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Abstract
In this paper, we investigate a convection-diffusion-reaction problem in a thin

domain endowed with the Robin-type boundary condition describing the reaction cat-
alyzed by the upper wall. Motivated by the microfluidic applications, we allow the
oscillating behavior of the upper boundary and analyze the resonant case where the
amplitude and period of the oscillation have the same small order as the domain’s
thickness. Depending on the magnitude of the reaction mechanism, we rigorously
derive three different asymptotic models via the unfolding operator method. In par-
ticular, we identify the critical case in which the effects of the domain’s geometry and
all physically relevant processes become balanced.
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1 Introduction

The flow problems posed in thin domains (domains whose longitudinal dimension is much
larger than the transverse one) are of great interest due to their practical importance.
In real-life applications, the boundary of such domains are usually not perfectly smooth,
i.e. they usually have some small rugosities, dents, etc. In solid mechanics, the typical
examples of such structures would be thin rods, plates or shells. Lubrication devices
and blood circulatory system are the obvious examples associated to fluid mechanics. No
matter the context is, introducing the small parameter as the perturbation quantity in the
domain boundary makes the analysis very challenging from the mathematical point of view.

Motivated by the numerous applications in which the effective flow is significantly af-
fected by the irregular wall roughness, we suppose that the upper boundary of our thin
domain has an oscillating behavior. Namely, the considered domain reads:

Rε =
{

(x, y) ∈ R2 : 0 < x < 1, 0 < y < εh
(x
ε

)}
, 0 < ε� 1. (1)

In the sequel, we address the following elliptic boundary-value problem:

−κ∆uε +Qε(y)∂xu
ε + cuε = f ε in Rε,

κ
∂uε

∂νε
= εα(g(x)− uε) on Γε =

{
(x, y) ∈ R2 : 0 < x < 1, y = εh

(x
ε

)}
,

∂uε

∂νε
= 0 on ∂Rε\Γε.

(2)

Here κ, c = const. > 0, the vector νε = (νε1, ν
ε
2) is the unit outward normal to ∂Rε and ∂

∂νε

is the outside normal derivative. For the function Qε, we assume

Qε(y) = Q
(y
ε

)
,

where Q ∈ L∞(0, h1) is a non-negative function, h1 = maxx∈R h(x). This assumption is
reasonable from the point of view of the applications, since we are tackling the process in a
thin domain and Qε can be interpreted as the entering (unidirectional) velocity in e.g. the
solute transport problem (see [12, 13]). The boundary perturbation function h satisfies the
usual assumptions listed in (Hh), see Section 2.1. Finally, we suppose g ∈ L2(0, 1). As
you can see, the governing equation is endowed with the Robin-type boundary condition
which models the reaction catalyzed by the upper wall. By taking the reaction coefficient
in the form εα, α > 0 (see (2)2), our aim is to address different order of magnitudes of
the prescribed reaction mechanism. Such type of elliptic boundary-value problems de-
scribes many processes naturally arising in chemical engineering, in particular related to
microfluidic applications (see e.g. [18]). Our goal is to study the asymptotic behavior of
the described problem, as ε→ 0.

To achieve our goal, we employ the homogenization technique based on the unfolding
method proposed in [9, 10]. Due to its ability to elegantly treat the surface integrals, the
unfolding method has been extensively used for derivation of lower-dimensional approx-
imations in the last period. We refer the reader e.g. to [1, 3, 7, 15]. In this work, we
adapt the variant of this method introduced by Arrieta and Villanueva-Pesqueira [5, 6]
for thin domains. As a result, we obtain three different asymptotic models, depending on
the value of the coefficient α. More precisely, for 0 < α < 1, the process turns out to
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be dominated by the function g from the Robin boundary condition, with g ∈ H1(0, 1)
(see Theorem 3.2). For α > 1, the effective model does not depend on g (see Theorem
3.3), meaning that the reaction mechanism does not affect the process. Between those two
cases, we identify the critical (and the most interesting) case α = 1 capturing the effects
of the domain’s geometry and all the physical processes relevant to the problem as well
(see Theorem 3.1). We firmly believe that the results presented here could prove useful in
numerical simulations of the convection-diffusion-reaction problems in thin domains with
irregularities.

To conclude the Introduction, let us provide more bibliographic remarks on the subject. In
[8], the Neumann problem for the Laplace equation posed in a domain (of thickness O(1))
with highly oscillating boundary has been considered via asymptotic expansion method.
Using rigorous analysis in appropriate functional setting, a thin-domain situation has been
addressed in [4]. It should be emphasized that, in both papers, a homogeneous Neumann
boundary condition has been imposed and that the transition to a Robin-type bound-
ary condition cannot be considered straightforward whatsoever. The present work can be
viewed as the continuation of our recent work [14] in which a thin domain without bound-
ary oscillations has been studied. Notice that introducing boundary irregularities to the
problem forced us to completely change the approach.

2 Preliminary results

In this section, we state some basic results relate to our problem by introducing the func-
tional setting as well as the unfolding method.

First we notice that the variational formulation of problem (2) reads:∫
Rε
κ∇uε∇ϕ+Qε(y)∂xu

εϕ+ cuεϕdxdy + εα
∫

Γε
uεϕdS

=

∫
Rε
f εϕdxdy + εα

∫
Γε
gϕdS , ∀ϕ ∈ H1(Rε).

(3)

The existence and uniqueness of the solution in H1(Rε) is a direct consequence of Stam-
pacchia Theorem and the assumption

c > ||Q||2L∞(0,h1)/4κ (4)

(see e.g. [14, Lemma 3.4]). Thus, we have a family of solutions {uε}ε>0 given by problem
(3), and we are concerned here about the asymptotic behavior of this sequence, as ε goes
to zero.

2.1 The unfolding operator

In order to study the convergence of the solutions uε, we apply the unfolding method firstly
introduced in [9, 10] for oscillating coefficients and perforated domains. Here, we just give
some notations and recall the main results concerning this method in the thin domain
situation. The proofs and all the details can be found in [5, 6].

We consider two-dimensional thin domains defined by (1). Notice that these regions can
present an oscillatory behavior at its top boundary since we are taking positive parameters
ε and α, as well as the function h satisfying the following hypothesis:
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(Hh) h : R → R is a strictly positive, Lipschitz continuous and L-periodic. Moreover,
if we set

h0 = min
x∈R

h(x) and h1 = max
x∈R

h(x)

we have 0 < h0 ≤ h(x) ≤ h1 for all x ∈ R.

Remark 2.1. Here we are assuming h to be smooth due to the trace operator from H1(Rε)
into L2(Γε). As we will see in the Section 2.2, enough smoothness is needed on the boundary
in order to introduce an unfolding operator on the border.

Throughout this paper, we use the following notations. We call Y ∗ the representative
cell of the thin domain Rε which is given by

Y ∗ = {( y1, y2) ∈ R2 : 0 < y1 < L and 0 < y2 < g(y1)}. (5)

The average of ϕ ∈ L1
loc(R2) on a measure set O ⊂ R2 is denoted by

〈ϕ〉O :=
1

|O|

∫
O
ϕ(x) dx ,

where |O| sets the Lebesgue measure of any measure set O.
We will also need to consider the following functional spaces which are defined by

periodic functions in the variable y1 ∈ (0, L). Namely,

L2
#(Y ∗) = {ϕ ∈ L2(Y ∗) : ϕ(y1, y2) is L-periodic in y1 },

L2
# ((0, 1)× Y ∗) = {ϕ ∈ L2((0, 1)× Y ∗) : ϕ(x, y1, y2) is L-periodic in y1 },

H1
#(Y ∗) = {ϕ ∈ H1(Y ∗) : ϕ|∂leftY ∗ = ϕ|∂rightY ∗}.

If we denote by [a]L the unique integer number such that a = [a]LL + {a}L where
{a}L ∈ [0, L), then for each ε > 0 and any x ∈ R, we have

x = ε
[x
ε

]
L
L+ ε

{x
ε

}
L
, where

{x
ε

}
L
∈ [0, L).

Let us also denote

Iε = Int

(
Nε⋃
k=0

[kLε, (k + 1)Lε]

)
,

where Nε is the largest integer such that εL(Nε + 1) ≤ 1. We also set

Λε = (0, 1)\Iε = [εL(Nε + 1), 1),

Rε0 =
{

(x, y) ∈ R2 : x ∈ Iε, 0 < y < εh
(x
ε

)}
,

Rε1 =
{

(x, y) ∈ R2 : x ∈ Λε, 0 < y < εh
(x
ε

)}
.

Notice that we have Λε = ∅ if εαL(Nε + 1) = 1. In this case Rε0 = Rε and Rε1 = ∅.

Definition 2.1. Let ϕ be a Lebesgue-measurable function in Rε. The unfolding operator
Tε acting on ϕ is defined as the following function in (0, 1)× Y ∗:

Tεϕ(x, y1, y2) =

{
ϕ
(
ε
[
x
ε

]
L
L+ εy1, εy2

)
, for (x, y1, y2) ∈ Iε × Y ∗,

0, for (x, y1, y2) ∈ Λε × Y ∗.
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Proposition 2.2. The unfolding operator satisfies the following properties:

1. Tε is linear;

2. Tε(ϕψ) = Tε(ϕ)Tε(ψ), for all ϕ, ψ Lebesgue mesurable in Rε;

3. Let ϕ a Lebesgue mesurable function in Y ∗ extended periodically in the first variable.
Then, ϕε(x, y) = ϕ

(
x
ε ,

y
ε

)
is mesurable in Rε and

Tε(ϕε)(x, y1, y2) = ϕ(y1, y2),∀(x, y1, y2) ∈ Iε × Y ∗.

Moreover, if ϕ ∈ L2(Y ∗), then ϕε ∈ L2(Rε);

4. Let ϕε ∈ L1(Rε). Then,

1

L

∫
(0,1)×Y ∗

Tε(ϕ)(x, y1, y2)dxdy1dy2 =
1

ε

∫
Rε0

ϕ(x, y)dxdy

=
1

ε

∫
Rε
ϕ(x, y)dxdy − 1

ε

∫
Rε1

ϕ(x, y)dxdy;

5. ∀ϕ ∈ L2(Rε), Tε(ϕ) ∈ L2 ((0, 1)× Y ∗). Moreover

||Tε(ϕ)||L2((0,1)×Y ∗) =

(
L

ε

) 1
2

||ϕ||L2(Rε0) ≤
(
L

ε

) 1
2

||ϕ||L2(Rε) .

6. ∀ϕ ∈ H1(Rε),

∂y1Tε(ϕ) = εTε(∂xϕ) and ∂y2Tε(ϕ) = εTε(∂yϕ) a.e. in (0, 1)× Y ∗;

7. If ϕ ∈ H1(Rε), then Tε(ϕ) ∈ L2
(
(0, 1);H1(Y ∗)

)
. Besides,

||∂y1Tε(ϕ)||L2((0,1)×Y ∗) = ε

(
L

ε

) 1
2

||∂xϕ||L2(Rε0) ≤ ε
(
L

ε

) 1
2

||∂xϕ||L2(Rε) ,

||∂y2Tε(ϕ)||L2((0,1)×Y ∗) = ε

(
L

ε

) 1
2

||∂yϕ||L2(Rε0) ≤ ε
(
L

ε

) 1
2

||∂yϕ||L2(Rε) .

Due to the order of the height of the thin domain, a factor 1/ε appears in Properties 5
and 6. Consequently, it makes sense to consider the following rescaled Lebesgue measure

ρε(O) = ε−1|O|

which is widely considered in works involving thin domains. See for instance [16, 17] and
the references therein. Indeed, from now on, we will use the following rescaled norms in
the thin open sets

|||ϕ|||L2(Rε) = ε−1/2 ||ϕ||L2(Rε) , ∀ϕ ∈ L
2(Rε),

|||ϕ|||H1(Rε) = ε−1/2 ||ϕ||H1(Rε) ∀ϕ ∈ H
1(Rε).

From Property 6, we have

||Tε(ϕ)||L2((0,1)×Y ∗) ≤ L
1/2 |||ϕ|||L2(Rε) .

Property 5 of Proposition 2.2 is essential to pass to the limit since it will allow us to
transform any integral over the thin domain Rε into an integral over the fixed set (0, 1)×Y ∗.
In this way, an important concept for the unfolding method is the following property called
unfolding criterion for integrals (u.c.i.).
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Definition 2.3. A sequence (ϕε) satisfies the unfolding criterion for integrals (u.c.i) if

1

ε

∫
Rε1

|ϕε|dxdy → 0.

It is known that any sequence (ϕε) ⊂ L2(Rε) with norm |||·|||L2(Rε) uniformly bounded
satisfies the (u.c.i). Moreover, if we have (ψε) set as

ψε(x, y) = ψ
(x
ε
,
y

ε

)
for any ψ ∈ L2(Y ∗), then (ϕεψε) also satisfies (u.c.i).

Now, we recall some convergence properties of the unfolding operator as ε goes to zero.

Theorem 2.4. For a measurable function f on Y ∗, L-periodic in its first variable and
extended by periodicity to

{
(x, y) ∈ R2 : x ∈ R, 0 < y < g(x)

}
, define the sequence (fε) by

f ε(x, y) = f
(x
ε
,
y

ε

)
a.e. (x, y) ∈

{
(x, y) ∈ R2 : x ∈ R, 0 < y < εh

(x
ε

)}
.

Then

Tεf ε|(0,1)(x, y1, y2) =

{
f(y1, y2), for (x, y1, y2) ∈ Iε × Y ∗,

0, for (x, y1, y2) ∈ Λε × Y ∗.

Moreover, if f ∈ L2
#(Y ∗), then Tεf ε → f strongly in L2

# ((0, 1)× Y ∗).

We also have the following convergence results:

Corollary 2.4.1. Under previous assumptions we have:

1. Let f ∈ L2
(

(0, 1);Lp#(Y ∗)
)
and extend it periodically in y1-direction. If we set

f ε(x, y) := f
(
x,
x

ε
,
y

ε

)
∈ L2(Rε), (6)

then Tεf ε → f strongly in L2 ((0, 1)× Y ∗) .

2. Let ϕ ∈ L2(0, 1). Then, Tεϕ→ ϕ strongly in L2 ((0, 1)× Y ∗) .

3. Let (ϕε) be a sequence in L2(0, 1) such that ϕε → ϕ strongly in L2(0, 1). Then,
Tεϕε → ϕ strongly in L2 ((0, 1)× Y ∗) .

Next, we give a suitable decomposition for functions in H1(Rε) in order to introduce
other convergence results needed in the sequel. As we can see, the geometry of the thin
domain plays a crucial role here. We write

ϕ(x, y) = V (x) + ϕr(x, y),

where V is set as
V (x) :=

1

εg0

∫ εg0

0
ϕ(x, s) ds a.e. x ∈ (0, 1). (7)

We define
ϕr(x, y) ≡ ϕ(x, y)− V (x).
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Proposition 2.5. Let ϕε ∈ H1(Rε) with |||ϕε|||H1(Rε) uniformly bounded and Vε(x) defined
as in (7). Then, there exists a function ϕ ∈ H1(0, 1) such that, up to subsequences

Vε ⇀ ϕ weakly in H1(0, 1) and strongly in L2(0, 1),

TεVε → ϕ strongly in L2 ((0, 1)× Y ∗) ,
|||ϕε − Vε|||L2(Rε) → 0,

|||ϕε − ϕ|||L2(Rε) → 0,

Tεϕε → ϕ strongly in L2
(
(0, 1);H1(Y ∗)

)
.

Furthermore, there exists ϕ ∈ L2 ((0, 1)× Y ∗) with ∂y2ϕ ∈ L2 ((0, 1)× Y ∗) such that,
up to subsequences

1

ε
Tε(ϕεr) ⇀ ϕ weakly in L2 ((0, 1)× Y ∗) ,

Tε(∂yϕε) ⇀ ∂y2ϕ weakly in L2 ((0, 1)× Y ∗) ,

where ϕεr ≡ ϕε − Vε.

Finally, we recall a compactness result which allows us to identify the limit of the image
of the gradient of uniformly bounded sequences.

Theorem 2.6. Let ϕε ∈ H1(Rε) with |||ϕε|||H1(Rε) uniformly bounded. Then, there exist
ϕ ∈ H1(0, 1) and ϕ1 ∈ L2((0, 1);H1

#(Y ∗)) such that (up to a subsequence)

Tεϕε → ϕ strongly in L2
(
(0, 1);H1(Y ∗)

)
,

Tε∂xϕε ⇀ ∂xϕ+ ∂y1ϕ1 weakly in L2 ((0, 1)× Y ∗) ,
Tε∂yϕε ⇀ ∂y2ϕ1 weakly in L2 ((0, 1)× Y ∗) .

2.2 Boundary unfolding

In this section, we set the unfolding operator on the oscillating upper boundary of Rε. For
this sake, we adapt the one introduced in [9, 10] yielding the appropriated results to our
case. Notice that under assumptions (Hh) we have that Γε is a Lipschitz border.

Definition 2.7. Let φ be a measurable function on Γε. The boundary unfolding operator
T bε is defined by

T bε φ(x, y) =

 φ
(
ε
[x
ε

]
L+ εy

)
a.e for Iε × ∂uY ∗,

0 a.e for Λε × ∂uY ∗

where ∂uY ∗ is the upper boundary of the representative cell Y ∗ given by

∂uY
∗ = {(y1, y2) ∈ R2 : y1 ∈ (0, L), and y2 = h(y1)}.
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Proposition 2.8. The boundary unfolding satisfies the following properties:

1. T bε is linear;

2. T bε (ϕψ) = T bε (ϕ)T bε (ψ), for all ϕ, ψ Lebesgue measurable in Γε;

3. For any ϕ ∈ L1(Rε),

1

L

∫
(0,1)×∂uY ∗

T bε ϕ(x, y)dxdσ(y) =

∫
Γε0

ϕdS =

∫
Γε
ϕdS −

∫
Γε1

ϕdS, (8)

where Γεi is the upper boundary of Rεi for i = 0, 1.

4. Suppose that ϕ ∈ L2(Γε). Then,

||T bε ϕ||L2((0,1)×∂uY ∗) ≤
1

L
||ϕ||L2(Γε).

5. (Unfolding criterion for integrals) Suppose that ϕε ∈ L2(Γε) is such that ||ϕε||L2(Γε) ≤
c, with c independent on ε. Then, ∫

Γε1

|ϕ|dS → 0.

6. Let ψε ∈ H1(Rε) such that Tεψε ⇀ ψ̂ in L2((0, 1);H1(Y ∗)) with ψ̂ ∈ H1(0, 1). Then,

T bε ψε ⇀ ψ̂ in L2((0, 1);H
1
2 (∂uY

∗)) .

Proof. It is not difficult to see that Properties 1, 2 and 4 follow immediately from the
definition of the boundary unfolding operator. We discuss the remaining ones.

3.: Indeed,∫
(0,1)×∂uY ∗

T bε ϕ(x, y)dxdS =

Nε−1∑
k=0

∫ (k+1)Lε

kLε

∫
∂uY ∗

ϕ
(
ε
[x
ε

]
L+ εy

)
dσ(y)dx

=

Nε−1∑
k=0

Lε

∫
∂uY ∗

ϕ (εkL+ εy) dσ(y)dx. (9)

Notice that using the change of variables

s = εkL+ εy,

we get dσ(s) = εdσ(y). Also, denoting by

Γε0 =
{

(x, y) : 0 < x ≤ Lε, y = εh
(x
ε

)}
and for k ≥ 1

Γεk =
{

(x, y) : kLε ≤ x ≤ (k + 1)Lε, y = εh
(x
ε

)}
,

it is clear that
Nε−1⋃
k=0

Γεk = Γε0.

Then, by (9) we get
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Nε−1∑
k=0

L

∫
Γkε

ϕ(s)dσ(s) =

∫
Γε0

ϕdS. (10)

5.: Let ϕε ∈ L2(Γε) such that ||ϕε||L2(Γε) ≤ c, with c independent on ε. Then∫
Γε1

|ϕ|dS ≤ |Γε1|1/2||ϕ||L2(Γε) ≤ c|Γε1|1/2 → 0.

6.: Straightforward from the definition of the unfolding operators and Sobolev injections.

3 Main results

In this Section, we prove the main results of the paper. As emphasized in the Introduction,
the asymptotic behavior of the considered problem greatly depends on the value of the
coefficient α appearing in the Robin boundary condition (2)2. First we analyze the critical
case α = 1. After that, we address two remaining characteristic cases 0 < α < 1 and
α > 1, respectively.

3.1 Case α = 1

Theorem 3.1. Let uε be the solution of the problem (2) with f ε ∈ L2(Rε) and |||f ε|||L2(Rε)

uniformly bounded. Also, assume that there exists f̂ ∈ L2 ((0, 1)× Y ∗) such that

Tεf ε ⇀ f̂ weakly in L2 ((0, 1)× Y ∗) .

Then, there exist u ∈ H1(0, 1) and u1 ∈ L2((0, 1);H1
#(Y ∗)) such that

Tεuε → u strongly in L2
(
(0, 1);H1(Y ∗)

)
,

Tε∂xuε ⇀ ∂xu+ ∂y1u1 weakly in L2 ((0, 1)× Y ∗) ,
Tε∂yuε ⇀ ∂y2u1 weakly in L2 ((0, 1)× Y ∗) .

Moreover, we have that u is the solution of −κquxx + pux +

(
c+
|∂uY ∗|
|Y ∗|

)
u = f̄ +

|∂uY ∗|
|Y ∗|

g in (0, 1),

ux(0) = ux(1) = 0,

where the homogenized coefficients q and p are given by

q =
1

|Y ∗|

∫
Y ∗

(1− ∂y1X) dY and p =
1

|Y ∗|

∫
Y ∗
Q (1− ∂y1X) dY

and X ∈ H1
#(Y ∗) with

∫
Y ∗ XdY = 0 is the unique solution of∫

Y ∗
∇X∇ϕdY =

∫
Y ∗
∂y1ϕdY ∀ϕ ∈ H1

#(Y ∗).

Also, the forcing term f̄ is given by

f̄ =
1

|Y ∗|

∫
Y ∗
f̂dY.
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Proof. (a) Uniform bounds.
Take ϕ = uε as a test function in (3). By [14, Lemma 3.4] and the assumption (4), one

gets

|||uε|||2H1(Rε) + ||uε||2L2(Γε) ≤ |||f
ε|||L2(Rε)|||uε|||L2(Rε) + ||g||L2(Γε)||uε||L2(Γε). (11)

Thus, since we have from [11, 16] that

||ϕ||L2(Γε) ≤ Cε−1/2‖ϕ‖H1(Rε), (12)

we can get that there exists c > 0, independent of ε > 0, such that

|||uε|||H1(Rε) ≤ c.

Then, uε is uniformly bounded in ||| · |||H1 .

(b) Limiting problem.
Let us apply Propositions 2.2 and 2.8 in (3). Then,∫
(0,1)×Y ∗

kTε∇uεTε∇ϕ+ TεQεTε∂xuεTεϕ+ cTεuεϕdxdY +

∫
(0,1)×∂uY ∗

T bε uεT bε ϕdσ(y)

+
L

ε

∫
Rε1

κ∇uε∇ϕ+Qε(y)∂xu
εϕ+ cuεϕdxdy + L

∫
Γε1

uεϕdS

=

∫
(0,1)×Y ∗

Tεf εTεϕdxdY +

∫
(0,1)×∂uY ∗

T bε gT bε ϕdxdσ(y)

+
L

ε

∫
Rε1

f εϕdxdy + L

∫
Γε1

gϕdS,

(13)
for any ϕ ∈ H1(Rε).

Since we have uniform bounds for the solutions of (2) in the |||.|||H1(Rε) norm, we can
apply Theorem 2.6. Thus, there exist u ∈ H1(0, 1) and u1 ∈ L2((0, 1);H1

#(Y ∗)) such that

Tεuε → u strongly in L2
(
(0, 1);H1(Y ∗)

)
,

Tε∂xuε ⇀ ∂xu+ ∂y1u1 weakly in L2 ((0, 1)× Y ∗) ,
Tε∂yuε ⇀ ∂y2u1 weakly in L2 ((0, 1)× Y ∗) .

(14)

Also, by Proposition 2.8, one gets

T bε uε → u in L2((0, 1);H
1
2 (∂uY

∗)). (15)

By (14) and (15), for test functions ϕ(x, y) = ϕ(x), we can pass to the limit in (13)
yielding ∫

(0,1)×Y ∗
κ (∂xu+ ∂y1u1) ∂xϕ+Q (∂xu+ ∂y1u1)ϕ+ cuϕdxdY

+

∫
(0,1)×∂uY ∗

uϕdxdσ(y) =

∫
(0,1)×Y ∗

f̂ϕdxdY +

∫
(0,1)×∂uY ∗

gϕdxdσ(y).

(16)

Now we obtain the relation between u1 and the solution of the auxiliary problem∫
Y ∗
∇X∇ψdY =

∫
Y ∗
∂y1ψdY,

∫
Y ∗
XdY = 0, ∀ψ ∈ H1

#(Y ∗). (17)

10



For this sake, consider the sequence

vε(x, y) = εφ(x)ψ
(x
ε
,
y

ε

)
, (x, y) ∈ Rε, (18)

where φ ∈ C∞0 (0, 1) and ψ ∈ H1
#(Y ∗). Then, Corollary 2.4.1 provides

Tεvε → 0, strongly in L2 ((0, 1)× Y ∗) ,
Tε∂xvε → φ∂y1ψ, strongly in L2 ((0, 1)× Y ∗) ,
Tε∂yvε → φ∂y2ψ, strongly in L2 ((0, 1)× Y ∗) .

(19)

Now, we take vε as a test function in (13). Passing to the limit as ε→ 0, we get∫
(0,1)×Y ∗

(∂xu+ ∂y1u1, ∂y2u1)φ∇yψdxdY = 0.

From the density of tensor product C∞0 (0, 1)⊗H1
#(Y ∗) in L2((0, 1);H1

#(Y ∗)), we can
rewrite the above equation as∫

(0,1)×Y ∗
(∂xu+ ∂y1u1, ∂y2u1)∇yψdxdY = 0, ∀ψ ∈ L2((0, 1);H1

#(Y ∗)). (20)

It is not difficult to check that (20) has a unique solution in the Hilbert space H1(0, 1)×
L2((0, 1);H1

#(Y ∗)/R). We refer the reader to [6] for details.
Since X is the unique L-periodic solution of the problem (17) and u is independent of

y1 and y2, we have that −∂xu(x)X(y1, y2) satisfies∫
Y ∗
−∂xu∇X∇ψdY =

∫
Y ∗
−∂xu∂y1ψdY, ∀ψ ∈ L2((0, 1);H1

#(Y ∗)). (21)

Consequently, it follows from (20) that

u1(x, y1, y2) = −∂xu(x)X(y1, y2). (22)

Now we are in position to rewrite (16) as∫
(0,1)×Y ∗

κ (∂xu− ∂xu∂y1X) ∂xϕ+Q (∂xu− ∂xu∂y1X)ϕ+ cuϕdxdY

+

∫
(0,1)×∂uY ∗

uϕdxdσ(y) =

∫
(0,1)×Y ∗

f̂ϕdxdY +

∫
(0,1)×∂uY ∗

gϕdxdσ(y).

Hence, since u and ϕ are independent on y1 and y2, we get∫ 1

0
κ∂xu

[∫
Y ∗

(1− ∂y1X) dY

]
∂xϕ+

[∫
Y ∗
Q (1− ∂y1X) dY

]
∂xuϕdx+ |Y ∗|c

∫ 1

0
uϕdx

+|∂uY ∗|
∫ 1

0
uϕdx =

∫ 1

0

[∫
Y ∗
f̂dY

]
ϕdxdY + |∂uY ∗|

∫ 1

0
gϕdx.

Dividing both sides by |Y ∗| gives∫ 1

0
[κ q ∂xu∂xϕ+ p ∂xuϕ+ c uϕ] dx+

|∂uY ∗|
|Y ∗|

∫ 1

0
uϕdx =

∫ 1

0
f̄ϕdx+

|∂uY ∗|
|Y ∗|

∫ 1

0
gϕdx,

for all ϕ ∈ H1(0, 1). It follows from [2] that the coefficients q and p are strictly positive,
and then, the limit equation is a well posed problem. Thus, uε is a convergent sequence
which leads us to the end of the proof.
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Remark 3.1. Notice the effect of the oscillating behavior on the homogenized coefficients
q and p given by the auxiliary function X. Also, we emphasize the effect of the Lebesgue
measure of the sets Y ∗ and ∂uY ∗ at the limit equation, as well as, the flux condition on
the border sets by g. All these ingredients can be seen at the homogenized equation.

Remark 3.2. See [6] for a discussing on some properties of the homogenized coefficient q.
In particular, they show that 0 < q < 1.

3.2 Case 0 < α < 1

Theorem 3.2. Let uε be the solution of the problem (2) with f ε ∈ L2(Rε) and |||f ε|||L2(Rε)

uniformly bounded. Also, assume that g ∈ H1(0, 1). Then, as ε→ 0,

Tεuε → g strongly in L2
(
(0, 1);H1(Y ∗)

)
in such way that

|||uε − g|||L2(Rε) → 0.

(23)

Proof. Let
wε(x, y) = uε(x, y)− g(x) ∀(x, y) ∈ Rε, (24)

where g is extended trivially to Rε.
One can rewrite (3) as follows:∫

Rε
κ∇wε∇ϕ+Qε(y)∂xw

εϕ+ cwεϕdxdy + εα
∫

Γε
wεϕdS

+

∫
Rε
κ∇g∇ϕ+Qε(y)∂xgϕ+ cgϕdxdy =

∫
Rε
f εϕdxdy,

(25)

for all ϕ ∈ H1(Rε).

(a) Uniform bounds.
Take ϕ = wε as a test function in (25). Again, by [14, Lemma 3.4] and the assumption

(4), one can show that there exists ĉ > 0, independent of ε > 0, such that

|||wε|||2H1(Rε) ≤ |||w
ε|||2H1(Rε) + εα−1||wε||2L2(Γε) ≤ ĉ|||w

ε|||H1(Rε). (26)

Thus, there exists c > 0 such that

|||wε|||H1(Rε) ≤ ĉ,

εα−1||wε||2L2(Γε) ≤ c.
(27)

(b) Limits of wε.
By the uniform bound of wε in the |||.|||H1 norm, it follows from Theorem 2.6 that

there exist w ∈ H1(0, 1) and w1 ∈ L2((0, 1);H1
#(Y ∗)) such that

Tεwε → w strongly in L2
(
(0, 1);H1(Y ∗)

)
,

Tε∂xwε ⇀ ∂xw + ∂y1w1 weakly in L2 ((0, 1)× Y ∗) ,
Tε∂ywε ⇀ ∂y2w1 weakly in L2 ((0, 1)× Y ∗) .

(28)
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Also, by Proposition 2.8, one gets

T bε wε → w in L2((0, 1);H
1
2 (∂uY

∗)). (29)

Now, due to Proposition 2.8 and (27), we have that

||w||
L2

(
(0,1);H

1
2 (∂uY ∗)

) ≤ ||w − T bε wε||L2
(

(0,1);H
1
2 (∂uY ∗)

) + ||T bε wε||L2
(

(0,1);H
1
2 (∂uY ∗)

)
≤ ||w − T bε wε||L2

(
(0,1);H

1
2 (∂uY ∗)

) + c||wε||L2(Γε)

≤ ||w − T bε wε||L2
(

(0,1);H
1
2 (∂uY ∗)

) + cε1−α.

(30)

Therefore, since 0 < α < 1 and w depends just on x-variable, we can pass to the limit
in the inequality (30) as ε→ 0 obtaining that

w = 0 in (0, 1).

Hence, due to (24) and (28), one can conclude that

Tεuε → g strongly in L2
(
(0, 1);H1(Y ∗)

)
,

and then, it follows from Proposition 2.5 that

|||uε − g|||L2(Rε) → 0

concluding the proof of the Theorem.

3.3 Case α > 1

Theorem 3.3. Let uε be the solution of the problem (2) with f ε ∈ L2(Rε) and |||f ε|||L2(Rε)

uniformly bounded. Assume that there exists f̂ ∈ L2 ((0, 1)× Y ∗) such that

Tεf ε ⇀ f̂ weakly in L2 ((0, 1)× Y ∗) .

Then, there exist u ∈ H1(0, 1) and u1 ∈ L2((0, 1);H1
#(Y ∗)) such that

Tεuε → u strongly in L2
(
(0, 1);H1(Y ∗)

)
,

Tε∂xuε ⇀ ∂xu+ ∂y1u1 weakly in L2 ((0, 1)× Y ∗) ,
Tε∂yuε ⇀ ∂y2u1 weakly in L2 ((0, 1)× Y ∗) .

Moreover, u is the solution of{
−κquxx + pux + cu = f̄ in (0, 1)

ux(0) = ux(1) = 0,

where the homogenized coefficients q and p are given by

q =
1

|Y ∗|

∫
Y ∗

(1− ∂y1X) dY and p =
1

|Y ∗|

∫
Y ∗
Q (1− ∂y1X) dY

13



and X ∈ H1
#(Y ∗) with

∫
Y ∗ XdY = 0 is the unique solution of∫

Y ∗
∇X∇ϕdY =

∫
Y ∗
∂y1ϕdY ∀ϕ ∈ H1

#(Y ∗).

Also, the forcing term f̄ is given by

f̄ =
1

|Y ∗|

∫
Y ∗
f̂dY.

Proof. The proof follows the same arguments as the proof of Theorem 3.1.
(a) Uniform bounds.
Take ϕ = uε as a test function in (3). By [14, Lemma 3.4] and the assumption (4), one

gets

|||uε|||2H1(Rε) + εα−1||uε||2L2(Γε) ≤ |||f
ε|||L2(Rε)|||uε|||L2(Rε) + εα−1||g||L2(Γε)||uε||L2(Γε).

(31)
Thus, since we have from [11, 16] that

||ϕ||L2(Γε) ≤ Cε−1/2‖ϕ‖H1(Rε), (32)

we can get that there exists c > 0, independent of ε > 0, such that

|||uε|||H1(Rε) ≤ |||f ε|||L2(Rε)|||uε|||L2(Rε) + c εα−1||g||L2(0,1)|||uε|||H1(Rε).

Since α > 1, for ε < 1, we get uε is uniformly bounded in ||| · |||H1 .
(b) Limiting problem
Rewrite (3) using Proposition 2.2:∫

(0,1)×Y ∗
kTε∇uεTε∇ϕ+ TεQεTε∂xuεTεϕ+ cTεuεϕdxdY + εα−1

∫
(0,1)×∂uY ∗

T bε uεT bε ϕdσ(y)

+
L

ε

∫
Rε1

κ∇uε∇ϕ+Qε(y)∂xu
εϕ+ cuεϕdxdy + Lεα−1

∫
Γε1

uεϕdS

=

∫
(0,1)×Y ∗

Tεf εTεϕdxdY + εα−1

∫
(0,1)×∂uY ∗

T bε gT bε ϕdxdσ(y)

+
L

ε

∫
Rε1

f εϕdxdy + Lεα−1

∫
Γε1

gϕdS,

(33)
Since we have uniform bounds for the solutions of (2) in the |||.|||H1(Rε) norm, we can

apply Theorem 2.6. Thus, there exist u ∈ H1(0, 1) and u1 ∈ L2((0, 1);H1
#(Y ∗)) such that

Tεuε → u strongly in L2
(
(0, 1);H1(Y ∗)

)
,

Tε∂xuε ⇀ ∂xu+ ∂y1u1 weakly in L2 ((0, 1)× Y ∗) ,
Tε∂yuε ⇀ ∂y2u1 weakly in L2 ((0, 1)× Y ∗) .

(34)

Also, by Proposition 2.8, one gets

T bε uε → u in L2((0, 1);H
1
2 (∂uY

∗)). (35)
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By (34), (15) and α > 1, for test functions ϕ(x, y) = ϕ(x), we can pass to the limit
(33) getting∫

(0,1)×Y ∗
κ (∂xu+ ∂y1u1) ∂xϕ+Q (∂xu+ ∂y1u1)ϕ+ cuϕdxdY =

∫
(0,1)×Y ∗

f̂ϕdxdY. (36)

If one proceedes as in Theorem 2.6, it is not difficult to obtain∫ 1

0
[κ q ∂xu∂xϕ+ p ∂xuϕ+ c uϕ] dx =

∫ 1

0
f̄ϕdx, ∀ϕ ∈ H1(0, 1)

which completes the proof.
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