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Abstract

In this work we analyze the asymptotic behavior of the solutions of the p-Laplacian equation
with homogeneous Neumann boundary conditions posed in bounded thin domains as

Rε =
{

(x, y) ∈ R2 : x ∈ (0, 1) and 0 < y < εG (x, x/εα)
}

for some α > 0. We take a smooth function G : (0, 1)× R 7→ R, L-periodic in the second variable,
which allows us to consider locally periodic oscillations at the upper boundary. The thin domain
situation is established passing to the limit in the solutions as the positive parameter ε goes to zero
and we determine the limit regime for three case: α < 1, α = 1 and α > 1.
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1 Introduction

Partial Differential Equations on thin domains (domains in which the size in some directions is much
larger than the size in others) appear naturally in biological systems and industrial applications [13,
14, 24]. In most of the applications, the boundary of those domains is not perfectly flat and one can
see irregularities. Then, the influence of such boundary distortions might not be neglected because
its effect on the effective equation of the considered system, even far from the rough boundary, can
be meaningful [1, 9, 11]. This motivates researchers to employ different homogenization techniques
and try to determine the effective flow behavior on a lower-dimensional domain which captures the
influence of the geometry, roughness and thickness of the perturbed domain on the solutions of such
singular boundary value problems. The obtained equations are then suitable for numerical simulations
and provide rigorous justification of various natural phenomenon seen in such complex systems.

A simple manner to consider such irregularities is to stody domains of type

Qε =
{

(x, y) ∈ R2 : x ∈ (0, 1) and 0 < y < εg
( x
εα

)}
for ε > 0,

where g is a positive, bounded and periodic function satisfying some regularity hypothesis and ε > 0 is
a small parameter which goes to zero. Thereby, in the limit ε→ 0, the open set Qε degenerates to the
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unit interval presenting oscillatory behavior on the upper boundary (see for instance [1, 22, 21, 5, 3]
where similar approach are performed).

The periodic rough boundary considered above is certainly a first step, but usually not enough,
since most of the irregularities present in real applications are not periodic. In this work we are
interested in the following family of rough thin domains

Rε =
{

(x, y) ∈ R2 : x ∈ (0, 1) and 0 < y < εGε (x)
}

for ε > 0 (1.1)

where
Gε(x) = G

(
x,

x

εα

)
for some parameter α > 0 with function G satisfying the conditions given by hypothesis (H) set in
Section 2. This kind of domain perturbation is called in the literature locally periodic thin domain
and it is illustrated in figure 1 below.

Rϵ

Figure 1: A locally periodic thin channel with rough boundary.

As an example, one can considerGε(x) = a(x)+b(x)g(x/εα) where a, b : (0, 1)→ R are C1-piecewise
positive functions and g : R → R is a L-periodic function of class C1 also positive. This includes the
case where a, b are positive constants recovering the perturbed regions discussed for instance in [3, 5].
Notice that in the case in which α = 0, we also recover the open sets considered in [13] where evolution
equations on thin domains without roughness were studied. We observe that the hypothesis (H)
considered here is as general as possible for our framework.

In a unified way, we treat the three cases of roughness that can be modeled by the parameter α > 0.
We analyse our boundary value problem for 0 < α < 1, α = 1 and α > 1, which represents weak,
resonant and strong harshness on the upper boundary respectively. In each case, we have a different
effective equation featuring the roughness induced effects on the perturbed model for small values of
the parameter ε.

Several references treat issues related to the effect of thickness and rough boundaries on the feature
of the solutions of partial differential equations. Indeed, thin structures with oscillating boundaries
appear in many fields of science: fluid dynamics (lubrication), solid mechanics (thin rods, plates or
shells) or even physiology (blood circulation). Therefore, analyzing the asymptotic behavior of models
set on thin structures understanding how the geometry and the roughness affect the problem is of
considerable current interest in applied science. In these directions, let us mention [7, 10, 15, 21] and
references therein.

In this paper, we are interested in analyzing the asymptotic behavior of the solutions of a p-
Laplacian equation given by {

−∆puε + |uε|p−2uε = f ε in Rε

|∇uε|p−2∇uεηε = 0 on ∂Rε
(1.2)

where ηε is the unit outward normal vector to the boundary ∂Rε, 1 < p <∞ with p−1 + p′−1 = 1, and

∆p· = div
(
|∇ · |p−2∇·

)
denotes the p-Laplacian differential operator. We also assume f ε ∈ Lp′(Rε) is uniformly bounded.

Such quasilinear equations play an important role in applications, given the fact that many models
cannot be described by linear equations. In this sense, considering the p-Laplacian equation becomes
natural. Moreover, the p-Laplacian is strongly related to non-Newtonian fluids, which arise in many
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applications related to polymer processing, hydrology, food processing, turbulent filtration, glaceology
(see e.g. [6, 25, 16, 17]). Here, differently from many works [11, 12], we deal also with the case
1 < p < 2, which is the most relevant range of p in applications (e.g. [6]) and, of course, the case p ≥ 2.

We improve the results from [3] (where the Laplacian operator in locally periodic thin domains were
considered) dealing with the p-Laplacian equation for any p ∈ (1,∞). Moreover, we are improving our
previous results from [2] where the purely periodic case in bidimensional thin regions were studied. It
is worth noticing that the techniques developed in [2, 3] cannot be directly applied in this case. On
the one hand, the results concerning the unfolding operator obtained in [4] do not guarantee strong
convergence in Lp for the unfolding operator applied on solutions of quasilinear operators. On the other
hand, the analysis performed in [3] just works on L2-spaces. Our goal here is to overcome this situation.
We discretize the oscillating region passing to the limit using uniform estimates on two parameters:
one associated to the roughness, and other given by the variable profile of the thin domain. In this
way, a continuous dependence property for the solutions with respect to the function G in Lp-norms
is crucial and it is obtained in Theorem 4.1. We point out that these techniques also work for the
dimension reduction from 3-dimensional thin sets to two-dimensional ones. The main change is in the
limit problem. In 3D, we somehow lose the explicit p-Laplacian form, as in the unidimensional limit,
but, clearly, the monotonicity of this limit operator is preserved (it will be done in a forthcoming work).

Notice that our work also goes a step further from [23] where the p-Laplacian operator is studied in
standard thin domains. Let us emphasize that the standard thin domains were previously introduced
and rigorously studied in the paper [13] of J. Hale and G. Raugel where the continuity of the family
of attractors set by a semilinear parabolic equation in thin domains was considered.

According to [1] and references therein, it is expected that the sequence uε will converge to a function
of just one variable x ∈ (0, 1) satisfying a one-dimensional equation of the same type. Combining
boundary perturbation techniques [3, 4, 5] and monotone operator analysis [17], we identify the effective
limit model of (2.1) at ε = 0.

The paper is organized as follows. In Section 2 we state the main result of the paper. In Section 3,
we introduce some notations and state some basic results which will be needed in the sequel. In Section
4, we prove the continuous dependence of the solutions in Lp-spaces with respect to the function G
uniformly in the parameter ε > 0 improving [3, Theorem 4.1] from L2 to Lp-spaces. In Section 5, we
perform the asymptotic analysis of (1.2) in piecewise periodic thin domains (that is, in thin domains
set by functions G which are piecewise constants in the first variable x, and L-periodic in the second
one). See Figure 2 below which illustrates piecewise periodic open sets.

Rϵ

Figure 2: A piecewise periodic thin domain.

Next, we provide in Section 6 the proof of the main result of the paper (namely Theorem 2.1) as
a consequence of the analysis performed in the previous sections. Finally, we discuss in Section 7,
the convergence of the resolvent and semigroup associated to the equation (1.2) under the additional
assumption p ≥ 2. As we will see, it is obtained combining the classical result [8, Theorem 4.2] and our
main result Theorem 2.1. Furthermore, we include an Appendix where the dependence of the auxiliary
solution v on admissible functions G is analysed.
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2 Hypothesis on function G and the main result

First, recall that the variational formulation of (1.2) is given by∫
Rε

{
|∇uε|p−2∇uε∇ϕ+ |uε|p−2uεϕ

}
dxdy =

∫
Rε
f εϕdxdy, ϕ ∈W 1,p(Rε). (2.1)

Moreover, existence and uniqueness of the solutions are guaranteed by Minty-Browder’s Theorem
setting a family of solutions uε.

Next, we state the main hypothesis on function G setting the main conditions on our rough thin
domain Rε introduced in (1.1).

(H)

Let G : (0, 1)× R 7→ R be a function satisfying that there exist a finite number of points

0 = ξ0 < ξ1 < · · · < ξN−1 < ξN = 1

such that G : (ξi−1, ξi)×R→ (0,∞) is C1 and such that G, ∂xG and ∂yG are uniformly bounded
in (ξi−1, ξi)× R getting limits when we approach ξi−1 and ξi. Further, we assume there exist two
constants G0 and G1 such that

0 < G0 ≤ G(x, y) ≤ G1, ∀(x, y) ∈ (0, 1)× R,

and a real number L > 0 such that G(x, y + L) = G(x, y) for all (x, y) ∈ (0, 1)× R.a

aG(x, ·) is a L-periodic function for each x ∈ (0, 1).

As we will see, the homogenized limit equation is a one-dimensional p-Laplacian equation with variable
coefficients q(x) and r(x). It assumes the following form{

−
(
q(x)|u′|p−2u′

)′
+ r(x)|u|p−2u = f̂ in (0, 1),

u′(0) = u′(1) = 0,

where the homogenized coefficients are given by

q(x) =



1

L

∫
Y ∗(x)

|∇v|p−2∂y1v dy1dy2, if α = 1,

1

〈1/Gp′−1(x, ·)〉p−1
(0,L)

, if α < 1,

G0(x) = min
y∈R

G(x, y), if α > 1,

and

r(x) =
|Y ∗(x)|
L

= 〈G(x, ·)〉(0,L) .

(2.2)

We emphasize here the dependence of the function q(x) with respect to the parameter α > 0 and
variable x ∈ (0, 1) which generalizes our previous work [2]. The function f̂ is the weak limit of f̂ ε in
Lp
′
(0, 1) with f̂ ε defined by the family of known forcing terms f ε ∈ Lp′(Rε) in the following way

f̂ ε(x) =
1

ε

∫ εG(x,x/εα)

0
f ε(x, y)dy.

|Y ∗(x)| denotes the Lebesgue measure of the representative cell

Y ∗(x) = {(y1, y2) : 0 < y1 < L, 0 < y2 < G(x, y1)}
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which also depends on variable x ∈ (0, 1). The function v used to set the homogenized coefficient q(x)
in (2.2) is is the unique solution of the problem∫

Y ∗(x)
|∇v|p−2∇v∇ϕdy1dy2 = 0 ∀ϕ ∈W 1,p

# (Y ∗(x)), 〈ϕ〉Y ∗(x) = 0,

(v − y1) ∈W 1,p
# (Y ∗(x)) with 〈(v − y1)〉Y ∗(x) = 0

(2.3)

where
W 1,p

# (Y ∗(x)) = {ϕ ∈W 1,p(Y ∗(x)) : ϕ|∂leftY ∗(x) = ϕ|∂rightY ∗(x)}

is the space of periodic functions on the horizontal variable y1, and 〈ϕ〉O denotes the average of any
function ϕ ∈ L1

loc(RM ) on measurable sets O ⊂ RM .
It is worth noticing that problem (2.3) is well posed for each x ∈ (0, 1), due to Minty-Browder’s

Theorem, and then, the coefficient q(x) is also well defined. Further, q(x) is a positive function setting a
well posed homogenized equation. Indeed, since v is the solution of (2.3), there exists ψ ∈W 1,p

# (Y ∗(x))
with 〈ψ〉Y ∗(x) = 0 for each x ∈ (0, 1) such that v = y1 + ψ and then

0 <

∫
Y ∗(x)

|∇v|p dy1dy2 =

∫
Y ∗(x)

|∇v|p−2∇v∇(y1 + ψ) dy1dy2

=

∫
Y ∗(x)

|∇v|p−2∂y1v dy1dy2 = Lq(x).

The main result of the paper is the following:

Theorem 2.1. Let uε be the solution of (1.2) with f ε ∈ Lp′(Rε) uniformly bounded. Suppose that

f̂ ε(x) =
1

ε

∫ εG(x,x/εα)

0
f ε(x, y)dy

satisfies f̂ ε ⇀ f̂ weakly in Lp′(0, 1).
Let u ∈W 1,p(0, 1) be the unique solution of the homogenized equation∫ 1

0

{
q(x)|u′|p−2u′ϕ′ + r(x) |u|p−2uϕ

}
dx =

∫ 1

0
f̂ϕdx, ∀ϕ ∈W 1,p(0, 1),

where the homogenized coefficients q(x) and r(x) depend on the parameter α > 0 and are given by the
expression (2.2).

Then,
L

|Y ∗(x)|ε

∫ εG(x,x/εα)

0
uε(x, y)dy ⇀ u weakly in Lp (0, 1) ,

and
ε−1/p||uε − u||Lp(Rε) → 0, as ε→ 0.

As mentioned before, we are improving the results from [3] where the Laplacian operator in locally
periodic thin domains were considered. We recover them taking p = 2 in Theorem 2.1. Moreover, we
also have improved our previous results from [2] where the purely periodic case in bidimensional thin
regions were studied to the p-Laplacian operator where constant homogenized coefficients are obtained.
Here, since we are considering locally periodic thin domains, variable homogenized coefficients can be
produced. The main step in the proof is to pass to the limit in the solutions with the representative
cell depending on vairable x ∈ (0, 1) assuming different orders of roughness (different values for the
parameter α > 0). To do that, we discretize the oscillating thin region passing to the limit using
uniform estimates on two parameters: one associated to the roughness, and other given by the variable
profile of the thin domain. In this way, a continuous dependence property for the solutions with respect
to the function G in Lp-norms is crucial and it is shown in Theorem 4.1 below.
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3 Basic Facts and the unfolding operator

In this section, we introduce some basic facts, definitions and results concerning to the unfolding
method making some straightforward adaptations to our propose. First, let us just recall some basic
properties to the p-Laplacian which can be found for instance in [17].

Proposition 3.1. Let x, y ∈ Rn.

• If p ≥ 2, then
〈|x|p−2x− |y|p−2y, x− y〉 ≥ cp|x− y|p.

• If 1 < p < 2, then

〈|x|p−2x− |y|p−2y, x− y〉 ≥ cp|x− y|2(|x|+ |y|)p−2

≥ cp|x− y|2(1 + |x|+ |y|)p−2.

Corollary 3.1.1. Let ap : Rn → Rn such that ap(s) = |s|p−2s, 1
p + 1

p′ = 1. Then, ap is the inverse of
ap′ . Moreover,

• If 1 < p′ < 2 (i.e, p ≥ 2), then∣∣∣|u|p′−2u− |v|p′−2v
∣∣∣ ≤ c|u− v|p′−1.

• If p′ ≥ 2 (i.e, 1 < p < 2), then∣∣∣|u|p′−2u− |v|p′−2v
∣∣∣ ≤ c|u− v|(|u|+ |v|)p′−2

≤ c|u− v|(1 + |u|+ |v|)p′−2.

Proposition 3.2. Let x, y ∈ Rn and p ≥ 1. Then.

|y|p ≥ |x|p + p|x|p−2x · (y − x)

Moreover,

|y|p ≥ |x|p + p|x|p−2x · (y − x) + cp|y − x|p if p ≥ 2,

|y|p ≥ |x|p + p|x|p−2x · (y − x) + cp|x− y|2(1 + |x|+ |y|)p−2 if 1 < p < 2.

From now on, we use the following rescaled norms

|||ϕ|||Lp(Rε) = ε−1/p ||ϕ||Lp(Rε) ∀ϕ ∈ L
p(Rε), 1 ≤ p <∞,

|||ϕ|||W 1,p(Rε) = ε−1/p ||ϕ||W 1,p(Rε) ∀ϕ ∈W
1,p(Rε), 1 ≤ p <∞.

For completeness we may denote |||ϕ|||L∞(Rε) = ||ϕ||L∞(Rε).
Next, we get the following uniform bound for the solutions of (1.2):

Proposition 3.3. Consider the variational formulation of our problem:∫
Rε

{
|∇uε|p−2∇uε∇ϕ+ |uε|p−2 uεϕ

}
dxdy =

∫
Rε
f εϕdxdy, ϕ ∈W 1,p(Rε), (3.1)

where f ε satisfies
|||f ε|||Lp′ (Rε) ≤ c

for some positive constant c independent of ε > 0. Then,

|||uε|||Lp(Rε) ≤ c, |||uε|||W 1,p(Rε) ≤ c,∣∣∣∣∣∣∣∣∣|∇uε|p−2∇uε
∣∣∣∣∣∣∣∣∣
Lp′ (Rε)

≤ c.
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Proof. Take ϕ = uε in (3.1). Then,

||uε||pW 1,p(Rε)
=

∫
Rε
{|∇uε|p + |uε|p} dxdy ≤ ||f ε||Lp′ (Rε) ||uε||Lp(Rε) .

Hence,
|||uε|||W 1,p(Rε) ≤ c.

Therefore, the sequence uε and |∇uε|p−2∇uε, are respectively bounded in Lp(Rε) and (Lp
′
(Rε))2

under the norm |||·|||.

3.1 Unfolding operator

Here, we present the unfolding operators for thin domains in the purely and locally periodic settings.
We rewrite it to our context in order to simplify our proofs. They were first introduced in [4, 5] where
details and proofs can be found.

3.1.1 The purely periodic unfolding

Let Gi : R→ R be a L-periodic function, lower semicontinuous satisfying 0 < g0,i ≤ Gi(x) ≤ g1,i with
g0,i = minx∈RGi(x) and g1,i = supx∈RGi(x) for any i = 1, ..., N . Now consider the thin region

Rεi = {(x, y) ∈ R : ξi−1 < x < ξi, 0 < y < εGi(x/ε)} .

The basic cell associated to Rεi is

Y ∗i = {( y1, y2) ∈ R2 : 0 < y1 < L and 0 < y2 < Gi(y1)}.

By

〈ϕ〉O :=
1

|O|

∫
O
ϕ(x) dx,

we denote the average of ϕ ∈ L1
loc(R2) for any open measurable set O ⊂ R2. We also set functional

spaces which are defined by periodic functions in the variable y1 ∈ (0, L). Namely

Lp#(Y ∗i ) = {ϕ ∈ Lp(Y ∗i ) : ϕ(y1, y2) is L-periodic in y1 },
Lp# ((0, 1)× Y ∗i ) = {ϕ ∈ Lp((0, 1)× Y ∗i ) : ϕ(x, y1, y2) is L-periodic in y1 },

W 1,p
# (Y ∗i ) = {ϕ ∈W 1,p(Y ∗i ) : ϕ|∂leftY ∗i = ϕ|∂rightY ∗i }.

For each ε > 0 and any x ∈ (ξi−1, ξi), there exists an integer denoted by
[
x
ε

]
L
such that

x = ε
[x
ε

]
L
L+ ε

{x
ε

}
L

where
{x
ε

}
L
∈ [0, L).

We still set

Iiε = Int

 N i
ε⋃

k=1

[kLε+ ξi−1, (k + 1)Lε+ ξi−1]


where N i

ε is largest integer such that εL(N i
ε + 1) + ξi−1 ≤ ξi, as well

Λiε = (ξi−1, ξi)\Iiε = [εL(N i
ε + 1) + ξi−1, ξi),

Rε0i =
{

(x, y) ∈ R2 : x ∈ Iiε, 0 < y < εGi

(x
ε

)}
,

Rε1i =
{

(x, y) ∈ R2 : x ∈ Λiε, 0 < y < εGi

(x
ε

)}
.

Now we can introduce the unfolding operator. In the sequel, we point out its main properties.
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Definition 3.4. Let ϕ be a Lebesgue-measurable function in Rεi . The unfolding operator T iε acting on
ϕ is defined as the following function in (ξi−1, ξi)× Y ∗i

T iε ϕ(x, y1, y2) =

{
ϕ
(
ε
[
x
ε

]
L
L+ εy1, εy2

)
, for (x, y1, y2) ∈ Iiε × Y ∗i ,

0, for (x, y1, y2) ∈ Λiε × Y ∗i .

Proposition 3.5. The unfolding operator satifies the following properties:

1. T iε is linear;

2. T iε (ϕψ) = T iε (ϕ)Tε(ψ), for all ϕ, ψ Lebesgue mesurable in Rεi ;

3. ∀ϕ ∈ Lp(Rεi ), 1 ≤ p ≤ ∞,
T iε (ϕ)

(
x,
{x
ε

}
L
,
y

ε

)
= ϕ(x, y),

for (x, y) ∈ Rε0i.

4. Let (ϕε) be a sequence in Lp(Rεi ), 1 < p ≤ ∞ with the norm ||ϕε||Lp(Rεi )
uniformly bounded.

Then,
1

ε

∫
Rε1i

|ϕε|dxdy → 0.

5. Let (ϕε) be a sequence in Lp(ξi−1, ξi), 1 ≤ p <∞, such that

ϕε → ϕ strongly in Lp(ξi−1, ξi).

Then,
T iε ϕε → ϕ strongly in Lp ((ξi−1, ξi)× Y ∗i ) .

Proof. See [5, Proposition 2.5].

The above result sets several basic and somehow immediate properties of the unfolding operator.
Property 5 will be essential to pass to the limit when dealing with solutions of differential equations
since it allow us to transform any integral over the thin sets depending on the parameter ε and function
Gi into an integral over the fixed set (ξi−1, ξi)× Y ∗i .

3.1.2 Locally Periodic Unfolding

Next we set the locally periodic unfolding operator discussing some properties that will be needed in
the sequel.

Definition 3.6. We define the locally periodic unfolding operator T lpε acting on a measurable function
ϕ, as the function T lpε ϕ defined in (0, 1)× (0, L)× (0, G1) by expression

T lpε ϕ(x, y1, y2) = ϕ̃
(
εα
[ x
εα

]
L+ εαy1, εy2

)
for (x, y1, y2) ∈ (0, 1)× (0, L)× (0, G1),

where ·̃ denotes the extension by zero to the whole space.

As in classical periodic homogenization, we have the unfolding operator reflecting two scales. The
macroscopic one, denoted by x which gives the position in the interval (0, 1), and the microscopic scale
given by (y1, y2) which sets the position in the cell (0, L)×(0, G1). However, due to the locally periodic
oscillations of the domain Rε, the definition given here differs from the usual ones. In this case, we do
not have a fixed cell that describes the domain Rε which makes the extesion by zero needed.

Theorem 3.7. Let ϕε ∈ W 1,p(Rε) for 1 < p < ∞ such that |||ϕε|||W 1,p(Rε) is uniformly bounded.
Then, there exists ϕ ∈W 1,p(0, 1) such that, up to subsequences,

T lpε ϕε ⇀ ϕχ(0,1)×Y ∗(x),

weakly in Lp ((0, 1)× (0, L)× (0, G1)) where χ(0,1)×Y ∗(x) is the characteristic function of the set

{(x, y) ∈ R2 : x ∈ (0, 1) and y ∈ Y ∗(x)}.
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Proof. See [4, Theorem 3.14].

Remark 3.1. We point out that the convergence above cannot be improved because of the definition of
locally periodic unfolding operator.

Proposition 3.8. 1. Let ϕ ∈ L1(Rε). Then,

1

L

∫
(0,1)×(0,L)×(0,G1)

T lpε ϕ(x, y1, y2)dxdy1dy2 =
1

ε

∫
Rε
ϕ(x, y)dxdy.

2. Let ϕ ∈ Lp(0, 1). Then,

T lpε ϕ→ χ(0,1)×Y ∗(x)ϕ strongly in Lp ((0, 1)× (0, L)× (0, G1)) .

Proof. See [4].

Proposition 3.9. Let ϕε ∈ Lp(Rε) such that

T lpε ϕε ⇀ χ(0,1)×Y ∗(x)ϕ weakly in Lp ((0, 1)× (0, L)× (0, G1)) ,

where ϕ(x, y1, y2) = ϕ(x). Then,

L

ε

∫ εGε(·)

0
ϕε(·, y)dy ⇀ |Y ∗(·)|ϕ weakly in Lp(0, 1).

Proof. Notice that

1

L

∫
(0,1)×(0,L)×(0,G1)

T lpε ϕεT
lp
ε ψ(x)dxdy1dy2 →

1

L

∫
(0,1)×(0,L)×(0,G1)

ϕ(x)ψ(x)χ(0,1)×Y ∗(x)dxdy1dy2,

for all ψ ∈ Lp′(0, 1). By the Proposition 3.8, we have

1

L

∫
(0,1)×(0,L)×(0,G1)

T lpε ϕεT
lp
ε ψ(x)dxdy1dy2 =

1

ε

∫
Rε
ϕε(x, y)ψ(x)dxdy

=

∫ 1

0

(
1

ε

∫ εGε(x)

0
ϕε(x, y)dy

)
ψ(x)dx

and
1

L

∫
(0,1)×(0,L)×(0,G1)

ϕ(x)ψ(x)χ(0,1)×Y ∗(x)dxdy1dy2 =
1

L

∫ 1

0
|Y ∗(x)|ϕ(x)ψ(x)dx,

for all ψ ∈ Lp′(0, 1). Thus,
1

ε

∫ εGε(x)

0
ϕε(x, y)dy ⇀

1

L
|Y ∗(x)|ϕ(x)

weakly in Lp(0, 1).

4 A domain dependence result

In this section we analyze how the solutions of (1.2) depends on the function Gε. Let us take

Gε(x) = G
(
x,

x

εα

)
and Ĝε(x) = Ĝ

(
x,

x

εα

)
satisfying hypothesis (H) and considering the associated thin domains Rε and R̂ε by

Rε =
{

(x, y) ∈ R2 : x ∈ (0, 1), 0 < y < εGε(x)
}

and

R̂ε =
{

(x, y) ∈ R2 : x ∈ (0, 1), 0 < y < εĜε(x)
}
.

Now, let uε and ûε be the solutions of (1.2) for the domains Rε and R̂ε respectively with f ε ∈
Lp
′
(R2). We have the following result.
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Theorem 4.1. Let Gε and Ĝε be piecewise C1 functions satisfying (H) with

‖Gε − Ĝε‖L∞(0,1) ≤ δ.

Assume also f ε ∈ Lp′(R2) satisfying ‖f ε‖Lp(R2) ≤ 1.
Then, there exists a positive real function ρ : [0,∞) 7→ [0,∞) such that

|||uε − ûε|||pW 1,p(Rε∩R̂ε)
+ |||uε|||pW 1,p(Rε\R̂ε)

+ |||ûε|||pW 1,p(R̂ε\Rε)
≤ ρ(δ), (4.1)

with ρ(δ)→ 0 as δ → 0 uniformly for all ε > 0.

Remark 4.1. The important part of this result is that the function ρ(δ) does not depend on ε. As we
will see, it only depends on the positive constants G0 and G1.

In order to prove Theorem 4.1, we use the fact that uε and ûε are minimizers of the the functionals

Vε(ϕ) =
1

p ε

∫
Rε

(|∇ϕ|p + |ϕ|p) dxdy − 1

ε

∫
Rε
f εϕdxdy

V̂ε(ϕ̂) =
1

p ε

∫
R̂ε

(|∇ϕ̂|p + |ϕ̂|p) dxdy − 1

ε

∫
R̂ε
f εϕ̂dxdy

(4.2)

that is,
Vε(uε) = min

ϕ∈W 1,p(Rε)
Vε(ϕ) and V̂ε(ûε) = min

ϕ̂∈W 1,p(R̂ε)
V̂ε(ϕ̂).

We will need to evaluate the minimizers plugging them into different functionals. For this, we set
the following operators introduced in [3]:

P1+η : W 1,p(U) 7→W 1,p (U(1 + η))

(P1+ηϕ) (x, y) = ϕ

(
x,

y

1 + η

)
, (x, y) ∈ U(1 + η),

(4.3)

where
U(1 + η) =

{
(x, (1 + η)y) ∈ R2 : (x, y) ∈ U

}
(4.4)

and U ⊂ R2 is an arbitrary open set. We also consider the following norm in W 1,p(U)

||w||p
W 1,p

1+η(U)
=

1

1 + η

[
||w||pLp(U) + ||K1+η∇w||pLp(U)

]
(4.5)

where

K1+η =

(
1 0
0 1 + η

)
.

We can easily see that
||w||p

W 1,p(U)
= ||P1+ηw||p

W 1,p
1+η(U(1+η))

(4.6)

and
1

1 + η
||w||p

W 1,p(U)
≤ ||w||

W 1,p
1+η(U)

≤ (1 + η)||w||p
W 1,p(U)

as η ≥ 0.

Also, we need the following result about the behavior of the solutions near the oscillating boundary.

Lemma 4.2. Let uε be the solution of problem (1.2) and let P1+η be the operator given by (4.3). Then,
there exists a positive function ρ = ρ(p, η) satisfying ρ(p, η)→ 0 as η → 0, such that

|||uε|||p
W 1,p

(
Rε\Rε

(
1

1+η

)) + |||uε|||pW 1,p(Rε(1+η)\Rε) + |||P1+ηuε − uε|||pW 1,p(Rε)
≤ ρ(p, η),

for 1 < p <∞.
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Proof. Since η > 0, we have that Rε
(

1
1+η

)
⊂ Rε. Then,

V (uε) =
1

p
|||uε|||pW 1,p(Rε)

− 1

ε

∫
Rε
f εuεdxdy

=
1

p
|||uε|||p

W 1,p
(
Rε\Rε

(
1

1+η

)) +
1

p
|||uε|||p

W 1,p
(
Rε

(
1

1+η

)) − 1

ε

∫
Rε
f εuεdxdy

=
1

p
|||uε|||p

W 1,p
(
Rε\Rε

(
1

1+η

)) +
1

p
|||P1+ηuε|||p

W 1,p
1+η(Rε)

− 1

ε

∫
Rε
f εuεdxdy

≥ 1

p
|||uε|||p

W 1,p
(
Rε\Rε

(
1

1+η

)) +
1

p(1 + η)
|||P1+ηuε|||pW 1,p(Rε)

− 1

ε

∫
Rε
f εuεdxdy.

(4.7)

Now, let us first assume p ≥ 2. We use the notations of Corollary 3.1.1 to simplify proofs. By
Proposition 3.2, (4.2) and (2.1) for ϕ = P1+ηuε − uε, we get

|||P1+ηuε|||pW 1,p(Rε)
≥ |||uε|||pW 1,p(Rε)

+
p

ε

∫
Rε

[ap(∇uε)∇ (P1+ηuε − uε)

+ap(uε) (P1+ηuε − uε)] dxdy + cp|||P1+ηuε − uε|||pW 1,p(Rε)

= pV (uε) +
p

ε

∫
Rε
f εuεdxdy +

p

ε

∫
Rε
f ε (P1+ηuε − uε) dxdy + cp|||P1+ηuε − uε|||pW 1,p(Rε)

= pV (uε) +
p

ε

∫
Rε
f εP1+ηuεdxdy + cp|||P1+ηuε − uε|||pW 1,p(Rε)

.

(4.8)

Putting together (4.7) and (4.8), we obtain

V (uε) ≥
1

p
|||uε|||p

W 1,p
(
Rε\Rε

(
1

1+η

)) +
1

p(1 + η)
|||P1+ηuε|||pW 1,p(Rε)

− 1

ε

∫
Rε
f εuεdxdy

≥ 1

p
|||uε|||p

W 1,p
(
Rε\Rε

(
1

1+η

)) +
1

1 + η
V (uε)

+
1

ε(1 + η)

∫
Rε
f εP1+ηuεdxdy +

cp
1 + η

|||P1+ηuε − uε|||pW 1,p(Rε)
− 1

ε

∫
Rε
f εuεdxdy.

Consequently
η

1 + η
V (uε) ≥

1

p
|||uε|||p

W 1,p
(
Rε\Rε

(
1

1+η

))
+

1

ε

∫
Rε
f ε
[
P1+ηuε
(1 + η)

− uε
]
dxdy +

cp
1 + η

|||P1+ηuε − uε|||pW 1,p(Rε)

which implies
1

p
|||uε|||p

W 1,p
(
Rε\Rε

(
1

1+η

)) +
cp

1 + η
|||P1+ηuε − uε|||pW 1,p(Rε)

≤ η

1 + η
V (uε) +

1

ε

∫
Rε
f ε
[
uε −

P1+ηuε
(1 + η)

]
dxdy.

(4.9)

Now, let us analyze the integral:

1

ε

∫
Rε
f ε
[
uε −

P1+ηuε
(1 + η)

]
dxdy.

To do this, notice that

uε(x, y)− (P1+ηuε)(x, y) = uε(x, y)− uε
(
x,

y

1 + η

)
=

∫ y

y
1+η

∂yuε(x, s)ds,

which implies

|uε(x, y)− (P1+ηuε)(x, y)| ≤

[∫ y

y
1+η

|∂yuε(x, s)|pds

]1/p(
ηy

(1 + η)

)1/p′
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putting the power p, multiplying by 1/ε, integrating between 0 and εGε(x) and using that (y/(1 +
η), y) ⊂ (εGε(x)), we get

1

ε

∫ εGε(x)

0
|uε(x, y)− (P1+ηuε)(x, y)|p dy ≤

[
1

ε

∫ εGε(x)

0
|∂yuε(x, s)|pds

](
η

1 + η

)p−1 (εGε(x))p

p
.

Thus, we have

|||uε − P1+ηuε|||Lp(Rε) ≤ |||∂yuε|||Lp(Rε)

(
η

1 + η

)1/p′ G1

p1/p
,

for ε < 1. Consequently, we get ∣∣∣∣1ε
∫
Rε
f ε
[
uε −

P1+ηuε
(1 + η)

]
dxdy

∣∣∣∣
≤ η

ε(1 + η)

∫
Rε
|f εuε|dxdy +

1

ε(1 + η)

∫
Rε
|f εuε − f εP1+ηuε| dxdy

≤ η

1 + η
|||f ε|||Lp′ (Rε)|||uε|||Lp(Rε) + |||f ε|||Lp′ (Rε)|||∂yuε|||Lp(Rε)

η1/p′

(1 + η)1+1/p′
G1

p1/p
.

(4.10)

Hence, due Proposition 3.3, (4.9) and (4.10), one gets

1

p
|||uε|||p

W 1,p
(
Rε\Rε

(
1

1+η

)) + cp|||P1+ηuε − uε|||pW 1,p(Rε)

≤ η

1 + η
c+

η

1 + η
c+

η1/p′

(1 + η)1+1/p′
c

≤ cη + cη1/p′ .

(4.11)

On the other hand, we have

V (uε) =
1

p
|||uε|||pW 1,p(Rε)

− 1

ε

∫
Rε
f εuεdxdy

=
1

p
|||P1+ηuε|||p

W 1,p
1+η(Rε(1+η))

− 1

ε

∫
Rε
f εuεdxdy

=
1

p
|||P1+ηuε|||p

W 1,p
1+η(Rε(1+η)\Rε)

+
1

p
|||P1+ηuε|||p

W 1,p
1+η(Rε)

− 1

ε

∫
Rε
f εuεdxdy

≥ 1

p(1 + η)

[
|||P1+ηuε|||pW 1,p(Rε(1+η)\Rε)) + |||P1+ηuε|||pW 1,p(Rε)

]
− 1

ε

∫
Rε
f εuεdxdy.

Hence, due to (4.8), we get

V (uε) ≥
1

p(1 + η)

[
|||P1+ηuε|||pW 1,p(Rε(1+η)\Rε)) + |||P1+ηuε|||pW 1,p(Rε)

]
− 1

ε

∫
Rε
f εuεdxdy

≥ 1

p(1 + η)
|||P1+ηuε|||pW 1,p(Rε(1+η)\Rε)) +

1

(1 + η)
V (uε) +

1

(1 + η)ε

∫
Rε
f εP1+ηuεdxdy

+cp|||P1+ηuε − uε|||pW 1,p(Rε)
− 1

ε

∫
Rε
f εuεdxdy,

and then,
1

p(1 + η)
|||P1+ηuε|||pW 1,p(Rε(1+η)\Rε)) + cp|||P1+ηuε − uε|||pW 1,p(Rε)

≤ η

1 + η
V (uε) +

1

ε

∫
Rε
f ε
(
uε −

P1+ηuε
(1 + η)

)
dxdy.

Thus, due Proposition 3.3 and (4.10), we get for p > 2 that

1

p
|||P1+ηuε|||pW 1,p(Rε(1+η)\Rε) + cp|||P1+ηuε − uε|||pW 1,p(Rε)

≤ cη + cη1/p′ .

(4.12)
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Notice that to the case p > 2, we have mainly estimated the term |x − y|p. Now, for the case
1 < p < 2, we have to estimate (1 + |x|+ |y|)p−2|x− y|2 in view of Propositions 3.1 and 3.2. Indeed,
we can argue as in (4.11) and (4.12), to get, for 1 < p < 2 that

1

p
|||uε|||p

W 1,p
(
Rε\Rε

(
1

1+η

)) +
cp
ε

∫
Rε
|∇P1+ηuε −∇uε|2 (1 + |∇P1+ηuε|+ |∇uε|)p−2 dxdy

+
cp
ε

∫
Rε
|P1+ηuε − uε|2 (1 + |P1+ηuε|+ |uε|)p−2 dxdy ≤ cη + cη1/p′

(4.13)

and

1

p
|||P1+ηuε|||pW 1,p(Rε(1+η)\Rε) +

cp
ε

∫
Rε
|∇P1+ηuε −∇uε|2 (1 + |∇P1+ηuε|+ |∇uε|)p−2 dxdy

+
cp
ε

∫
Rε
|P1+ηuε − uε|2 (1 + |P1+ηuε|+ |uε|)p−2 dxdy ≤ cη + cηp−1.

Now, notice that

|||P1+ηuε − uε|||pW 1,p(Rε)
d ≤

(
1

ε

∫
Rε
|∇P1+ηuε −∇uε|2 (1 + |∇P1+ηuε|+ |∇uε|)p−2 dxdy

)p/2
·
[

1

ε

∫
Rε

(1 + |∇P1+ηuε|+ |∇uε|)p dxdy
](2−p)/2

+

(
1

ε

∫
Rε
|P1+ηuε − uε|2 (1 + |P1+ηuε|+ |uε|)p−2 dxdy

)p/2
·
[

1

ε

∫
Rε

(1 + |P1+ηuε|+ |uε|)p dxdy
](2−p)/2

.

Finally, putting together the last inequality and (4.13), we also obtain

1

p
|||uε|||p

W 1,p
(
Rε\Rε

(
1

1+η

)) + |||P1+ηuε − uε|||pW 1,p(Rε)
≤ cη + cη1/p′ +

[
cη + cη1/p′

]p/2
for 1 < p < 2 finishing the proof.

Now, we are in condition to show Theorem 4.1.

Proof of Theorem 4.1. Taking η = δ/G0, we get under condition ‖Gε − Ĝε‖ ≤ δ that

Rε
(

1

1 + η

)
⊂ R̂ε ⊂ Rε(1 + η) and R̂ε

(
1

1 + η

)
⊂ Rε ⊂ R̂ε(1 + η). (4.14)

Applying Lemma 4.2, we get

|||uε|||pW 1,p(Rε\R̂ε)
≤ |||uε|||p

W 1,p
(
Rε\Rε

(
1

1+η

)) ≤ cρ(η) and

|||uε|||pW 1,p(R̂ε\Rε)
≤ |||uε|||p

W 1,p
(
R̂ε\R̂ε

(
1

1+η

)) ≤ cρ(η).
(4.15)

Now, let us focus to the first term of (4.1). We have

Vε(uε) ≤ Vε ((P1+ηûε) |Rε)

=
1

p
||| (P1+ηûε) |Rε |||W 1,p(Rε) −

1

ε

∫
Rε
f ε (P1+ηûε) |Rεdxdy

≤ 1

p
|||P1+ηûε|||W 1,p(R̂ε(1+η)) −

1

ε

∫
R̂ε
f εP1+ηûεdxdy +

1

ε

∫
R̂ε\Rε

f εP1+ηûεdxdy.

(4.16)

But from the definition of P1+η (see (4.3)) and a change of variables, we get

|||P1+ηûε|||pW 1,p(R̂ε(1+η))
≤ (1 + η)|||ûε|||pW 1,p(R̂ε)

. (4.17)
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From Lemma 4.2 we get

1

ε

∫
R̂ε
f ε (P1+ηûε − ûε) dxdy ≤ |||f ε|||Lp′ (R̂ε)|||P1+ηûε − ûε|||Lp(R̂ε) ≤ cρ(η)1/p. (4.18)

Also, by (4.14), (4.15) and Lemma 4.2, we obtain

1

ε

∫
R̂ε\Rε

f εP1+ηûεdxdy ≤ |||f ε|||Lp′ (R̂ε)|||P1+ηûε|||Lp(R̂ε\Rε) ≤ cρ(η)1/p. (4.19)

Hence, using (4.2), (4.16), (4.17), Proposition 3.3, (4.18), (4.19), we get

Vε(uε) ≤
(1 + η)

p
|||ûε|||pW 1,p(R̂ε)

− 1

ε

∫
R̂ε
f εP1+ηûεdxdy +

1

ε

∫
R̂ε\Rε

f εP1+ηûεdxdy

= (1 + η)V̂ε(ûε) +
(1 + η)

ε

∫
R̂ε
f εûεdxdy −

1

ε

∫
R̂ε
f εP1+ηûεdxdy +

1

ε

∫
R̂ε\Rε

f εP1+ηûεdxdy

= (1 + η)V̂ε(ûε) +
η

ε

∫
R̂ε
f εûεdxdy +

1

ε

∫
R̂ε
f ε(ûε − P1+ηûε)dxdy +

1

ε

∫
R̂ε\Rε

f εP1+ηûεdxdy

≤ (1 + η)V̂ε(ûε) + η|||f ε|||Lp′ (R̂ε)|||ûε|||Lp(R̂ε) + cρ(η)1/p

= (1 + η)V̂ε(ûε) + ρ̄(η),

(4.20)

where ρ̄ denotes a function such that ρ̄(η)→ 0 as η → 0.
On the other hand, by (4.2), (4.5), (4.6), (4.14) and Proposition 3.2, we get, for p ≥ 2,

Vε(uε) =
1

p
|||uε|||pW 1,p(Rε)

− 1

ε

∫
Rε
f εuεdxdy

=
1

p
|||P1+ηuε|||p

W 1,p
1+η(Rε(1+η))

− 1

ε

∫
Rε
f εuεdxdy

≥ 1

p(1 + η)
|||P1+ηuε|||pW 1,p(R̂ε)

− 1

ε

∫
Rε
f εuεdxdy

≥ 1

p(1 + η)

[
|||ûε|||pW 1,p(R̂ε)

+
p

ε

∫
R̂ε

(ap(∇ûε)∇(P1+ηuε − ûε)

+ ap(ûε)(P1+ηuε − ûε)) dxdy + cp|||P1+ηuε − ûε|||pW 1,p(R̂ε)

]
− 1

ε

∫
Rε
f εuεdxdy

=
1

p(1 + η)

[
pV̂ (ûε) +

p

ε

∫
R̂ε
f εûεdxdy +

p

ε

∫
R̂ε
f ε(P1+ηuε − ûε)dxdy

+ cp|||P1+ηuε − ûε|||pW 1,p(R̂ε)

]
− 1

ε

∫
Rε
f εuεdxdy

=
1

(1 + η)
V̂ (ûε) +

1

ε

∫
R̂ε
f ε

1

1 + η
P1+ηuεdxdy −

1

ε

∫
Rε
f εuεdxdy +

cp
p(1 + η)

|||P1+ηuε − ûε|||pW 1,p(R̂ε)
.

(4.21)
Now, due (4.10), a Hölder’s inequality and Lemma 4.2, we obtain∣∣∣∣1ε

∫
R̂ε
f ε

1

1 + η
P1+ηuεdxdy −

1

ε

∫
Rε
f εuεdxdy

∣∣∣∣
≤

∣∣∣∣∣1ε
∫
R̂ε\Rε

f εP1+ηuεdxdy

∣∣∣∣∣+

∣∣∣∣∣1ε
∫
Rε\R̂ε

f εP1+ηuεdxdy

∣∣∣∣∣
+

∣∣∣∣ 1

(1 + η)ε

∫
Rε
f εP1+ηuεdxdy −

1

ε

∫
Rε
f εuεdxdy

∣∣∣∣ ≤ cρ(δ)1/p.

(4.22)

First, one can put together (4.20) and (4.21), and then use (4.22) to lead us to

cp
p(1 + η)

|||P1+ηuε − ûε|||pW 1,p(R̂ε)
≤ η2 + 2η

1 + η
V̂ε(ûε) + ρ(δ)1/p + ρ̄(δ),
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which implies that
|||P1+ηuε − ûε|||pW 1,p(R̂ε)

≤ ρ̂(δ), (4.23)

for p ≥ 2, where ρ̂(η) is a nonnegative function that tends to zero as η → 0.
From Lemma 4.2, we have |||uε − P1+ηuε|||pW 1,p(Rε)

≤ cρ(δ). It follows from (4.23) that

|||uε − ûε|||pW 1,p(Rε∩R̂ε)
≤ ρ̃(δ),

for p ≥ 2, where ρ̃(η) is a nonnegative function that tends to zero as η → 0.
For 1 < p < 2, we can perform analogous argument to obtain

cp
p(1 + η)

[
1

ε

∫
Rε
|∇P1+ηuε −∇uε|2 (1 + |∇P1+ηuε|+ |∇uε|)p−2 dxdy

+
1

ε

∫
Rε
|P1+ηuε − uε|2 (1 + |P1+ηuε|+ |uε|)p−2 dxdy

]
≤ η

1 + η
V̂ε(ûε) + ρ(δ)1/p

which gives us
|||uε − ûε|||pW 1,p(Rε∩R̂ε)

≤ ρ̃(δ),

where ρ̃(η) is a nonnegative function which tends to zero as η → 0.

Remark 4.2. It follows from (4.23) that there exists ρ : [0,∞) 7→ [0,∞) such that

|||P1+δ/G0
uε − ûε|||pW 1,p(R̂ε)

≤ ρ(δ)

with ρ(δ)→ 0 as δ → 0 uniformly in ε and any piecewise C1 functions Gε and Ĝε uniformly bounded
with ‖Gε − Ĝε‖L∞(0,1) ≤ δ and f ε ∈ Lp′(R2) satisfying ‖f ε‖Lp′ (R2) ≤ 1.

5 The piecewise periodic case

Now, we analyze the limit of {uε}ε>0 assuming the upper boundary of Rε is piecewise periodic.
More precisely, we assume G satisfies (H) being independent on the first variable in each interval

(ξi−1, ξi). We suppose that G satisfies

G(x, y) = Gi(y) in x ∈ Ii = (ξi−1, ξi) for any y ∈ R (5.1)

with Gi(y+L) = Gi(y) for all y ∈ R. Moreover, we assume the function Gi(·) is C1 for all i = 1, . . . , N
and there exist 0 < G0 < G1 such that miny∈RGi(y) = G0

i ≤ Gi(·) ≤ G1 for all i = 1, . . . , N .
Notice that the domain Rε can now be rewritten as

Rε =

(
N⋃
i=1

Rεi

)
∪

(
N−1⋃
i=1

{(ξi, y) : 0 < y < εmin{Gi−1(ξi/ε), Gi(ξi/ε)}}

)
(5.2)

with
Rεi = {(x, y) ∈ R : ξi−1 < x < ξi, 0 < y < εGi(x/ε)} .

See Figure 2 which illustrates this piecewise periodic thin domain.
Before proving the main result of this section, let us recall an important result proved, for instance,

in [21]. It is concerned to the purely periodic thin domain situation.

Proposition 5.1. Assume G satisfies the condition (5.1) and let uε be the solution of (1.2) with f ε

satisfying |||f ε|||Lp′ (Rεi ) ≤ c for some c > 0 independent of ε > 0. Suppose that

f̂ ε(x) =
1

ε

∫ εGi(x/ε
α)

0
f ε(x, y)dy ⇀ f̂ weakly in Lp

′
(ξi−1, ξi).
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If α = 1, then there exists (ui, ui1) ∈W 1,p(ξi−1, ξi)× Lp((0, 1);W 1,p
# (Y ∗i )) such that

T iε uε → ui strongly in Lp((ξi−1, ξi);W
1,p(Y ∗i )),

T iε (∂xuε) ⇀ ∂xu
i + ∂y1u

i
1(x, y1, y2) weakly in Lp ((ξi−1, ξi)× Y ∗i ) ,

T iε (∂yuε) ⇀ ∂y2u
i
1(x, y1, y2) weakly in Lp ((ξi−1, ξi)× Y ∗i ) ,

with
∂xu

i(x)∇yvi(y1, y2) = (∂xu
i(x), 0) +∇yui1(x, y1, y2)

where ∇y· = (∂y1 ·, ∂y2 ·) and vi is the solution of the auxiliar problem∫
Y ∗i

∣∣∇vi∣∣p−2∇vi∇ϕdy1dy2 = 0, ∀ϕ ∈W 1,p
#,0(Y ∗i ),

(vi − y1) ∈W 1,p
#,0(Y ∗i ),

where W 1,p
#,0(Y ∗i ) denotes the subspace of W 1,p

# (Y ∗i ) of functions with zero average.

If α < 1, then there exists (ui, ui1) ∈W 1,p(ξi−1, ξi)× Lp
(

(ξi−1, ξi);W
1,p
# (Y ∗i )

)
with ∂y2u1 = 0 such

that

T iε uε → ui strongly in Lp
(
(ξi−1, ξi);W

1,p(Y ∗i )
)

T iε ∂xuε ⇀ ∂xu+ ∂y1u
i
1 weakly in Lp ((ξi−1, ξi)× Y ∗i )

and

∂y1u
i
1(x, y1) = ∂xu

i

 1

Gp
′−1
i (y1)

〈
1/Gp

′−1
i

〉
(0,L)

− 1

 .

If α > 1, then there exists an unique ui ∈W 1,p(ξi−1, ξi) such that

T iε uε → ui strongly in Lp((ξi−1, ξi);W
1,p(Y ∗i )),

Πεu
+
ε → ui strongly in W 1,p(Ri−),

T iε (|∇u+
ε |p−2∂xu

+
ε ) ⇀ 0 weakly in Lp

(
(ξi−1, ξi)× Y ∗i+

)
,

where
Ri− =

{
(x, y) ∈ R2 : x ∈ (ξi−1, ξi), 0 < y < G0

}
,

Y ∗i+ =
{

(y1, y2) ∈ R2 : 0 < y1 < L, G0 < y2 < Gi(y1)
}
,

and the scaling operator Πε : Lp((ξi−1, ξi)× (0, εG0))→ Lp(Ri−) is defined by

Πε(ϕ)(x, y) = ϕ(x, εy) ∀(x, y) ∈ Ri−.

Also, we denote by u+
ε = uε|Rεi \{(ξi−1,ξi)×(0,εG0)} and u−ε = uε|(ξi−1,ξi)×(0,εG0).

Proof. It follows from [21, Theorems 3.1, 4.1 and 5.3].

Remark 5.1. We point out that the results in [21] are proved in the unit interval. Here, we just rewrite
it to (ξi−1, ξi). The limit problems are stated in the next result.

Now, we are in condition to show the following result.

Theorem 5.2. Suppose G satisfies the assumption (5.1) and let uε be the solution of problem (1.2)
with f ε ∈ Lp′(Rε) and |||f ε|||Lp′ (Rε) ≤ c, for some c > 0 independent of ε > 0. Suppose the function

f̂ ε(x) =
1

ε

∫ εG(x, xεα )

0
f(x, y)dy
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satisfies f̂ ε ⇀ f̂ weakly in Lp′(0, 1).
Then, if α = 1, there exist u ∈W 1,p(0, 1) and ui1 ∈ Lp((ξi−1, ξi);W

1,p
# (Y ∗i )) such that

T iε uε → u strongly in Lp((ξi−1, ξi);W
1,p(Y ∗i )),

T iε (∂xuε) ⇀ ∂xu+ ∂y1u
i
1(x, y1, y2) weakly in Lp

(
(ξi−1, ξi);W

1,p(Y ∗i )
)
,

T iε (∂yuε) ⇀ ∂y2u
i
1(x, y1, y2) weakly in Lp

(
(ξi−1, ξi);W

1,p(Y ∗i )
)

and u is the unique solution of the problem∫ 1

0

{
q(x)|u′|p−2u′ϕ′ + r(x) |u|p−2uϕ

}
dx =

∫ 1

0
f̂ϕdx, ϕ ∈W 1,p(0, 1), (5.4)

where q, r : (0, 1)→ R are piecewise constant functions such that

q(x) = qi and r(x) = ri for x ∈ (ξi−1, ξi)

with the homogenized constants ri and qi given by

qi =
1

L

∫
Y ∗i

|∇vi|p−2∂y1v
i dy1dy2 and ri =

|Y ∗i |
L

(5.5)

where Y ∗i is the basic cell associated to Rεi

Y ∗i = {( y1, y2) ∈ R2 : 0 < y1 < L and 0 < y2 < Gi(y1)}

and vi is the solution of the auxiliary problem∫
Y ∗i

∣∣∇vi∣∣p−2∇vi∇ψdy1dy2 = 0, ∀ψ ∈W 1,p
# (Y ∗i ), 〈ψ〉Y ∗i = 0

(vi − y1) ∈W 1,p
# (Y ∗i ), 〈v − y1〉Y ∗i = 0.

If α < 1, then there exists (u, ui1) ∈W 1,p(0, 1)×Lp
(

(ξi−1, ξi);W
1,p
# (Y ∗i )

)
with ∂y2u

i
1 = 0 such that

T iε uε → u strongly in Lp
(
(ξi−1, ξi);W

1,p(Y ∗i )
)
,

T iε ∂xuε ⇀ ∂xu+ ∂y1u
i
1 weakly in Lp ((ξi−1, ξi)× Y ∗i ) .

Also, u is the unique solution of the problem (5.4) with

q(x) = qi and r(x) = ri for x ∈ (ξi−1, ξi) (5.7)

where
qi =

1

L
〈

1/Gp
′−1
i

〉p−1

(0,L)

and ri =
|Y ∗i |
L

.

If α > 1, then there exists a unique u ∈W 1,p(0, 1) such that

T iε uε → u strongly in Lp((ξi−1, ξi);W
1,p(Y ∗i )),

Πεu
+
ε → u strongly in W 1,p(Ri−),

T iε (|∇u+
ε |p−2∂xu

+
ε ) ⇀ 0 weakly in Lp

(
(ξi−1, ξi)× Y ∗i+

)
.

Furthermore, u is the unique solution of the problem (5.4) with

G0(x) = G0
i for x ∈ (ξi−1, ξi) and r(x) =

|Y ∗i |
L

.
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Proof. By (5.2), we can rewrite (2.1) taking into account the partition {ξi}Ni=1 getting

N∑
i=1

∫
Rεi

{
|∇uε|p−2∇uε∇ϕ+ |uε|p−2uεϕ

}
dxdy =

∫
Rε
f εϕdxdy, ϕ ∈W 1,p(Rε). (5.8)

Hence, we obtain from (5.8) (with test functions ϕ(x, y) = ϕ(x) ∈ W 1,p(0, 1)) and Proposition 3.5
that

N∑
i=1

∫
Rεi

[∫
(ξi−1,ξi)×Y ∗i

T iε
(
|∇uε|p−2∇uε

)
T iε∇ϕdxdy1dy2 +

L

ε

∫
Rε1i

|∇uε|p−2∇uε∇ϕdxdy

+

∫
(ξi−1,ξi)×Y ∗i

T iε
(
|uε|p−2 uε

)
T iε ϕdxdy1dy2 +

L

ε

∫
Rε1i

|uε|p−2 uεϕdxdy

]
=
L

ε

∫
Rε
f εϕdxdy.

By Proposition 5.1, we can pass to the limit in each subinterval (ξi−1, ξi). If we assume α ≤ 1, we
obtain

N∑
i=1

∫ ξi

ξi−1

∫
Y ∗i

[
(|∇yvi|p−2∂y1v

i)|∂xui|p−2∂xu
i∂xϕ+

∣∣ui∣∣p−2
uiϕ
]
dxdY = L

∫ 1

0
f̂ϕdx

which is equivalent to

N∑
i=1

∫ ξi

ξi−1

{[∫
Y ∗i

|∇yvi|p−2∂y1v
idY

]
|∂xui|p−2∂xu

i∂xϕ+ |Y ∗i |
∣∣ui∣∣p−2

uiϕ

}
dx = L

∫ 1

0
f̂ϕdx (5.9)

for all ϕ ∈W 1,p(0, 1).
For α < 1, Proposition 5.1 guarantees

N∑
i=1

∫ ξi

ξi−1

∫
Y ∗i

∣∣∣∣∣∣∣
∂xu

i

Gp
′−1
i (y1)

〈
1/Gp

′−1
i

〉
(0,L)

∣∣∣∣∣∣∣
p−2 ∂xu

i

Gp
′−1
i (y1)

〈
1/Gp

′−1
i

〉
(0,L)

 ∂xϕdx

+

N∑
i=1

∫ ξi

ξi−1

∫
Y ∗i

∣∣ui∣∣p−2
uiϕdx = L

∫ 1

0
f̂ϕdx.

(5.10)

Since (p′ − 1)(p− 1) = 1, (5.10) can be rewritten as

N∑
i=1

∫ ξi

ξi−1

∫ L

0

1

Gi(y1)
〈

1/Gp
′−1
i

〉p−1

(0,L)

Gi(y1)dy1

 |∂xui|p−2∂xu
i∂xϕdx

+

N∑
i=1

∫ ξi

ξi−1

|Y ∗i |
∣∣ui∣∣p−2

uiϕdx = L

∫ 1

0
f̂ϕdx.

(5.11)

Hence, for any α ≤ 1, it follows from (5.5), (5.7), (5.9) and (5.11) that∫ 1

0

[
q(x)|∂xu|p−2∂xu∂xϕ+ r(x)|u|p−2uϕ

]
dx =

∫ 1

0
f̂ϕdx, ∀ϕ ∈W 1,p(0, 1), (5.12)

with
u(x) = ui(x) a.e. in (ξi−1, ξi)

where the functions ui are given by Proposition 5.1. Notice that qi > 0 for each i. Indeed, by (5.6),
we can take (vi − y1) ∈W 1,p

#,0(Y ∗i ) as a test function in such way that

qi =
1

L

∫
Y ∗i

|∇vi|p−2∇vi
(
(1, 0) +∇vi − (1, 0)

)
dy1dy2 =

1

L

∫
Y ∗i

|∇vi|pdy1dy2 > 0.
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Consequently, we obtain from the Minty-Browder’s Theorem that the problem (5.12) has a unique
solution in W 1,p(0, 1), and then, we can conclude that u ∈W 1,p(0, 1) proving the theorem for α ≤ 1.

Now, let us assume α > 1. Then, from (5.8) and Proposition 3.5, we obtain that

N∑
i=1

[
1

L

∫
(ξi−1,ξi)×Y ∗i+

T iε
(
|∇uε|p−2∇uε

)
T iε∇ϕidxdy1dy2 +

1

ε

∫
Rε1i+

|∇uε|p−2∇uε∇ϕidxdy

+

∫
Ri−

|Πε∇uε|p−2Πε∇uεΠε∇ϕdxdy

+
1

L

∫
(ξi−1,ξi)×Y ∗i

T iε
(
|uε|p−2 uε

)
T iε ϕidxdy1dy2 +

1

ε

∫
Rε1i

|uε|p−2 uεϕidxdy

]
=

1

ε

∫
Rε
f εϕidxdy

where Πε is the scaling operator introduced in Proposition 5.1. Hence, by Proposition 5.1, we can pass
to the limit taking test functions ϕ(x, y) = ϕ(x) ∈W 1,p(0, 1). We obtain

N∑
i=1

[∫
Ri−

|∂xu|p−2∂xu∂xϕdx+
1

L

∫
(ξi−1,ξi)×Y ∗i

|u|p−2uϕdx

]
=

∫ 1

0
f̂ϕdx

for all ϕ ∈W 1,p(0, 1) with
u(x) = ui(x) a.e. in (ξi−1, ξi)

where the functions ui are given by Proposition 5.1. Thus,∫ 1

0

[
G0(x)|∂xu|p−2∂xu∂xϕ+ r(x)|u|p−2uϕ

]
dx =

∫ 1

0
f̂ϕdx, ∀ϕ ∈W 1,p(0, 1). (5.13)

As G0 > 0, it follows from Minty-Browder’s Theorem that (5.13) is well posed. Hence, we get that
u ∈W 1,p(0, 1) is the unique solution concluding the proof of the theorem.

6 The locally periodic case

In this section, we provide the proof of our main result, Theorem 2.1.

Proof of Theorem 2.1. Using Proposition 3.3 and Theorem 3.7, there is u0 ∈ W 1,p(0, 1) such that, up
to subsequences,

T lpε uε ⇀ χu0 weakly in Lp ((0, 1)× (0, L)× (0, G1)) , (6.1)

where χ is the characteristic function of (0, 1)× Y ∗(x).
We show that u0 satisfies the Neumann problem (5.4). To do this, we use a kind of discretization

argument on the oscillating thin domains. We first proceed as in [3, Theorem 2.3] fixing a parameter
δ > 0 in order to set a piecewise periodic function Gδ(x, y) satisfying (5.1) and 0 ≤ Gδ(x, y)−G(x, y) ≤
δ in (0, 1)× R.

Let us construct this function. Recall that G is uniformly C1 in each of the domains (ξi−1, ξi)×R.
Also, it is periodic in the second variable. In particular, for δ > 0 small enough and for a fixed
z ∈ (ξi−1, ξi) we have that there exists a small interval (z − η, z + η) with η depending only on δ such
that |G(x, y)−G(z, y)|+ |∂yG(x, y)− ∂yG(z, y)| < δ/2 for all x ∈ (z − η, z + η) ∩ (ξi−1, ξi) and for all
y ∈ R. This allows us to select a finite number of points: ξi−1 = ξ1

i−1 < ξ2
i−1 < · · · < ξri−1 = ξi with

ξri−1 − ξ
r−1
i−1 < η in such way that Gδ(x, y) = G(ξri−1, y) + δ/2 defined for x ∈ (ξri−1, ξ

r+1
i−1 ) and y ∈ R

satisfies |∂yGδ(x, y)−∂yG(z, y)| ≤ δ in (ξri−1, ξ
r+1
i−1 )×R. Notice that this construction can be done for all

i = 1, . . . , N . In particular, if we rename all the constructed points ξki by 0 = z0 < z1 < · · · < zm = 1,
for some m = m(δ), we get that Gδ(x, y) = Gδi (y) for (x, y) ∈ (zi−1, zi) × R and i = 1, . . . ,m is a
piecewise C1-function which is L-periodic in the second variable y.

Finally, we set Gδε(x) = Gδ(x, x/εα), for any α > 0, considering the following domains

Rε,δ = {(x, y) : x ∈ (0, 1), 0 < y < εGδε(x)}.
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In such domains, if we assume α = 1, we obtain from Theorem 5.2 that, for each δ > 0 fixed, there
exist uδ ∈ W 1,p(0, 1) and ui,δ1 ∈ Lp((ξi−1, ξi);W

1,p
# (Y ∗i )) such that the solutions uε,δ of (1.2) in Rε,δ

satisfy 
T δε uε,δ → uδ strongly in Lp((zi−1, zi);W

1,p(Y ∗i )),

T δε (∂xuε,δ) ⇀ ∂xu
δ + ∂y1u

i,δ
1 (x, y1, y2) weakly in Lp

(
(zi−1, zi);W

1,p(Y ∗i )
)
,

T δε (∂yuε,δ) ⇀ ∂y2u
i,δ
1 (x, y1, y2) weakly in Lp

(
(zi−1, zi);W

1,p(Y ∗i )
)
,

T δε (|∇uε,δ|p−2∇uε,δ) ⇀ qδap(∂xu
δ) weakly in Lp ((zi−1, zi)× Y ∗i )2 .

(6.2)

On the other side, if we assume α < 1, we get that, for each δ > 0 fixed, there exist uδ ∈W 1,p(0, 1)

and ui,δ1 ∈ Lp((ξi−1, ξi);W
1,p
# (Y ∗i )) with ∂y2u

i,δ
1 = 0 in such way that the solutions uε,δ of (1.2) in Rε,δ

satisfy 
T δε uε,δ → uδ strongly in Lp((zi−1, zi);W

1,p(Y ∗i )),

T δε (∂xuε,δ) ⇀ ∂xu
δ + ∂y1u

i,δ
1 (x, y1, y2) weakly in Lp

(
(zi−1, zi);W

1,p(Y ∗i )
)
,

T δε (|∇uε,δ|p−2∇uε,δ) ⇀ qδap(∂xu
δ) weakly in Lp ((zi−1, zi)× Y ∗i )2 .

Finally, if we take α > 1, we have that

T δε uε,δ ⇀ uδ weakly in Lp((ξi−1, ξi);W
1,p(Y ∗i )),

Πδ
εu

+
ε,δ → uδ strongly in W 1,p(Ri−),

T δε (|∇u+
ε,δ|

p−2∂xu
+
ε,δ) ⇀ 0 weakly in Lp

(
(ξi−1, ξi)× Y ∗i+

)
.

Furthermore, we have that uδ is the unique solution of the Neumann problem∫ 1

0

{
qδ(x)|(uδ)′|p−2(uδ)′ϕ′ + rδ(x) |uδ|p−2uδϕ

}
dx =

∫ 1

0
f̂ϕdx, ∀ϕ ∈W 1,p(0, 1), (6.3)

with

qδ(x) =
1

L

N−1∑
i=1

χIi(x)



∫
Y ∗i

|∇vi|p−2∂y1v
i dy1dy2 if α = 1,

1〈
1/Gp

′−1
i

〉p−1

(0,L)

if α < 1,

qδ(x) =

N−1∑
i=1

χIi(x)G0
i and rδ(x) =

N−1∑
i=1

χIi(x)
|Y ∗i |
L

if α > 1.

(6.4)

χIi is the characteristic function of (ξi−1, ξi) and vi is the solution of (5.6) in Y ∗i which is given by

Y ∗i = {( y1, y2) ∈ R2 : 0 < y1 < L and 0 < y2 < Gi(y1)}.

Now, we pass to the limit in (6.3) as δ → 0. From Lemmas A.1 and A.2, we have the uniform
convergence of qδ and rδ to q and r where

q(x) =



1

L

∫
Y ∗(x)

|∇v|p−2∂y1v dy1dy2 if α = 1,

1

L

1

〈1/G(x, ·)p′−1〉p−1
(0,L)

if α < 1,

G0(x) = min
y∈R

G(x, y) if α > 1

and r(x) =
|Y ∗(x)|
L

. (6.5)

Notice that q(x) > 0. Furthermore, we have that the solutions uδ ∈ W 1,p(0, 1) of (6.3) are uniformly
bounded in δ. Thus, there exists u∗ ∈W 1,p(0, 1) such that uδ ⇀ u∗ weakly in W 1,p(0, 1) and strongly
in Lp(0, 1). Indeed, we have the strong convergence

uδ → u∗ in W 1,p(0, 1). (6.6)

To prove this, we set the following norm

‖ · ‖p
Lpδ(0,1)

=

∫ 1

0
qδ| · |pdx.
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By Proposition 3.1 and equation (6.3), we get for ϕ = uδ − u∗ and p ≥ 2 that

‖(uδ)′ − (u∗)′‖p
Lpδ(0,1)

≤ c

∫ 1

0
qδ
[
ap

(
(uδ)′

)
− ap

(
(u∗)′

)] [
(uδ)′ − (u∗)′

]
dx

= c

∫ 1

0
(f̂ − ap(uδ))(uδ − u∗)dx− c

∫ 1

0
qδap

(
(u∗)′

) [
(uδ)′ − (u∗)′

]
dx

→ 0.

Hence, using the equivalence of norms, we get

‖(uδ)′ − (u∗)′‖Lp(0,1) ≤ ‖(uδ)′ − (u∗)′‖Lpδ(0,1) → 0,

as δ → 0, which implies (6.6). Thus, we have that u∗ ∈W 1,p(0, 1) satisfies∫ 1

0

{
q(x)|(u∗)′|p−2(u∗)′ϕ′ + r(x) |u∗|p−2u∗ϕ

}
dx =

∫ 1

0
f̂ϕdx, (6.7)

for all ϕ ∈W 1,p(0, 1) and p ≥ 2. For 1 < p < 2, one can show using similar arguments.
Now, let us see that u∗ = u0 in (0, 1) where u0 is given by (6.1). Let η be a positive small number

and let ϕ ∈ C∞0 (0, 1). Notice that∫ 1

0
(u0 − u∗)ϕdx =

∫ 1

0

(
u0 −

L

|Y ∗(x)|ε

∫ εGε(x)

0
uε(x, y)dy

)
ϕ(x)dx

+

∫ 1

0

(
L

|Y ∗(x)|ε

∫ εGε(x)

0
uε(x, y)− P1+δ/G0

uε,δ(x, y)dy

)
ϕ(x)dx

+

∫ 1

0

(
L

|Y ∗(x)|ε

∫ εGε(x)

0
P1+δ/G0

uε,δ(x, y)− uδ(x)dy

)
ϕ(x)dx

+

∫ 1

0

(
L

|Y ∗(x)|ε

∫ εGε(x)

0
uδ(x)− u∗(x)dy

)
ϕ(x)dx,

(6.8)

where P1+δ/G0
is the operator defined in (4.3).

Now, due to definition (4.3), notation (4.4) and an appropriated change of variables, we get∫ 1

0

(
L

ε

∫ εGε(x)

0
P1+δ/G0

uε,δ(x, y)− uδ(x)dy

)
ϕ(x)dx ≤ c|||P1+δ/G0

uε,δ − uδ|||Lp(Rε)

≤ c|||P1+δ/G0
uε,δ − uδ|||Lp(Rε,δ(1+δ)) = c|||uε,δ − uδ|||Lp(Rε,δ)

for some c > 0 independent of δ and ε > 0. Thus, we can rewrite (6.8) as∣∣∣∣∫ 1

0
(u0 − u∗)ϕdx

∣∣∣∣ ≤
∣∣∣∣∣
∫ 1

0

(
u0 −

L

ε

∫ εGε(x)

0
uε(x, y)dy

)
ϕ(x)dx

∣∣∣∣∣
+c|||uε − P1+δ/G0

uε,δ|||Lp(Rε) + c|||uε,δ − uδ|||Lp(Rε,δ) + c‖uδ − u∗‖Lp(0,1).

From (6.2) and Remark 4.2, we can take δ > 0 small enough such that

|||uε − P1+δ/G0
uε,δ|||Lp(Rε) ≤ η and |||uε,δ − uδ|||Lp(Rε,δ) ≤ η (6.9)

uniformly in ε > 0. Also, from (6.6), we can choose ε1 > 0 such that |||u∗ − uδ|||Lp(0,1) ≤ η for
0 < ε < ε1.

Moreover, from (6.1) and Proposition 3.9, we have∫ 1

0

(
u0 −

L

|Y ∗(x)|ε

∫ εGε(x)

0
uε(x, y)dy

)
ϕ(x)dx→ 0, as ε→ 0.
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Therefore, there exists ε2 > 0 such that∣∣∣∣∣
∫ 1

0

(
u0 −

L

|Y ∗(x)|ε

∫ εGε(x)

0
uε(x, y)dy

)
ϕ(x)dx

∣∣∣∣∣ ≤ η
whenever 0 < ε < ε2. Hence, setting ε = min{ε1, ε2} we get∣∣∣∣∫ 1

0
(u0 − u∗)ϕdx

∣∣∣∣ ≤ 4η.

Since ϕ and η are arbitrary, we conclude that u∗ = u0.
Finally, let us see that the convergence

|||uε − u0|||Lp(Rε) → 0 (6.10)

holds. Notice that

|||uε − u0|||Lp(Rε) ≤ |||uε − P1+δ/G0
uε,δ|||Lp(Rε) + |||P1+δ/G0

uε,δ − uδ|||Lp(Rε) + |||uδ − u0|||Lp(Rε).

Hence, we can argue as in (6.9) getting (6.10) from (6.2), Remark 4.2 and (6.6). And then, we conclude
the proof of the theorem.

7 Convergence of the Resolvent and semigroups

In this Section, we show the convergence of the resolvent and semigroup associated to the p-Laplacian
operator given by the equation (1.2) under the additional condition p ≥ 2. For that, let us first consider
the operator Mε : Lp(Rε) 7→ Lp(0, 1) given by

Mεf
ε(x) =

1

ε

∫ εG(x,x/εα)

0
f ε(x, y)dy.

Next, let Aε : W 1,p(Rε)→ (W 1,p(Rε))′ and A0 : W 1,p(0, 1)→ (W 1,p(0, 1))′ be given by

〈Aεu, v〉ε =
1

ε

∫
Rε

{
|∇u|p−2∇u∇v + |u|p−2uv

}
dxdy

〈A0u, v〉0 =

∫ 1

0

{
q(x)|∂xu|p−2∂xu∂xv + r(x)|u|p−2uv

}
dx.

(7.1)

We consider the L2-realization of Aε and A0, that is,

D(Aε,2) =
{
u ∈W 1,p(Rε) : Aεu ∈ L2(Rε)

}
),

Aε,2u = Aεu, ∀u ∈ D(Aε,2), and

D(A0,2) =
{
u ∈W 1,p(0, 1) : A0u ∈ L2(0, 1)

}
),

A0,2u = A0u, ∀u ∈ D(A0,2).

Then, for any p ≥ 2, λ > 0 and forcing terms f ε ∈ L2(Rε), we can consider the following problems

(I + λAε)uε = f ε (7.2)

and
(I + λA0)u = f̂ (7.3)

which are well posed (existence and uniqueness of solutions) by the Minty-Browder’s Theorem. Notice
that here, we are using the dual products 〈·, ·〉ε and 〈·, ·〉0 from W 1,p(Rε) and W 1,p(0, 1) respectively
to set the equations (7.2) and (7.3).

Hence, with the additional conditions |||f ε|||L2(Rε) uniformly bounded and Mεf
ε ⇀ f̂ weakly in

L2(0, 1), it follows from Theorem 2.1 that the family of solutions defined by (7.2) converges to the
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solution of (7.3) as ε→ 0. Consequently, we obtain the convergence of the resolvent operators defined
by the equation (1.2). In fact, we have for any λ > 0 that

|||(I + λAε)
−1f ε − (I + λA0)−1f̂ |||L2(Rε) = |||uε − u|||L2(Rε) → 0 as ε→ 0.

In the next, let us obtain the convergence of the semigroup associated to the equations (7.2) and
(7.3). As we will see, it is a consequence of [8, Theorem 4.2, p. 120]. First, let us write the resolvent
operators convergence in appropriate spaces. For this purpose, we use the unfolding operator. We
have

〈Aεu,w〉ε =
1

L

∫
W
|T lpε ∇u|p−2T lpε ∇uT lpε ∇w + |T lpε u|p−2T lpε uT

lp
ε vdxdY

= 〈T lpε Aεu, T lpε w〉 = 〈Bεu,w〉,
(7.4)

where W = (0, 1)× (0, L)× (0, G1) and 〈·, ·〉 is the dual product in W 1,p(W ). Next,

〈A0u,w〉0 =
1

L

∫
W

[
|∂xu∇̃yv|p−2∂xu∇̃yv∂xw + χY ∗ |u|p−2uw

]
dxdY

= 〈B0u,w〉.
(7.5)

Notice that
D(B0) ⊂ D(Bε), ∀ε > 0.

It remains to observe that

(I + λBε)
−1f → (I + λB0)−1f ∀f ∈ D(B0),

wich holds due to Theorem 2.1.
Therefore, thanks to Neveu-Trotter-Kato Theorem, the semigroup Sε(t) associated to −Bε satisfies

Sε(t)f → S(t)f, ∀f ∈ D(B0),

where S(t) is the semigroup associated to −B0. We have the following theorem.

Theorem 7.1. Assume p ≥ 2 and consider the operators Aε and Bε defined respectively by (7.1) and
(7.4). Then,

(a) For any f ε ∈ L2(Rε) with |||f ε|||L2(Rε) uniformly bounded and Mεf
ε ⇀ f̂ weakly in L2(0, 1), we

have
|||(I + λAε)

−1f ε − (I + λA0)−1f̂ |||L2(Rε) → 0, as ε→ 0.

(b) The semigroup Sε(t) associated to {
∂tuε +Bεuε = f,
uε(0, x, y) = u0

ε(x, y)

satisfies
Sε(t)f → S(t)f, ∀f ∈ D(B0),

where S(t) is the semigroup associated{
∂tu+B0u = f,
u(0, x) = u0(x)

with B0 given by (7.5).
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A Appendix

In the proof of the main result, we used qδ → q uniformly to obtain (6.7). Recall that qδ and q are
given by (6.4) and (6.5) respectively. Here we prove such convergence. For this sake, let us first set

A(M) =
{
G ∈ C1(R) : G is L− periodic, 0 < G0 ≤ G(·) ≤ G1 with |G′(s)| ≤M

}
. (A.1)

Hence, for any Ḡ ∈ A(M), we can consider the problem∫
Y ∗
Ḡ

|∇v̄|p−2∇v̄∇ϕdy1dy2 = 0, ∀ϕ ∈W 1,p
#,0(Y ∗Ḡ) (A.2)

where W 1,p
#,0(Y ∗

Ḡ
) is the space of functions W 1,p

# (Y ∗
Ḡ

) with zero average,

Y ∗Ḡ =
{

(y1, y2) ∈ R2 : 0 < y1 < L, 0 < y2 < Ḡ(y2)
}

and we are looking for solutions v̄ such that (v̄ − y1) ∈W 1,p
#,0(Y ∗

Ḡ
).

Now, for any Ḡ, G ∈ A(M), let us consider the following transformation

L : Y ∗G 7→ Y ∗
Ḡ

(z1, z2) → (z1, F (z1)z2) = (y1, y2)

where

F =
Ḡ

G
.

The Jacobian matrix for L is

JL(z1, z2) =

(
1 0

F ′(z1)z2 F (z1)

)
with det(JL) = F . Also, we can consider

L∇U =

 1 −F
′

F
z2

0 1/F

∇U =

(
∂z1U −

F ′

F
z2∂z2U,

1

F
∂z2U

)
and

B∇U =

(
∂z1U +

F ′z2

F
∂z2U,−

F ′z2

F
∂z1U +

1

F 2

[
1 + (z2F

′)2
]
∂z2U

)
.

It is not difficult to see that B = LTL.
Then, we can use the change of variables given by L to rewrite (A.2) in the region Y ∗G as∫

Y ∗G

|L∇v̄|p−2L∇v̄L∇
(ϕ
F

)
F dz1dz2 = 0 ,∀ϕ ∈W 1,p

#,0(Y ∗G). (A.3)

Notice that this problem still has unique solution v̄ ∈ W 1,p(Y ∗G) with (v̄ − z1) ∈ W 1,p
#,0(Y ∗G) by Minty-

Browder’s Theorem.
By the coercivity of (A.3), we get

‖∇v̄‖pLp(Y ∗G) ≤
∫
Y ∗G

|L∇v̄|p−2L∇v̄L∇
( v̄
F

)
F dz1dz2

= −
∫
Y ∗G

|L∇v̄|p−2L∇v̄L∇
(z1

F

)
F dz1dz2

≤ c‖L∇v̄‖p−1
Lp(Y ∗G) ≤ c‖∇v̄‖

p−1
Lp(Y ∗G),

which means that the solutions are uniformly bounded by a constant independent on Ḡ and G.
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Now, let us compare the solutions of (A.2) for Ḡ = G and (A.3). We need to analyze∫
Y ∗G

[
|L∇v̄|p−2L∇v̄ − |∇v|p−2∇v

]
(L∇v̄ −∇v)dz1dz2

=

∫
Y ∗G

[
|L∇v̄|p−2L∇v̄ − |∇v|p−2∇v

]
(L∇v̄ − (1, 0) + (1, 0)−∇v)dz1dz2.

(A.4)

Notice that L(1, 0) = (1, 0). We will distribute the terms finding estimative for each one.
First, observe that for any test function ϕ ∈W 1,p

#,0(Y ∗G) in (A.3), we have∫
Y ∗G

|L∇v̄|p−2L∇v̄L∇ϕdz1dz2 =

∫
Y ∗G

|L∇v̄|p−2L∇v̄ϕ
(
F ′

F
, 0

)
dz1dz2. (A.5)

Now, take ϕ = (v̄ − z1) in (A.5). Then,∫
Y ∗G

|L∇v̄|p−2L∇v̄L∇(v̄ − z1)dz1dz2 =

∫
Y ∗G

|L∇v̄|p−2L∇v̄(v̄ − z1)

(
F ′

F
, 0

)
dz1dz2 (A.6)

On the other side, we can compute∫
Y ∗G

|L∇v̄|p−2L∇v̄((1, 0)−∇v)dz1dz2

=

∫
Y ∗G

|L∇v̄|p−2L∇v̄((1, 0)−∇v + L∇v − (1, 0) + (1, 0)− L∇v)dz1dz2

=

∫
Y ∗G

|L∇v̄|p−2L∇v̄(−∇v + L∇v)dz1dz2 +

∫
Y ∗G

|L∇v̄|p−2L∇v̄L∇(z1 − v)dz1dz2

= −
∫
Y ∗G

|L∇v̄|p−2L∇v̄(L − I)∇vdz1dz2 +

∫
Y ∗G

|L∇v̄|p−2L∇v̄(z1 − v)

(
F ′

F
, 0

)
dz1dz2

(A.7)

by (A.5) with ϕ = (z1 − v).
Next, take (v̄ − z1) ∈W 1,p

#,0(Y ∗G) as a test function in (A.2). Then,∫
Y ∗G

|∇v|p−2∇v(∇v̄ − (1, 0))dz1dz2 = 0. (A.8)

Finally, due to (A.8), we have ∫
Y ∗G

|∇v|p−2∇v(L∇v̄ − (1, 0))dz1dz2

=

∫
Y ∗G

|∇v|p−2∇v(L∇v̄ − (1, 0))dz1dz2 −
∫
Y ∗G

|∇v|p−2∇v(∇v̄ − (1, 0))dz1dz2

=

∫
Y ∗G

|∇v|p−2∇v(L − I)∇v̄dz1dz2.

(A.9)

Hence, putting together (A.4), (A.6), (A.7), (A.8) and (A.9), we obtain∫
Y ∗G

[
|L∇v̄|p−2L∇v̄ − |∇v|p−2∇v

]
(L∇v̄ −∇v)dz1dz2

=

∫
Y ∗G

|L∇v̄|p−2L∇v̄(v̄ − z1)

(
F ′

F
, 0

)
dz1dz2

−
∫
Y ∗G

|L∇v̄|p−2L∇v̄(L − I)∇vdz1dz2 +

∫
Y ∗G

|L∇v̄|p−2L∇v̄(z1 − v)

(
F ′

F
, 0

)
dz1dz2

−
∫
Y ∗G

|∇v|p−2∇v(L − I)∇v̄dz1dz2.

(A.10)
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Now, one can apply Hölder and Poincaré-Wirtinger’s inequalities in (A.10) to obtain∫
Y ∗G

[
|L∇v̄|p−2L∇v̄ − |∇v|p−2∇v

]
(L∇v̄ −∇v)dz1dz2

≤ ‖L∇v̄‖p−1
Lp(Y ∗G)‖∇v̄‖Lp(Y ∗G)

∥∥∥∥F ′F
∥∥∥∥
L∞

+ ‖L∇v̄‖p−1
Lp(Y ∗G) ‖L − I‖L∞ ‖∇v‖Lp(Y ∗G)

+‖L∇v̄‖p−1
Lp(Y ∗G)‖∇v‖Lp(Y ∗G)

∥∥∥∥F ′F
∥∥∥∥
L∞

+ ‖∇v‖p−1
Lp(Y ∗G) ‖L − I‖L∞ ‖∇v̄‖Lp(Y ∗G).

(A.11)

Note that ∥∥∥∥F ′F
∥∥∥∥
L∞
≤ c‖Ḡ−G‖C1 and ‖L − I‖L∞ ≤ c‖Ḡ−G‖C1 . (A.12)

Also, ‖∇v‖Lp(Y ∗G), ‖∇v̄‖Lp(Y ∗G), ‖L∇v̄‖Lp(Y ∗G) and ‖L∇v‖Lp(Y ∗G) are uniformly bounded. Thus, by (A.11)∫
Y ∗G

[
|L∇v̄|p−2L∇v̄ − |∇v|p−2∇v

]
(L∇v̄ −∇v)dz1dz2 ≤ c‖Ḡ−G‖C1 . (A.13)

If p ≥ 2, we get from Proposition 3.1 and (A.13) that

‖L∇v̄ −∇v‖pLp(Y ∗G) ≤ c
∫
Y ∗G

[
|L∇v̄|p−2L∇v̄ − |∇v|p−2∇v

]
(L∇v̄ −∇v)dz1dz2

≤ c‖Ḡ−G‖C1 .

On the other side, if 1 < p < 2, we get from Hölder’s inequality, Proposition 3.1 and (A.13), that

‖L∇v̄ −∇v‖pLp(Y ∗G) ≤ c

{∫
Y ∗G

[
|L∇v̄|p−2L∇v̄ − |∇v|p−2∇v

]
(L∇v̄ −∇v)dz1dz2

}p/2
[∫

Y ∗G

(1 + |L∇v̄|+ |∇v|)p
](2−p)/2

≤ c‖Ḡ−G‖p/2
C1 ,

Therefore, for 1 < p <∞, we have

‖L∇v̄ −∇v‖Lp(Y ∗G) ≤ c‖Ḡ−G‖αC1 (A.14)

where α = 1/2 if 1 < p < 2 and α = 1/p if p ≥ 2.
Finally, since

‖∇v̄ −∇v‖Lp(Y ∗G) ≤ ‖L∇v̄ −∇v̄‖Lp(Y ∗G) + ‖L∇v̄ −∇v‖Lp(Y ∗G),

we conclude by (A.14) and (A.12) that

‖∇v̄ −∇v‖Lp(Y ∗G) ≤ c‖Ḡ−G‖C1 + c‖Ḡ−G‖αC1 .

We have the following lemma:

Lemma A.1. Let us consider the family of admissible functions G ∈ A(M) for some constant M > 0
where A(M) is defined by (A.1).

Then, for each ε > 0, there exists δ > 0 such that if G, Ḡ ∈ A(M) with ‖Ḡ−G‖ ≤ δ, then

‖∇v̄ −∇v‖Lp(Y ∗G) ≤ c(ε+ εα),

where α = 1/2 if 1 < p < 2 and α = 1/p if p ≥ 2 and c is a constant which depends only on p,G0, G1.
In particular, we have that

|q(Ḡ)− q(G)| ≤ c(ε+ εα),

where
q(Ḡ) =

∫
Y ∗
Ḡ

|∇v̄|p−2∂y1 v̄dy1dy2

and v̄ is the solution of (A.2) in the region Y ∗
Ḡ
set by Ḡ.
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Lemma A.2. Let us consider the family of admissible functions G ∈ A(M) for some constant M > 0
where A(M) is defined by (A.1). Then

q(G) =
1

〈1/Gp′−1〉p−1
(0,L)

for any G, Ḡ ∈ A(M) with g 6= Ḡ,

|q(G)− q(Ḡ)| ≤ c‖G− Ḡ‖p−1

for a constant that depends on p, G0 and G1.

Proof. Notice that

q(G)− q(Ḡ) =
1

〈1/Gp′−1〉p−1
(0,L)

− 1〈
1/Ḡp′−1

〉p−1

(0,L)

=

〈
1/Ḡp

′−1
〉p−1

(0,L)
−
〈

1/Gp
′−1
〉p−1

(0,L)

〈1/Gp′−1〉p−1
(0,L)

〈
1/Ḡp′−1

〉p−1

(0,L)

.

Suppose that 1 < p < 2. Then, due to Corollary 3.1.1, we get〈
1/Ḡp

′−1
〉p−1

(0,L)
−
〈

1/Gp
′−1
〉p−1

(0,L)

≤ c
∣∣∣∣〈1/Ḡp

′−1
〉

(0,L)
−
〈

1/Gp
′−1
〉

(0,L)

∣∣∣∣p−1

≤ c

L

∣∣∣∣∣
∫ L

0

Gp
′−1(s)− Ḡp′−1(s)

Ḡp′−1(s)Gp′−1(s)
ds

∣∣∣∣∣
p−1

≤ c

L

∣∣∣∣∫ L

0
(1 + |Ḡ(s)|+ |G(s)|)p′−2|Ḡ(s)−G(s)|ds

∣∣∣∣p−1

≤ C‖G− Ḡ‖p−1,

where C is a positive constant that depends on p, G0, G1.
Now, suppose p ≥ 2. Then, by Corollary 3.1.1,〈

1/Ḡp
′−1
〉p−1

(0,L)
−
〈

1/Gp
′−1
〉p−1

(0,L)

≤ c
(

1 + |
〈

1/Ḡp
′−1
〉

(0,L)
|+ |

〈
1/Gp

′−1
〉

(0,L)
|
)p−2 ∣∣∣∣〈1/Ḡp

′−1
〉

(0,L)
−
〈

1/Gp
′−1
〉

(0,L)

∣∣∣∣
≤ c

∣∣∣∣∣
∫ L

0

Gp
′−1(s)− Ḡp′−1(s)

Ḡp′−1(s)Gp′−1(s)
ds

∣∣∣∣∣
≤ c

∣∣∣∣∫ L

0
|G(s)− Ḡ(s)|p−1ds

∣∣∣∣
≤ C‖G− Ḡ‖p−1.

Remark A.1. We remark that the result of the Lemma above, works in a more general framework, that
is, the functions do not need to be in A(M). On the other hand, to perform the discretization of the
domain in the locally periodic case, in the previous section, we need the hypothesis of A(M) functions
defining the domains.
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