Lemma 3.10 and [20, Theorem 3].

Lemma 4.2. Let u be a hyperbolic solution of problem (2.6).
Then there exists a sequence of solutions uε of problem (2.8) such that

‖uε − u‖H1(Ω) → 0, as ε→ 0.

Proof. Note that u being a hyperbolic solution of (2.6) implies that u is an isolated equilibrium by Inverse
Theorem applied to the map Φ : H1(0, 1) 7→ H−1(0, 1) : u → a0(u, ·) − 〈F0(u), ·〉 . Then, there exists δ > 0
such that u is the unique solution of (2.6) in the open ball B(u, δ) of radius δ centered at u ∈ H1(0, 1). Also,
its fixed point index, relatively to map A−1

0 F0, must satisfy |ind(u,A−1
0 F0)| = 1. For instance, we refer to

[19] for an appropriated definition of fixed point index.
Now, since the family of compact operators A−1

ε Fε satisfies items ii) and iii) of Lemma 3.10, and H1(0, 1) ⊂
H1(Ω), it follows from [20, Theorem 3] that there exists ε0 > 0 such that the operator A−1

ε Fε has at least
one fixed point uε ∈ B(u, δ), for each ε ∈ (0, ε0), such that ‖uε − u‖H1

ε (Ω) → 0 as ε→ 0. We finish the proof
using that ‖ · ‖H1(Ω) ≤ ‖ · ‖H1

ε (Ω) whenever ε ∈ (0, 1). �
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[5] E. Marušić-Paloka, I. Pažanin, On the reactive solute transport through a curved pipe, Appl. Math. Lett. 24 (2011) 878–882.
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[15] J.K. Hale and G. Raugel, Reaction-diffusion equation on thin domains, J. Math. Pures et Appl. 71 (1992) 33–95.
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