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Abstract. In this paper we analyze the asymptotic behavior of a family of solutions of a semilinear elliptic

equation, with homogeneous Neumann boundary condition, posed in a two-dimensional oscillating region

with reaction terms concentrated in a neighborhood of the oscillatory boundary θε ⊂ Ωε ⊂ R2 when a small
parameter ε > 0 goes to zero. Our main result is concerned with the upper and lower semicontinuity of the

set of solutions in H1. We show that the solutions of our perturbed equation can be approximated with

one defined in a fixed limit domain, which also captures the effects of reaction terms that take place in the
original problem as a flux condition on the boundary of the limit domain.

1. Introduction

In this paper we analyze the asymptotic behavior of a family of steady state solutions of a semilinear
reaction-diffusion equation with homogeneous Neumann boundary conditions on an oscillating domain Ωε ⊂
R2, with reaction terms concentrated in an extremely thin region θε close to the border ∂Ωε which can also
present oscillatory structure. In Figure 1 we illustrate the oscillating domain Ωε, as well as, the narrow
oscillating neighborhood θε where some reactions of the model take place.

Under our assumptions, the two-dimensional family of oscillating regions Ωε approaches a bounded domain
Ω ⊂ R2, and the narrow strip θε, that may also have an oscillatory behavior, degenerates into a fixed set
Γ ⊂ ∂Ω as the positive parameter ε goes to zero. We assume that the reactions of our model occur in the
interior of Ωε ⊂ R2 as well as in the narrow strip θε.

Ωϵ

θϵ

Figure 1. The oscillatory domain Ωε and strip θε where reactions take place.

We show that the family of solutions is upper semicontinuous at ε = 0, and under the additional condition
on hyperbolicity at the limit problem, we provide the lower semicontinuity. Also, we show that the perturbed
equation has one and only one solution nearby to the limit equation as ε → 0. Indeed, we show that the
starting singular equation defined in the perturbed two-dimensional region can be approximated with one
which is defined in the limit fixed domain Ω and captures all relevant effects of the processes that take
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place in the original problem. Moreover, we will see that the nonlinear concentrating term of the perturbed
equation will became a nonlinear boundary condition in the limit case, according to pioneering works as
[11, 21, 22].

Indeed, we consider such kind of domains that satisfy Ωε → Ω and ∂Ωε → ∂Ω as ε → 0 in the sense of
Hausdorff. We take dist(Ωε,Ω) + dist(∂Ωε, ∂Ω) → 0 when ε → 0, with dist being the symmetric Hausdorff
distance of two sets. Notice that there is no condition on the intersection of the sets Ωε and Ω improving some
results from [1, 2] with respect to the class of domain perturbation. In Section 2, we set our assumptions
and introduce our main result precisely.

As we will see, in order to show our results, we need to estimate and analyze the asymptotic behavior of
concentrating integrals such as

1

ε

∫
θε

|u(x)|qdx (1.1)

for different values of q ≥ 1 and open sets θε ⊂ Ωε ⊂ R2. Notice the factor 1/ε in (1.1). The arrangement of
this one with the narrow strip can be thought as a model to measure the concentration of u on θε at ε = 0. In
fact, a suitable control of this integral is useful to analyze models set in regions of R2 which present singular
behavior. For instance, we mention our recent work [12] where an oscillating thin domain is studied.

Here, we are in agreement with pioneering papers [11, 21, 22] calling (1.1) as concentrating or concentrated
integral. Indeed, this kind of problem was initially proposal in [11] where linear elliptic equations were
considered with reaction and potential terms concentrated on the boundary. There, the neighborhood θε has
been set as a strip without oscillatory behavior in a fixed domain Ω. Later, the dynamical system given by a
semilinear parabolic problem in the same situation was analyzed in [21, 22] where the upper semicontinuity
of attractors at ε = 0 has been shown. In [3, 4] the results of [11, 21] were extended to a reaction-diffusion
problem with delay. In these works, the boundary of the domain is always assumed to be smooth.

Subsequently some results of [11] were adapted in [5] to be considered in a semilinear elliptic problem
posed on a Lipschitz fixed domain Ω with the ε-neighborhood presenting highly oscillatory behavior. The
upper and lower semicontinuity of the attractor to the associated parabolic problem in smooth fixed domains
were shown in [6].

Recently, some results from [11, 5] have been adapted in [1, 2] to a class of narrow strips θε and bounded
oscillatory domains Ωε. Under the restricted assumption Ω ⊂ Ωε and θε ⊂ Ωε \ Ω for all ε > 0, the authors
have been able to estimate concentrating integrals and analyze the asymptotic behavior of semilinear elliptic
equations as Ωε → Ω and ∂Ωε → ∂Ω when ε→ 0 in the sense of Hausdorff.

This paper is organized as follows: in Section 2 we introduce the assumptions, notations and the main
result. In Section 3, we show some technical results concerning to extension operators, Lebesgue-Bochner
and Sobolev-Bochner generalized spaces needed to get our estimates. Following by Section 4, we prove some
properties to concentrating integrals which are used in Section 5 to study the nonlinearities of our problem.
Finally, in Section 6, we pass to the limit in a semilinear elliptic problem getting the upper semicontinuity
of the solutions. Moreover, assuming hyperbolicity to the solutions of the limit equation, we also obtain
the lower semicontinuity at ε = 0, and we will exclude the possibility that, near an equilibrium point of the
limiting equation, may exist several different equilibrium points of the perturbed problem, and therefore, we
will also prove some sort of uniqueness of the equilibrium points.

2. Assumptions, notations and main result

We study a family of solutions of the following semilinear elliptic equation with homogeneous Neumann
boundary condition, 

−∆uε + uε = Φ(uε) +
1

ε
χθεf(uε) in Ωε,

∂uε

∂νε
= 0 on ∂Ωε,

(2.1)

where
Ωε = {(x1, x2) ∈ R2;x1 ∈ (0, 1), 0 < x2 < Gε(x1)} and

θε = {(x1, x2) ∈ R2;x1 ∈ (0, 1), Gε(x1)− εHε(x1) < x2 < Gε(x1)}
(2.2)
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are set by functions Gε, Hε : (0, 1)→ R satisfying conditions:

H(i) Gε(x1) = m(x1) + εg(x1/ε
α) with 0 < α ≤ 1, where

(a) m : (0, 1)→ R is C1, bounded, with bounded derivative,
(b) g : (0, 1)→ R is a C1 bounded function, Lg-periodic with bounded derivative.
(c) Gε → m as ε→ 0 uniformly in (0, 1).
(d) there are constants G0, G1 > 0 such that G0 ≤ Gε(x) ≤ G1 for all x ∈ (0, 1).

H(ii) Hε(x1) = h(x1/ε
β), β > 0, where the function h is bounded, ie there are H0, H1 ≥ 0 such that

H0 ≤ Hε(x) ≤ H1 for all x ∈ (0, 1), and Lh-periodic.

The vector νε = (νε1 , ν
ε
2) is the unit outward normal vector to the boundary ∂Ωε, ∂/∂ν

ε is the derivative
in the direction of νε, and χθε is the characteristic function of the neighborhood θε. The nonlinearities
Φ : R→ R and f : R→ R are bounded functions of class C2 with bounded derivatives.

Under assumptions H, it is not difficult to associate to (2.2) with the following limit sets

Ω = {(x1, x2) ∈ R2;x1 ∈ (0, 1), 0 < x2 < m(x1)} and

Γ = {(x1, x2) ∈ R2;x1 ∈ (0, 1), x2 = m(x1)}.
(2.3)

We may pass to the limit in the solutions of the equation (2.1) getting the following limit equation−∆u+ u = Φ(u) in Ω,
∂u

∂ν
= µ̂f(u) on Γ,

(2.4)

with µ̂ ∈ L∞(Γ) given by

µ̂ =
µh√

1 +m′2
∈ L∞(Γ), (2.5)

where µh ∈ L∞(Γ) is the weak* limit of Hε. In fact, due to H(ii), it follows from [17, Teorema 2.6] that

Hε ⇀ µh =
1

Lh

∫ Lh

0

h(s)ds.

The coefficient µ̂ captures the influence of the small neighborhood θε, as well as the geometry of the limit
domain Ω. It also suggests with nonlinearity f a flux condition on the boundary, giving a qualitative idea
on the effect of the concentrating reaction terms on the original problem.

Notice that, to obtain the convergence results, we have to compare functions defined in different functional
spaces as ε→ 0. In order to do that, we consider the following family of operators

Eε : H1(Ω)→ H1(Ωε) : u 7→ Eεu := RεPu (2.6)

where Rε : H1(R2) → H1(Ωε) is the restriction operator to the open set Ωε and P : H1(Ω) → H1(R2) is
a continuous extension operator from functions defined in Ω to the whole plane R2. The existence of P is
guaranteed by [20, Theorem 1.4.3.1].

From [7], we have

‖Eεu‖H1(Ωε) → ‖u‖H1(Ω), as ε→ 0,

and then, we can compare solutions from (2.1) and (2.4) using the notion of E-convergence as in [14].
In general, consider a family of Banach spaces Hε and a limit Banach space H0. Besides, let Eε : H0 → Hε

a family of operators such that ‖Eεu‖Hε → ‖u‖H0 when ε→ 0.

Definition 2.1. We say that a sequence of uε ∈ Hε E-converges to u0 ∈ H0, if ‖uε−Eεu‖Hε
→ 0 as ε→ 0.

We denote this convergence by uε
E−→ u.

If Hε and H0 are Hilbert spaces, we can define a weak E-convergence.

Definition 2.2. A sequence of {uε}, with uε ∈ Hε, E-converges weakly to u ∈ H0 if for any sequence E-

convergent to w we have (wε, uε)Hε
→ (u,w)H0

when ε→ 0. We may denote such convergence by uε
E
⇀ u.
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We also need a notion of compactness for sequences, and convergence for operators which are defined in
different spaces. We recall the exposition from [14]. See also [7] and [12].

Definition 2.3. A sequence {un}, un ∈ Hεn with εn → 0, is E-precompact if for all subsequence {un′} there

are a subsequence {un′′} and an element u ∈ H0 such that un′′
E−→ u. A family is said to be E-precompact is

all sequence {un}, un ∈ Hεn with εn → 0, is E-precompact.

Definition 2.4. We say that a family of operators {Tε}, with Tε : Hε → Hε, E-converges to T : H0 → H0

when ε→ 0 if Tεu
ε E−→ Tu for any uε

E−→ u. We denote this convergence by Tε
EE−−→ T .

Furthermore we may define a notion of compact convergence for operators.

Definition 2.5. A family of compact operators {Tε}, with Tε : Hε → Hε, converges compactly to T : H0 →
H0 when ε→ 0 if, for any family {uε} with ‖uε‖Hε uniformly bounded, we have that {Tεuε} is E-precompact

and Tε
EE−−→ T . We denote this compact convergence by Tε

CC−−→ T .

This notion of convergence can be extended to sets in the following manner: let Jε be a family of sets in
some Banach spaces Zε. We say that Jε is

(i) upper semicontinuous at ε = 0, if distH(Jε, EεJ0)
ε→0−−−→ 0;

(ii) lower semicontinuous at ε = 0, if distH(EεJ0, Jε)
ε→0−−−→ 0.

Here, distH(A,B) denotes the Hausdorff semi-distance given by

distH(A,B) = sup
x∈A

inf
y∈B
‖x− y‖Zε

.

Remark 2.6. In order to show the upper or lower semicontinuity of sets, the following characterizations
are useful:

(i) The family {Jε} is upper semicontinuous at ε = 0, if every sequence {uε}, with uε ∈ Jε and ε→ 0, has
a subsequence E-convergent to an element of J0;

(ii) The family {Jε} is lower semicontinuous at ε = 0, if J0 is compact and for all u ∈ J0 exists a sequence

{uε}, with uε ∈ Jε and ε→ 0, such that uε
E−→ u.

Finally, for ε > 0, let us consider

Eε = {uε ∈ H1(Ωε); u
ε is a solution of (2.1)}

and
E0 = {u ∈ H1(Ω); u is a solution of (2.4)}.

The main goal of this work is to prove the upper and lower semicontinuity of the set Eε at ε = 0:

Theorem 2.7. If we consider the semilinear elliptic problem (2.1) then:

(i) for any sequence uε ∈ Eε, with ε → 0, there is a subsequence (also denoted by uε) and u0 ∈ E0 such

that uε
E−→ u0.

(ii) for any hyperbolic equilibrium point u∗ ∈ E0, there is sequence uε ∈ Eε such that uε
E−→ u∗ when ε→ 0.

Moreover, there are η > 0 and ε0 > 0 such that exists an unique uε ∈ Eε which satisfies

‖uε − Eεu∗‖H1(Ωε) ≤ η, for all 0 < ε < ε0.

Remark 2.8. Recall that u∗ is a hyperbolic equilibrium point of (2.4), if λ = 0 is not an eigenvalue of the
linearized problem of (2.4) around u∗. For instance, if u∗ is solution of (2.4) and is hyperbolic, then λ = 0
is not an eigenvalue of −∆v + v = Φ′(u∗) v + λ v in Ω,

∂v

∂ν
= µ̂f ′(u∗) v on Γ.

Furthermore, we notice that item (ii) of the Theorem 2.7 also give us a kind of uniqueness result to the
solutions near a hyperbolic equilibrium point of the limit equation for sufficiently small ε.
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3. Functional spaces and technical results

In this section, we introduce the main functional spaces used throughout this paper and work with some
of their properties. Then we set some technical results that will be useful in next sections. First, we define
fractional Sobolev spaces.

Definition 3.1. For s > 0, 1 ≤ p < ∞ and O ⊂ Rn, we denote by W s,p(O) and call fractional Sobolev
space, the functional set given by the space of distributions defined in O such that

(i) ∂αu ∈ Lp(O), for |α| ≤ m, when s = m ∈ N;
(ii) u ∈Wm,p(O) and ∫∫

O×O

|∂αu(x)− ∂αu(y)|p

|x− y|n+σp
dxdy <∞,

for |α| = m, when s = m+ σ with σ ∈ (0, 1).

The norm in W s,p(O), that makes it Banach, is:

‖u‖pWm,p(O) =
∑
|α|≤m

∫
O

|∂αu(x)|pdx in the case (i)

and

‖u‖pW s,p(O) = ‖u‖pWm,p(O) +
∑
|α|=m

∫∫
O×O

|∂αu(x)− ∂αu(y)|p

|x− y|n+σp
dxdy in the case (ii).

Besides if p = 2 we denote it by Hs(O), which is a Hilbert space.

Now let us introduce the Lebesgue and Sobolev-Bochner generalized spaces. Here, they are given in a
similar way to [24], as a natural generalization to the Lebesgue and Sobolev spaces using Bochner integrals.
The usual Lebesgue and Sobolev-Bochner spaces may be found, for instance, in [15, 17].

Definition 3.2. Let us consider a function G : (0, 1) → R satisfying 0 < G0 ≤ G(x) ≤ G1, ∀x ∈ (0, 1),
for some constants 0 < G0 ≤ G1. Let 1 ≤ p ≤ ∞ e 1 ≤ q < ∞. The Lebesgue-Bochner generalized spaces,
denoted by Lp(0, 1;Lq(0, G(x1))), are defined by

Lp(0, 1;Lq(0, G(x1))) := {u : Ωε → R measurable ;u(x1, ·) ∈ Lq(0, G(x1)) for almost every x1 ∈ (0, 1)}.
They are Banach spaces with the norm

‖u‖Lp(0,1;Lq(0,G(x1))) =


(∫ 1

0
‖u(x1, ·)‖pLq(0,G(x1))dx1

)1/p

, p <∞,
ess sup

x∈(0,1)

‖u(x1, ·)‖Lq(0,G(x1)), p =∞.

When p = q = 2 such space is Hilbert with the inner product

(u, v)L2(0,1;L2(0,G(x1))) =

∫ 1

0

(u(x1, ·), v(x1, ·))L2(0,G(x1))dx1.

Remark 3.3. Since q < ∞, the function x1 7→ ‖u(x1, ·)‖Lq(0,G(x1)) is measurable by Fubini’s Theorem.
Then the space Lp(0, 1;Lq(0, G(x1))) is well defined.

Analogously, the Sobolev-Bochner generalized spaces, denoted by Lp(0, 1;W s,q(0, G(x1))) for s > 0, are
defined by

Lp(0, 1;W s,q(0, G(x1))) := {u ∈ Lp(0, 1;Lq(0, G(x1)));u(x1, ·) ∈W s,q(0, G(x1))}.
Such spaces are Banach with the norm

‖u‖Lp(0,1;W s,q(0,G(x1))) =


(∫ 1

0
‖u(x1, ·)‖pW s,q(0,G(x1))dx1

)1/p

, p <∞,
ess sup

x1∈(0,1)

‖u(x1, ·)‖W s,q(0,G(x1)), p =∞,
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and, again, they are Hilbert spaces if p = q = 2.
In general, it follows from [17, Proposition 3.59] that, if H is a Hilbert space and 1 ≤ p < ∞, then the

dual space of Lp(0, 1;H) is given by

[Lp(0, 1;H)]′ = Lq(0, 1;H ′),

where H ′ is the dual space of H and p, q are conjugates.

In our case we will consider the family of Lebesgue and Sobolev-Bochner generalized spaces for the func-
tion Gε(x1) = m(x1) + εg(x1/ε

α) defined in hypothesis H(i) from (2.2).

Now we set important and nontrivial results that will help us to work with different definitions of Sobolev
fractional spaces making their norms equivalent. The proofs are analogous to [12, Proposition 3.4, 3.5 and
3.6].

Lemma 3.4. Fixed ε > 0 and x1 ∈ (0, 1), if we call Iε = (0, Gε(x1)), there is a continuous linear exten-
sion operator P : L2(Iε) → L2(R) such that Pu = u in Iε, with ‖Pu‖L2(R) ≤ λ0‖u‖L2(Iε), ‖Pu‖Hs(R) ≤
λs‖u‖Hs(Iε) and ‖Pu‖H1(R) ≤ λ1‖u‖H1(Iε), for 0 < s < 1, where the constants λ0, λs, λ1 ≥ 1 are independent
of ε > 0 and x1 ∈ (0, 1).

Theorem 3.5. Let Iε = (0, Gε(x1)), with ε > 0, x1 ∈ (0, 1) and 0 < s < 1 fixed. Then there are C1, C2 > 0
independent of ε such that

C1‖u‖Hs(Iε) ≤ ‖u‖Hs
[]
(Iε) ≤ C2‖u‖Hs(Iε), ∀u ∈ Hs(Iε),

where Hs
[](Iε) is the complex interpolation space

Hs
[](Iε) = [L2(Iε), H

1(Iε)]s, for 0 < s < 1.

Proposition 3.6. For each ε > 0, H1(Ωε) ⊆ L2(0, 1;Hs(0, Gε(x1))) for all 0 ≤ s ≤ 1, with constant of
inclusion independent of ε. Besides H1(Ωε) ⊆ L2(0, 1;Hs(0, Gε(x1))) with compact immersion if 0 < s < 1.

According to the properties of our domains Ωε defined in (2.2), we also have the important result.

Proposition 3.7. The family Ωε admits a continuous extension operator Pε : L2(Ωε) → L2(U), where the
open set U = U1 × U2 ⊂ R2 is such that the closure of Ωε is contained in U for all ε > 0, and

‖Pεuε‖H1(U) ≤ C0‖uε‖H1(Ωε),

‖Pεuε‖L2(U1;Hs(U2)) ≤ Cs‖uε‖L2(0,1;Hs(0,Gε(x))),

‖Pεuε‖L2(U) ≤ C1‖uε‖L2(Ωε),

where the constants C0, Cs, C1 > 0 are independent of ε > 0 and 0 ≤ s ≤ 1.

Proof. By hypothesis H(i), we have |G′ε(x)| ≤ C for all x ∈ (0, 1), with C > 0 independent of ε > 0. Thus,
the proof follows from the extension operator defined in [10, Lemma 3.1]. �

Our next step is to prove some inclusions involving Sobolev fractional spaces and Sobolev-Bochner gen-
eralized spaces that will be useful in the further analysis of concentrating integrals.

Proposition 3.8. For ε > 0 and considering the domains defined in (2.2), the following inclusions hold
with immersion constants independent of ε.

(a) H1(Ωε) ⊂ L∞(0, 1;L2(0, Gε(x)));
(b) if q ≥ 2 then H1(Ωε) ⊂ Lq(0, 1;Hs(0, Gε(x))), where s = 2/q;
(c) H1(Ωε) ⊂ Lq(Ωε), for 2 ≤ q ≤ 6.

Proof. (a) For each x1 ∈ (0, 1), we can use the extension operator given by Proposition 3.7 to get

‖u(x1, ·)‖L2(0,Gε(x1)) ≤ ‖Pεu(x1, ·)‖L2(0,G1).
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Hence,

‖u‖L∞(0,1;L2(0,Gε(x1))) ≤ ‖Pεu‖L∞(0,1;L2(0,G1)). (3.1)

From [15, Corollary 1.4.36] follows that

‖Pεu‖L∞(0,1;L2(0,G1)) ≤ C‖Pεu‖H1(0,1;L2(0,G1)) ≤ C‖Pεu‖H1(U). (3.2)

Thus, using (3.2) in (3.1), and the continuity of Pε with constant C1 = ‖Pε‖L(H1(Ωε),H1(U)) uniformly
bounded for each ε, we have

‖u‖L∞(0,1;L2(0,Gε(x1))) ≤ C‖Pεu‖H1(U) ≤ CC1‖u‖H1(Ωε),

which concludes the proof.
(b) First of all, let q ≥ 2 and define s = 2/q, 0 < s ≤ 1. For each x1 ∈ (0, 1) fixed, we have by Theorem 3.5

and properties of interpolation spaces that there exists C > 0, independent of ε and x1, such that

‖u(x1, ·)‖Hs(0,Gε(x1)) ≤ C‖u(x1, ·)‖Hs
[]
(0,Gε(x1)) ≤ C‖u(x1, ·)‖1−sL2(0,Gε(x1))‖u(x1, ·)‖sH1(0,Gε(x1)).

Since by the item (a) H1(Ωε) ⊂ L∞(0, 1;L2(0, Gε(x1))), we have that

‖u(x1, ·)‖Hs(0,Gε(x1)) ≤ C‖u‖1−sH1(Ωε)‖u(x1, ·)‖sH1(0,Gε(x1)).

On the other hand, Proposition 3.6 implies H1(Ωε) ⊂ L2(0, 1;H1(0, Gε(x1))), and then,

‖u‖qLq(0,1;Hs(0,Gε(x1))) =

∫ 1

0

‖u(x1, ·)‖2/sHs(0,Gε(x1))dx1

≤
∫ 1

0

(
C‖u‖1−sH1(Ωε)‖u(x1, ·)‖sH1(0,Gε(x1))

)2/s

dx1

≤ C2/s‖u‖2(1−s)/s
H1(Ωε)

∫ 1

0

‖u(x1, ·)‖2H1(0,Gε(x1))dx1

≤ C2/s‖u‖2(1−s)/s
H1(Ωε) ‖u‖

2
H1(Ωε) = C2/s‖u‖2/sH1(Ωε) = Cq‖u‖qH1(Ωε).

Thus, H1(Ωε) ⊆ Lq(0, 1;H2/q(0, Gε(x1))) for q ≥ 2.
(c) Since Lq(Ωε) = Lq(0, 1;Lq(0, Gε(x1))) isometrically, we conclude the proof by item (b) if we show

H2/q(0, Gε(x1)) ⊆ Lq(0, Gε(x1))

with constant of inclusion independent of x1 ∈ (0, 1) and ε > 0.
If q = 2, it follows from the definition of the spaces. If 2 < q ≤ 4, then 1/2 ≤ 2/q < 1. Hence, by [27,

Theorem 1.36] we get

H2/q(R) ⊆ H1/2(R) ⊆ Lr(R), ∀r ≥ 2.

In particular, it holds for r = q with 2 ≤ q ≤ 4. Besides, by the operator P : Hs(0, Gε(x1)) → Hs(R)
from Lemma 3.4, whose norm is independent of ε > 0 and x1 ∈ (0, 1) for any 1/2 < s < 1, we have

‖u(x1, ·)‖Lq(0,Gε(x1)) ≤ ‖Pu(x1, ·)‖Lq(R) ≤ C‖Pu(x1, ·)‖H1/2(R)

≤ C‖Pu(x1, ·)‖H2/q(R) ≤ C‖P‖‖u(x1, ·)‖H2/q(0,Gε(x1)).

Finally, if 4 < q ≤ 6, then 1/3 ≤ 2/q < 1/2. Again by [27, Theorem 1.36], we get

H2/q(R) ⊆ Lr(R), ∀2 ≤ r ≤ 2

1− 2s
.

In particular, since q =
2

s
≤ 2

1− 2s
, we obtain that

H2/q(R) ⊆ Lq(R).

Hence, we conclude the proof arguing as in the previous case 2 ≤ q ≤ 4.
�
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4. Concentrating integrals and its behavior at the limit

Our first results are about concentrating integrals. Notice that some estimates are given in different
functional spaces. Under the conditions of Proposition 3.8, we may improve [12, Theorem 3.7] estimating
the concentrated integrals with the H1(Ωε) norm.

Theorem 4.1. For ε0 > 0 sufficiently small, there is a constant C > 0, independent of ε ∈ (0, ε0) and
uε ∈ H1(Ωε), such that, for all 1/2 < s ≤ 1, 0 < ε < ε0, we have

1

ε

∫
θε

|uε|q ≤ C‖uε‖qLq(0,1;Hs(0,Gε(x1))), ∀q ≥ 1, (4.1)

and

1

ε

∫
θε

|uε|2 ≤ C

(
‖uε‖2Hs(Ωε) +

∥∥∥∥∂uε∂x2

∥∥∥∥2

L2(Ωε)

)
. (4.2)

In particular,
1

ε

∫
θε

|uε|q ≤ C‖uε‖qH1(Ωε), 2 ≤ q < 4. (4.3)

Proof. Take u ∈ H1(Ωε). In a.e. x1 ∈ (0, 1), we have u(x1, ·) ∈ H1(0, Gε(x1)). Define

z∗ := G0 − ε0H1 and zε := Gε(x1)− εHε(x1)

for ε0 > 0 sufficiently small in such way that, for all ε < ε0, we have

[zε − z∗, zε] ⊂ [0, Gε(x1)].

See Figure 2 for a representation:

Figure 2. Fixed x1 ∈ (0, 1) and ε > 0, we get this fiber to the oscillatory domain for ε < ε0.

Since (Gε(x1)− εHε(x1)) < x2 < Gε(x1) and 1/2 < s ≤ 1, it follows from [20, Theorem 1.5.1.3] for n = 1
that there exists K > 0 independent of ε > 0 such that

|u(x1, x2)| ≤ K‖u(x1, ·)‖Hs(x2−z∗,x2) ≤ K‖u(x1, ·)‖Hs(0,Gε(x1)).

Indeed, the interval where we are applying the result is fixed and independent of the parameters ε > 0 and
x1 ∈ (0, 1).

Hence,

1

ε

∫
θε

|u|q =

∫ 1

0

1

ε

∫ Gε(x1)

Gε(x1)−εHε(x1)

|u(x1, x2)|qdx2dx1

≤
∫ 1

0

1

ε

∫ Gε(x1)

Gε(x1)−εHε(x1)

Kq‖u(x1, ·)‖qHs(0,Gε(x1))dx2dx1

≤ KqH1

∫ 1

0

‖u(x1, ·)‖qHs(0,Gε(x1))dx1 = C1‖u‖qLq(0,1;Hs(0,Gε(x1))),
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where C2 is independent of ε, proving (4.1).
Consequently, taking q = 2/s, since by Proposition 3.8(b) we have H1(Ωε) ⊂ Lq(0, 1;Hs(0, Gε(x1))) for

1/2 < s ≤ 1 with constant independent of ε, it follows that

1

ε

∫
θε

|u|q ≤ Kq

∫ 1

0

‖u(x1, ·)‖qHs(0,Gε(x1))dx1

= Kq‖u‖qLq(0,1;Hs(0,Gε(x1))) ≤ C‖u‖
q
H1(Ωε),

proving (4.3).
Now, let us prove (4.2). Here we use that C∞(Ωε) is dense in H1(Ωε) (see [20, Theorem 1.4.2.2]). Let

u ∈ C∞(Ωε) and fixed x1 ∈ (0, 1). By Fundamental Theorem of Calculus, we have

u(x1, x2) = u(x1, 0) +

∫ x2

0

∂u

∂x2
(x1, s)ds.

Then

|u(x1, x2)|2 ≤ 2|u(x1, 0)|2 + 2

(∫ x2

0

∣∣∣∣ ∂u∂x2
(x1, s)

∣∣∣∣2 ds
)1/2(∫ x2

0

12ds

)1/2
2

≤ 2|u(x1, 0)|2 + 2Gε(x1)

∫ x2

0

∣∣∣∣ ∂u∂x2
(x1, s)

∣∣∣∣2 ds.
Consequently,∫ Gε(x1)

Gε(x1)−εHε(x1)

|u(x1, x2)|2dx2 ≤ 2

∫ Gε(x1)

Gε(x1)−εHε(x1)

|u(x1, 0)|2dx2

+ 2Gε(x1)

∫ Gε(x1)

Gε(x1)−εHε(x1)

(∫ x2

0

∣∣∣∣ ∂u∂x2
(x1, s)

∣∣∣∣2 ds
)
dx2

≤ 2εH1|u(x1, 0)|2 + 2G1εH1

∫ Gε(x1)

0

∣∣∣∣ ∂u∂x2
(x1, x2)

∣∣∣∣2 dx2.

Hence, if γ(u) is the trace of u given by [20, Theorem 1.5.1.3], we get

1

ε

∫
θε

|u|2 =
1

ε

∫ 1

0

∫ Gε(x1)

Gε(x1)−εHε(x1)

|u(x1, x2)|2dx2dx1

≤ 2H1

∫ 1

0

|u(x1, 0)|2dx1 + 2G1H1

∫ 1

0

∫ Gε(x1)

0

∣∣∣∣ ∂u∂x2
(x1, x2)

∣∣∣∣2 dx2dx1

≤ 2H1

(
‖γ(u)‖2L2(0,1) +G1

∥∥∥∥ ∂u∂x2

∥∥∥∥2

L2(Ωε)

)
.

On the other hand, if Ω0 = (0, 1)× (0, G0), we have Ω0 ⊂ Ωε, and there exists a constant c > 0 such that
‖γ(u)‖L2(0,1) ≤ c‖u‖Hs(Ω0) for all 1/2 < s ≤ 1. Then, due to the previous inequality,

1

ε

∫
θε

|u|2 ≤ 2H1

(
c‖u‖2Hs(Ω0) +G1

∥∥∥∥ ∂u∂x2

∥∥∥∥2

L2(Ωε)

)
≤ C1

(
‖u‖2Hs(Ωε) +

∥∥∥∥ ∂u∂x2

∥∥∥∥2

L2(Ωε)

)
with C1 independent of ε. �

Notice that the above theorem is important because give us a better range of estimates with the H1(Ωε)
norm. However, the space may still varies with respect to the parameter ε.

Now we may study the behavior of the integrals which set the problem. We start analyzing the terms
without concentration.
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Proposition 4.2. Let U ⊂ R2 an open set such that Ωε ⊂ U for all ε > 0. If u, ϕ ∈ H1(U) then∫
Ωε

u(x1, x2)ϕ(x1, x2)dx2dx1 −→
∫

Ω

u(x1, x2)ϕ(x1, x2)dx2dx1, as ε→ 0.

Proof. Using [20, Theorem 1.4.2.1], we know that

C∞c (Ū) := {u ∈ C∞(U); u = v|U , com v ∈ C∞c (R2)}

is dense in H1(U). Hence, we can assume u, ϕ ∈ C∞c (Ū). Then, since Gε(x1) = m(x1) + εgε(x1), where
gε(x1) = g(x1/ε

α) with 0 < α ≤ 1, performing the change of variables

y1 = x1, y2 =
x2 −m(x1)

εgε(x1)
,

we get∫
Ωε

u(x1, x2)ϕ(x1, x2)dx2dx1 =

∫ 1

0

∫ m(x1)+εgε(x1)

0

u(x1, x2)ϕ(x1, x2)dx2dx1

=

∫ 1

0

∫ m(x1)

0

u(x1, x2)ϕ(x1, x2)dx2dx1 +

∫ 1

0

∫ m(x1)+εgε(x1)

m(x1)

u(x1, x2)ϕ(x1, x2)dx2dx1

=

∫
Ω

u(x1, x2)ϕ(x1, x2)dx2dx1 + ε

∫ 1

0

∫ 1

0

u(y1,m(y1) + y2εgε(y1))ϕ(y1,m(y1) + y2εgε(y1))gε(y1)dy2dy1

→
∫

Ω

u(x1, x2)ϕ(x1, x2)dx2dx1,

since u, ϕ ∈ C∞c (Ū) and gε(x1) is bounded by Hypothesis H(i) from the domain (2.2). Thus the result is
valid through density properties. �

We can also prove results concerning to the behavior of the trace operator at ε = 0. Notice that, at the
limit, a coefficient term appears capturing the geometry of the oscillating domain Ωε and the oscillatory
strip θε.

Proposition 4.3. Let U ⊂ R2 an open set such that Ωε ⊂ U for all ε > 0. If u, ϕ ∈ H1(U) then

1

ε

∫
θε

u(x1, x2)ϕ(x1, x2)dx2dx1 −→
∫

Γ

µ̂γ(u)γ(ϕ)dS, as ε→ 0,

where γ is the trace operator given by [20, Theorem 1.5.1.3] and µ̂ given by (2.5).

Proof. Again, due to [20, Theorem 1.4.2.1], we know that

C∞c (Ū) := {u ∈ C∞(U); u = v|U , com v ∈ C∞c (R2)}

is dense in H1(U) and we can assume u, ϕ ∈ C∞c (Ū). Then, performing the change of variables

y1 = x1, y2 =
x2 −Gε(x1) + εHε(x1)

εHε(x1)
,

we get

1

ε

∫
θε

u(x1, x2)ϕ(x1, x2)dx2dx1 =
1

ε

∫ 1

0

∫ Gε(x1)

Gε(x1)−εHε(x1)

u(x1, x2)ϕ(x1, x2)dx2dx1

=

∫ 1

0

∫ 1

0

u(y1, Gε(y1)− εHε(y1)(1− y2))ϕ(y1, Gε(y1)− εHε(y1)(1− y2))Hε(y1)dy2dy1

=

∫ 1

0

∫ 1

0

(u(y1, Gε(y1)− εHε(y1)(1− y2))− u(y1,m(y1)))

ϕ(y1, Gε(y1)− εHε(y1)(1− y2))Hε(y1)dy2dy1
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+

∫ 1

0

∫ 1

0

u(y1,m(y1))(ϕ(y1, Gε(y1)− εHε(y1)(1− y2))− ϕ(y1,m(y1)))Hε(y1)dy2dy1

+

∫ 1

0

∫ 1

0

u(y1,m(y1))ϕ(y1,m(y1))(Hε(y1)− µh)dy2dy1 + µh

∫ 1

0

u(y1,m(y1))ϕ(y1,m(y1))dy1

−→ µh

∫ 1

0

u(y1,m(y1))ϕ(y1,m(y1))µhdy1, as ε→ 0,

since Gε → m when ε→ 0 by Hypothesis H(i) from the domain (2.2). Finally, we obtain∫ 1

0

µhu(y1,m(y1))ϕ(x1,m(x1))dy1 =

∫
Γ

µ̂γ(u)γ(ϕ)dS

changing variables on the line integral, where µ̂ is given by (2.5), proving the result using density and trace
operator properties. �

Remark 4.4. The function µ̂ given by (2.5) is independent of the parametrization chosen in Γ and, therefore,
is unique.

We also have similar results to nonlinearities Φ, f .

Corollary 4.5. Let U ⊂ R2 an open set such that Ωε ⊂ U for all ε > 0. If u, ϕ ∈ H1(U) and Φ, f : R→ R
bounded functions of class C1, then∫

Ωε

Φ(u(x1, x2))ϕ(x1, x2)dx2dx1 →
∫

Ω

Φ(u(x1, x2))ϕ(x1, x2)dx2dx1

and

1

ε

∫
θε

f(u(x1, x2))ϕ(x1, x2)dx2dx1 →
∫

Γ

µ̂γ(f(u))γ(ϕ)dS,

as ε→ 0, where γ is the trace operator given by [20, Theorem 1.5.1.3] and µ̂ ∈ L∞(Γ) is the coefficient given
by (2.5).

Proof. Arguing as in the proof of Propositions 4.2 and 4.3, we can assume u, ϕ ∈ C∞c (Ū). Then, using the
same change of variables as before and noting that f is C1, we have, for instance,

1

ε

∫
θε

f(u)ϕdx2dx1 =
1

ε

∫ 1

0

∫ Gε(x1)

Gε(x1)−εHε(x1)

f(u(x1, x2))ϕ(x1, x2)dx2dx1

=

∫ 1

0

∫ 1

0

f(u(y1, Gε(y1)− εHε(y1)(1− y2)))ϕ(y1, Gε(y1)− εHε(y1)(1− y2))Hε(y1)dy2dy1

→
∫

Γ

µ̂γ(f(u))γ(ϕ)dS, as ε→ 0.

The other convergence is analogous. �

The following corollaries possess similar proofs.

Corollary 4.6. Let U ⊂ R2 an open set such that Ωε ⊂ U for all ε > 0. If u, ϕ, ψ ∈ H1(U), then∫
Ωε

u(x1, x2)ϕ(x1, x2)ψ(x1, x2)dx2dx1 →
∫

Ω

u(x1, x2)ϕ(x1, x2)ψ(x1, x2)dx2dx1

and

1

ε

∫
θε

u(x1, x2)ϕ(x1, x2)ψ(x1, x2)dx2dx1 →
∫

Γ

µ̂γ(u)γ(ϕ)γ(ψ)dS,

as ε→ 0, where γ is the trace operator given by [20, Theorem 1.5.1.3] and µ̂ ∈ L∞(Γ) is the coefficient given
by (2.5).
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Corollary 4.7. Let U ⊂ R2 an open set such that Ωε ⊂ U for all ε > 0. If u, ϕ, ψ ∈ H1(U) and f,Φ : R→ R
bounded functions of class C1, then∫

Ωε

Φ(u(x1, x2))ϕ(x1, x2)ψ(x1, x2)dx2dx1 →
∫

Ω

Φ(u(x1, x2))ϕ(x1, x2)ψ(x1, x2)dx2dx1

and
1

ε

∫
θε

f(u(x1, x2))ϕ(x1, x2)ψ(x1, x2)dx2dx1 →
∫

Γ

µ̂γ(f(u))γ(ϕ)γ(ψ)dS,

as ε→ 0, where γ is the trace operator given by [20, Theorem 1.5.1.3] and µ̂ ∈ L∞(Γ) is the coefficient given
by (2.5).

5. Nonlinear maps

In this section we discuss the main properties of the maps used to describe the reaction terms on the
nonlinearities of the elliptic problems (2.1) and (2.4). For 1/2 < s < 1, consider the Sobolev-Bochner spaces

Xε = L2(0, 1;Hs(0, Gε(x1))) and X ′ε = L2(0, 1; {Hs(0, Gε(x1))}′).
Then define

Fε : H1(Ωε)→ X ′ε

u 7→ Fε(u) : Xε → R (5.1)

v 7→ 〈Fε(u), v〉 =

∫
Ωε

Φ(u)v +
1

ε

∫
θε

f(u)v,

where Φ, f ∈ C2(R) are bounded functions with bounded derivatives.

Remark 5.1. Notice that the assumption Φ, f ∈ C2(R) bounded with bounded derivatives it is not a big
restriction since we are interested in analyze f(u) when u is uniformly bounded in L∞(Ωε). More details
can be found in [9, Remark 2.2] or [7, Remark 2.2].

Remark 5.2. Notice that L2(Ωε) ⊂ Xε with constant independent of ε. Indeed, it follows from [25, Propo-
sition 2.1] that, if u ∈ Xε,

‖u‖2L2(Ωε) =

∫ 1

0

∫ Gε(x1)

0

|u(x1, x2)|2dx2dx1 =

∫ 1

0

‖u(x1, ·)‖2L2(0,Gε(x1))dx1

≤
∫ 1

0

C‖u(x1, ·)‖2Hs(0,Gε(x1))dx1 = C‖u‖2Xε
,

where C > 0 is independent of the domain and, furthermore, of ε.

Now we prove an analogous result to [6, Lemma 3.6] and [26, Lemma 3.1].

Proposition 5.3. The function Fε defined in (5.1) satisfies for constants independent of ε:

(a) there exists K > 0 such that
sup

uε∈H1(Ωε)

‖Fε(uε)‖X′ε ≤ K;

(b) Fε is globally Lipschitz continuous, that is, there exists L > 0 such that

‖Fε(uε1)− Fε(uε2)‖X′ε ≤ L‖u
ε
1 − uε2‖H1(Ωε), ∀uε1, uε2 ∈ H1(Ωε).

(c) Fε is Frechet differentiable, with

F ′ε : H1(Ωε)→ L(H1(Ωε), X
′
ε)

uε 7→ F ′ε(u
ε) : H1(Ωε)→ X ′ε

wε 7→ F ′ε(u
ε)(wε) : Xε → R

vε 7→ 〈F ′ε(uε)(wε), vε〉 =

∫
Ωε

Φ′(uε)wεvε +
1

ε

∫
θε

f ′(uε)wεvε;
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(d) fixed uε ∈ H1(Ωε), there is C̄ > 0 such that

‖F ′ε(uε)(wε2 − wε1)‖X′ε ≤ C̄‖w
ε
2 − wε1‖H1(Ωε), ∀wε1, wε2 ∈ H1(Ωε);

(e) there are ϑ ∈ (0, 1) and M > 0 such that

‖F ′ε(uε)− F ′ε(vε)‖L(H1(Ωε),X′ε) ≤M‖uε − vε‖ϑXε
, ∀uε, vε ∈ Xε;

(f) there is k > 0 such that

‖Fε(uε + vε)− Fε(uε)− F ′ε(uε)vε‖X′ε ≤ k‖v
ε‖1+δ
H1(Ωε), ∀δ ∈ (0, 1), ∀uε, vε ∈ H1(Ωε).

Proof. (a) For uε ∈ H1(Ωε),

‖Fε(uε)‖X′ε = sup
‖vε‖Xε=1

|〈Fε(uε), vε〉|.

Hence, if vε ∈ Xε, it follows from Theorem 4.1 and Remark 5.2 that

|〈Fε(uε), vε〉| ≤
∫

Ωε

|Φ(uε)vε|+ 1

ε

∫
θε

|f(uε)vε|

≤
(∫

Ωε

|Φ(uε)|2
) 1

2
(∫

Ωε

|vε|2
) 1

2

+

(
1

ε

∫
θε

|f(uε)|2
) 1

2
(

1

ε

∫
θε

|vε|2
) 1

2

≤
(

sup
x∈R
|Φ(x)|

)
G

1/2
1 ‖vε‖L2(Ωε) +

(
sup
x∈R
|f(x)|

)
H

1/2
1 C‖vε‖Xε

≤ K‖vε‖Xε

Therefore

sup
uε∈H1(Ωε)

‖Fε(uε)‖X′ε ≤ K.

(b) Indeed, for any uε1, u
ε
2 ∈ H1(Ωε), we have

‖Fε(uε1)− Fε(uε2)‖X′ε = sup
‖vε‖Xε=1

|〈Fε(uε1), vε〉 − 〈Fε(uε2), vε〉|.

Using Mean Value Theorem, with Theorem 4.1 and Remark 5.2 again, we get

|〈Fε(uε1), vε〉 − 〈Fε(uε2), vε〉| = |〈Fε(uε1)− Fε(uε2), vε〉|

≤
∫

Ωε

|(Φ(uε1)− Φ(uε2))vε|+ 1

ε

∫
θε

|(f(uε1)− f(uε2))vε|

≤
(∫

Ωε

|Φ(uε1)− Φ(uε2)|2
)1/2(∫

Ωε

|vε|2
)1/2

+

(
1

ε

∫
θε

|f(uε1)− f(uε2)|2
)1/2(

1

ε

∫
θε

|vε|2
)1/2

≤
(

sup
x∈R
|Φ′(x)|

)
‖uε1 − uε2‖L2(Ωε)‖vε‖L2(Ωε) +

(
sup
x∈R
|f ′(x)|

)
C2‖uε1 − uε2‖H1(Ωε)‖vε‖Xε

≤ L‖uε1 − uε2‖H1(Ωε)‖vε‖Xε
.

Thus

‖Fε(uε1)− Fε(uε2)‖X′ε ≤ L‖u
ε
1 − uε2‖H1(Ωε)

and, therefore, Fε is globally Lipschitz with constant independent of ε.

(c) In fact, if uε, hε ∈ H1(Ωε) and vε ∈ Xε, applying Mean Value Theorem,

|〈Fε(uε + hε)− Fε(uε)− F ′ε(uε)hε, vε〉| ≤

≤
∫

Ωε

|Φ(uε + hε)− Φ(uε)− Φ′(uε)hε||vε|+ 1

ε

∫
θε

|f(uε + hε)− f(uε)− f ′(uε)hε||vε|

≤
(∫

Ωε

|Φ(uε + hε)− Φ(uε)− Φ′(uε)hε|2
)1/2(∫

Ωε

|vε|2
)1/2

+
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+

(
1

ε

∫
θε

|f(uε + hε)− f(uε)− f ′(uε)hε|2
)1/2(

1

ε

∫
θε

|vε|2
)1/2

≤
(∫

Ωε

|(Φ′(ζε)− Φ′(uε))hε|2
)1/2

‖vε‖L2(Ωε) + C

(
1

ε

∫
θε

|(f ′(ξε)− f ′(uε))hε|2
)1/2

‖vε‖Xε
(5.2)

where uε(x) ≤ ξε(x), ζε(x) ≤ (uε + hε)(x).
We will analyze the second part of (5.2). Notice that, applying Mean Value Theorem again, we get

|(f ′(ξε)− f ′(uε))hε|2 ≤ |f ′′(ηε)|2|ξε − uε|2|hε|2 ≤
(

sup
x∈R
|f ′′(x)|

)
|hε|4 (5.3)

for ξε(x) ≤ ηε(x) ≤ uε(x), for all x ∈ Ωε.
On the other side,

|(f ′(ξε)− f ′(uε))hε|2 = |f ′(ξε)− f ′(uε)|2|hε|2 ≤ 2

(
sup
x∈R
|f ′(x)|

)2

|hε|2. (5.4)

Then putting (5.3) and (5.4) together, we have

|(f ′(ξε)− f ′(uε))hε|2 ≤ K min{|hε|2, 1}|hε|2. (5.5)

However, for all δ ∈ [0, 1],

min{|hε|2, 1} = min{|hε|2, 1}δ min{|hε|2, 1}1−δ ≤ |hε|2δ

and, thus, (5.5) became

|(f ′(ξε)− f ′(uε))hε|2 ≤ K2|hε|2(1+δ), ∀δ ∈ [0, 1].

Analogously, using the properties of Φ we may say that, for the first part of (5.2),

|(Φ′(ζε)− Φ′(uε))hε|2 ≤ K1|hε|2(1+δ), ∀δ ∈ [0, 1].

Then it follows from (5.2) and using Remark 5.2 that

|〈Fε(uε + hε)− Fε(uε)− F ′ε(uε)hε, vε〉| ≤ K1

(∫
Ωε

|hε|2(1+δ)

)1/2

‖vε‖Xε +K2

(
1

ε

∫
θε

|hε|2(1+δ)

)1/2

‖vε‖Xε .

Furthermore, if δ ∈ (0, 1), we can use Theorem 4.1 to get

‖Fε(uε + hε)− Fε(uε)− F ′ε(uε)hε‖X′ε ≤ K1

(∫
Ωε

|hε|2(1+δ)

)1/2

+K2

(
1

ε

∫
θε

|hε|2(1+δ)

)1/2

≤ C‖hε‖1+δ
H1(Ωε).

Consequently,

lim
‖hε‖H1(Ωε)→0

‖Fε(uε + hε)− Fε(uε)− F ′ε(uε)hε‖X′ε
‖hε‖H1(Ωε)

≤ lim
‖hε‖H1(Ωε)→0

C2‖hε‖δH1(Ωε) = 0

and thus Fε is Frechet differentiable.

(d) Indeed, since Φ,Φ′,Φ′′, f, f ′, f ′′ are bounded, if wε1, w
ε
2 ∈ H1(Ωε) and vε ∈ Xε, we have by Theorem 4.1

|〈F ′ε(uε)wε2 − F ′ε(uε)wε1, vε〉| ≤
∫

Ωε

|(Φ′(uε)wε2 − Φ′(uε)wε1)vε|+ 1

ε

∫
θε

|(f ′(uε)wε2 − f ′(uε)wε1)vε|

≤
(

sup
x∈R
|Φ′(x)|

)(∫
Ωε

|wε2 − wε1|2
)1/2(∫

Ωε

|vε|2
)1/2

+

(
sup
x∈R
|f ′(x)|

)(
1

ε

∫
θε

|wε2 − wε1|2
)1/2(

1

ε

∫
θε

|vε|2
)1/2

≤ C‖wε2 − wε1‖H1(Ωε)‖v‖Xε
.

It follows that
‖F ′ε(uε)(wε2 − wε1)‖X′ε ≤ C‖w

ε
2 − wε1‖H1(Ωε),

proving the result.
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(e) If uε, vε ∈ H1(Ωε) and wε ∈ Xε,

‖F ′ε(uε)− F ′ε(vε)‖L(H1(Ωε),X′ε) = sup
‖wε‖H1(Ωε)=1

sup
‖zε‖Xε=1

〈(F ′ε(uε)− F ′ε(vε))wε, zε〉.

Hence, if wε ∈ H1(Ωε) and zε ∈ Xε, it follows from Theorem 4.1 and Hölder Inequality Generalized
with 3 < q < 4 and 4 < p < 6 (since 1/p+ 1/q = 1/2) that

|〈(F ′ε(uε)− F ′ε(vε))wε, zε〉| ≤
∫

Ωε

|(Φ′(uε)− Φ′(vε))wεzε|+ 1

ε

∫
θε

|(f ′(uε)− f ′(vε))wεzε|

≤
(∫

Ωε

|Φ′(uε)− Φ′(vε)|p
)1/p(∫

Ωε

|wε|q
)1/q (∫

Ωε

|zε|2
)1/2

+

+

(
1

ε

∫
θε

|f ′(uε)− f ′(vε)|p
)1/p(

1

ε

∫
θε

|wε|q
)1/q (

1

ε

∫
θε

|zε|2
)1/2

≤ C

[(∫
Ωε

|Φ′(uε)− Φ′(vε)|p
)1/p

+

(
1

ε

∫
θε

|f ′(uε)− f ′(vε)|p
)1/p

]
‖wε‖H1(Ωε)‖zε‖Xε .

Thus,

‖F ′ε(uε)− F ′ε(vε)‖L(H1(Ωε),X′ε) ≤

[(∫
Ωε

|Φ′(uε)− Φ′(vε)|p
)1/p

+

(
1

ε

∫
θε

|f ′(uε)− f ′(vε)|p
)1/p

]
.

Now, for all x ∈ Ωε, we have

|f ′(uε(x))− f ′(vε(x))| ≤ 2

(
sup
x∈R
|f ′(x)|

)
.

On the other hand, by Mean Value Theorem,

|f ′(uε(x))− f ′(vε(x))| ≤
(

sup
x∈R
|f ′′(x)|

)
|uε(x)− vε(x)|.

Thus, if ϑ ∈ (0, 1),

|f ′(uε)− f ′(vε)|p ≤ K1 min{1, |uε − vε|p}

= K1 min{1, |uε − vε|p}ϑ min{1, |uε − vε|p}1−ϑ

≤ K1|uε − vε|ϑp.

Taking ϑ such that ϑp = 2 (ie, for some 1/3 < ϑ < 1/2), it follows that(
1

ε

∫
θε

|f ′(uε)− f ′(vε)|p
)1/p

≤
(

1

ε

∫
θε

K1|uε − vε|2
)1/p

≤M1‖uε − vε‖ϑH1(Ωε).

In a similar way,(∫
Ωε

|Φ′(uε)− Φ′(vε)|p
)1/p

≤
(∫

Ωε

K̄2|uε − vε|2
)1/p

≤ M̄2‖uε − vε‖ϑH1(Ωε).

Furthermore, for some ϑ ∈ (0, 1),

‖F ′ε(uε)− F ′ε(vε)‖L(H1(Ωε),X′ε) ≤M‖uε − vε‖ϑH1(Ωε)

(f) If uε, vε ∈ H1(Ωε),

〈Fε(uε + vε)− Fε(uε)− F ′ε(uε)vε, wε〉 =

=

∫
Ωε

(Φ(uε + vε)− Φ(uε)− Φ′(uε)vε)wε +
1

ε

∫
θε

(f(uε + vε)− f(uε)− f ′(uε)vε)wε.
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Hence, we can argue as in the proof of item (c) to obtain, for any δ ∈ (0, 1), that

1

ε

∫
θε

|f(uε + vε)− f(uε)− f ′(uε)vε||wε| ≤

≤
(∫

Ωε

|Φ(uε + vε)− Φ(uε)− Φ′(uε)vε|2
)1/2(∫

Ωε

|wε|2
)1/2

+

+

(
1

ε

∫
θε

|f(uε + vε)− f(uε)− f ′(uε)vε|2
)1/2(

1

ε

∫
θε

|wε|2
)1/2

≤ C1

(∫
Ωε

|vε|2(1+δ)

)1/2

‖wε‖Xε
+ C2

(
1

ε

∫
θε

|vε|2(1+δ)

)1/2

‖wε‖Xε

≤ k‖vε‖1+δ
H1(Ωε)‖w

ε‖Xε
.

Therefore,

‖Fε(uε + vε)− Fε(uε)− F ′ε(uε)vε‖X′ε ≤ k‖v
ε‖1+δ
H1(Ωε), ∀δ ∈ (0, 1),

which concludes the proof.
�

Remark 5.4. The results from Proposition 5.3 are also valid if

Fε : H1(Ωε)→ H−1(Ωε)

u 7→ Fε(u) : H1(Ωε)→ R

v 7→ 〈Fε(u), v〉 =

∫
Ωε

Φ(u)v +
1

ε

∫
θε

f(u)v

or

Fε : Xε → H−1(Ωε)

u 7→ Fε(u) : H1(Ωε)→ R

v 7→ 〈Fε(u), v〉 =

∫
Ωε

Φ(u)v +
1

ε

∫
θε

f(u)v.

This is a consequence of Proposition 3.6 and Theorem 4.1.

6. Upper and lower semicontinuity of solutions

Our main goal in this section is to prove Theorem 2.7, passing to the limit in problem (2.1). First of all, we
write equations (2.1) and (2.4) in an abstract way. Next, we combine the results from the previous sections
with those ones from [7, 9] concerned with compact convergence to obtain upper and lower semicontinuity
to Eε at ε = 0.

6.1. Abstract setting and existence of solutions. In order to write problem (2.1) in an abstract way,
we consider the linear operator

Aε : D(Aε) ⊂ L2(Ωε)→ L2(Ωε)

uε 7→ Aεu
ε = −∆uε + uε

with D(Aε) = {uε ∈ H2(Ωε);
∂uε

∂νε = 0}.

Let Z0
ε = L2(Ωε), Z

1
ε = D(Aε) and consider the scale of Hilbert spaces constructed by complex inter-

polation between Z0
ε and Z1

ε . In our context, such spaces isometrically coincide with the fractional power
space of the operator Aε (see [27, Theorem 16.1]). Such scale can be extended to negative exponents such
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as Z−αε = (Zαε )′ for α > 0. Notice that Z
1/2
ε = H1(Ωε) and Z

−1/2
ε = (H1(Ωε))

′. Hence, if we consider the

realizations of Aε in this scale, we have Aε,−1/2 ∈ L(Z
1/2
ε , Z

−1/2
ε ) with

〈Aε,−1/2 u
ε, ϕε〉 =

∫
Ωε

∇uε∇ϕε + uεϕε, ∀ϕε ∈ H1(Ωε).

With some abuse of notation we identify all different realizations of this operator writing as Aε. Then
the problem (2.1) can be rewrite as

Aεu
ε = Fε(u

ε), (6.1)

where the map Fε is given by

Fε : H1(Ωε)→ X ′ε

uε 7→ Fε(u
ε) : L2(0, 1;Hs(0, Gε(x1)))→ R

vε 7→ 〈Fε(uε), vε〉 =

∫
Ωε

Φ(uε)vε +
1

ε

∫
θε

f(uε)vε,

with 1/2 < s < 1.
Thus, uε ∈ H1(Ωε) is a solution of (6.1) if, and only if, uε = A−1

ε Fε(u
ε). Then, uε ∈ H1(Ωε) must be a

fixed point of A−1
ε Fε : H1(Ωε)→ H1(Ωε). The existence of such solutions follows from Schaefer Fixed Point

Theorem [18, Section 9.2.2, Theorem 4].
Indeed, as we will see in Proposition 6.8, we have that the operator A−1

ε Fε is compact. Hence, to conclude
the existence, we just need to prove that

Oε = {ϕε ∈ H1(Ωε); ϕ
ε = A−1

ε Fε(ϕ
ε)}

is a bounded set. Now, it is a direct consequence from Hölder Inequality and Theorem 4.1 since

‖ϕε‖2H1(Ωε) ≤
∫

Ωε

|Φ(ϕε)ϕε|+ 1

ε

∫
θε

|f(ϕε)ϕε|

≤
(

sup
x∈R
|Φ(x)|

)
G

1/2
1

(∫
Ωε

|ϕε|2
)1/2

+

(
sup
x∈R
|f(x)|

)
H

1/2
1

(
1

ε

∫
θε

|ϕε|2
)1/2

≤ C‖ϕε‖H1(Ωε),

for any ϕε ∈ Oε.
In a similar way, we can analyze the limit problem given in (2.4). We first consider the linear operator

A0 ∈ L(H1(Ω), H1(Ω)
′
) with

〈A0 u, ϕ〉 =

∫
Ω

∇u∇ϕ+ uϕ, ∀ϕ ∈ H1(Ω),

and then, we set the nonlinearity

F0 : H1(Ω)→ L2(0, 1; {Hs(0,m(x1))}′)
u 7→ F0(u) : L2(0, 1;Hs(0,m(x1)))→ R

v 7→ 〈F0(u), v〉 =

∫
Ω

Φ(u)v +

∫
Γ

µ̂γ(f(u))γ(v)dS.

Then the limit problem (2.4) can be rewritten as

A0u = F0(u) (6.2)

and, with this notation, u ∈ H1(Ω) is a solution of (6.2) if, and only if, u = A−1
0 F0(u). In other words,

u ∈ H1(Ω) is a fixed point of A−1
0 F0 : H1(Ω) → H1(Ω). Again, the existence of a solution follows from

Schauder’s Fixed Point Theorem.
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6.2. Extension Operator. A particular continuous linear extension operator is useful here. For the proof
see [7, Proposition 4.1].

Proposition 6.1. Let Ωε be the family of domains defined in (2.2). Then, for each 1 ≤ p ≤ ∞, there
are ε0 > 0 and a continuous extension operator PΩε : L1(Ωε) → L1(R2) such that, with the notation
X(V ) = Lp(V ) or W 1,p(V ) for an open set V ⊂ R2, PΩε transforms functions of X(Ωε) in X(R2) with

‖PΩε
‖L(X(Ωε),X(R2)) ≤ K, for 0 < ε < ε0,

for some K > 0 independent of ε.
Moreover, PΩε is constructed in such way that PΩεu ≡ 0 outside an open set U , where U contain the

closure of Ωε for all ε > 0.

Remark 6.2. The construction of operators PΩε allows us to introduce a new family of operator PΩε,V :
X(Ωε)→ X(V ) given by PΩε,V = RV PΩε , where RV is the restriction to the open set V . Using this notation,
PΩε

= PΩε,R2 . We also have ‖PΩε,V ‖L(X(Ωε),X(V )) ≤ C independent of ε (see [7, Remark 4.2]).

The next lemma is convenient to get E-convergence results in Ωε (see [7, Lemma 4.3]).

Lemma 6.3. Let {uε} be a family in H1(Ωε) with ‖uε‖H1(Ωε) ≤M . Then

(i) there is a subsequence of uε, denoted by uεk , and u0 ∈ H1(Ω) such that uεk
E
⇀ u0;

(ii) there is a subsequence of uε, denoted by uεn , and u ∈ H1(U) such that PΩεn ,U
uεn ⇀ u in H1(U) and

uεn
E
⇀ u|Ω.

6.3. Continuity of the equilibria set. We first show that the solutions are uniformly bounded in L∞(Ωε).

Proposition 6.4. If uε ∈ H1(Ωε) is a solution of (6.1), then there is C > 0 independent of ε > 0 such that
‖uε‖L∞(Ωε) ≤ C.

Proof. If uε ∈ H1(Ωε) is solution of (6.1), we have for all ϕε ∈ H1(Ωε) that∫
Ωε

∂uε

∂x1

∂ϕε

∂x1
+

∫
Ωε

∂uε

∂x2

∂ϕε

∂x2
+

∫
Ωε

uεϕε =

∫
Ωε

Φ(uε)ϕε +
1

ε

∫
θε

f(uε)ϕε.

Now, for k > 0 take ϕε = (uε − k)+ ∈ H1(Ωε), where

(uε − k)+(x1, x2) =

{
uε(x1, x2)− k, if (x1, x2) ∈ Aε,k := {(x1, x2) ∈ Ωε; u

ε(x1, x2) > k},
0, otherwise.

Then we have that∫
Ωε

∂uε

∂x1

∂(uε − k)+

∂x1
+

∫
Ωε

∂uε

∂x2

∂(uε − k)+

∂x2
+

∫
Ωε

uε(uε − k)+ =

∫
Ωε

Φ(uε)(uε − k)+ +
1

ε

∫
θε

f(uε)(uε − k)+.

Thus using Hölder Inequality, Theorem 4.1 and the definition of Aε,k, we get

‖(uε − k)+‖2H1(Ωε) =

∫
Ωε∩Aε,k

Φ(uε)(uε − k)+ +
1

ε

∫
θε∩Aε,k

f(uε)(uε − k)+ −
∫

Ωε∩Aε,k

k(uε − k)+

≤

(∫
Ωε∩Aε,k

|Φ(uε)|2
)1/2(∫

Ωε∩Aε,k

|uε − k|2
)1/2

+

+

(
1

ε

∫
θε∩Aε,k

|f(uε)|2
)1/2(

1

ε

∫
θε∩Aε,k

|uε − k|2
)1/2

≤
(

sup
x∈R
|Φ(x)|

)
|Aε,k|1/2‖uε − k‖H1(Ωε) +

(
sup
x∈R
|f(x)|

)(
|θε||Aε,k|

ε

)1/2

‖uε − k‖H1(Ωε).

Since the set θε has order ε, we obtain that

‖uε − k‖H1(Ωε) ≤ C1|Aε,k|1/2 (6.3)
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where C1 > 0 is independent of ε > 0.
Otherwise, notice that for p, q conjugates (in other words, 1/p+ 1/q = 1) we have

‖(uε − k)+‖L1(Aε,k) =

∫
Aε,k

(uε − k) ≤

(∫
Aε,k

1p

)1/p(∫
Aε,k

(uε − k)q

)1/q

≤ |Aε,k|1/p‖(uε − k)‖Lq(Ωε). (6.4)

From Proposition 3.8(c), we have that H1(Ωε) ⊆ Lq(Ωε) for 2 ≤ q ≤ 4. Thus, taking 2 < q < 4 and its
conjugate 1 < p < 2, we obtain from (6.3) in (6.4) that

‖(uε − k)+‖L1(Aε,k) ≤ C2|Aε,k|1/p‖(uε − k)‖H1(Ωε) ≤ K|Aε,k|1/2+1/p = K|Aε,k|1+δ

for some δ > 0 since 1/2 < 1/p < 1.
Therefore, applying [23, Lemma 5.1] we obtain ‖uε‖L∞(Ωε) uniformly bounded, proving the result. �

We also need the following lemma.

Lemma 6.5. Let uε, wε ∈ H1(Ωε) given by wε = A−1
ε Fε(u

ε). Then ‖wε‖H1(Ωε) ≤ C for some C > 0
independent of ε.

Proof. Since wε = A−1
ε Fεu

ε, it follows that, for any ϕε ∈ H1(Ωε),∫
Ωε

∂wε

∂x1

∂ϕε

∂x1
+

∫
Ωε

∂wε

∂x2

∂ϕε

∂x2
+

∫
Ωε

wεϕε =

∫
Ωε

Φ(uε)ϕε +
1

ε

∫
θε

f(uε)ϕε.

Therefore, taking ϕε = wε, we have from Hölder Inequality, the limitation of Φ, f and Theorem 4.1 that

‖wε‖2H1(Ωε) ≤
(∫

Ωε

|Φ(uε)|2
)1/2(∫

Ωε

|wε|2
)1/2

+

(
1

ε

∫
θε

|f(uε)|2
)1/2(

1

ε

∫
θε

|wε|2
)1/2

≤
(

sup
x∈R
|Φ(x)|

)
G

1/2
1 ‖wε‖H1(Ωε) +

(
sup
x∈R
|f(x)|

)
H

1/2
1 ‖wε‖H1(Ωε) ≤ C‖wε‖H1(Ωε),

which shows the result. �

Next, we analyze the asymptotic behavior of the nonlinear terms of the problem.

Proposition 6.6. Let wε, uε ∈ H1(Ωε) and w, u ∈ H1(U) such that PΩε,U (uε) ⇀ u and PΩε,U (wε) ⇀ w in
H1(U), where PΩε,U is the extension operator given by Proposition 6.1. Then∫

Ωε

Φ(uε)wε →
∫

Ω

Φ(u)w and
1

ε

∫
θε

f(uε)wε →
∫

Γ

µ̂γ(f(u))γ(w)dS,

where µ̂ is given by (2.5).

Proof. To prove the first convergence, notice that using the Main Value Theorem we obtain∣∣∣∣∫
Ωε

Φ(uε)wε −
∫

Ω

Φ(u)w

∣∣∣∣ ≤ ∣∣∣∣∫
Ωε

Φ(uε)(wε − w)

∣∣∣∣+

∣∣∣∣∫
Ωε

(Φ(uε)− Φ(u))w

∣∣∣∣+

∣∣∣∣∫
Ωε

Φ(u)w −
∫

Ω

Φ(u)w

∣∣∣∣
≤
(∫

Ωε

|Φ(uε)|2
)1/2(∫

Ωε

|wε − w|2
)1/2

+

(∫
Ωε

|Φ(uε)− Φ(u)|2
)1/2(∫

Ωε

|w|2
)1/2

+

+

∣∣∣∣∫
Ωε

Φ(u)w −
∫

Ω

Φ(u)w

∣∣∣∣
≤
(

sup
x∈R
|Φ(x)|

)
G

1/2
1 ‖wε − w‖L2(Ωε) +

(
sup
x∈R
|Φ′(x)|

)
‖uε − u‖Xε‖w‖L2(Ωε)+

+

∣∣∣∣∫
Ωε

Φ(u)w −
∫

Ω

Φ(u)w

∣∣∣∣ = i+ ii+ iii
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Since PΩε,U (uε) ⇀ u and PΩε,U (wε) ⇀ w in H1(U), we have that PΩε,U (uε) → u and PΩε,U (wε) → w
in L2(U). Using that Φ and Φ′ are uniformly bounded and properties from the extension operator given by
Proposition 6.1, we obtain

i =

(
sup
x∈R
|Φ(x)|

)
G

1/2
1 ‖wε − w‖L2(Ωε) ≤

(
sup
x∈R
|f(x)|

)
H

1/2
1 ‖PΩε,Uw

ε − w‖L2(U) → 0

and

ii =

(
sup
x∈R
|Φ′(x)|

)
‖uε − u‖L2(Ωε)‖w‖L2(Ωε) ≤

(
sup
x∈R
|f ′(x)|

)
‖PΩε,Uu

ε − u‖L2(U)‖‖w‖L2(U) → 0.

Since iii→ 0 by Corollary 4.5, we obtain the first result.

On the other side, to prove the second convergence we have∣∣∣∣1ε
∫
θε

f(uε)wε −
∫

Γ

µ̂γ(f(u))γ(w)dS

∣∣∣∣ ≤ ∣∣∣∣1ε
∫
θε

f(uε)(wε − w)

∣∣∣∣+

∣∣∣∣1ε
∫
θε

(f(uε)− f(u))w

∣∣∣∣+
+

∣∣∣∣1ε
∫
θε

f(u)w −
∫

Γ

µ̂γ(f(u))γ(w)dS

∣∣∣∣
≤
(

1

ε

∫
θε

|f(uε)|2
)1/2(

1

ε

∫
θε

|wε − w|2
)1/2

+

(
1

ε

∫
θε

|f(uε)− f(u)|2
)1/2(

1

ε

∫
θε

|w|2
)1/2

+

+

∣∣∣∣1ε
∫
θε

f(u)w −
∫

Γ

µ̂γ(f(u))γ(w)dS

∣∣∣∣
≤
(

sup
x∈R
|f(x)|

)
H

1/2
1 ‖wε − w‖Xε

+

(
sup
x∈R
|f ′(x)|

)
‖uε − u‖Xε

‖w‖H1(Ωε)+

+

∣∣∣∣1ε
∫
θε

f(u)w −
∫

Γ

µ̂γ(f(u))γ(w)dS

∣∣∣∣ = I + II + III,

with Xε = L2(0, 1;Hs(0, Gε(x1))) for 1/2 < s < 1.
Notice that, since we are working on R2, U ⊂ U1 × U2, with U1, U2 ⊂ R open sets, (0, 1) ⊂ U1 and

(0, Gε(x1)) ⊂ U2 for all x1 ∈ (0, 1) and 0 < ε < ε0. Therefore H1(U) ⊂ H1(U1 × U2) ⊂ L2(U1;Hs(U2)) =:
XU , where the last inclusion is compact by Proposition 3.6. Thus

I =

(
sup
x∈R
|f(x)|

)
H

1/2
1 ‖wε − w‖Xε

≤
(

sup
x∈R
|f(x)|

)
H

1/2
1 ‖PΩε,Uw

ε − w‖XU
→ 0

and

II =

(
sup
x∈R
|f ′(x)|

)
‖uε − u‖Xε

‖w‖H1(Ωε) ≤
(

sup
x∈R
|f ′(x)|

)
‖PΩε,Uu

ε − u‖XU
‖‖w‖H1(U) → 0.

Finally III → 0 again by Corollary 4.5 and we conclude the proof. �

Proposition 6.7. Let uε, vε ∈ H1(Ωε) and u, v ∈ H1(U) such that PΩε,U (uε) ⇀ u and PΩε,U (vε) ⇀ v in
H1(U), where PΩε,U is the extension operator given by Proposition 6.1. Then, for all ϕ ∈ H1(U),∫

Ωε

Φ′(uε)vεϕ→
∫

Ω

Φ′(u)vϕ and
1

ε

∫
θε

f ′(uε)vεϕ→
∫

Γ

µ̂γ(f ′(u))γ(v)γ(ϕ)dS,

where µ̂ is given by (2.5).

Proof. Indeed, to prove the first result we have∣∣∣∣∫
Ωε

Φ′(uε)vεϕ−
∫

Ω

Φ′(u)vϕ

∣∣∣∣ ≤ ∣∣∣∣∫
Ωε

Φ′(uε)(vε − v)ϕ

∣∣∣∣+

∣∣∣∣∫
Ωε

(Φ′(uε)− Φ′(u))vϕ

∣∣∣∣+
+

∣∣∣∣∫
Ωε

Φ′(u)vϕ−
∫

Ω

Φ′(u)vϕ

∣∣∣∣ = i+ ii+ iii
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Remembering that Φ,Φ′ are uniformly bounded and that PΩε,U (uε) ⇀ u and PΩε,U (vε) ⇀ v in H1(U)
implies PΩε,U (uε)→ u and PΩε,U (vε)→ v in L2(U), we can analyze each term on the right:

i =

∣∣∣∣∫
Ωε

Φ′(uε)(vε − v)ϕ

∣∣∣∣ ≤ (sup
x∈R
|Φ′(x)|

)(∫
Ωε

|vε − v|2
)1/2(∫

Ωε

|ϕ|2
)1/2

≤
(

sup
x∈R
|Φ′(x)|

)
‖vε − v‖L2(Ωε)‖ϕ‖L2(Ωε)

≤
(

sup
x∈R
|Φ′(x)|

)
‖PΩε,Uv

ε − v‖L2(U)‖ϕ‖L2(U) → 0

and using the Sobolev inclusion [27, Theorem 1.36] we have, for some C > 0 independent of ε that

ii =

∣∣∣∣∫
Ωε

(Φ′(uε)− Φ′(u))vϕ

∣∣∣∣ ≤ ∫
Ωε

|(Φ′(uε)− Φ′(u))vϕ|

≤
(

sup
x∈R
|Φ′′(x)|

)(∫
Ωε

|uε − u|2
)1/2(∫

Ωε

|v|4
)1/4(∫

Ωε

|ϕ|4
)1/4

≤ ‖uε − u‖L2(Ωε)‖v‖L4(Ωε)‖ϕ‖L4(Ωε) ≤ ‖PΩε,Uu
ε − u‖L2(U)‖v‖L4(U)‖ϕ‖L4(U)

≤ C‖PΩε,Uu
ε − u‖L2(U)‖v‖H1(U)‖ϕ‖H1(U) → 0.

For iii, using Corollary 4.7,

iii =

∣∣∣∣∫
Ωε

Φ′(u)vϕ−
∫

Ω

Φ′(u)vϕ

∣∣∣∣→ 0,

proving the first result.
To prove the second convergence, we have

1

ε

∫
θε

f ′(uε)vεϕ =
1

ε

∫
θε

f ′(uε)(vε − v)ϕ+
1

ε

∫
θε

(f ′(uε)− f ′(u))vϕ +

+
1

ε

∫
θε

f ′(u)vϕ = I + II + III.

Analyzing each term separately and using the definition of XU given in the proof of Proposition 6.6:

I =
1

ε

∫
θε

f ′(uε)(vε − v)ϕ ≤
(

sup
x∈R
|f ′(x)|

)(
1

ε

∫
θε

|vε − v|2
)1/2(

1

ε

∫
θε

|ϕ|2
)1/2

≤ C‖vε − v‖Xε‖ϕ‖H1(Ωε) ≤ C‖PΩε,Uv
ε − v‖XU

‖ϕ‖H1(U) → 0.

Since f ′ is C1, applying Corollary 4.7, we get

III =
1

ε

∫
θε

f ′(u)vϕ→
∫

Γ

µ̂γ(f ′(u))γ(ϕ)γ(ψ)dS.

Finally, notice that we can rewrite II as

Ψε : H1(U)→ R

ϕ 7→ 1

ε

∫
θε

(f ′(uε)− f ′(u))vϕ.

It follows that Ψ is a bounded linear operator in H1(U) since, using Theorem 4.1,

|Ψε(ϕ)| ≤ 2

(
sup
x∈R
|f ′(x)|

)(
1

ε

∫
θε

|v|2
)1/2(

1

ε

∫
θε

|ϕ|2
)1/2

≤ C‖v‖H1(U)‖ϕ‖H1(U).

Besides, for all ϕ ∈ C∞c (Ū),

Ψε(ϕ) =
1

ε

∫
θε

(f ′(uε)− f ′(u))vϕ ≤
(

sup
x∈R
|f ′′(x)|

)(
1

ε

∫
θε

|uε − u|2
)1/2(

1

ε

∫
θε

|v|2
)1/2

‖ϕ‖∞
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≤ K‖PΩε,Uu
ε − u‖XU

‖v‖H1(U)‖ϕ‖H1(U) → 0

and then, by density, we have II = Ψε(ϕ)→ 0, for all ϕ ∈ H1(U). This concludes the proof. �

For now on, consider the spaces Hε = H1(Ωε) and H0 = H1(Ω) in the context of Definition 2.1. We prove
the result which guarantee the upper and lower semicontinuity of the set of solutions from (6.1) at ε = 0.

Proposition 6.8. Using the notations from (6.1) and (6.2), we have that A−1
ε Fε

CC−−→ A−1
0 F0.

Proof. To prove the compact convergence, we verify separately each item.

(a) A−1
ε Fε is a compact operator, for each ε > 0.
Since by Proposition 3.6 H1(Ωε) ↪→ Xε with compact immersion, we have X ′ε ↪→ H−1(Ωε) compactly.

Also, Fε is a Lipschitz function by Proposition 5.3(b). Thus, we get the result from

H1(Ωε)
Fε−→ X ′ε

i−→ H−1(Ωε)
A−1

ε−−−→ H1(Ωε).

(b) If ‖uε‖H1(Ωε) ≤ K, then {A−1
ε Fε(u

ε)} is E-precompact.
Let {uε} such that ‖uε‖H1(Ωε) ≤ K. By Lemma 6.3 we obtain a subsequence, that we still call uε,

such that PΩε,Uu
ε ⇀ u in H1(U) and uε

E
⇀ u|Ω for some u ∈ H1(U). Consider wε = A−1

ε Fε(u
ε). By

Lemma 6.5, ‖wε‖H1(Ωε) ≤ C and, thus, again by Lemma 6.3, there exists a subsequence, also called wε,

and w ∈ H1(U) such that PΩε,Uw
ε ⇀ w in H1(U) and wε

E
⇀ w|Ω.

If we call u0 = u|Ω and w0 = w|Ω, we have that w0 = A−1
0 F0(u0). Indeed, wε

E
⇀ w0 implies for any

v ∈ H1(U) that (wε, v)H1(Ωε) → (w0, v)H1(Ω). On other hand, by Proposition 6.6 we have

(wε, v)H1(Ωε) =

∫
Ωε

Φ(uε)v +
1

ε

∫
θε

f(uε)v →
∫

Ω

Φ(u0)v +

∫
Γ

µ̂γ(f(u0))γ(v)dS.

Thus, since the limit is unique, we get

〈A0w0, v〉 = (w0, v)H1(Ω) =

∫
Ω

Φ(u0)v +

∫
Γ

µ̂γ(f(u0))γ(v)dS = 〈F0(u0), v〉, ∀v ∈ H1(U),

and, therefore, w0 = A−1
0 F0(u0). Now, let us prove ‖wε‖H1(Ωε) → ‖w0‖H1(Ω), implying wε

E−→ w0 by [7,
Proposition 3.2]. As a matter of fact, using Proposition 6.6 again, we have

‖wε‖2H1(Ωε) = (wε, wε)H1(Ω) = (A−1
ε Fε(u

ε), wε)H1(Ω) =

∫
Ωε

Φ(uε)wε +
1

ε

∫
θε

f(uε)wε

→
∫

Ω

Φ(u0)w0 +

∫
Γ

µ̂γ(f(u0))γ(w0)dS = (A−1
0 F0(u0), w0)H1(Ω) = (w0, w0)H1(Ω) = ‖w0‖2H1(Ω).

(c) If uε
E−→ u, then A−1

ε Fε(u
ε)

E−→ A−1
0 F0(u).

Indeed, if we assume that uε
E−→ u, we get ‖uε‖H1(Ωε) ≤ C, for some C > 0 independent of ε.

In particular, for any subsequence of uε, we can find another subsequence, denoting all by uε, such
that, using the same argument of the previous item, we have PΩε,U (uε) ⇀ u, with u0 = u|Ω and, for

this subsequence, A−1
ε Fε(u

ε)
E−→ A−1

0 F0(u0). As we can prove this for any subsequence, we obtain the

E-convergence of all family, that is, A−1
ε Fε(u

ε)
E−→ A−1

0 F0(u0).

�

Finally, we can conclude the upper and lower semicontinuity of the equilibrium set at ε = 0 proving
Theorem 2.7. Indeed, from Proposition 6.8 and [9, Proposition 5.6], we have:

Proposition 6.9. For any family {uε}, uε ∈ H1(Ωε) solution of (6.1), there is u∗ ∈ H1(Ω) solution of

(6.2) and a subsequence still denoted by uε, such that uε
E−→ u∗.

Moreover, with the assumption that the limit solution is hyperbolic, we can get lower semicontinuity of
the equilibrium set. More precisely, from Proposition 6.8 and [9, Proposition 5.7] we have
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Proposition 6.10. If u∗ ∈ H1(Ω) solution of (6.2) is hyperbolic, then there is a sequence {uε∗}, uε∗ ∈ H1(Ωε)

solution of (6.1), such that uε∗
E−→ u∗.

Remark 6.11. In the case when all equilibria points of the limit equation (6.2) are hyperbolic, we have that
all of them are isolated and there is only a finite number of them (see [9, Corollary 5.4 or Proposition 5.5]).

Notice that the continuity above does not exclude the possibility that near an equilibrium point of the
limiting equation may exist several different equilibrium points of the perturbed problem. We show that is
possible to obtain some sort of uniqueness of the equilibrium points concluding the proof of Theorem 2.7.

First we will prove an important result about the compact convergence of A−1
ε F ′ε(u

ε
∗) if uε∗ ∈ H1(Ωε) is a

sequence of solutions from (6.1) that is E-convergent.

Proposition 6.12. If {uε} is a sequence of solutions of (6.1), uε ∈ H1(Ωε), and u0 ∈ H1(Ω) is solution of

(6.2) then A−1
ε F ′ε(u

ε)
CC−−→ A−1

0 F ′0(u0) whenever uε
E−→ u0.

Proof. We prove by steps, as in Proposition 6.8.

(i) A−1
ε F ′ε(u

ε) is compact, for each ε > 0.
Since H1(Ωε) ↪→ Xε with compact immersion by Proposition 3.6, we have

H1(Ωε)
F ′ε(uε)−−−−→ X ′ε

i−→ H−1(Ωε)
A−1

ε−−−→ H1(Ωε),

where F ′ε(u
ε) is continuous by Proposition 5.3(d), proving the affirmation.

(ii) A−1
ε F ′ε(u

ε)vε is E-precompact whenever ‖vε‖H1(Ωε) ≤ C.

Let {vε} family in H1(Ωε) such that ‖vε‖H1(Ωε) ≤ C and define wε = A−1
ε F ′ε(u

ε)vε. Then for any

ϕε ∈ H1(Ωε),∫
Ωε

∂wε

∂x1

∂ϕε

∂x1
+

∫
Ωε

∂wε

∂x2

∂ϕε

∂x2
+

∫
Ωε

wεϕε =

∫
Ωε

Φ′(uε)vεϕε +
1

ε

∫
θε

f ′(uε)vεϕε.

If ϕε = wε follows by Theorem 4.1

‖wε‖2H1(Ωε) =

∫
Ωε

Φ′(uε)vεwε +
1

ε

∫
θε

f ′(uε)vεwε

≤
(

sup
x∈R
|Φ′(x)|

)
‖vε‖H1(Ωε)‖wε‖H1(Ωε) +

(
sup
x∈R
|f ′(x)|

)
C2‖vε‖H1(Ωε)‖wε‖H1(Ωε)

and, thus, ‖wε‖H1(Ωε) ≤ K, for some K > 0 independent of ε. Therefore, by Lemma 6.3 we obtain

subsequences, also denoted by vε, wε, and v, w ∈ H1(U) such that PΩε,U (vε) ⇀ v and PΩε,U (wε) ⇀ w

both in H1(U), with vε
E
⇀ v|Ω and wε

E
⇀ w|Ω.

Now if we call v0 = v|Ω and w0 = w|Ω, we may prove that w0 = A−1
0 F ′0(u0)v0. Indeed, for ϕ ∈ H1(U)

(wε, ϕ)H1(Ωε) =

∫
Ωε

Φ′(uε)vεϕ+
1

ε

∫
θε

f ′(uε)vεϕ. (6.5)

On one hand, using Proposition 6.7, we have∫
Ωε

Φ′(uε)vεϕ+
1

ε

∫
θε

f ′(uε)vεϕ→
∫

Ω

Φ′(u0)v0ϕ+

∫
Γ

µ̂γ(f ′(u0))γ(v0)γ(ϕ)dS

= (A−1
0 F ′0(u0)v0, ϕ)H1(Ω).

However, since wε
E
⇀ w|Ω,

(wε, ϕ)H1(Ωε) → (w0, ϕ)H1(Ω).

Thus w0 = A−1
0 F ′0(u0)v0.

Finally, we show that wε
E−→ w0. By [7, Proposition 3.2], it is enough to prove ‖wε‖H1(Ωε) →

‖w0‖H1(Ω). But, if we take ϕ = wε in (6.5) we obtain arguing as in the proof of Proposition 6.8, the
norm convergence.
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(iii) A−1
ε F ′ε(u

ε)vε
E−→ A−1

0 F ′0(u0)v0 se vε
E−→ v0.

To prove that wε
E−→ w0 for the whole sequence it is enough to use an analogous proof of this step

in Proposition 6.8.

�

The following lemma is the last one that we need to conclude the uniqueness of equilibrium points near
a hyperbolic limit solution.

Lemma 6.13. If uε∗ ∈ H1(Ωε) is a solution of (6.1) then there is K > 0 such that, for all vε ∈ H1(Ωε) with
‖vε‖H1(Ωε) ≤ 1, we have

‖A−1
ε (Fε(u

ε
∗ + vε)− Fε(uε∗)− F ′ε(uε∗)vε)‖H1(Ωε) ≤ K‖vε‖1+δ

H1(Ωε), for some δ ∈ (0, 1).

Proof. Let wε = A−1
ε (Fε(u

ε
∗ + vε)− Fε(uε∗)− F ′ε(uε∗)vε). This implies that, for all ϕε ∈ H1(Ωε),∫

Ωε

∂wε

∂x1

∂ϕε

∂x1
+

∫
Ωε

∂wε

∂x2

∂ϕε

∂x2
+

∫
Ωε

wεϕε =

=

∫
Ωε

(Φ(uε∗ + vε)− Φ(uε∗)− Φ′(uε∗)v
ε)ϕε +

1

ε

∫
θε

(f(uε∗ + vε)− f(uε∗)− f ′(uε∗)vε)ϕε.

Taking ϕε = wε, the left side of the equation becomes ‖wε‖2H1(Ωε). For the right side, with a fixed

1 < p < 2 in a way that its conjugate q is 2 < q < 4, follows by Theorem 4.1 that∫
Ωε

(Φ(uε∗ + vε)− Φ(uε∗)− Φ′(uε∗)v
ε)wε +

1

ε

∫
θε

(f(uε∗ + vε)− f(uε∗)− f ′(uε∗)vε)wε

≤
(∫

Ωε

|Φ(uε∗ + vε)− Φ(uε∗)− Φ′(uε∗)v
ε|p
)1/p(∫

Ωε

|wε|q
)1/q

+

+

(
1

ε

∫
θε

|f(uε∗ + vε)− f(uε∗)− f ′(uε∗)vε|p
)1/p(

1

ε

∫
θε

|wε|q
)1/q

≤
(∫

Ωε

|Φ(uε∗ + vε)− Φ(uε∗)− Φ′(uε∗)v
ε|p
)1/p

‖wε‖H1(Ωε)+

+

(
1

ε

∫
θε

|f(uε∗ + vε)− f(uε∗)− f ′(uε∗)vε|p
)1/p

‖wε‖H1(Ωε).

By Proposition 5.3(f) we obtain, for δ ∈ (0, 1) such that p(1 + δ) = 2 or, in other words, 2/p = (1 + δ),

‖wε‖2H1(Ωε) ≤
(∫

Ωε

|vε|2
) 1

2
2
p

‖wε‖H1(Ωε) + C

(
1

ε

∫
θε

|vε|2
) 1

2
2
p

‖wε‖H1(Ωε)

≤ C2‖vε‖2/pH1(Ωε)‖w
ε‖H1(Ωε) = K‖vε‖1+δ

H1(Ωε)‖w
ε‖H1(Ωε)

and, thus,

‖wε‖H1(Ωε) ≤ K‖vε‖1+δ
H1(Ωε)

proving the result. �

Now we can conclude the uniqueness of the equilibrium as ε is close to zero.

Proposition 6.14. If u∗0 is a hyperbolic equilibrium of (6.2), then there exist η > 0 and ε0 > 0 such that,
for 0 < ε < ε0, there exists one, and only one, uε∗ solution of (6.1) such that ‖uε∗ − Eεu

∗
0‖H1(Ωε) ≤ η.

Furthermore uε∗
E−→ u∗0.

Proof. This is a consequence of [7, Proposition 5.5] or [9, Theorem 5.8]. �

Finally, we can prove the main result of this section.
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Proof of Theorem 2.7. The item (a) follows from Theorem 6.9. On the other hand, (b) follows from Theorem
6.10 and Proposition 6.14. �
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