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Abstract. In this paper we consider nonlocal problems in thin domains. First, we deal
with a nonlocal Neumann problem, that is, we study the behavior of the solutions to f(x) =∫

Ω1×Ω2
Jε(x− y)(uε(y)− uε(x))dy with Jε(z) = J(z1, εz2) and Ω1 × Ω2 ⊂ RN = RN1 × RN2

a bounded domain. We find that there is a limit problem, that is, we show that uε → u0 as
ε→ 0 in Ω and this limit function verifies

∫
Ω2
f(x1, x2) dx2 = |Ω2|

∫
Ω1
J(x1− y1, 0)(U0(y1)−

U0(x1))dy1, with U0(x1) =
∫

Ω2
u0(x1, x2) dx2. In addition, we deal with a double limit when

we add to this model a rescale in the kernel with a parameter that controls the size of the
support of J . We show that this double limit exhibits some interesting features.

We also study a nonlocal Dirichlet problem f(x) =
∫
RN Jε(x−y)(uε(y)−uε(x)) dy, x ∈ Ω,

with uε(x) ≡ 0, x ∈ RN \ Ω, and deal with similar issues. In this case the limit as ε → 0 is
u0 = 0 and the double limit problem commutes and also gives v ≡ 0 at the end.

1. Introduction

Our main goal in this paper is to study nonlocal problems with non-singular kernels in thin
domains. We deal with Neumann or Dirichlet conditions.

The Neumann problem. We consider

(1.1) f(x) =

∫
Ω1×Ω2

Jε(x− y)(uε(y)− uε(x))dy

where

Jε(z) = J(z1, εz2),

ε > 0 is a parameter, and Ω = Ω1 × Ω2 ⊂ RN = RN1 × RN2 is a bounded Lipschitz domain.
We denote by x = (x1, x2) a point in Ω1 × Ω2, that is, x1 ∈ Ω1, x2 ∈ Ω2.

Here, and along the whole paper, the function J satisfies the following hypotheses

(H)

J ∈ C(RN ,R) is non-negative with J(0) > 0, J(−x) = J(x) for every x ∈ RN , and∫
RN

J(x) dx = 1.

On the other hand we only assume that f ∈ L2(Ω).

It is worth noting that we are calling (1.1) as a nonlocal thin domain problem due to its
equivalence with the equation

(1.2) hε(z1, z2) =
1

εN2

∫
Ω1×εΩ2

J(z − w)(v(w)− v(z)) dw
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with hε(z1, z2) = f(z1, z2/ε). This equivalence between (1.2) and (1.1) is a direct consequence
of the change of variable

Ω1 × Ω2 3 (x1, x2) 7→ (x1, εx2) ∈ Ω1 × εΩ2.

Furthermore, we can see that (1.2), and then (1.1), are nonlocal singular problems since the
bounded domain Ω1× εΩ2 degenerates to Ω1×{0} when the positive parameter ε approaches
to zero. We also are in agreement with references [8, 17, 14] using the factor 1/εN2 in (1.2)
to preserve the relative capacity of the open set Ω1 × εΩ2 for small ε. The convenience of
dealing with (1.1) is clear since its solutions uε are defined in the fixed domain Ω = Ω1 ×Ω2.

Solutions to (1.1) are understood in a weak sense, that is,

(1.3)

∫
Ω1×Ω2

f(x)ϕ(x) dx =

∫
Ω1×Ω2

∫
Ω1×Ω2

Jε(x− y)(uε(y)− uε(x)) dy ϕ(x) dx

= −1

2

∫
Ω1×Ω2

∫
Ω1×Ω2

Jε(x− y)(uε(y)− uε(x))(ϕ(y)− ϕ(x)) dydx,

for every ϕ ∈ L2(Ω). Note that taking ϕ = 1 we obtain that the condition∫
Ω1×Ω2

f(x) dx = 0

is necessary to have a solution. Also note that solutions are defined up to an additive constant
and hence we will normalize them and look for solutions with zero mean value∫

Ω1×Ω2

uε(x) dx = 0.

Now we are ready to state our first result. It says that there is a limit as ε → 0 of the
solutions to our problem and that this limit, when we take its mean value in the y-direction,
is a solution to a limit nonlocal problem in Ω1 with a forcing term given by the mean value
of f . Even when we consider the averages of solutions in Ω2 we obtain strong convergence in
L2(Ω1).

Theorem 1.1. Let {uε}ε>0 be a family of solutions of problem (1.1). Then, exists u0 ∈ L2(Ω)
such that

uε → u0 strongly in L2(Ω)

and

U ε → U0 strongly in L2(Ω1)

where the functions U ε and U0 are given by

(1.4) U ε(x1) =

∫
Ω2

uε(x1, x2) dx2, and U0(x1) =

∫
Ω2

u0(x1, x2) dx2,

respectively. Furthermore, we have that U0 satisfies the following nonlocal problem in Ω1

(1.5) f̃(x1) =

∫
Ω2

f(x1, x2) dx2 = |Ω2|
∫

Ω1

J(x1 − y1, 0)(U0(y1)− U0(x1))dy1.

Note that, since the kernel is smooth, there is no regularizing effect for this problem and
therefore to obtain strong convergence in L2−norm is not straightforward.
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We call equation (1.5) as the limit equation of problem (1.1). Note its dependence on the
open set Ω given by the coefficient |Ω2| in the right side of the limit problem. If we denote
by µO(ϕ) the average of ϕ on a set O, that is,

µO(ϕ) =
1

|O|

∫
O
ϕ(ξ) dξ,

we obtain from Theorem 1.1 that

µΩ2(uε)→ µΩ2(u0) in L2(Ω1)

where µΩ2(u0) ∈ L2(Ω1) is the unique solution of the nonlocal limit equation

µΩ2(f) = |Ω2|
∫

Ω1

J(x1 − y1, 0)(µΩ2(u0)(y1)− µΩ2(u0)(x1))dy1.

As a final remark concerning Theorem 1.1 we point out that the limit u0 in general depends
on x2. This can be seen just by computing the derivative with respect to x2 (that exists
assuming that f is smooth) and showing that this derivative does not go to zero as ε → 0.
We provide some details concerning this fact in Section 3. This fact has to be contrasted with
what happens in parabolic and elliptic local problems posed in thin domains [8, 15], where
the limit function u0 does not depend on variable x2 ∈ Ω2. Thus, the average convergence of
the solutions uε becomes a nice way to describe the asymptotic behavior of problem (1.1) as
ε→ 0 (note that since in general the limit depends on x2 we cannot avoid the use of averages
to obtain solutions of the limit problem).

Concerning references for nonlocal problems with smooth kernels we refer to the book [1]
and references therein. Let us point out that since we are integrating in Ω this problem is
a nonlocal analogous to the classical elliptic problem for the Laplacian with homogeneous
Neumann boundary conditions, that is,{

∆u = f, in Ω,
∂u

∂n
= 0, on ∂Ω.

In fact, in [6] is proved that solutions to the nonlocal problem (1.1) converge as a rescaling
parameter that controls the size of the support of J goes to zero to the solution to the local
problem (here we normalize as before and consider the unique solution that has zero mean
value).

This relation between nonlocal and local problems gives rise to the following issue: we can
rescale the kernel (with a parameter that we call δ and controls the size of the support of the
kernel) and study this rescaled problems in a thin domain. That is, let us consider

f(x) =
C(ε)

δN+2

∫
Ω1×Ω2

J

(
(x1 − y1)

δ
, ε

(x2 − y2)

δ

)
(uε,δ(y)− uε,δ(x))dy.

Here C(ε) is the normalizing constant given by

(1.6) C(ε) =

(
1

2

∫
RN

J(x1, εx2)x2
11
dx

)−1

where x11 is the first coordinate of x1 ∈ Ω1. As we can see in Remark 4.1,

(1.7) lim
ε→0

C(ε) = 0.

If we take first the limit as δ → 0 and then as ε→ 0 we get
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Theorem 1.2. Under the additional assumptions that f ∈ Cα(Ω) and that Ω has a boundary
C2+α-regular, 0 < α < 1, as δ → 0 there exists a strong limit in L2(Ω) to a solution to a local
problem, that is,

lim
δ→0

uε,δ = vε

where vε is the solution to 
∆x1v

ε +
1

ε2
∆x2v

ε = f, in Ω,

∂vε

∂n1
+

1

ε2
∂vε

∂n2
= 0, on ∂Ω,

with
∫

Ω v
ε = 0. Moreover, there is a limit as ε→ 0 of vε that we call v that is the solution to

∆x1v =
1

|Ω2|

∫
Ω2

f(x1, x2)dx2, in Ω1,

∂v

∂n1
= 0, on ∂Ω1,

also satisfying
∫

Ω1
v = 0. Hence, we conclude that

lim
ε→0

(
lim
δ→0

uδ,ε
)

= v in L2(Ω).

Note that here ∆xi denotes the Laplacian differential operator in the open set Ωi, i = 1, 2.

On the other hand, when we reverse the order in which we take limits, that is we take first
the limit as ε→ 0 and then as δ → 0 we get

Theorem 1.3. As ε→ 0 there exists a strong limit in L2(Ω), that is,

lim
ε→0

C(ε)uε,δ = uδ

where uδ is the solution to

(1.8) f(x) =
1

δN+2

∫
Ω1×Ω2

J

(
(x1 − y1)

δ
, 0

)
(uδ(y)− uδ(x))dy.

Then, if we take C1 given by

C1 =

(
1

2

∫
RN

J(x1, 0)x2
11
dx

)−1

,

where x11 is the first coordinate of x1 ∈ Ω1, there is a limit as δ → 0 of

U δ(x1) :=

∫
Ω2

uδ(x1, x2)

C1 δN2
dx2

that we call v, and can be characterized as the solution to
∆x1v =

1

|Ω2|

∫
Ω2

f(x1, x2) dx2, in Ω1,

∂v

∂n1
= 0, on ∂Ω1,



NONLOCAL PROBLEMS IN THIN DOMAINS 5

with
∫

Ω1
v = 0. Hence, we conclude that

lim
δ→0

(∫
Ω2

lim
ε→0

C(ε)

C1 δN2
uδ,ε(x1, x2) dx2

)
= v in L2(Ω1).

Due to Theorems 1.2 and 1.3, we obtain that the limits of uδ,ε depend on the order in
which they are taken. Indeed, for any f 6= 0 in L2(Ω), we get from (1.8) that uδ is not the
null function. Hence, from (1.7) and Theorem 1.3 we get

lim
ε→0
‖uδ,ε‖L2(Ω) =∞

for any δ > 0. Thus,

v = lim
ε→0

(
lim
δ→0

uδ,ε
)
6= lim

δ→0

(
lim
ε→0

uδ,ε
)

in L2(Ω)

and we can not pass to the double limit in the solutions uδ,ε.

The Dirichlet problem. Now, let us consider

(1.9) f(x) =

∫
RN

Jε(x− y)(uε(y)− uε(x))dy, x ∈ Ω,

with

(1.10) uε(x) ≡ 0, x ∈ RN \ Ω,

where, as before,
Jε(z) = J(z1, εz2),

ε > 0 is a parameter, and Ω = Ω1 × Ω2 ⊂ RN = RN1 × RN2 is a bounded Lipschitz domain.
As in the Neumann problem (1.1), equations (1.9) and (1.10) are called nonlocal Dirichlet
problem in thin domains due to their equivalence to the problems

hε(z1, z2) =
1

εN2

∫
RN

J(z − w)(vε(w)− vε(z)) dw

with vε(z) ≡ 0, z ∈ RN \ (Ω1 × εΩ2), and hε(z1, z2) = f(z1, z2/ε).

For this problem, we have the following result, which is in agreement with the local Dirichlet
problem in thin domains [8, 15]:

Theorem 1.4. Let {uε}ε>0 be a family of solutions of problem (1.9) satisfying (1.10). Then,

uε → 0 strongly in L2(Ω).

Now we just observe that if we introduce an extra parameter δ that controls the size of the
support of the kernel, as we did for the Neumann case, we are lead to consider the following
problem:

f(x) =
C(ε)

δN+2

∫
RN

J

(
x1 − y1

δ
, ε
x2 − y2

δ

)
(uε,δ(y)− uε,δ(x))dy, x ∈ Ω,

with uε,δ satisfying (1.10) and C(ε) given by (1.6). For this problem we have

Theorem 1.5. Under the additional conditions f ∈ Cα(Ω) and Ω with boundary C2+α-regular,
0 < α < 1, as δ → 0 there exists a strong limit in L2(Ω), that is,

lim
δ→0

uε,δ = vε
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where vε is the solution to{
∆x1v

ε +
1

ε2
∆x2v

ε = f, in Ω,

vε = 0, on ∂Ω.

Moreover, the limit as ε→ 0 of vε is v ≡ 0. Hence, we conclude that

lim
ε→0

(
lim
δ→0

uδ,ε
)

= 0 in L2(Ω).

If we reverse the order in which we take limits we obtain the same limit.

Theorem 1.6. As ε→ 0 and then δ → 0, v ≡ 0 is the strong limit in L2(Ω), that is,

lim
δ→0

(
lim
ε→0

uδ,ε
)

= 0 in L2(Ω).

Remark 1.1. Note that, in contrast with Theorems 1.2 and 1.3, we get that the limit as
δ → 0 and ε→ 0 of uε,δ commutes.

With the same methods and ideas we can handle the case of Ω being a general domain in
RN1+N2 (not necessarily a product domain) getting different limit problems. In forthcoming
papers we will discuss this problem in its full generality. Here, we prefer to present our results
for a product domain to simplify the notation and the arguments involved.

We remark that here we deal nonlocal problems with a non-singular and compactly sup-
ported kernel. The main difficulty that this fact introduces in the problem is the lack of
regularizing effect in the solutions. In fact, for example, solutions to (1.1) are as smooth
as the forcing term f is. We leave the case of singular kernels (like the ones that appear
considering the fractional Laplacian) for a future paper.

Let us end this introduction with a brief description of related references. Thin domains
occur in applications and they can be found in mathematical models from many applied areas.
For example, in ocean dynamics, one is dealing with fluid regions which are thin compared
to the horizontal length scales. Other examples include lubrication, nanotechnology, blood
circulation, material engineering, meteorology, etc; they are a part of a broader study of the
behavior of various PDEs on thin N−dimensional domains, where N ≥ 2. Many techniques
and methods have been developed in order to understand the effect of the geometry and
thickness of the domain on the solutions of such singular problems. From pioneering works
to recent ones we can still mention [18, 13, 10, 5, 3] concerned with elliptic and parabolic
equations, as well as [2, 9, 4, 11, 12] where the authors considered Stokes and Navier-Stokes
equations from fluid mechanics.

The paper is organized as follows: in Section 2 we include the proof of our result concerning
the limit as ε→ 0 for the Neumann problem, Theorem 1.1; in Section 3 we show that in general
the obtained limit u0 depends on x2; in Section 4 we deal with the double limit as ε→ 0 and
δ → 0 for the Neumann problem and prove Theorems 1.2 and 1.3; in Section 5 we start the
analysis of the Dirichlet case and prove Theorem 1.4; finally, in Section 6 we deal with the
rescales of the kernel for the Dirichlet case proving Theorems 1.5 and 1.6.
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2. The Neumann problem. Proof of Theorem 1.1

First, we just observe that existence and uniqueness of a solution uε to our problem

f(x) =

∫
Ω1×Ω2

Jε(x− y)(uε(y)− uε(x)) dy

in the space

W =

{
u ∈ L2(Ω1 × Ω2) :

∫
Ω1×Ω2

u(x) dx = 0

}
,

follows easily considering the variational problem

min
u∈W

1

4

∫
Ω

∫
Ω
Jε(x− y)(u(y)− u(x))2dy dx−

∫
Ω
f(x)u(x) dx.

In fact, from Lemma 2.1 (see below) we have that in W

‖u‖2 :=

∫
Ω

∫
Ω
Jε(x− y)(u(y)− u(x))2dy dx

is a norm equivalent to the usual L2−norm. From this fact, it is immediate that the functional
involved in the minimization problem is lower semicontinuous, coercive and convex in W , and
hence there is a unique minimizer in W . This unique minimizer (that we call uε) is a weak
solution to our problem, that is, it verifies (1.3),∫

Ω1×Ω2

f(x)ϕ(x) dx =

∫
Ω1×Ω2

∫
Ω1×Ω2

Jε(x− y)(uε(y)− uε(x))dyϕ(x) dx

= −1

2

∫
Ω1×Ω2

∫
Ω1×Ω2

Jε(x− y)(uε(y)− uε(x))(ϕ(y)− ϕ(x)) dydx

for every ϕ ∈ L2(Ω).

Taking ϕ = uε we get

−
∫

Ω1×Ω2

f(x)uε(x) dx =
1

2

∫
Ω1×Ω2

∫
Ω1×Ω2

Jε(x− y)(uε(y)− uε(x))2 dydx

≥ λε1
∫

Ω1×Ω2

(uε(x))2 dx.

Here λε1 is the first eigenvalue associated with this operator in the space W . This first
eigenvalue is given by

λε1 = inf
u∈W

1

2

∫
Ω

∫
Ω
Jε(x− y)(u(y)− u(x))2dy dx∫

Ω
u2(x) dx

.

For a proof that λε1 is strictly positive we refer to [1].

Therefore, using that λε1 ≥ c > 0 with c independent of ε (see Lemma 2.1), we get that∫
Ω1×Ω2

(uε(x))2 dx

is bounded by a constant that depends only on f but is independent of ε. Hence, along a
subsequence if necessary,

(2.1) uε ⇀ u0
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weakly in L2(Ω1 × Ω2) as ε→ 0.

Now, let us take a test function that depends only on the first variable, that is ϕ = ϕ(x1)
in (1.3). We obtain∫

Ω1

ϕ(x1)

(∫
Ω2

f(x1, x2) dx2

)
dx1 =

∫
Ω1×Ω2

f(x)ϕ(x1) dx

=

∫
Ω1

ϕ(x1)

∫
Ω2

∫
Ω1×Ω2

Jε(x− y)(uε(y)− uε(x))dy dx2 dx1.

Taking limit as ε→ 0 we get

(2.2)

∫
Ω1

ϕ(x1)

(∫
Ω2

f(x1, x2) dx2

)
dx1

=

∫
Ω1

ϕ(x1)

∫
Ω1

J(x1 − y1, 0)

[∫
Ω2

∫
Ω2

(u0(y1, y2)− u0(x1, x2)) dy2dx2

]
dy1 dx1

= |Ω2|
∫

Ω1

ϕ(x1)

∫
Ω1

J(x1 − y1, 0)

[∫
Ω2

u0(y1, y2)dy2 −
∫

Ω2

u0(x1, x2) dx2

]
dy1 dx1.

Then,

U0(x1) =

∫
Ω2

u0(x1, x2) dx2

is a solution to

f̃(x1) =

∫
Ω2

f(x1, x2) dx2 = |Ω2|
∫

Ω1

J(x1 − y1, 0)(U0(y1)− U0(x1))dy1.

Note that since ∫
Ω1

(∫
Ω2

uε(x1, x2) dx2

)
dx1 =

∫
Ω1×Ω2

uε(x) dx = 0

we get ∫
Ω1

U0(x1) dx1 =

∫
Ω1×Ω2

u0(x) dx = 0,

and then, U0 is the unique solution of (1.5) since J(·, 0) also satisfies assumption (H). In fact,
we have from [1] that u0 ∈ L2(Ω1 × Ω2) is the unique solution of

(2.3) f(x) =

∫
Ω1×Ω2

J(x1 − y1, 0)(u0(y)− u0(x))dy1dy2

in the space W . In this way, we conclude that the sequence uε is weakly convergent in L2(Ω)
with limit u0 as ε→ 0.

Consequently, if we denote

U ε(x1) =

∫
Ω2

uε(x1, x2) dx2,

it follows that

(2.4) U ε ⇀ U0, as ε→ 0,
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weakly in L2(Ω1). Indeed, for all ϕ ∈ L2(Ω1),∫
Ω1

ϕU ε dx1 =

∫
Ω1×Ω2

ϕ(x1)uε(x1, x2) dx1dx2

→
∫

Ω1×Ω2

ϕ(x1)u0(x1, x2) dx1dx2 =

∫
Ω1

ϕU0 dx1.

Now we are ready to proceed with the proof of Theorem 1.1.

Proof of Theorem 1.1. The existence of u0 ∈ L2(Ω) such that uε ⇀ u0 and U ε ⇀ U0 weakly
in L2(Ω) and L2(Ω1) respectively has been proved in (2.1)-(2.4). Thus, since we are working
in Hilbert spaces, we will complete the proof showing the convergence of the norm.

First, we show that
‖uε‖L2(Ω) → ‖u0‖L2(Ω).

Taking φ = uε in (1.3), we get∫
Ω

(∫
Ω
Jε(x− y) dy

)
uε(x)2 dx =

∫
Ω

∫
Ω
Jε(x− y)uε(y)uε(x) dydx−

∫
Ω
f(x)uε(x)dx.

From weak convergence, it is clear that

(2.5)

∫
Ω
f(x)uε(x)dx→

∫
Ω
f(x)u0(x)dx as ε→ 0.

Moreover, we have

(2.6) Aε(x) =

∫
Ω
Jε(x− y) dy →

∫
Ω
J(x1 − y1, 0) dy = A0(x) in L∞(Ω)

with
|Ω|‖J‖∞ ≥ A0(x) ≥ m > 0 ∀x ∈ Ω.

Indeed, since we assume J(0) > 0, there exit ε0 > 0 and m > 0 such that

(2.7) |Ω|‖J‖∞ ≥
∫

Ω
Jε(x− y) dy ≥ m > 0, whenever ε ∈ [0, ε0].

Also, J is a continuous function in RN , and then, for any compact set K ⊂ RN , given δ > 0,
there exists ε1 > 0 such that

|Aε(x)−A0(x)| ≤
∫

Ω
|J(x1 − y1, ε(x2 − y2))− J(x1 − y1, 0)| dz ≤ δ |Ω|

whenever ε|x2 − y2| ≤ ε1 and (x− y) ∈ K. In this way we get (2.6).

Now let us show that

(2.8)

∫
Ω

∫
Ω
Jε(x− y)uε(y)uε(x) dydx→

∫
Ω

∫
Ω
J(x1 − y1, 0)u0(y)u0(x) dydx, as ε→ 0.

In order to do so, let us consider

Oε(x) =

∫
Ω
Jε(x− y)uε(y) dy, x ∈ Ω.

Since uε ⇀ u0 weakly in L2(Ω) and Jε(x − ·) → J(x1 − ·, 0) in L2(Ω) for all x ∈ Ω, it is not
difficult to see that Oε(x)→ O0(x) for all x ∈ Ω where

O0(x) =

∫
Ω
J(x1 − y1, 0)u0(y) dy.
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Hence, since |Oε(x)| ≤ ‖J‖∞‖uε‖L2(Ω) with ‖uε‖L2(Ω) uniformly bounded in ε, it follows from
the Dominated Convergence Theorem that

(2.9) Oε ⇀ O0

weakly in L2(Ω) as ε→ 0.

Moreover, we have {Oε(x)}2 → {O0(x)}2 and |Oε(x)|2 ≤ ‖J‖2∞‖uε‖2L2(Ω) for all x ∈ Ω.

Thus, arguing as in (2.9) we get

(2.10) ‖Oε‖L2(Ω) → ‖O0‖L2(Ω).

We conclude from (2.9) and (2.10) that Oε → O0 strongly in L2(Ω), which implies∫
Ω

∫
Ω
Jε(x− y)uε(y)uε(x) dy dx =

∫
Ω
Oε(x)uε(x) dx

→
∫

Ω
O0(x)u0(x) dx =

∫
Ω

∫
Ω
J(x1 − y1, 0)u0(y)u0(x) dy dx, as ε→ 0.

Then, from (2.5) and (2.8), we obtain

(2.11)

∫
Ω

(∫
Ω
Jε(x− y) dy

)
uε(x)2 dx→

∫
Ω

∫
Ω
J(x1 − y1, 0)u0(y)u0(x) dy dx

−
∫

Ω
f(x)u0(x) dx.

Now, observe that∫
Ω

(∫
Ω
J(x1 − y1, 0) dy

)
u0(x)2 dx =

∫
Ω

∫
Ω
J(x1 − y1, 0)u0(y)u0(x) dy dx

−
∫

Ω
f(x)u0(x)dx

since u0 ∈ L2(Ω) satisfies the limit equation (2.3). Then, it follows from (2.11) that∫
Ω

(∫
Ω
Jε(x− y) dy

)
uε(x)2 dx→

∫
Ω

(∫
Ω
J(x1 − y1, 0) dy

)
u0(x)2 dx,

as ε→ 0, that is,

(2.12)

∫
Ω
Aε(x)uε(x)2 dx→

∫
Ω
A0(x)u0(x)2 dx.

On the other hand, notice that∫
Ω
A0(x)

{
uε(x)2 − u0(x)2

}
dx =

∫
Ω

{
Aε(x)uε(x)2 −A0(x)u0(x)2

}
dx

−
∫

Ω

{
Aε(x)−A0(x)

}
uε(x)2 dx

which implies from (2.6) and (2.12) that∫
Ω
A0(x)

{
uε(x)2 − u0(x)2

}
dx→ 0, as ε→ 0.

Hence, since A0 is strictly positive, we get

‖uε‖L2(Ω) → ‖u0‖L2(Ω)
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and we conclude that uε → u0 strongly in L2(Ω).

We finish our proof showing that

‖U ε‖L2(Ω1) → ‖U0‖L2(Ω1)

as ε→ 0. Again, this is a consequence of the Dominated Convergence Theorem since U ε ⇀ U0

weakly in L2(Ω1) with

{U ε(x1)}2 ≤
(∫

Ω1

uε(x1, x2) dx2

)2

≤ |Ω2|‖uε(x1, ·)‖2L2(Ω2) a.e. Ω1,

and ∫
Ω1

‖uε(x1, ·)‖2L2(Ω2) dx1 = ‖uε‖2L2(Ω) → ‖u0‖2L2(Ω) as ε→ 0.

�

Remark 2.1. Let us point out that for the more general situation

f ε(x) =

∫
Ω
Jε(x− y)(uε(y)− uε(x)) dy

with f ε → f strongly in L2(Ω) we can reach the same results described in Theorem 1.1 since
‖f ε‖L2(Ω) remains uniformly bounded in ε > 0 and∫

Ω
f ε(x)uε(x) dx→

∫
Ω
f(x)u0(x) dx

even when uε → u0 weakly in L2(Ω).

Now, let us show that the first eigenvalue associated to this nonlocal problem also converges
as ε → 0 to the first eigenvalue of the associated limit operator. The fact that this limit
eigenvalue is positive implies that λε1 (with ε small) is bounded below by a positive constant
that is independent of ε.

Lemma 2.1. Let {λε1}ε>0 be the family of first eigenvalues introduced in (1.3).

Then, there exists λ1 > 0, the first eigenvalue of the operator T0 : W0 7→W0 given by

(T0u) (x1) := −|Ω2|
∫

Ω1

J(x1 − y1, 0)(u(y1)− u(x1))dy1, x1 ∈ Ω1,

with

W0 =

{
u ∈ L2(Ω1) :

∫
Ω1

u(x1) dx1 = 0

}
,

and it holds that
λε1 → λ1 as ε→ 0.

Consequently, there exists c > 0 independent of ε such that λ1
ε > c for all ε > 0.

Proof. First, we note that, due to [1, Lemma 3.5]

0 ≤ λ1
ε ≤ min

x∈Ω̄

∫
Ω
Jε(x− y)dy ≤ |Ω|‖J‖∞, ∀ε > 0.

Thus, we can extract a subsequence, still denoted by λε1, such that λε1 → λ1 ≥ 0. Furthermore,
we can take a sequence of eigenfunctions φε ∈ L2(Ω) with ‖φε‖L2(Ω) = 1 and

φε ⇀ φ0
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weakly in L2(Ω) as ε→ 0. Note that, for all ϕ ∈ L2(Ω),

(2.13) −λε1
∫

Ω
ϕφε dx =

∫
Ω
ϕ(x)

[∫
Ω
Jε(x− y)(φε(y)− φε(x))dy

]
dx.

Moreover, we can assume that φ0 ∈ L2(Ω) is not the null function. In fact, if we take
ϕ = φε in (2.13), we get by (2.6) and ‖φε‖L2(Ω) = 1 that∫

Ω
Aε(x)φε(x)2 dx− λε1 =

∫
Ω

∫
Ω
Jε(x− y)φε(x)φε(y) dydx.

Hence, if we have φ0 ≡ 0 in Ω, we can pass to the limit obtaining

λε1 → λ1 ≥ m > 0,

since the function Aε satisfies (2.7). Thus, we have λ1 > 0 and nothing more to prove.

Then, let us assume φ0 6= 0 in L2(Ω). Passing to the limit in (2.13), we obtain

(2.14) −λ1

∫
Ω
ϕφ0 dx =

∫
Ω
ϕ(x)

[∫
Ω
J(x1 − y1, 0)(φ0(y)− φ0(x))dy

]
dx, ∀ϕ ∈ L2(Ω).

Arguing as in (2.2), we get from (2.14) that

−λ1

∫
Ω1

ϕΦ0 dx1 = |Ω2|
∫

Ω1

ϕ

[∫
Ω1

J(x1 − y1, 0)(Φ0(y1)− Φ0(x1))dy1

]
dx1, ∀ϕ ∈ L2(Ω1),

where

Φ0(x1) =

∫
Ω2

φ0(x1, x2)dx2.

Since J(·, 0) satisfies hypothesis (H), it follows from [1, Proposition 3.4] that λ1 is the
first eigenvalue of T0 which is positive. We complete the proof observing that λε1 → λ1 is an
arbitrary subsequence. �

3. Remarks on the limit solution

Here we discuss the dependence of the limit function u0 given by Theorem 1.1 on the
second variable x2 ∈ Ω2. In order to do so, we will assume that the forcing term f is a
smooth function, and the kernel J is of class C1 with bounded derivatives. Under these
assumptions, uε is also smooth and we can differentiate expression (1.1) with respect to x2

obtaining

∂f

∂x2
(x) = ε

∫
Ω

∂Jε
∂x2

(x− y)(uε(y)− uε(x)) dy −
∫

Ω
Jε(x− y)

∂uε

∂x2
(x) dy,

which implies

(3.1)
∂uε

∂x2
(x) =

(∫
Ω
Jε(x− y) dy

)−1(
ε

∫
Ω

∂Jε
∂x2

(x− y)(uε(y)− uε(x)) dy − ∂f

∂x2
(x)

)
.

Then, since ‖Jε‖∞ and ‖∂Jε/∂x2‖∞ are uniformly bounded by a constant independent of
ε and uε → u0 in L2(Ω), we get

(3.2)
∂uε

∂x2
(x)→ −

(∫
Ω
J(x1 − y1, 0) dy

)−1 ∂f

∂x2
(x) a.e. Ω
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as ε→ 0. Moreover, it follows from∣∣∣∣∫
Ω

∂Jε
∂x2

(x− y)(uε(y)− uε(x)) dy

∣∣∣∣ ≤ ∥∥∥∥∂Jε∂x2
(x− ·)

∥∥∥∥
L2(Ω)

(
‖uε‖L2(Ω) + |Ω|1/2|uε(x)|

)
that ∥∥∥∥∫

Ω

∂Jε
∂x2

(x− y)(uε(y)− uε(x)) dy

∥∥∥∥
L2(Ω)

≤ 2|Ω|
∥∥∥∥∂Jε∂x2

∥∥∥∥
∞
‖uε‖L2(Ω).

Consequently, we can get from (3.1) that

∂uε

∂x2
→ −A−1 ∂f

∂x2
in L2(Ω)

where A ∈ L∞(Ω) is the positive function given by

(3.3) A = lim
ε→0

∫
Ω
Jε(· − y) dy in L∞(Ω),

that is,

A(x) =

∫
Ω
J(x1 − y1, 0) dy, for x ∈ Ω1 × Ω2.

Note that (3.3) is a consequence of the smoothness of J and the boundedness of Ω since∫
Ω

{
Jε(x− y)− J(x1 − y1, 0)

}
dy ≤ ε

∥∥∥∥ ∂J∂x2

∥∥∥∥
∞

(
|Ω| |x2|+

∫
Ω
|y2| dy

)
.

On the other hand, the function u0 satisfies the limit problem (2.3), and under the assump-
tion that f and J are smooth, we can also differentiate this expression obtaining

∂f

∂x2
(x) = −

∫
Ω
J(x1 − y1, 0)

∂u0

∂x2
(x) dy,

that is,

(3.4)
∂u0

∂x2
(x) = −A−1 ∂f

∂x2
(x) in Ω.

Then, it follows from (3.2) and (3.4) that

(3.5)
∂uε

∂x2
→ ∂u0

∂x2
in L2(Ω)

as ε→ 0.

Therefore, ∂u0/∂x2 will vanish almost everywhere in Ω, if and only if ∂f/∂x2 does since
A ∈ L∞(Ω) is strictly positive.

Remark 3.1. Note that (3.4) and (3.5) show a contrast between the elliptic local problems
and nonlocal ones posed in thin domains. Indeed, as we can see in [8, 17, 14, 15], the
limit solutions of homogeneous Neumann local problems necessarily does not depend on the
shrinking variable. Here this happens only with the additional assumption

∂f

∂x2
≡ 0 a.e. Ω,

that is, just when we take forcing terms f independent of the second variable x2.
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Finally, let us analyze the convergence of the function ∂uε/∂x1 in order to get convergence
in H1(Ω) of uε. Arguing as in (3.1), we obtain

(3.6)
∂uε

∂x1
(x) =

(∫
Ω
Jε(x− y) dy

)−1(∫
Ω

∂Jε
∂x1

(x− y)(uε(y)− uε(x)) dy − ∂f

∂x1
(x)

)
.

Thus, to pass to the limit in (3.6), we just need to consider(∫
Ω
Jε(x− y) dy

)−1(∫
Ω

∂Jε
∂x1

(x− y)(uε(y)− uε(x)) dy

)
since, due to (3.3), we have(∫

Ω
Jε(x− y) dy

)−1 ∂f

∂x1
→ A−1 ∂f

∂x1
in L2(Ω)

as ε→ 0.

Now, using that ‖∂Jε/∂x1‖∞ is uniformly bounded and uε → u0 in L2(Ω), we can proceed
as in (2.9) and (2.10) to show that∫

Ω

∂Jε
∂x1

(x− y)uε(y) dy →
∫

Ω

∂J

∂x1
(x1 − y1, 0)u0(y) dy

and (∫
Ω

∂Jε
∂x1

(x− y) dy

)
uε →

(∫
Ω

∂J

∂x1
(x1 − y1, 0) dy

)
u0 in L2(Ω).

Consequently, we obtain from (3.6) that

(3.7)
∂uε

∂x1
→ A−1

(∫
Ω

∂J

∂x1
(·1 − y1, 0)(u0(y)− u0(·)) dy − ∂f

∂x1

)
in L2(Ω).

On the other hand, we can differentiate (2.3) to get

(3.8)
∂u0

∂x1
= A(x)−1

(∫
Ω

∂J

∂x1
(x1 − y1, 0)(u0(y)− u0(x)) dy − ∂f

∂x1

)
in Ω.

Hence, due to (3.7) and (3.8), we can also conclude that

(3.9)
∂uε

∂x1
→ ∂u0

∂x1
in L2(Ω)

as ε→ 0 obtaining the following result:

Proposition 3.1. Let f ∈ H1(Ω) and J ∈ C1(RN ,R) satisfying hypothesis (H). Then, if uε

is the solution of (1.1), there exists u0 ∈ H1(Ω) such that the functions U ε and U0 introduced
in (1.4) satisfy

U ε → U0 in H1(Ω1).

Proof. It is a direct consequence of Theorem 1.1, (3.5) and (3.9) since

∂U ε

∂x1
(x1) =

∫
Ω2

∂uε

∂x1
(x1, x2) dx2.

�
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4. Rescaling the kernel. The Neumann case.

For a given J satisfying assumption (H), we consider the following rescaled thin domain
kernel

Jδ,ε(x) = C
1

δN+2
Jε

(x
δ

)
, x ∈ Ω

where
Jε(x) = J(x1, εx2), (x1, x2) ∈ Ω1 × Ω2

and

(4.1) C = C(ε) =

(
1

2

∫
RN

J(x1, εx2)x2
11
dx

)−1

.

Here, x11 is the first coordinate of x1 ∈ Ω1, and N = N1 +N2 with Ni = dim Ωi, i = 1, 2.

Performing the change of variable

z1 =
(x1 − y1)

δ
and z2 =

ε(x2 − y2)

δ
,

and using Taylor expansion, we obtain

(4.2)

∫
RN

Jδ,ε(x− y)(u(y)− u(x))dy

= C
1

δ2+N

∫
RN

J

(
x1 − y1

δ
,
ε(x2 − y2)

δ

)
(u(y)− u(x)) dy

=
C

δ2 εN2

∫
RN

J(z) (u(x1 − δz1, x2 − δz2/ε)− u(x)) dz

=
C

2εN2

 N1∑
i=1

∂2
i u(x) +

1

ε2

N2∑
i=1+N1

∂2
i u(x)

∫
RN

J(z)z2
11
dz +O(δ)

= ∆x1u(x) +
1

ε2
∆x2u(x) +O(δ)

since
1

2εN2

∫
RN

J(z) z2
11
dz =

1

2

∫
RN

J(z1, εz2) z2
11
dz,

the constant C = C(ε), depending on ε > 0, is given by (4.1), and, for all i = 1, 2, ..., N ,∫
RN

J(z) zi dz = 0 and

∫
RN

J(z) z2
i dz =

∫
RN

J(z) z2
1 dz <∞.

Remark 4.1. Observe that
lim
ε→0

C(ε) = 0

since ∫
RN

J(x1, εx2)x2
11
dx =

1

εN2

∫
RN

J(x)x2
11
dx→∞, as ε→ 0.

Expression (4.2) makes a connection between the non-local problem set by the kernel Jδ,ε
and the following boundary value problem

(4.3)


∆x1v

ε(x) +
1

ε2
∆x2v

ε(x) = f(x), x ∈ Ω

∂vε

∂η1
+

1

ε2
∂vε

∂η2
= 0, x ∈ ∂Ω
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where η = (η1, η2) is the unit forward normal vector of ∂Ω. As we can see in [8, 16, 17],
problem (4.3) is that one used to study homogenous Neumann boundary conditions to the
Laplacian operator in thin domains.

From Lax-Milgram Theorem, we obtain for each ε > 0 and f ∈ L2(Ω) with
∫

Ω f(x) dx = 0
that (4.3) possesses unique solution in the Hilbert space

H =

{
v ∈ H1(Ω) :

∫
Ω
v dx = 0

}
.

Moreover, it is known from [16] that there exists v ∈ H, independent of the second variable
x2, (that is, v(x1, x2) = v(x1) a.e. (x1, x2) ∈ Ω1 × Ω2), weak solution of the N1-dimensional
equation

(4.4)


∆x1v(x1) =

1

|Ω2|

∫
Ω2

f(x1, s) ds, x1 ∈ Ω1

∂vε

∂η1
= 0, x1 ∈ ∂Ω1

satisfying
‖vε − v‖H1(Ω) → 0, as ε→ 0.

Proposition 4.1. Let Ω ⊂ RN be an open, bounded and C2+α-regular region, and f ∈ Cα(Ω)
for some 0 < α < 1 with

∫
Ω f(x) dx = 0.

Then, if vε, v ∈ H are given by (4.3) and (4.4) respectively, we have

‖vε − v‖L2(Ω) → 0, as ε→ 0.

Proof. We refer to [16]. �

Now, under the assumptions of Proposition 4.1, we can argue as in [1, Section 3.2.2] to
obtain from (4.2) that the solutions uδ,ε given by the non-local problem

(4.5)

∫
Ω
Jδ,ε(x− y)(uδ,ε(y)− uδ,ε(x))dy = f(x), x ∈ Ω

satisfies

‖uδ,ε − vε‖L2(Ω) → 0, as δ → 0

for each ε > 0 fixed. We sate this result as follows:

Proposition 4.2. Let Ω ⊂ RN be an open, bounded and C2+α-regular region, and f ∈ Cα(Ω)
for some 0 < α < 1 with

∫
Ω f(x) dx = 0.

Then, if uδ,ε, vε are given by (4.5) and (4.3) respectively, we have

‖uδ,ε − vε‖L2(Ω) → 0, as δ → 0.

Now, we just observe that Theorem 1.2 follows from the previous two propositions.

Proof of Theorem 1.2. It follows from Propositions 4.1 and 4.2 that we have

lim
ε→0

(
lim
δ→0

uδ,ε
)

= v in L2(Ω),

as we wanted to show. �
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On the other hand, it is not clear that there exists

lim
δ→0

(
lim
ε→0

uδ,ε
)

since
C(ε)→ 0, as ε→ 0,

and the functions uδ,ε satisfies∫
Ω
f(x)ϕ(x) dx =

C(ε)

δ2+N

∫
Ω
ϕ(x)

∫
Ω
J

(
x1 − y1

δ
,
ε(x2 − y2)

δ

)
(uδ,ε(y)− uδ,ε(x)) dydx

for all ϕ ∈ H, δ and ε > 0, and some f ∈ H fixed. Therefore, we are lead to look for the limit

lim
ε→0

C(ε)uε,δ.

Note that
wε,δ := C(ε)uε,δ

verifies∫
Ω
f(x)ϕ(x) dx =

1

δ2+N

∫
Ω
ϕ(x)

∫
Ω
J

(
x1 − y1

δ
,
ε(x2 − y2)

δ

)
(wδ,ε(y)− wδ,ε(x)) dydx.

Hence, arguing exactly as in Section 2 we obtain the following result:

Proposition 4.3. There is a strong limit in L2(Ω), that is,

lim
ε→0

C(ε)uε,δ = uδ

as ε→ 0. Here uδ is the unique solution to

(4.6) f(x) =
1

δN+2

∫
Ω1×Ω2

J

(
(x1 − y1)

δ
, 0

)
(uδ(y)− uδ(x))dy

with
∫

Ω u
δ dx = 0.

Now, our aim is to take the limit as δ → 0 in problem (4.6). To this end, we first recall

that the power of δ that appear in front of the integral term is not δ−(N1+2) but δ−(N1+N2+2)

(note that Ω1 is a N1−dimensional domain). Therefore, we are naturally lead to consider

zδ :=
uδ

C1δN2
.

Here

C1 =

(
1

2

∫
RN

J(x1, 0)x2
11
dx

)−1

is just a normalizing constant to obtain the Laplacian in the limit.

The functions zδ are solutions to

f(x) =
C1

δN1+2

∫
Ω1×Ω2

J

(
(x1 − y1)

δ
, 0

)
(zδ(y)− zδ(x))dy.

Hence, if we integrate in Ω2 we get∫
Ω2

f(x1, x2) dx2

= |Ω2|
C1

δN1+2

∫
Ω1

J

(
(x1 − y1)

δ
, 0

)(∫
Ω2

zδ(y1, y2) dy2 −
∫

Ω2

zδ(x1, x2) dx2

)
dy1.
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Therefore, using again [1, Section 3.2.2] we obtain,

Proposition 4.4. There is a strong limit in L2(Ω1),

lim
δ→0

∫
Ω2

uδ(x1, x2)

C1 δN2
dx2 = v(x1).

This limit v is the unique solution to
∆x1v =

1

|Ω2|

∫
Ω2

f(x1, x2)dx2, in Ω1,

∂v

∂n1
= 0, on ∂Ω1,

with
∫

Ω1
v = 0.

This fact ends the proof of Theorem 1.3.

Proof of Theorem 1.3. We just use Propositions 4.3 and 4.4 to obtain

lim
δ→0

(∫
Ω2

lim
ε→0

C(ε)

C1 δN2
uδ,ε(x1, x2)dx2

)
= v in L2(Ω1).

as we wanted to show. �

5. The Dirichlet problem. Proof of Theorem 1.4

In this case existence and uniqueness of a solution uε to our problem

f(x) =

∫
RN

Jε(x− y)(uε(y)− uε(x))dy, x ∈ Ω,

with

uε(x) = 0, x ∈ RN \ Ω,

in the space

W =
{
u ∈ L2(Ω1 × Ω2)

}
,

follows easily considering the variational problem

min
u∈W

1

4

∫
RN

∫
RN

Jε(x− y)(u(y)− u(x))2dy dx−
∫

Ω
fu.

In fact, what we obtain is a weak solution, that is, uε verifies∫
Ω
f(x)ϕ(x) dx =

∫
RN

∫
RN

Jε(x− y)(uε(y)− uε(x))dyϕ(x) dx

= −1

2

∫
RN

∫
RN

Jε(x− y)(uε(y)− uε(x))(ϕ(y)− ϕ(x)) dydx

for every ϕ ∈ L2(Ω).

Taking, as we did for the Neumann case, ϕ = uε, we get

(5.1)

−
∫

Ω
f(x)uε(x) dx =

1

2

∫
RN

∫
RN

Jε(x− y)(uε(y)− uε(x))2 dydx

≥ βε1
∫

Ω
(uε(x))2 dx.
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Here βε1 is given by

(5.2) βε1 = inf
u∈W

1

2

∫
RN

∫
RN

Jε(x− y)(u(y)− u(x))2dy dx∫
Ω
u2(x) dx

.

For a proof that βε1 is strictly positive we refer to [1].

Since ∣∣∣∣∫
Ω
f(x)uε(x) dx

∣∣∣∣ ≤ ‖f‖L2(Ω)‖uε‖L2(Ω),

it follows from (5.1) that

‖uε‖L2(Ω)dx ≤
1

βε1
‖f‖L2(Ω).

Consequently, if we show

(5.3) βε1 →∞ as ε→ 0,

we prove Theorem 1.4, that is,

uε → 0 in L2(Ω).

Thus, let us show (5.3). From (5.2), we can take φε ∈ L2(Ω) with ‖φε‖L2(Ω) = 1 such that,

for all ϕ ∈ L2(Ω),

(5.4) −βε1
∫

Ω
ϕφε dx =

∫
Ω
ϕ(x)

[∫
RN

Jε(x− y)(φε(y)− φε(x))dy

]
dx

with

φε = 0, x ∈ RN \ Ω.

We can rewrite (5.4) obtaining

(5.5)

−βε1
∫

Ω
ϕφε dx =

∫
Ω
ϕ(x)

(∫
Ω
Jε(x− y)φε(y) dy

)
dx

−
∫

Ω
ϕ(x)φε(x)

(∫
RN

Jε(x− y) dy

)
dx

=

∫
Ω
ϕ(x)

(∫
Ω
Jε(x− y)φε(y) dy

)
dx− 1

εN2

∫
Ω
ϕ(x)φε(x) dx

since by hypothesis (H) we have ∫
RN

Jε(x) dx =
1

εN2
.

Hence, if we set wε in L2(Ω) by

wε =
φε

εN2
,

we obtain from (5.5) that

(5.6) −εN2 βε1

∫
Ω
ϕwε dx = εN2

∫
Ω
ϕ(x)

(∫
Ω
Jε(x− y)wε(y) dy

)
dx−

∫
Ω
ϕwε dx

for any ϕ ∈ L2(Ω).



20 M. C. PEREIRA AND J. D. ROSSI

Now, let us consider the following linear operator Sε : L2(Ω) 7→ L2(Ω) given by

Sε(w)(x) = εN2

∫
Ω
Jε(x− y)w(y) dy − w(x), x ∈ Ω.

Therefore, since ∥∥∥∥∫
Ω
Jε(· − y)w(y) dy

∥∥∥∥
L2(Ω)

≤ ‖J‖∞ |Ω| ‖w‖L2(Ω)

for any w, it is not difficult to see that the operator Sε strongly converges to −Id in the space
of the bounded linear operators in L2(Ω), that is,

(5.7) Sε → −Id in BL2(Ω),

as ε→ 0. Observe that here we are denoting by Id the identity operator, and by BL2(Ω) the

space of bounded linear operators in L2(Ω).

Due to (5.6), we have that

λε = −εN2 βε1

is an eigenvalue of Sε. Then, there exists ψε ∈ L2(Ω) with ‖ψε‖L2(Ω) = 1 such that

Sε(ψ
ε) = λεψε.

It follows from (5.7) that

λε → −1, as ε→ 0,

and then, there exist ε0 > 0 and K > 0 such that

|εN2βε1| ≥ K for all ε ∈ (0, ε0].

In this way, we obtain (5.3), proving Theorem 1.4.

6. Rescaling the kernel. The Dirichlet case.

Now let us introduce an extra parameter δ that controls the size of the support of the
kernel. As we did for the Neumann case, we consider here the following problem:

(6.1) f(x) =
C(ε)

δN+2

∫
RN

J

(
x1 − y1

δ
, ε

(x2 − y2)

δ

)
(uε,δ(y)− uε,δ(x))dy, x ∈ Ω,

with

uε,δ(x) ≡ 0, x ∈ RN \ Ω,

and C(ε) given by

C(ε) =

(
1

2

∫
RN

J(x1, εx2)x2
11
dx

)−1

where x11 is the first coordinate of x1 ∈ Ω1.

Here J is supposed to satisfy assumption (H).

Existence and uniqueness of the solutions uε,δ of (6.1) are guaranteed in Section 5 for any
f ∈ L2(Ω), ε and δ > 0. Thus, we can proceed as in Section 4 to analyze the behavior of uε,δ

as ε and δ goes to zero.
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First, let us argue as in (5.6) rewriting (6.1) as

f(x) =
C(ε)

δN+2

[∫
Ω
Jε

(
x− y
δ

)
uε,δ(y) dy − uε,δ(x)

(∫
RN

Jε

(
x− y
δ

)
dy

)]
=

C(ε)

δN+2

[∫
Ω
Jε

(
x− y
δ

)
uε,δ(y) dy − δN

εN2
uε,δ(x)

]
=

εN2

δN+2

∫
Ω
Jε

(
x− y
δ

)
wε,δ(y) dy − 1

δ2
wε,δ(x), x ∈ Ω,

where

wε,δ =
C(ε)

εN2
uε,δ

and

Jε(x) = J(x1, εx2), (x1, x2) ∈ Ω1 × Ω2.

Then, we obtain

Tε,δ(w
ε,δ) = f in L2(Ω)

for all ε and δ where Tε,δ : L2(Ω) 7→ L2(Ω) is given by

Tε,δ(w)(x) =
εN2

δN+2

∫
Ω
Jε

(
x− y
δ

)
w(y) dy − 1

δ2
w(x).

Observe that the bounded linear operator Tε,δ converges strongly to −1/δ2 Id as ε→ 0 for
any δ > 0 fixed since∥∥∥∥∫

Ω
Jε

(
x− y
δ

)
w(y) dy

∥∥∥∥
L2(Ω)

≤ ‖J‖∞ |Ω| ‖w‖L2(Ω).

Remember that Id is the identity operator in the space of bounded linear operator in L2(Ω).
Thus, for ε small enough and any δ > 0, Tε,δ is an invertible operator, with

Tε,δ
−1 → −δ2 Id as ε→ 0.

Therefore, we can pass to the limit in wε,δ getting

wε,δ = Tε,δ
−1f → −δ2f in L2(Ω).

Hence, we can conclude that

(6.2) lim
δ→0

(
lim
ε→0

wε,δ
)

= 0 in L2(Ω).

Moreover, since

wε,δ =
C(ε)

εN2
uε,δ =

(
1

2

∫
RN

J(x)x2
11
dx

)−1

uε,δ

with 0 <
∫
RN J(x)x2

11
dx <∞ independent on ε and δ, we obtain from (6.2) that

lim
δ→0

(
lim
ε→0

uε,δ
)

= 0 in L2(Ω)

proving Theorem 1.6.

Finally, we observe that the proof of Theorem 1.5 is analogous to the one of Theorem 1.2
using [7] instead of [6]. We leave the details to the reader.
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