
VI MaratonUSP Freshman Contest
Editorial

MaratonUSP

1

A - Kobus hates sweepstakes

Before presenting the solution, I want to comment on a few things.
The first is that it is possible, in C ++ and other languages, to compare two strings

natively, which makes implementation very easy.
Another detail is that the new permutation given as an answer can be used to map

words to a new alphabet. For example, the okbusacdefghijl..z alphabet maps kobus to
bacde and kkbus to bbcde. Graphically, we have to:

o k b u s a c d e f g h i j l m n p q r t v w x y z

↓ ↓
a b c d e f g h i j k l m n o p q r s t u v w x y z

and then we can compare the mapped words as if they were in the normal alphabet.
Finally, we have a function called next permutation in C ++, which, when used in

conjunction with a do...while loop can generate all permutations of a sequence of numbers,
here is the reference of this method.

The first idea that may seem to solve this problem is to make the new alphabet to
be kobusacdefghijlmnpqrtvwxyz. With this, you will transform kobus into abcde, and
it just won’t be first in the list if there are names like kob, kobu (kobus prefixes) or kkoo.
However, this idea does not work, just look at the case where one of the names on the
list is kkbus. In this example, our program would say that there is no solution, even with
one of the possible solutions being okbusacdefghijlmnpqrtvwxyz.

Now, finally, let’s go to the solution. The idea is similar to the initial one, however,
now we are going to use all possible permutations of the word kobus as the beginning of
the new alphabet and simply see if any makes Kobus come first.

The code below implements this idea.

1 #inc lude ” b i t s / s tdc++.h”
2 us ing namespace std ;
3

4 i n t main () {
5 i n t n ; c in >> n ;
6

7 vector<s t r i ng> vs (n) ;
8 f o r (i n t i = 0 ; i < n ; i++) c in >> vs [i] ;
9

10 s t r i n g kobus = ”kobus” , alpha = ”acdefghi j lmnpqrtvwxyz ” ;
11 vector<int> permutation ({0 , 1 , 2 , 3 , 4}) ;
12

13 // t h i s do . . . whi l e w i l l generate every permutation o f {0 ,1 ,2 ,3 ,4}
14 do {
15

16 i n t ok = 1 ;
17 s t r i n g perm kob = ”” ; // w i l l be a permutation o f ”kobus”
18 f o r (auto x : permutation) perm kob += kobus [x] ;
19

20 s t r i n g new alphabet = perm kob + alpha ;
21 map<char , char> o ld to new ; // maps o ld alphabet to new one
22 f o r (i n t i = 0 ; i < 26 ; i++)

2

https://www.cplusplus.com/reference/algorithm/next_permutation/

23 o ld to new [new alphabet [i]] = ’ a ’+i ; // ’ a’+0==’a ’ , ’ a’+1==’b ’
24

25 s t r i n g new kob = kobus ;
26 f o r (char &c : new kob) c = old to new [c] ;
27

28 f o r (auto x : vs) {
29 s t r i n g s = x ;
30 f o r (char &c : s) // remap each name to new alphabet
31 c = old to new [c] ;
32 i f (new kob >= s) ok = 0 ; // kobus not in f i r s t p lace
33 }
34

35 i f (ok) {
36 cout << new alphabet << endl ;
37 goto fim ;
38 } ;
39

40 } whi le (next permutat ion (permutation . begin () , permutation . end ())) ;
41

42 cout << ”sem chance” << endl ;
43 f im : ;
44 }

3

B - Guidi wants to be stronger

This problem is a direct application of the Longest Common Subsequence problem,
which uses the dynamic programming technique. An excellent article on this problem
can be read here.

The code below implements this idea.

1 #inc lude ” b i t s / s tdc++.h”
2 us ing namespace std ;
3

4 i n t l c s [1 0 0 9] [1 0 0 9] ;
5

6 i n t main () {
7 s t r i n g a , b ; c in >> a >> b ;
8

9 f o r (i n t i = 0 ; i <= a . s i z e () ; i++) {
10 f o r (i n t j = 0 ; j <= b . s i z e () ; j++) {
11 i f (i == 0 | | j == 0)
12 l c s [i] [j] = 0 ;
13 e l s e i f (a [i −1] == b [j −1])
14 l c s [i] [j] = 1 + l c s [i −1] [j −1] ;
15 e l s e
16 l c s [i] [j] = max(l c s [i −1] [j] , l c s [i] [j −1]) ;
17 }
18 }
19

20 cout << l c s [a . s i z e ()] [b . s i z e ()] << endl ;
21 }

4

https://www.programiz.com/dsa/longest-common-subsequence#:~:text=The%20longest%20common%20subsequence%20(LCS,positions%20within%20the%20original%20sequences

C - Harada and the lucky numbers

First of all, we have to note that the amount that Q can take is very small, at most 7.
In addition, we can create an auxiliary vector that tells us the frequency of each value of
the cards that Harada won.

With that, the idea is to check all possible subsets of lucky numbers, to check if it is
possible to assemble the numbers of that subset using the cards Harada won and keep
stored which is the largest subset that satisfies the condition seen so far.

The most widely used technique for generating all subsets uses BitMask. If your set
has N elements, the idea is to iterate over all the values in the range [0, 2N − 1] and use
the binary representation of the number to decide which set (I get the i-th only element
if the i-th bit of the number is turned on), read more about this technique here.

Follow the implementation.

1 #inc lude ” b i t s / s tdc++.h”
2 us ing namespace std ;
3

4 i n t main () {
5 i n t q , n ; c in >> q >> n ;
6

7 vector<int> v q (q) ;
8 f o r (i n t i = 0 ; i < q ; i++) c in >> v q [i] ;
9

10 // f requency [’0 ’]== frequency i f card with value 0
11 map<char , int> f r equency ;
12 f o r (i n t i = 0 ; i < n ; i++) {
13 i n t n i ; c in >> n i ;
14 f r equency [n i+’ 0 ’]++;
15 }
16

17 i n t ans = 0 ;
18 // the mask makes i t p o s s i b l e to generate a l l p o s s i b l e subse t s
19 f o r (i n t mask = 0 ; mask < (1<<q) ; mask++) {
20

21 bool ok = 1 ;
22 map<char , int> f = frequency ;
23 f o r (i n t i = 0 ; i < q ; i++) {
24 i f ((mask&(1<< i)) == 0) cont inue ; // i−th number not s e l e c t e d
25 f o r (auto c : t o s t r i n g (v q [i])) {
26 f [c]−−;
27 i f (f [c] < 0) ok = 0 ;
28 }
29 }
30

31 // bu i l t i n pop coun t t e l l us the number o f 1 b i t s in the binary
32 // r ep r e s en t a t i on o f the number
33 i f (ok && bu i l t i n pop coun t (mask) > bu i l t i n pop coun t (ans))
34 ans = mask ;
35 }
36

37 cout << bu i l t i n pop coun t (ans) << endl ;
38 f o r (i n t i = 0 ; i < q ; i++)
39 i f (ans&(1<< i)) cout << v q [i] << ’ ’ ;

5

https://www.geeksforgeeks.org/find-distinct-subsets-given-set/

40

41 cout << endl ;
42 }

6

D - Corona Mashup

The information that everyone who can participate on the x day can also participate on
the days after x gives us an intuition that we should use ordering.

The easiest way to implement this problem is to use a Map, which we will call
day count. The idea is that day count[x] tells us how many people can participate from
x (non-cumulative value). Given that Map keeps the keys sorted in its internal structure,
we can iterate over this structure and keep a variable that counts how many people can
participate in the contest until the current day, always adding the respective value of the
iteration key. Every time this number is divisible by 3, we update the answer.

Follow the implementation.

1 #inc lude ” b i t s / s tdc++.h”
2 us ing namespace std ;
3

4 i n t main () {
5

6 long long i n t n ; c in >> n ;
7

8 // day count [x] == ’ pa r t i c i p an t e s on day x ’
9 map<long long int , long long int> day count ;

10 f o r (i n t i = 0 ; i < n ; i++) {
11 long long i n t x ; c in >> x ;
12 day count [x]++;
13 }
14

15 long long i n t cnt = 0 , ans = −1;
16 // here we i t e r a t e the e lements in the map, t h i s w i l l g ive days
17 // in i n c r e a s i n g order . Also , each element in the map i s a pa i r
18 // conta in in a key (in the case , a day) and a value (in t h i s
19 // case) the number o f p a r t i c i p an t s that can p a r t i c i p a t e in
20 // on the g iven day
21 f o r (auto x : day count) {
22 cnt += x . second ;
23 i f (cnt%3 == 0) ans = x . f i r s t ;
24 }
25

26 cout << ans << endl ;
27 }

7

E - Learning new languages

The idea of this problem is to keep some structure that tells us which words we know, we
can use both a Set and Map for that. However, when we learn a new word, how do we
check that it is not possible to learn another word, given that our textitvocabulary has
increased?

Since m only goes up to 100 you can do the following: for each word in the dictionary,
keep a list of what words you need to know to learn it. Go through the list of words in
the dictionary and see if you were able to learn any. To do this, go through the list of
the respective word and check, using your Set/Map, if you know all the words on that
list. If you have managed to learn a new word, go through the dictionary word list again,
repeating this process until you are unable to learn a word. After that, just print out the
total number of words you know.

Follow the implementation.

1 #inc lude ” b i t s / s tdc++.h”
2 us ing namespace std ;
3

4 i n t main () {
5

6 i n t n ; c in >> n ;
7

8 map<s t r i ng , bool> known words ;
9 f o r (i n t i = 0 ; i < n ; i++) {

10 s t r i n g s ; c in >> s ;
11 known words [s] = 1 ;
12 }
13

14 i n t m; c in >> m;
15 // l e a r n l i s t [s] == ”words you need to know in order to l e a rn s ”
16 map<s t r i ng , vector<s t r i ng>> l e a r n l i s t ;
17

18 whi le (m−−) {
19 s t r i n g s ; c in >> s ;
20 i n t k ; c in >> k ;
21 whi le (k−−) {
22 s t r i n g aux ; c in >> aux ;
23 l e a r n l i s t [s] . push back (aux) ;
24 }
25 }
26

27 bool ok = 1 ;
28 whi le (ok) {
29 ok = 0 ;
30 f o r (auto x : l e a r n l i s t) {
31 i f (known words [x . f i r s t]) // a l r eady know th i s word
32 cont inue ;
33

34 i n t cnt = 0 ;
35 f o r (auto y : x . second) // add 1 i f I know the nece s sa ry word
36 cnt += known words [y] ;
37

38 i f (cnt == x . second . s i z e ()) { // know a l l the nece s sa ry words

8

39 known words [x . f i r s t] = 1 ;
40 ok = 1 ;
41 }
42 }
43 }
44

45 i n t ans = 0 ;
46 f o r (auto x : known words)
47 ans += x . second ; // add 1 f o r each known word
48

49 cout << ans << endl ;
50 }

9

F - Confusing Morete

To solve this problem we will use an accumulated sum vector, accumulating the values
on the cards. If at any time the accumulated value was negative, Morete made a mistake.
Otherwise, we will create a list of suspicious card indexes and iterate from the end to the
beginning of the cards, that is, from right to left.

If at any time our accumulated sum vector becomes less than 0, we clear the elements
of our list of suspicious cards, because no card to the right of that position will be
suspicious, since removing it will still make us have a point with negative accumulated
value.

Otherwise, we check if the value of the card in the current position is less than or
equal to the minimum value seen so far (minimum value between cards in the current
position until the end). If so, withdrawing this card means that the accumulated sum
will never be negative, so this would be a suspicious card.

At the end, just check if the list of suspicious card indexes is empty. If so, Morete
had a negative balance. Otherwise, we can print the indexes of the suspicious letters

Follow the implementation.

1 #inc lude ” b i t s / s tdc++.h”
2 us ing namespace std ;
3

4 long long i n t r [1 12345] , accumulated sum [1 1 2 3 4 5] ;
5

6 i n t main () {
7

8 long long i n t n ; c in >> n ;
9 f o r (i n t i = 0 ; i < n ; i++)

10 c in >> r [i] ;
11

12 bool neve r nega t i v e = 1 ;
13 f o r (i n t i = 0 ; i < n ; i++) {
14 i f (i > 0) accumulated sum [i] = accumulated sum [i −1] ;
15 accumulated sum [i] += r [i] ;
16

17 i f (accumulated sum [i] < 0) neve r nega t i v e = 0 ;
18 }
19

20 i f (n eve r nega t i v e) {
21 cout << ”morete chapou : errou conta ! ” << endl ;
22 re turn 0 ;
23 }
24

25 vector<int> su spec t s ; // kinda sus
26 long long i n t mn = accumulated sum [n−1] ;
27 f o r (i n t i = n−1; i >= 0 ; i−−) {
28

29 // there cannot be any suspec t card a f t e r t h i s po int
30 i f (accumulated sum [i] < 0)
31 su spec t s . c l e a r () ;
32

33 mn = min(mn, accumulated sum [i]) ;
34 i f (mn >= r [i]) // remove t h i s card makes always non−negat ive

10

35 su spec t s . push back (i) ;
36 }
37

38 i f (su spe c t s . empty ()) {
39 cout<<”morete chapou : f i c o u com sa ldo negat ivo ! ”<<endl ;
40 re turn 0 ;
41 }
42

43 cout << su spec t s . s i z e () << endl ;
44 f o r (auto x : su spec t s) cout << x+1 << ’ ’ ;
45 cout << endl ;
46 }

11

G - The blue dot game

This problem is based on the Green Eyes Puzzle. The answer is the minimum value
between n and the number of students with blue points + 1.

Follow the implementation.

1 #inc lude ” b i t s / s tdc++.h”
2 us ing namespace std ;
3

4 i n t main () {
5

6 i n t amt = 0 , n ; c in >> n ;
7

8 f o r (i n t i = 0 ; i < n ; i++) {
9 i n t x ; c in >> x ;

10 amt += x ; // add 1 i f b lue
11 }
12

13 i n t ans = min (n , amt+1) ;
14 cout << ans << endl ;
15 }

12

https://www.youtube.com/watch?v=98TQv5IAtY8

H - The comedian Nathan

The main idea of this problem is to use the Line Sweep technique. Basically, by putting
all the N pairs into a vector and sorting it out, we can extract the answer very easily.

We can imagine that each person will form a segment on the timeline, which starts
when he enters and ends when he leaves. In addition, due to the gossip character of the
students, we can think that when two segments intersect, they become one. This is a
generalization that helps people find the answer.

With that, we can calculate the union of all segments. For example, in the test case
of the sheet, we will have the ordered vector [[2, 7], [6, 9], [8, 13], [21, 25]] and its union is
defined by the pairs [2, 13] and [21.25].

If a pair of the union is defined by [X, Y], we can calculate the number of jokes needed
by iterating over the interval [X, Y) and adding 1 to a counter every time the value of
the iteration is divisible for 5. By doing this for all the pairs resulting in the union and
getting the most jokes needed we can get the answer.

Homework: why can we simply iterate through the segments without running out of
time? Follow the implementation.

1 #inc lude ” b i t s / s tdc++.h”
2 us ing namespace std ;
3

4 i n t main () {
5

6 i n t n ; c in >> n ;
7

8 vector<pair<int , int>> v ;
9 f o r (i n t i = 0 ; i < n ; i++) {

10 i n t e , s ; c in >> e >> s ;
11 v . push back ({ e , 1}) ; // en t e r i ng the bus w i l l come a f t e r
12 v . push back ({ s , −1}) ; // because o f the s o r t i n g
13 }
14

15 s o r t (v . begin () , v . end ()) ;
16 i n t e a r l i e r t im e = −1, pas sager count = 0 , ans = 0 ;
17

18 f o r (auto x : v) {
19

20 i n t cur t ime = x . f i r s t , cu r ope ra t i on = x . second ;
21

22 i f (cu r ope ra t i on == −1) {
23 passager count−−;
24 i f (pas sage r count == 0) { // l a s t passager to departure
25 i n t j oke s = 0 ;
26 f o r (i n t t = e a r l i e r t im e ; t < cur t ime ; t++)
27 j ok e s += (t%5 == 0) ; // add 1 i f time i s d i v i s i b l e by 5
28 ans = max(ans , j ok e s) ;
29 }
30 }
31

32 i f (cu r ope ra t i on == 1) {
33 i f (pas sage r count == 0)
34 e a r l i e r t im e = cur t ime ;

13

https://www.youtube.com/watch?v=3ph6V32oja0

35 passager count++;
36 }
37 }
38

39 cout << ans << endl ;
40 }

14

I - Competitive Mario Kart

To solve this problem you can create an auxiliary vector in which the first position is
the number of points earned by placing first, the second position is the number of points
earned by being in second place, and so on. The optimal answer is always given when we
try to reach the best places the greatest number of times.

Follow the implementation.

1 #inc lude ” b i t s / s tdc++.h”
2 us ing namespace std ;
3

4 i n t main () {
5

6 i n t n ; c in >> n ;
7

8 vector<int> ans , po in t s ({15 , 12 , 10 , 9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1}) ;
9

10 whi le (n > 0) {
11 f o r (i n t i = 0 ; i < po in t s . s i z e () ; i++) {
12 i f (n >= po in t s [i]) {
13 ans . push back (i +1) ;
14 n −= po in t s [i] ;
15 break ;
16 }
17 }
18 }
19

20 cout << ans . s i z e () << endl ;
21 f o r (auto x : ans) cout << x << ” ” ;
22 cout << endl ;
23 }

15

J - Raphael singer

With the first pair ano and titulo we can estimate your year of birth. Now just check if
the year of birth is going to be the same for all the next albums.

Follow the implementation.

1 #inc lude ” b i t s / s tdc++.h”
2 us ing namespace std ;
3

4 i n t main () {
5

6 i n t b i r th = −1, ok = 1 , n ;
7 c in >> n ;
8

9 f o r (i n t i = 0 ; i < n ; i++) {
10

11 i n t a , t ;
12 c in >> a >> t ;
13

14 i f (b i r th == −1) {
15 b i r th = a−t ;
16 cont inue ;
17 }
18

19 i f (a−t != b i r th) ok = 0 ;
20 }
21

22 i f (! ok) cout << ”mentiu a idade ” << endl ;
23 e l s e cout << ” idades c o r r e t a s ” << endl ;
24 }

16

