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Abstract. In this paper we analyze the behavior of solutions to a nonlocal equation of the
form J ∗ u(x) − u(x) = f(x) in a perforated domain Ω \ Aε with u = 0 in Aε ∪ Ωc and an
obstacle constraint, u ≥ ψ in Ω\Aε. We show that, assuming that the characteristic function
of the domain Ω \ Aε verifies χε ⇀ X weakly∗ in L∞(Ω), there exists a weak limit of the
solutions uε and we find the limit problem that is satisfied in the limit. When X 6≡ 1 in this
limit problem an extra term appears in the equation as well as a modification of the obstacle
constraint inside the domain.

1. Introduction

Let us take a family of open bounded sets Ωε ⊂ RN satisfying Ωε ⊂ Ω for some fixed open
bounded domain Ω ⊂ RN and a positive parameter ε. In this work we see Ωε as a perforated
domain where the set

Aε = Ω \ Ωε

describe the holes inside Ω.

If we denote by χε ∈ L∞(RN ) the characteristic function of Ωε, we assume that there exists
a function X ∈ L∞(RN ), strictly positive inside Ω, such that

(1.1) χε ⇀ X weakly∗ in L∞(Ω).

This means that ∫
Ω
χε(x)ϕ(x) dx→

∫
Ω
X (x)ϕ(x) dx as ε→ 0

for all ϕ ∈ L1(Ω) and there exists a positive constant c > 0 such that

0 < c ≤ X (x) ≤ 1 for x ∈ Ω.

Notice that χε as a characteristic function also satisfies

0 ≤ χε(x) ≤ 1 in RN .

Now given a function ψ ∈ L2(RN ) let us introduce the following unilateral convex sets

Kε =
{
φ ∈ L2(RN ) : φ(x) ≡ 0 in RN \ Ωε with φ ≥ ψ in Ωε

}
and

K =
{
φ ∈ L2(RN ) : φ(x) ≡ 0 in RN \ Ω with φ ≥ Xψ in Ω

}
.
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In the convex setKε, the function ψ defines an obstacle constraint which oscillates according
to the configuration of the holes Aε since for all φ ∈ Kε we have φ(x) = 0 wherever x ∈ Aε.
Notice that the convex set K, which is the weak limit of the sets Kε (note that any weak limit
of a sequence vε ∈ Kε belongs to K), possesses as obstacle the function Xψ which depend on
the limit of the characteristic functions χε.

Consider now the following functionals I and I0 defined for any φ ∈ L2(RN ) with φ(x) ≡ 0
in RN \ Ω and a fixed function f ∈ L2(Ω)

I(φ) =
1

2
|||φ|||2 −

∫
RN

fφ dx

and

I0(φ) =
1

2
|||φ|||2 +

1

2

∫
Rn
µφ2 dx−

∫
RN

fφ dx

where the coefficient µ ∈ L∞(Ω) is given by

(1.2) µ(x) =
1−X (x)

X (x)
.

The norm ||| · ||| is set for any φ ∈ L2(RN ) with φ(x) ≡ 0 in RN \ Ω and is given by

|||φ|||2 =
1

2

∫
RN

∫
RN

J(x− y)(φ(y)− φ(x))2dydx.

Notice that ||| · ||| is associated to the nonlocal Dirichlet problem

(1.3)

∫
RN

J(x− y)(φ(y)− φ(x))dy = f(x) a.e. in Ω

with

(1.4) φ(x) ≡ 0 x ∈ RN \ Ω

where the function J that appears as the kernel in the integral equation is assumed to satisfy

(HJ)

J ∈ C(RN ,R) is non-negative and compactly supported with J(0) > 0,

J(−x) = J(x) for every x ∈ RN , and

∫
RN

J(x) dx = 1.

As we can see in [1, Section 2.1.1], under these conditions ||| · ||| defines a norm which is
equivalent to the usual L2-norm, and then defines a coercive bilinear and continuous form in
L2. Indeed, if λ1 is the first eigenvalue of the nonlocal Dirichlet problem (1.3) and (1.4), we
know that satisfies

|||φ|||2 ≥ λ1‖φ‖2L2(Ω)

for any φ ∈ L2(RN ) with φ(x) ≡ 0 in RN \ Ω.

We refer to [1, 2, 10, 11, 12, 14, 15, 17, 18] for references involving nonlocal operators
with non-singular kernels. The mathematical interest of dealing with a non-singular kernel is
due to the fact that, in general, these operators have no regularizing effect and therefore no
general compactness tools are available.
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Now we are ready to state the main result of this paper.

Theorem 1.1. Let {uε}ε>0 be the family of functions given by the unique solutions of the
minimization problems

(1.5) I(uε) = inf
φ∈Kε

I(φ).

Then, there exists u∗ ∈ K such that

uε ⇀ u∗ weakly in L2(Ω)

as ε→ 0 with u∗ being the unique solution of the minimization problem

I0(u∗) = inf
φ∈K

I0(φ).

Notice that when X ≡ 1 the effect of the holes disapear in the limit and we find that the
limit problem has the same functional and the obstacle constraint is reduced to u ≥ ψ inside
Ω. Indeed, we have the following result.

Corollary 1.1. Under the assumptions of Theorem 1.1 with the additional hypothesis

X ≡ 1 in Ω,

we have that
uε → u∗ strongly in L2(Ω)

being u∗ the unique minimizer of the problem

I(u∗) = inf
φ∈K

I(φ)

with K = {φ ∈ L2(RN ) : φ(x) ≡ 0 in RN \ Ω with φ ≥ ψ in Ω}.

Our results are valid under very general assumptions on the holes, namely we only require
that the characteristic functions of the involved domains converge weakly.

An example. One simple example is the case where we have a bounded domain Ω from
where we have removed a big number of periodic small balls (the holes). That is, we consider

Ωε = Ω \ ∪iBrε(xi)
where Brε(xi) is a ball centered in xi ∈ Ω of the form xi ∈ 2εZN with radius 0 < rε < ε ≤ 1.
In this situation we have a critical value for the size of the holes. In fact, if

rε = C0 ε

we obtain from Theorem 1.1 that the limit u∗ is a solution to a minimization problem with
an extra term that can be explicitly computed. In fact,

µ =
1−X
X

where X ∈ L∞(Ω) is just a positive constant, X = cte, determined by the proportion of the
cube which is occupied by the hole.

This follows from the fact that in this periodic case we obtain from [8, Theorem 2.6] that

χε ⇀ X = |Q \B|/|Q|
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(here Q is the unit cube and B is a ball of radius C0 inside the cube). Note that the terms
X and (1 − X ) that appear in the limit problem can be seen as the effect of the holes in
the original problem and thus the coefficient ν that appears in the limit represents a kind of
friction or drag caused by the perforations.

We also remark that in this critical case also the obstacle constraint is modified when
passing to the limit, changing from u ≥ ψ to u ≥ Xψ. This is due to the fact that the
measure of the holes in this critical case is of order one.

For holes that are smaller, that is, for radii

rε � ε,

we have that the effect of the holes disappear in the limit. This is due to the fact that we
have X ≡ 1 in this case. We remark that in this case we have strong convergence of uε in L2

due to the fact that the convergence χε → 1 is strong in L2.

Previous results. Now, let us end the introduction comparing our results with the ones
that hold for the local Laplacian and the fractional Laplacian. First, for the local Laplacian,
i.e., for the problem

min

∫
Ωε

|∇uε|2

2
− fuε

with uε = 0 on ∂Ωε and uε ≥ ψ in Ωε, the following results are obtained in the classical paper
[6] (see also [5, 7, 8, 9, 13, 19, 21]). Assuming N ≥ 3, the critical size of the holes is given by

rε ∼ ε
N
N−2 .

In this case also an extra term of the form
∫

Ω µ (v∗)2 appears in the limit functional, but there
is no change in the obstacle constraint that remains as v∗ ≥ ψ.

For a similar problem with the fractional Laplacian (a nonlocal problem but with a singular
kernel) we refer to [4] (see also [3]) where the authors show that the critical radii for the
appearance of an extra term is

rε ∼ ε
N

N−2s .

In this case again there is no change in the obstacle constraint that remains as v∗ ≥ ψ.

For nonlocal problems of this kind but without the obstacle constraint we refer to [20]. It
is proved there that an extra term arises in the equation in the critical case, but there is no
interplay with an obstacle. The fact that there is an obstacle involved makes the passage to
the limit more difficult since we have to find what is called a corrector in the homogenization
literature. This corrector takes the simple form wε = χε/X but it only converges weakly (and
not strongly) to 1 as ε→ 0. This fact creates new difficulties when passing to the limit in the
functional to be minimized, see Section 4.

Therefore, we conclude that, in contrast to what happens for the Laplacian and the frac-
tional Laplacian, for non-singular kernels the effect of the holes in the critical case affects the
limit functional to be minimized and also the obstacle constraint that is satisfied in the limit.
There is also a difference in the extra term that appears in the limit functional in the critical
case, in our case we have

∫
Ω µu

2 and not
∫

Ω µ(u−)2 as happens in [6] and [4]. This is due to
the fact that we are taking uε = 0 in the holes and the obstacle constraint uε ≥ ψ in Ωε, the
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whole set minus the holes; while in [6] and [4] it is assumed that uε ≥ ψχε in the whole Ω
(note that this only implies uε ≥ 0 in the holes).

Note that in the critical case one has weak convergence in the natural space. In fact, for
our problem we have weak convergence in L2 of the sequence uε while for the Laplacian there
is weak convergence in H1 and for the fractional Laplacian the convergence is weak in Hs.

We remark that in our problem we are assuming only weak convergence of the characteristic
functions of the involved domains Ωε, χε ⇀ X and we don’t have any regularizing effect
coming from the involved operator (that is only a bounded operator in L2) these facts make
the passage to limit a nontrivial task, since the ideas contained in the previously mentioned
references for the Laplacian or the fractional Laplacian are not directly applicable in the
present situation.

The paper is organized as follows: in Section 2 we collect some preliminary results; in
Section 3 we present some results concerning the obstacle problem (in particular we prove
that there is a unique solution) and, finally, in Section 4 we prove our main result.

2. Preliminary results

In this section we introduce some technical results which are needed to prove Theorem 1.1.

Proposition 2.1. Let φε and ϕε be sequences in L2(RN ) vanishing in RN \Ω and satisfying

φε ⇀ φ and ϕε ⇀ ϕ weakly in L2(Ω)

as ε→ 0, for some φ and ϕ in L2(RN ) with φ(x) ≡ 0 and ϕ(x) ≡ 0 in RN \ Ω.

Then ∫
RN

φε(x)

∫
RN

J(x− y)ϕε(y) dydx→
∫
RN

φ(x)

∫
RN

J(x− y)ϕ(y) dydx.

Proof. Notice that we conclude the proof if we show that

Uε(x) =

∫
RN

J(x− y)ϕε(y) dy =

∫
Ω
J(x− y)ϕε(y) dy

→ U0(x) =

∫
Ω
J(x− y)ϕ(y) dy =

∫
RN

J(x− y)ϕ(y) dy, as ε→ 0,

strongly in L2(Ω).

To do that we first observe that the fact that ϕε ⇀ ϕ weakly in L2(Ω) implies

Uε(x)→ U0(x)

for all x ∈ Ω. Also, we have that Uε satisfies

|Uε(x)| ≤ |Ω|1/2‖J‖L∞(RN )‖ϕε‖L2(Ω).

Thus, due to Convergence Dominated Theorem, we get that

Uε ⇀ U0 weakly in L2(Ω).
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Moreover, we have that

‖Uε‖L2(Ω) → ‖U0‖L2(Ω)

since

|Uε(x)|2 ≤ |Ω|‖J‖2L∞(RN )‖ϕ
ε‖2L2(Ω)

and Uε(x)2 → U0(x)2 as ε→ 0 wherever x ∈ Ω.

Consequently, as we are working in a Hilbert space, we conclude

Uε → U0 strongly in L2(Ω)

proving the result. �

Proposition 2.2. Let wε be any sequence in L2(RN ) with wε(x) ≡ 0 in RN \ Ω.

If wε ⇀ w for some w ∈ L2(RN ) as ε→ 0 and wε(x) = 0 a.e. in the holes Aε, then

lim inf
ε>0

|||wε|||2 ≥ |||w|||2 +

∫
RN

µw2 dx.

Proof. Take any test function φ ∈ L2(RN ) with φ(x) ≡ 0 in RN \ Ω and consider

|||wε − χε
X
φ|||2 = |||wε|||2 + |||χε

X
φ|||2

−
∫
RN

∫
RN

J(x− y)(wε(y)− wε(x))
(χε
X

(y)φ(y)− χε
X

(x)φ(x)
)
dydx.

Then, as |||wε − (χε/X )φ||| ≥ 0, we have

(2.6)

|||wε|||2 ≥ −|||χε
X
φ|||2

+

∫
RN

∫
RN

J(x− y)(wε(y)− wε(x))
(χε
X

(y)φ(y)− χε
X

(x)φ(x)
)
dydx.

First, from the fact that (χε(x))2 = χε(x), we get

|||χε
X
φ|||2 =

1

2

∫
RN

∫
RN

J(x− y)
( χε
X 2

(y)φ(y)2 +
χε
X 2

(x)φ(x)2 − 2
χε
X

(y)φ(y)
χε
X

(x)φ(x)
)
dydx.

Hence, as ε→ 0, we can pass to the limit using Proposition 2.1 to obtain

(2.7)

|||χε
X
φ|||2 → 1

2

∫
RN

∫
RN

J(x− y)

(
φ2(y)

X (y)
+
φ2(x)

X (x)
− 2φ(y)φ(x)

)
dydx

=
1

2

∫
RN

∫
RN

J(x− y)
[
(φ(y)− φ(x))2+

+ φ2(y)

(
1−X (y)

X (y)

)
+ φ2(x)

(
1−X (x)

X (x)

)]
dydx

= |||φ|||2 +

∫
RN

µφ2 dx

since χε ⇀ X weakly in L∞(RN ) and the function J is even.
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Now let us evaluate the integral

Qε =

∫
RN

∫
RN

J(x− y)(wε(y)− wε(x))
(χε
X

(y)φ(y)− χε
X

(x)φ(x)
)
dydx.

Since we are assuming wε(x) = 0 in Aε, we have wε(x)χε(x) = wε(x), and then,

Qε = 2

∫
RN

∫
RN

J(x− y)
(
wε(y)

χε
X

(y)φ(y)− wε(y)
χε
X

(x)φ(x)
)
dydx

= 2

∫
RN

∫
RN

J(x− y)

(
wε

X
(y)φ(y)− wε(y)

χε
X

(x)φ(x)

)
dydx.

Consequently, we can pass to the limit in Qε getting

Qε → 2

∫
RN

∫
RN

J(x− y)

(
w(y)

φ(y)

X (y)
− w(y)φ(x)

)
dydx

= 2

∫
RN

∫
RN

J(x− y)

[
w(y) (φ(y)− φ(x)) + w(y)φ(y)

(
1−X (y)

X (y)

)]
dydx

=

∫
RN

∫
RN

J(x− y)(w(y)− w(x))(φ(y)− φ(x))dydx+ 2

∫
RN

µw φdx

for any test function φ.

Therefore, if we choose an appropriate subsequence wε (still denoted by wε) such that

lim
ε→0
|||wε|||2 = lim inf

ε→0
|||wε|||2

we obtain from (2.6) that

(2.8)

lim inf
ε→0

|||wε|||2 ≥ −|||φ|||2 −
∫
RN

µφ2 dx+ 2

∫
RN

µw φdx

+

∫
RN

∫
RN

J(x− y)(w(y)− w(x)) (φ(y)− φ(x)) dydx.

Thus, we conclude the proof taking φ = w in (2.8). �

Remark 2.1. Notice that the classical weak lower semicontinuity of the norm implies

lim inf
ε>0

|||wε|||2 ≥ |||w|||2

for any sequence wε weak convergent to w. Thus the additional condition wε(x) = 0 in the
holes Aε improves this last inequality implying that at the limit a new term depending on the
coefficient term µ appears.

3. The obstacle problem

Let I be the functional

I(φ) =
1

2
|||φ|||2 −

∫
RN

φf dx

defined for any φ ∈ L2(RN ) with φ(x) ≡ 0 in RN \ Ω and some f ∈ L2(Ω).
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Also, consider the following unilateral convex set

K = {φ ∈ L2(RN ) : φ(x) ≡ 0 in RN \ Ω with φ ≥ ψ}.
Here the obstacle function ψ is any one in L2(RN ) satisfying ψ(x) ≡ 0 in RN \ Ω in order to
guarantee that the convex set K is not empty.

Theorem 3.1. There exists unique u ∈ K such that

(3.9) I(u) = inf
φ∈K

I(φ).

This optimal u is characterized by the following variational inequality

−
∫
RN

(v(x)− u(x))

∫
RN

J(x− y)(u(y)− u(x)) dydx ≥
∫
RN

f(v(x)− u(x)) dx,

for all v ∈ K.

Moreover, the map f 7→ u is continuous in the sense that

‖u1 − u2‖L2(Ω) ≤
1

λ1
‖f1 − f2‖L2(Ω)

where ui is the minimizer corresponding to fi and λ1 is the first eigenvalue of the nonlocal
Dirichlet problem (1.3) and (1.4).

Proof. First we prove that u is a minimizer of (3.9) if and only if satisfies the following
variational inequality

(3.10) −
∫
RN

(v(x)− u(x))

∫
RN

J(x− y)(u(y)− u(x)) dydx ≥
∫
RN

f(v(x)− u(x)) dx,

for all v ∈ K.

In fact, if v ∈ K and 0 < ξ < 1, we have u+ ξ(v − u) ∈ K, and then,

(3.11) I(u+ ξ(v − u)) ≥ I(u).

Let us denote ϕ = v − u. Hence, we get from (3.11) that

1

2
|||u+ ξϕ|||2 − 1

2
|||u|||2 ≥ −ξ

∫
RN

fϕ dx

which is equivalent to

ξ2

2
|||ϕ|||2 +

ξ

2

∫
RN

∫
RN

J(x− y)(u(y)− u(x))(ϕ(y)− ϕ(x)) dydx ≥ ξ
∫
RN

fϕ dx.

Multiplying this inequality by the positive number ξ−1 and taking ξ → 0, we obtain

1

2

∫
RN

∫
RN

J(x− y)(u(y)− u(x))(ϕ(y)− ϕ(x)) dydx ≥
∫
RN

fϕ dx.

Consequently, since

1

2

∫
RN

∫
RN

J(x− y)(u(y)− u(x))(ϕ(y)− ϕ(x)) dydx

= −
∫
RN

ϕ(x)

∫
RN

J(x− y)(u(y)− u(x)) dydx,
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we get the desired variational inequality (3.10).

Now the result follows from [16, Theorem 2.7] since

a(u, v) = −
∫
RN

v(x)

∫
RN

J(x− y)(u(y)− u(x)) dydx

defines a bilinear form for all functions u and v ∈ L2(RN ) vanishing in RN \ Ω. Indeed we
have that the form a is continuous and coercive with

a(v, v) = |||v|||2 ≥ λ1‖v‖2L2(Ω).

Thus, the result follows. �

Now let us consider the functional

I0(φ) =
1

2
|||φ|||2 +

1

2

∫
RN

µφ2 dx−
∫
RN

φf dx

defined for any φ ∈ L2(RN ) with φ(x) ≡ 0 in RN \ Ω and some f ∈ L2(Ω).

Since the coefficient µ introduced in (1.2) is non negative, we can proceed as in the proof
of Theorem 3.1 to obtain that u∗ is the minimizer of I0, if and only if satisfies the variational
inequality

(3.12)

−
∫
RN

(v(x)− u∗(x))

∫
RN

J(x− y)(u∗(y)− u∗(x)) dydx+

∫
RN

µu∗v dx

≥
∫
RN

f(v(x)− u∗(x)) dx

for any v ∈ K = {φ ∈ L2(RN ) : φ(x) ≡ 0 in RN \ Ω with φ ≥ Xψ in Ω}.

Also, we can associate to inequality (3.12) the following bilinear form

a0(u, v) = −
∫
RN

v(x)

∫
RN

J(x− y)(u(y)− u(x)) dydx+

∫
RN

µuv dx

defined for any u and v ∈ L2(RN ) vanishing in RN \ Ω. Observe that a0 is continuous and
coercive since

a0(u, u) = a(u, u) +

∫
RN

µu2 dx ≥ λ1‖u‖2L2(Ω), ∀u ∈ L2(Ω).

Therefore, we obtain from [16, Theorem 2.7] the following result.

Theorem 3.2. There exists unique u∗ ∈ K such that

I0(u∗) = inf
φ∈K

I0(φ).

The minimizer u∗ is characterized by the variational inequality

−
∫
RN

(v(x)− u∗(x))

∫
RN

J(x− y)(u∗(y)− u∗(x)) dydx+

∫
RN

µu∗v dx

≥
∫
RN

f(v(x)− u∗(x)) dx

for any v ∈ K.



10 M. C. PEREIRA AND J. D. ROSSI

Moreover, the map f 7→ u∗ is continuous in the sense

‖u∗1 − u∗2‖L2(Ω) ≤
1

λ1
‖f1 − f2‖L2(Ω)

where ui is the minimizer corresponding to fi and λ1 is the first eigenvalue of the nonlocal
Dirichlet problem (1.3) and (1.4).

4. Convergence results

In this section we prove our main results, Theorem 1.1, and then, Corollary 1.1. We also
introduce a corrector result to improve the convergence obtained in Theorem 1.1.

Proof of Theorem 1.1. First we observe that the existence and uniqueness of the family of
minimizers uε to the problem (1.5) is a consequence of Theorem 3.1. Note that in this case,
we are taking as obstacle χεψ where χε is the characteristic function of the perforated domain
Ωε which satisfies condition (1.1), and the function ψ is any fixed one in L2(RN ).

Moreover, we have that there exists C > 0 such that

‖uε‖L2(Ω) ≤ C, ∀ε > 0.

In fact, it follows from the variational inequality (3.10) that

|||uε|||2 ≤ −
∫
RN

f(v − uε) dx−
∫
RN

v(x)

∫
RN

J(x− y)(u(y)− u(x)) dydx

for all v ∈ Kε. Hence, as the non-negative part of ψ, which we denote by ψ+, belong to Kε

for all ε > 0, we obtain for all ε > 0 that

λ1||uε||2L2(Ω) ≤ ||u
ε||L2(Ω)

[
||f ||L2(Ω) + ||ψ+||L2(Ω)

(
|Ω|1/2‖J‖L∞(RN ) + 1

)]
−
∫
RN

fψ+ dx.

Thus, up to a subsequence, the exists u∗ ∈ L2(RN ) with u∗(x) ≡ 0 in RN \ Ω such that

uε ⇀ u∗ weakly in L2(Ω).

Now, our aim is to show that u∗ is the minimizer of the functional I0 proving Theorem 1.1.
For any test function φ in the convex set K, let us take the following sequence

vε =
χε
X
φ.

Since φ ∈ K, it is easy to see that

vε ∈ Kε ∀ε > 0.

Also, it follows from (2.7) that

|||vε|||2 → |||φ|||2 +

∫
RN

µφ2 dx as ε→ 0.

Therefore, we obtain

lim sup
ε>0

I(uε) ≤ lim
ε→0

I(vε) ≤ inf
φ∈K

I0(φ).
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On the other hand, as a consequence of uε(x) = 0 in Aε and the weak convergence uε ⇀ u∗,
we get from Proposition 2.2 that

lim inf
ε>0

|||uε|||2 ≥ |||u∗|||2 +

∫
RN

µ (u∗)2 dx.

Hence

(4.13) I0(u∗) ≤ lim inf
ε>0

I(uε) ≤ lim sup
ε>0

I(uε) ≤ inf
φ∈K

I0(φ),

and then,

I0(u∗) = inf
φ∈K

I0(φ)

concluding the proof. �

Remark 4.1. As a consequence of inequality (4.13), we also have

lim
ε→0

I(uε) = I0(u∗), as ε→ 0.

Hence, since uε ⇀ u∗ weakly in L2(Ω) implies

lim
ε→0

∫
Ω
uεf dx =

∫
Ω
u∗f dx,

we obtain from the definition of the functionals I and I0 that

(4.14) |||uε|||2 → |||u∗|||2 +

∫
RN

µ (u∗)2 dx.

This is known as the convergence of the energy.

In order to improve the weak convergence given in Theorem 1.1 to a strong one in L2, we
use the function

(4.15) wε(x) =
χε
X

(x), x ∈ Ω,

which is called the corrector in homogenization theory. Since X is strictly positive, it is clear
that wε is well defined. Also, since χε ⇀ X weakly∗ in L∞(Ω), we have

wε ⇀ 1, weakly∗ in L∞(Ω).

We have the following result.

Corollary 4.1. Let uε and u∗ be the functions that appear in Theorem 1.1.

Then, if wε is the corrector introduced in (4.15), we have

|||uε − wεu∗||| → 0, as ε→ 0.

Proof. We pass to the limit here arguing as in Proposition 2.2. Note that

(4.16)

|||uε − wεu∗|||2 = |||uε|||2 + |||wεu∗|||2

−
∫
RN

∫
RN

J(x− y)(uε(y)− uε(x))(wε(y)u∗(y)− wε(x)u∗(x)) dydx.
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From (2.7) with φ = u∗ and (4.14), we obtain

(4.17) |||uε|||2 + |||wεu∗|||2 → 2

(
|||u∗|||2 +

∫
RN

µ (u∗)2 dx

)
as ε→ 0.

On the other hand,

Dε =

∫
RN

∫
RN

J(x− y)(uε(y)− uε(x))(wε(y)u∗(y)− wε(x)u∗(x)) dydx

= 2

∫
RN

∫
RN

J(x− y)
(
uε(y)

χε
X

(y)u∗(y)− uε(y)
χε
X

(x)u∗(x)
)
dydx

= 2

∫
RN

∫
RN

J(x− y)

(
uε(y)

X (y)
u∗(y)− uε(y)

χε
X

(x)u∗(x)

)
dydx

since uε(x)χε(x) = uε(x) (note that uε(x) = 0 wherever x ∈ Aε).

Hence, we can use Proposition 2.1 to pass to the limit in Dε getting

Dε → 2

∫
RN

∫
RN

J(x− y)u∗(y)

(
u∗(y)

X (y)
− u∗(x)

)
dydx

= −2

∫
RN

∫
RN

J(x− y)u∗(x)

(
u∗(y)− u∗(x)

X (x)

)
dydx

= −2

[∫
RN

∫
RN

J(x− y)u∗(x) (u∗(y)− u∗(x)) dydx−
∫
RN

µ (u∗)2 dx

]
= 2

(
|||u∗|||2 +

∫
RN

µ (u∗)2 dx

)
.

Consequently, the result follows from (4.16) and (4.17). �

Finally, we show Corollary 1.1.

Proof of Corollary 1.1. First we note that when X = 1 we have strong convergence of χε → X
since in this case it holds that

|Ω| =
∫

Ω
X 2 ≤ lim

ε→0

∫
Ω
χε ≤

∫
Ω
X 2 = |Ω|.

Hence, we have convergence of the norms ‖χε‖L2(Ω) → ‖X‖L2(Ω) and therefore we get strong

convergence in L2.

Now, using the strong convergence of χε to X = 1 the previous arguments can be used to
show that uε → u∗ strongly in L2(Ω) with u∗ a solution to the minimization problem

(4.22) I(u∗) = inf
φ∈K

I(φ),

with K = {φ ∈ L2(RN ) : φ(x) ≡ 0 in RN \ Ω with φ ≥ ψ in Ω}.

In fact, from our previous arguments we have weak convergence uε ⇀ u∗ with u∗ a solution
to (4.22) (note that µ = 0 due to the fact that X = 1). Now, we notice that we have

I(u∗) ≤ lim inf
ε>0

I(uε) ≤ lim sup
ε>0

I(uε) ≤ I(u∗),
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and since it holds that

lim
ε→0

∫
Ω
uεf dx =

∫
Ω
u∗f dx

we get

lim
ε→0
|||uε|||2 = |||u∗|||2.

From this fact we obtain strong convergence in ||| · |||-norm that is equivalent to strong
convergence in L2 since the two norms are equivalent. �
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