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Resumo

Otimização cônica é o principal objeto de estudo deste trabalho, que é composto de cinco
capítulos. O Capítulo 1 é dedicado a familiarizar o leitor com alguns conceitos básicos que
permeiam essa área. O Capítulo 2 apresenta otimização cônica de maneira geral e inclui
a prova do resultado mais importante sobre o tema, o Teorema de Dualidade Forte. No
Terceiro capítulo, apresentamos os cones de entropia relativa e os programas cônicos definidos
sobre eles (REP), além de uma aplicação simples em estimação de distribuições discretas
de probabilidade. No Capítulo 4, estudamos brevemente programas sobre o famoso cone
de segunda ordem (SOCP), mostramos como esses programas podem ser formulados como
REP e então introduzimos a regressão ridge como uma aplicação de SOCP em aprendizado
estatístico. No Capítulo 5, definimos programas geométricos (GP), mostramos que esses
problemas de otimização também podem ser formulados como REP e então apresentamos
regressão logística como nossa aplicação de GP.

Palavras-chave: Otimização, Convexidade, Probabilidade.
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Abstract

Conic optimization is the main matter of this text, which consists of five chapters. Chap-
ter 1 is intended to familiarize the reader with the the basic concepts that pervade this area.
Chapter 2 presents a general panorama of the the theory of conic programming and show
the main result about this topic, the Strong Duality Theorem. In Chapter 3, we present the
relative entropy cone, the conic programs defined over them (REP), and a simple application
on discrete density estimation. In Chapter 4, we briefly introduce optimization problems over
the famous second-order cone (SOCP), show how to cast a SOCP as a REP, and present
ridge regression as an application of SOCP to statistical learning. In Chapter 5, we define
geometric programs, show that these may also be formulated as REPs, and finally, display
logistic regression as our application of GP.

Keywords: Optimization, Convexity, Probability.
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Motivation

Optimization is the area of mathematics which studies the task of choosing a best solution
over a set of possible solutions. The generality of this problem is demonstrated by the range
of applications, that go from choosing the best route on your daily comute passing through
physics, economics, and evolutionary biology topics. In the latter, the theory of the selfish
gene [18] suggests optimization as the purpose of genes when trying to perpetuate themselves.
This presents optimization trespassing the border of a human activity and putting it in the
context of nature as a whole.

In [17], the study of mathematical programming is divided in three periods. In the first
of them, one was only able to find extremum points and values of some sorts of functions,
such as polynomials of second degree. The second period was initiated in 1646 by Fermat’s
work regarding extremum points of differentiable functions. Still in this period, the theory
of Lagrange Multipliers first introduced constraints in optimization. However, optimization
did not receive much atention until 1947, when Dantzig came up with the simplex method to
solve linear programs. Thereafter, mathematical programming became increasingly popular.
In the fifties, the work of Khun and Tucker concerning optimality conditions is considered the
birth of nonlinear programming. In the same decade the survey of Ford and Fulkerson gave
rise to combinatorial optimization and Gomory published his cutting plane method, which is
considered to be the genesis of integer programming. Published in 1970, Rockafellar’s book
[30] is a cornerstone in convex analysis and optimization, which has drawn attention from
the mathematical community due to three factors: diversity of its applications, interesting
duality theory, and algorithmic efficiency. In this context, conic optimization became well-
known and is described in [19] as an elegant framework for convex optimization. Nowadays,
this area is heavily ramificated. Thus, it became convenient to investigate if it is possible to
apply results and algorithms to multiple branches of optimization.

In parallel, the human race is attached to randomness since the dawn of its existence,
and this narrative can also be partitioned in three stages. At first this concept was thought
from a qualitative point of view. In the chinese empire, outcomes from games of chance were
superstitiously interpretated and even related to destiny. Later in Greece, Aristotle, Epicu-
rus, and Democritus approached the subject on their respective surveys. In the Medieval
period, catholic philosophers questioned randomness in opposition to free-will and God’s
omniscience. The start of the second period was simultaneous with the birth of calculus and
came through the work of, e.g, Galileo, Pascal, and Leibnitz. This era reached its apex with
the first book on quantitative probability, The Doctrine of Chances, by De Moivre. However,
the advances of this area were inhibited by the belief in a deterministic universe, which was
dominant at that time. The advances on statistical mechanics, formalized by Gibbs in 1902
officially introduced probability in the field of physics. Also, the axiomatization proposed
by Kolmogorov decisively setteled probability theory as a branch of mathematics. Thence-
forth, research on this topic and its relatives heavily intensified and its applications pervaded
almost all of science.

More recently, in virtue of the constant advances in technology, computers became capa-
ble of processing data in large scale. As a consequece, various research areas concernig the

1
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intersection of statistics and computer science - which encompass beautiful mathematical
results, interesting applications, and philosophical depth - have been emerging. These men-
tioned factors make the study of a fraction of this intersection highly attractive. This text
is an attempt to bring to the reader some of my enthusiasm in respect to this subject.
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Chapter 1

Preliminaries

1.1 Basic Notation, Definitions, and Results
Before we start the mathematical discussion prepared for this text, it is essential to

establish a common vocabulary of words and symbols in order to avoid confusion. We use
mostly the standard mathematical notation and definitions. Thus, the experienced reader
may feel encouraged skip this section and refer back to it when needed.

As usual, we denote the set of all natural numbers, which includes 0, by N, the set of all
integer numbers by Z, the set of all rational numbers by Q, and the set of all real numbers
by R. We also call the elements of the set R := R ∪ {−∞,+∞} the extended real numbers.

If k ∈ N, define [k] := {1, 2, . . . , k}. If A and B are sets, the set of all the functions from
A to B is BA := {f | f : A → B}. Note that sets such as Rn := R[n] violate this definition,
but we still adopt this usual notation for convenience. Moreover, the set provided by the
case where B = R, A = [n]× [n], and f(i, j) = f(j, i) for each i, j ∈ [n] will be denoted by
Sn. If M ∈ Sn, we say that M is positive-semidefinite if x>Mx ≥ 0 for each x ∈ Rn. In this
case, we denote M ∈ Sn+.

Let n, k ∈ N and consider S ⊆ [n] and T ⊆ [k]. If A ∈ R[n]×[k], then A[S, T ] denotes the
restriction of A to S×T . Similarly, if A ∈ R[n]×[n] then A[S] is the restriction of A to S×S.

For each k ∈ N, if S ∈ {Nk,Zk,Qk,Rk} and x ∈ S, we refer to the i-th coordinate of x
by xi := x(i) for every i ∈ [k]. Similarly, if C ⊆ [k], we denote xC := {xi : i ∈ C}. If xi = 1
for each i ∈ [k], then x =: 1. We define S+ := {s ∈ S : s ≥ 0} and S++ := {s ∈ S : s > 0},
where we consider x ≥ 0 if xi ≥ 0 for each i ∈ [k], and analogously for x > 0. Also, if
S,W are sets, B ⊆ S, and f ∈ W S, then W ⊇ f(B) := {f(s) : s ∈ B}. Furthermore, the
pre-image of C ⊆ W is f−1(C) := {s ∈ S : f(s) ∈ C}.

Let S be a set. A partition of S is a collection C of nonempty pairwise disjoint subsets
of S whose union is S. That is, if A,B ∈ C are distinct, then A ∩ B = ∅ and

⋃
C = S. In

particular, if A ⊆ S then {A, S \ A} is a partition of S. In this case, the set A \ S is called
the complement of A relative to S and we may denote S \ A =: Ac. The cardinality of S is
denoted by |S|. If there is n ∈ N such that |S| = n, then S is finite. Otherwise, S is infinite.

A partial order on S is a binary relation ≤ such that, for each a, b, c ∈ S:

(i) a ≤ a;

(ii) if a ≤ b and b ≤ a, then a = b;

(iii) if a ≤ b and b ≤ c, then a ≤ c.

The properties stated above are called reflexivity, antisymmetry, and transitivity, respec-
tively. If the relation ≤ is antisymmetric, transitive and reflexive, and also satisfies

a ≤ b or b ≤ a, for each a, b ∈ S;

3



[git] • 4e09310 • Ariel Serranoni • 2018-11-16 03:42:05 -0200

4 PRELIMINARIES 1.1

we say that ≤ is a total order on S. This last property is called totality.
An equivalence relation on S is a binary relation ∼ such that, for each a, b, c ∈ S:

(i) a ∼ a;

(ii) if a ∼ b, then b ∼ a;

(iii) if a ∼ b and b ∼ c, then a ∼ c.

The second of these properties is called symmetry, the others were already presented in
the previous definition.

Basic concepts of mathematical analysis such as sequences of various types, limits, con-
tinuity, first- and second-order derivatives, and integrals are assumed to be familiar to the
reader. In case of necessity, we suggest [29; 32] as useful sources.

Let S be a set and let f : S → R be a function. We define the epigraph of f as

epi(f) := {s⊕ α ∈ S ⊕ R : f(s) ≤ α}.

A function f : S → R is proper if f(s) < +∞ for some s ∈ S and f(x) > −∞ for each x ∈ S.
This condition is meant to guarantee that epi(f) 6= ∅ and that epi(f) does not contain a
line parallel to the f(x)-axis. The effective domain of f is the set {s ∈ S : f(s) is finite} and
is denoted by dom(f). Whenever possible, we omit such terminology.

We say that f is homogeneous of degree n if

f(αx) = αnf(s), for each s ∈ S and α ∈ R.

If the latter holds only for α ∈ R++, then f is positively homogeneous of degree n. We will
refer to a homogeneous function of degree 1 as homogeneous and analogously for positively
homogeneous. We note that every homogeneous function is continuous.

We also assume the reader to have some familiarity with finite-dimensional vector spaces
over R. If not, we recommend the reader to refer to the first chapter of [22].

Let V and W be vector spaces over R. A linear transformation T : V → W is a function
such that, for each x, y ∈ V and α, β ∈ R,

T (αx+ βy) = αT (x) + βT (y).

Moreover, we denote

Im(T ) := T (V ) and Null(T ) := {x ∈ V : T (x) = 0}.

Note that Im(T ) and Null(T ) are linear subspaces of W and V , respectively. The direct sum
of V and W is the vector space

V ⊕W := {(v, w) : v ∈ V and w ∈ W}

and we will abbreviate (v, w) := v ⊕ w. For each v1 ⊕ w1, v2 ⊕ w2 ∈ V ⊕W and α ∈ R, we
consider

v1 ⊕ w1 + v2 ⊕ w2 = (v1 +V v2)⊕ (w1 +W w2)

and
α(v1 ⊕ w2) = αv1 ⊕ αw1.

Let V be a vector space. An inner product on V is a function 〈·, ·〉 : V × V → R such
that, for each v, x, z ∈ V and α, β ∈ R:
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(i) 〈v, v〉 ≥ 0, where equality holds if and only if v = 0;

(ii) 〈v, x〉 = 〈x, v〉;

(iii) 〈αv + βx, z〉 = α〈v, z〉+ β〈x, z〉.
An Euclidean space E is a finite-dimensional vector space over R equipped with an inner

product.
If E and Y are Euclidean spaces, we define, for each x1 ⊕ y1, x2 ⊕ y2 ∈ E⊕ Y:

〈x1 ⊕ y1, x2 ⊕ y2〉E⊕Y = 〈x1, x2〉E + 〈y1, y2〉Y.

In order to simplify notation, the domains of inner products and sums are going to be
omitted from now on when dealing with direct sums.

If S ⊆ E, we define the orthogonal complement of S as the subspace

S⊥ := {x ∈ E : 〈x, s〉 = 0 for each s ∈ S}.

If a ∈ E \ {0} and β ∈ R the set {x ∈ E : 〈a, x〉 = β} is a hyperplane. Similarly, the set
{x ∈ E : 〈a, x〉 ≤ β} is a half space. If I is a finite index set, a ∈ (E \ {0})I , and β ∈ RI ,
then

⋂
i∈I{x ∈ E : 〈ai, x〉 ≤ βi} is a polyhedron. A function f : E→ R is polyhedral if epi(f)

is a polyhedron.
Let C ⊆ E be a finite set and consider a function λ : C → R. The point y =

∑
x∈C λxx

is a linear combination of the elements of C and the set of all the linear combinations of
elements of C is span(C). In the cases where

∑
x∈C λx = 1 or λ : C → R+, y is an affine or

conic combination of the elements of C, respectively. When both of these conditions hold
simultaneously, y is a convex combination of the elements of C. If S ⊆ E is any set, the affine
hull is the set of all the finite affine combinations of elements of S, and likewise for conic hull
and convex hull. These sets will be denoted by aff(S), cone(S), and conv(S), respectively.
The following result establishes that convex combinations are taken using at most dim(E)+1
elements at time. This result can be generalized in several ways, we recommend the interested
reader to consult [30] for further information on this topic.

Proposition 1 (Carathéodory). Let E be an n-dimensional Euclidean space and let S ⊆ E.
If y ∈ conv(S), then there exists S ′ ⊆ S with |S| ≤ n+1 such that y is a convex combination
of the elements of S ′.

Proof. We have by the definition of a convex hull that there exists a finite S ′ ⊆ S and
λ : S ′ → R+ such that

∑
x∈S λx = 1 and y =

∑
x∈S′ λxx. Let S

′ ⊆ S satisfying this property
such that |S ′| is as small as possible. Assume by contradiction that |S ′| > n+ 1.

Fix x0 ∈ S ′ and note that 0 ∈ S ′−x0. Thus, S ′−x0 is linearly dependent. This fact implies
that there exists α : S ′ \ {x0} → R not identically zero such that

∑
x∈S′\{x0} αx(x− x0) = 0.

Define αx0 := −
∑

x∈S′\{x0} αx. Then, we obtain that
∑

x∈S′ αx = 0 and∑
x∈S′

αxx =
∑

x∈S′\{x0}

αx(x− x0) = 0.

It follows that, for each β ∈ R:

y = y − β0 =
∑
x∈S′

λxx− β
∑
x∈S′

αxx

=
∑
x∈S′

(λx − βαx)x.
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Since
∑

x∈S′ αx = 0 and α is not identically zero, there exists x1 such that αx1 > 0. Thus, we
can consider β := minx∈S′{λxαx : αx > 0}. Note that β =

λx′
αx′

for some x′ ∈ S ′. Hence, we have
that λx − βαx ∈ R+ for each x ∈ S ′,

∑
x∈S′ λx − βαx = 1, and λx′ − βαx′ = 0. Therefore,

we have written y as a convex combination of |S ′| − 1 points, contradicting the minimality
of S ′.

Let S ⊆ E. We say that S is finitely generated if S = span(C), S = conv(C), S = cone(C),
or S = aff(C) for some finite set C ⊂ E. As shown in Theorem 19.1 from [30], the set S
is finitely generated if, and only if S is a polyhedron. In addition, the Minkowski-Weyl
characterization for polyhedra states that a set P ⊆ E is a polyhedron if and only if
P = conv(C1) + cone(C2) for some finite sets C1, C2 ⊆ E. A detailed explanation and
proof of this result can be found in [11]. This description of P allows one to express any
point y ∈ P as

y =
∑
x∈C1

λxx+
∑
x∈C2

αxx

for some λ : C1 → R+ with
∑

x∈C1
λx = 1 and α : C2 → R+.

A norm on a vector space V is a function ‖ · ‖ : V → R such that for each x, y ∈ V and
α ∈ R:

(i) ‖x‖ ≥ 0 , where equality holds if and only if x = 0;

(ii) ‖αx‖ = |α|‖x‖;

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Property (iii) is often referred to as the triangle inequality. The reader should note that
if E is an Euclidean space, then

‖x‖ := 〈x, x〉
1
2

is a norm on E and will be adopted as the standard norm of Euclidean spaces. This fact
implies that if E and Y are Euclidean spaces, then, for each x⊕ y ∈ E⊕ Y:

‖x⊕ y‖ = (〈x⊕ y, x⊕ y〉)
1
2 = (〈x, x〉+ 〈y, y〉)

1
2 = (‖x‖2 + ‖y‖2)

1
2 .

Proposition 2. Let E be an Euclidean space and let x, y ∈ E. Then 〈x, y〉2 ≤ ‖x‖2‖y‖2.

Proof. Consider the function f : R → R given by f(λ) := ‖x − λy‖ for each λ ∈ R. First,
assume that y 6= 0. Then, for each λ ∈ R:

0 ≤ ‖x− λy‖
= 〈x− λy, x− λy〉
= ‖x‖2 − 2λ〈x, y〉+ λ2‖y‖2.

Set λ := 〈x,y〉
‖y‖2 . It follows:

‖x‖2 − 2
〈x, y〉2

‖y‖2
+
〈x, y〉2

‖y‖2
≥ 0

⇐⇒ − 〈x, y〉
2

‖y‖2
≥ −‖x‖2

⇐⇒ ‖x‖2‖y‖2 ≥ 〈x, y〉2.
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Finally, the reader can easily verify that the inequality also hold when y = 0 because
〈x, 0〉2 = ‖x‖0 = 0.

Theorem 3. Let E be an Euclidean space. If f : E → R is a linear function, then there
exists a unique z ∈ E such that f(x) = 〈z, x〉 for each x ∈ E.

Proof. If f(x) = 0 for each x ∈ E, then let z = 0 and we are done. Otherwise, consider
M := Ker(f) and N := M⊥. Since M 6= E, it follows that there exists 0 6= y ∈ N . Then, the
linearity of f implies that y0 := y

‖y‖ belongs to N as well. Let z := f(y0)y0, then

f(x) = 〈x, z〉, if x = y0 or x ∈M.

For an arbitrary x ∈ E, define x0 := x−αy0, where α = f(x)
f(y0)

. Thus, it follows that f(x0) = 0
and thus x0 ∈M . Applying f to x = x0 + αy0 yields

f(x) = f(x0 + αy0) = f(x0) + αf(y0) = 〈x0, z〉+ α〈y0, z〉 = 〈x0 + αy0, z〉 = 〈x, z〉.

To prove that z is unique, assume there exist z1 and z2 such that f(x) = 〈x, z1〉 = 〈x, z2〉 for
each x ∈ E. Thus, it follows that 〈x, z1− z2〉 = 0 for each x ∈ E. In particular, if x = z1− z2

then 〈z1−z2, z1−z2〉 = ‖z1−z2‖2 = 0. This implies that z1−z2 = 0 and therefore z1 = z2.

Let E and Y be Euclidean spaces and let A : E→ Y a linear function. A linear transfor-
mation T : Y→ E is said to be adjoint to A if

〈A(x), y〉 = 〈x, T (y)〉 for each x ∈ E and y ∈ Y.

Proposition 4. Let E and Y be Euclidean spaces. If A : E → Y is a linear function, then
there exists a unique linear function T : Y→ E adjoint to A.

Proof. The function fy : E → R given by 〈A(·), y〉 is trivially linear for each y ∈ Y. Hence,
Theorem 3 gives us the existence of a unique zy ∈ E such that 〈A(x), y〉 = 〈x, zy〉 for each
x ∈ E. Consider the function T : Y → E given by T (y) := zy for each y ∈ Y. From the
definition of T ,

〈A(x), y〉 = 〈x, T (y)〉, for each x ∈ E and y ∈ Y.

It remains to show that T is linear. Let x ∈ E, let y1, y2 ∈ Y, and let α1, α2 ∈ R. Then:

〈x, T (α1y1 + α2y2)〉 = 〈A(x), α1y1 + α2y2〉
= 〈A(α1x), y1〉+ 〈A(α2x), y2〉
= 〈x, α1T (y1) + α2T (y2)〉.

Since x is arbitrary, the result follows.

Because we proved that, for every linear function A, the adjoint transformation of A
always exists and is unique, we will simply denote the transformation adjoint to A by A∗.

Proposition 5. Let E and Y be Euclidean spaces. If A : E → Y is a linear function, then
Null(A∗)⊥ = Im(A).

Proof. We start showing that Im(A) ⊇ Null(A∗)⊥. Note that Im(A) ⊇ Null(A∗)⊥ if, and
only if Null(A∗)⊥⊥ = Null(A∗) ⊇ Im(A)⊥. Thus, it suffices to show that Null(A∗) ⊇ Im(A)⊥.
Let z ∈ Im(A)⊥. For each x ∈ E, we have that A(x) ∈ Im(A). Then,

0 = 〈z, A(x)〉 = 〈A∗(z), x〉.
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Since the equality above holds for each x ∈ E, we conclude that A∗(z) = 0 and then
z ∈ Null(A∗).

Conversely, let y ∈ Im(A). Then, there exists x ∈ E such that y = A(x). Hence, for each
z ∈ Null(A∗),

〈z, y〉 = 〈z, A(x)〉 = 〈A∗(z), x〉 = 〈0, y〉 = 0.

Therefore, x ∈ Null(A∗)⊥.

One important fact that arises from the proposition above is that if A is invertible, then
so is A∗. The converse of this corollary can be obtained from our next result.

Proposition 6. Let E and Y be Euclidean spaces. If A : E → Y is a linear function, then
(A∗)∗ = A.

Proof. Let x ∈ E and y ∈ Y. By definition,

〈A(x)∗∗, y〉 = 〈x,A∗(y)〉 = 〈A(x), y〉.

Since the latter holds for each x ∈ E and y ∈ Y, the result follows.

Let E be an Euclidean space. Define the unit ball on E as B := {x ∈ E : ‖x‖ ≤ 1}. Also
consider B< := {x ∈ E : ‖x‖ < 1} and B= := {x ∈ E : ‖x‖ = 1}. Note that B = B< ∪ B=.
Let S ⊆ E. The set S is bounded if there exists α ∈ R++ such that S ⊆ αB. A point x ∈ E
is an accumulation point of S if for every ε ∈ R++ we have that ((x+ εB) \ {x})∩S 6= ∅. A
point x ∈ E is adherent to S if for every ε ∈ R++ we have that (x + εB) ∩ S 6= ∅. A point
x ∈ S is an interior point of S if there exists ε ∈ R++ such that x+ εB ⊆ S. The interior of
S is the set int(S) of the interior points of S. We say that S is open if S = int(S). The set S
is closed if Sc is open. The closure of S is the set S of all the points adherent to S and S is
closed if and only if it contains all of its accumulation points. The set S can be equivalently
defined as

⋂
ε>0(S + εB) and S is closed if and only if S = S. Moreover, S is compact if it

is closed and bounded.
Next, we present some of the basic topologic properties of sets and functions. We will

approach these results within the setting of Euclidean spaces. However, they also hold in
a more general context. For a complete panorama of topology, we suggest [27] as a helpful
reference.

Proposition 7. Let E and Y be Euclidean spaces, let f : E→ Y be a continuous function,
and let S ⊆ Y. Then:

(i) if S is open, then f−1(S) is open;

(ii) if S is closed, then f−1(S) is closed.

Proof.

(i) Let x ∈ f−1(S), then we have that f(x) ∈ S. Since S is open, we have that there exists
ε > 0 such that f(x) + εB ⊆ S and, since f is continuous, we have the existence of
δ > 0 such that y ∈ x + δB implies f(y) ∈ f(x) + εB . Because f(x) + εB ⊆ S, we
have that f(y) ∈ S whenever y ∈ x+ δB. Hence, y ∈ x+ δB implies y ∈ f−1(S).

(ii) Let S ⊆ Y be a closed set. By definition, we have that Sc is open. From item (i), we
know that f−1(Sc) is open. Therefore f−1(Sc)c = f−1(S) is closed.

Proposition 8. Let E and Y be Euclidean spaces. If T : E→ Y is a linear function. Then:
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(i) T is continuous;

(ii) if T is invertible, then T−1 is linear.

Proof.

(i) Let x ∈ E and ε > 0. Set δ := ε(supx∈B ‖T (x)‖)−1. We will show that T (x+ δB) ⊆ T (x) + εB.
Let y ∈ x + δB. Then, there exists v ∈ B satisfying y = x + δv. Since T is linear it
follows that T (y) = T (x) + δT (v). Hence,

‖T (y)− T (x)‖ = ‖T (x) + δT (v)− T (x)‖ = ‖δT (v)‖ = δ‖T (v)‖ ≤ ε.

Therefore, T (y) ∈ T (x) + εB.

(ii) Let w1, w2 ∈ Y and α1, α2 ∈ R. It follows:

T−1(α1w1) + T−1(α2w2) = T−1(T (T−1(α1w1) + T−1(α2w2)))

= T−1(T (T−1(α1w1)) + T (T−1(α2w2)))

= T−1(α1w1 + α2w2).

A function f : E → R is closed if epi(f) is closed. The closure of f is the function f
such that epi(f) = epi(f). We note that this definition implies that f(x) ≤ f(x) for each
x ∈ E. This occurs because epi(f) ⊆ epi(f). The following proposition presents continuity as
a sufficient condition on f that ensures its epigraph to be closed. Nevertheless, this demand
is not the weakest possible. The interested reader may look at the eighth chapter of [30] for
more information about this topic.

Proposition 9. Let E be a Euclidean space and let f : E → R be a continuous function.
Then:

(i) epi(f) is closed;

(ii) int(epi(f)) 6= ∅.

Proof.

(i) Consider the function g : E⊕R→ R given by g(x⊕t) := f(x)−t for each (x⊕ t) ∈ E⊕ R.
Note that g is continuous. Also, we have that x⊕ t ∈ epi(f) if and only if g(x⊕ t) ≤ 0
and thus epi(f) = g−1((−∞, 0]). Then, since (−∞, 0] is closed, the result follows from
Proposition 7.

(ii) Let x ∈ E. Then (x⊕ f(x)) ∈ epi(f). Since f is continuous, let ε, δ ∈ R++0 such that

y ∈ x+ δB implies |f(y)− f(x)| ≤ ε.

Since ε ∈ R++, we have that f(x) + 2ε > f(x) and thus (x ⊕ (f(x) + 2ε)) ∈ epi(f).
Define γ := min{ε, δ}, we shall prove that (x⊕ (f(x) + 2ε)) + γB ⊆ epi(f).

Let z⊕t ∈ (x⊕(f(x)+2ε))+γB. Then, it follows that ‖(z⊕t)−(x⊕(f(x)+2ε))‖ ≤ γ
and thus we have that ‖z − x‖ ≤ δ and |t − (f(x) + 2ε)| ≤ ε. Since ‖z − x‖ ≤ δ we
have that z ∈ x+ δB. Hence, |f(z)− f(x)| ≤ ε. Summing these inequalities yields:

−2ε ≤ f(z)− t+ 2ε ≤ 2ε ⇐⇒ −4ε+ t ≤ f(z) ≤ t.

Thus, we have that (z ⊕ t) ∈ epi(f). Therefore, (x⊕ (f(x) + 2ε)) + γB ⊆ epi(f).
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Proposition 10. Let E be an Euclidean space and let {Si}i∈I ⊆ E for each i ∈ I. Then:
(i) if Si is open for each i ∈ I, then

⋃
i∈I Si is open;

(ii) if Si is closed for each i ∈ I, then
⋂
i∈I Si is closed;

(iii) if Si is open for each i ∈ I and I is finite, then
⋂
i∈I Si is open;

(iv) if Si is closed for each i ∈ I and I is finite, then
⋃
i∈I Si is closed.

Proof.
(i) Let x ∈

⋃
i∈I Si. Then, x ∈ Si for some i ∈ I. Since Si is open, there exists ε > 0 such

that x+ εB ⊆ Si. Thus, x+ εB ⊆
⋃
i∈I Si. Therefore,

⋃
i∈I Si is open.

(ii) Since Si is closed for each i ∈ I, we have that Sci is open for each i ∈ I. From Item (i),
we have that

⋃
i∈I S

c
i is open. Thus, (

⋃
i∈I S

c
i )
c =

⋂
i∈I Si is closed.

(iii) Let x ∈
⋂
i∈I Si. Since Si is open for each i ∈ I, there exists εi such that x+ εiB ⊆ Si.

Setting 0 < ε̄ := min{εi : i ∈ I} we obtain that x + ε̄B ⊂ Si for each i ∈ I. Thus,
x+ ε̄B ⊂

⋂
i∈I Si. That is,

⋂
i∈I Si is open.

(iv) Since Si is closed for each i ∈ I, we have that Sci is open for each i ∈ I. From Item (iii),
we have that

⋂
i∈I S

c
i is open and thus (

⋂
i∈I S

c
i )
c =

⋃
i∈I Si is closed.

Theorem 11. Let V be a vector space, let C ⊂ V be a compact set, and let f : C → R be
a continuous function. Then infx∈C f(x) = minx∈C f(x) and supx∈C f(x) = maxx∈C f(x).
Proof. This proof uses that f(C) is compact. Showing this result would require much addi-
tional terminology and it can be found in, for example, [29; 32].

Because f(C) ⊂ R is bounded, there exist α, β ∈ R such that α = inf f(C) and
β = sup f(C). Since f(C) is closed, we know that f(C) = f(C). Thus, it suffices to
show that α and β belong to f(C). First, let ε ∈ R++ and note that if α + εB ∩ f(C) = ∅
then inf f(C) ≥ α + ε. This implies that inf f(C) > α, which is a contradiction and thus,
α ∈ f(C). Similarly, let ε′ ∈ R++ and note that if β+ε′B∩f(C) = ∅ then sup f(C) ≤ β−ε′.
This implies that inf f(C) < β, which is a contradiction. So, we conclude that, β ∈ f(C).
Theorem 12. Let A ∈ Sn. Then A ∈ Sn+ if and only if det(A[{1, . . . , k}]) ≥ 0 for each
k ∈ [n].

Proof. We show this result for the case that n = 2. Let A =

[
a b
b c

]
and consider f(x1, x2) :=

xtAx = ax2
1+2bx1x2+cx2

2.We seek for conditions under a, b and c such that f is non-negative
throughout R2.

First, note that f(x1, 0) = ax2
1 is non-negative if and only if a ≥ 0. Similarly, we have

that f(0, x2) = c2x2 if and only if c ≥ 0. Finally, consider the case where x1 6= 0 and x2 6= 0.
We shall prove that f(x1, x2) ≥ 0 if and only if p(t) := at2 + bt+ c ≥ 0 for each t ∈ R, where
t := x1

x2
. It follows:

f(x1, x2) = ax2
1 + 2bx1x2 + cx2

2 ≥ 0 for each x1 6= 0, x2 6= 0

⇐⇒ f(x1, x2)

y2
= a

x2
1

x2
2

+ 2b
x1x2

x2
2

+ c
x2

2

x2
2

≥ 0 for each x1 6= 0, x2 6= 0

⇐⇒ p(t) = at2 + 2bt+ c ≥ 0 for each t ∈ R.

Moreover, note that p does not change signs if and only if 4b2 − 4ac ≤ 0. That is,

b2 − ac = − det(A) ≤ 0.
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1.2 Elements From Convex Analysis
Let E be an Euclidean space and let x, y ∈ E. We define

[x, y] := {λx+ (1− λ)y : 0 ≤ λ ≤ 1}

to be the line segment between x and y. A subset C of E is said to be convex if [x, y] ⊆ C
for each x, y ∈ C. For any set S, we have that conv(S) is convex. If S is already convex,
then conv(S) = S. Also, conv(S) =

⋂
{C ⊇ S : C is convex}. In this sense, conv(S) can be

regarded as the smallest convex set containing S. The unitary ball, polyhedra, hyperplanes,
half-spaces, and the empty set are all examples of convex sets. We will now show some
operations that preserve convexity.

Proposition 13. Let E be an Euclidean space and let {Ci}i∈I ⊆ E be a family of convex
sets. Then:

(i)
⋂
i∈I Ci is convex;

(ii)
∑

i∈I Ci is convex if I is finite;

(iii)
⊕

i∈I Ci is convex if I is finite.

Proof.

(i) Let x, y ∈
⋂
i∈I Ci so that x, y ∈ Ci for each i ∈ I. Since Ci is convex for each i ∈ I,

we have that [x, y] ⊆ Ci for each i ∈ I. Therefore, [x, y] ⊆
⋂
i∈I Ci.

(ii) Let x, y ∈
∑

i∈I Ci and let λ ∈ [0, 1]. Then:

λx+ (1− λ)y = λ
∑
i∈I

xi + (1− λ)
∑
i∈I

yi =
∑
i∈I

(λxi + (1− λ)yi).

Since λxi + (1− λ)yi ∈ Ci for each i ∈ I, the result follows.

(iii) Let x, y ∈
⊕

i∈I Ci and let λ ∈ [0, 1]. Then:

λx+ (1− λ)y = λ
⊕
i∈I

xi + (1− λ)
⊕
i∈I

yi =
⊕
i∈I

(λxi + (1− λ)yi).

Since λxi + (1− λ)yi ∈ Ci for each i ∈ I, the result follows.

Proposition 14. Let E, Y be Euclidean spaces, let C ⊆ E and S ⊆ Y both be convex sets,
and let A : E→ Y be a linear transformation. Then:

(i) A(C) is convex;

(ii) A−1(S) is convex.

Proof.

(i) Let x, y ∈ A(C) and λ ∈ [0, 1]. By the definition of A(C), there exist v, w ∈ C such
that A(v) = x and A(w) = y. Since C is convex we have that λv + (1 − λ)w ∈ C.
Thus:

A(λw + (1− λ)v) = λA(v) + (1− λ)A(w) = λx+ (1− λ)y ∈ A(C).
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(ii) Let x, y ∈ A−1(S) and λ ∈ [0, 1]. By the definition of A−1(S), there exist v and w ∈ S
such that A(x) = v and A(y) = w. Since S is convex:

λv + (1− λ)w = λA(x) + (1− λ)A(y) = A(λx+ (1− λ)y) ∈ S.

Therefore, λx+ (1− λ)y ∈ A−1(S).

Some Topological Properties of Convex Sets

The next propositions concern about interiors and closures of convex sets, which present
stronger properties when comparing to ordinary sets. However, it happens that many convex
sets of interest may have empty interior. To avoid this inconvenient and obtain results that
are valid for any convex set, one considers the relative interior of a convex set C as

ri(C) := {x ∈ C : there exists ε ∈ R++ such that (x+ εB) ∩ aff(C) ⊆ C}.

We note that
ri(C) ⊆ C ⊆ C ⊆ aff(C).

This implies that [x, y] ⊆ aff(C) for any x, y ∈ C. We also observe that if C has nonempty
interior, then the affine hull of C is the whole ambient space. Therefore, under this extra
assumption, it is possible to achieve the same results replacing relative interiors with the
usual concept of interior.

Proposition 15. Let E be an Euclidean space and let C ⊆ E be a convex set. If x ∈ ri(C)
and y ∈ C, then (1− λ)x+ λy ∈ ri(C) for each λ ∈ [0, 1).

Proof. Let λ ∈ [0, 1). We shall prove that there exists ε ∈ R++ such that

((1− λ)x+ λy) + εB ∩ aff(C) ⊆ C.

Since y ∈ C, we have that y + εB 6= ∅ for each ε ∈ R++. Then:

((1− λ)x+ λy) + εB ∩ aff(C) ⊆ ((1− λ)x+ λ(C + εB)) + εB ∩ aff(C)

= (1− λ)x+ λC + (1 + λ)εB ∩ aff(C)

= (1− λ)

(
x+

(1 + λ)ε

1− λ
B
)

+ λC ∩ aff(C).

Since x ∈ ri(C), we have that there exists ε′ ∈ R++ such that x + ε′B ∩ aff(C) ⊆ C. Thus,
if ε = 1−λ

1+λ
ε′, then (x+ (1+λ)ε

1−λ B) ∩ aff(C) ⊆ C. Whence:

(1− λ)

(
x+

(1 + λ)ε

1− λ
B
)

+ λC ⊆ (1− λ)C + λC = C.

So, we conclude that ((1− λ)x+ λy) + ε̄B ∩ aff(C) ⊆ C, which is the desired result.

The reader may also note that Proposition 15 implies that the interior of a convex set C
is convex and is always nonempty. Moreover, we note that the closure of C is convex since it
is the intersection of the convex sets C + εB, where ε ∈ R++. Polyhedral sets are important
examples of convex objects that are always closed. Euclidean spaces, linear supspaces, affine
sets, and the empty set are sets which are equal to their respective closures and relative
interiors.
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Proposition 16. Let E be an Euclidean space and let C ⊆ E be a convex set. Then x ∈ ri(C)
if, and only if there exists λ > 1 such that (1− λ)y + λx ∈ C for each y ∈ C.

Proof. First, assume that x ∈ ri(C) and fix y ∈ C. Since x ∈ ri(C), we know that
x+ εB ∩ aff(C) ⊆ C for some ε ∈ R++. For such ε, we have x + ε

‖x−y‖(x− y) ∈ C. Writing
x = y + x− y yields:

y + x− y +
ε

‖x− y‖
x− ε

‖x− y‖
y = y +

(
1 +

ε

‖x− y‖

)
(x− y)

=

((
1 +

ε

‖x− y‖

)
x− yε

‖x− y‖

)
∈ C.

Conversely, assume that x is such that for each y ∈ C there exists λ > 1 such that
(1− λ)y + λx ∈ C. Let y ∈ ri(C). If x = y we are done. Otherwise, let λ > 1 such that
(1 − λ)y + λx ∈ C and set z := (1 − λ)x + λy. Since z ∈ C, Proposition 15 gives us that
(1− α)y + αz ∈ ri(C) for each α ∈ [0, 1). In particular, if α = 1

λ
:

(1− α)y + αz = x.

Therefore, x ∈ ri(C).

This last proof can be replicated considering directions y belonging aff(C). In this context,
it is possible to consider more vectors such that there exists λ > 1 satisfying λx+(1−λ)y ∈ C
for each x ∈ ri(C). On the other hand, it would be necessary to find a ‘larger’ set of directions
satisfying this property in order to confirm that x ∈ ri(C). Obviously, since both results are
true one can always use the strongest implication of each.

Proposition 17. Let E be an Euclidean space and let C ⊆ E be a convex set. Then:

(i) ri(C) = C;

(ii) ri(C) = ri(C) .

Proof.

(i) First, we note that ri(C) ⊆ C because ri(C) ⊆ C. Conversely, let x ∈ ri(C) and y ∈ C.
By Proposition 15, it follows that (1 − λ)x + λy ∈ ri(C) for each λ ∈ [0, 1). Hence,
y + εB ∩ ri(C) 6= ∅ for each ε ∈ R++. Therefore, y ∈ ri(C).

(ii) Similarly to the former item, we start noting that ri(C) ⊆ ri(C) since C ⊆ C. Con-
versely, let x ∈ ri(C) and let y ∈ ri(C). If x = y we are done. Otherwise, Proposition
16 gives us that there exists α > 1 such that (1 − α)y + αx ∈ ri(C) ⊆ C. Define
z = (1 − α)y + αx. By Proposition 15, (1 − λ)y + λz ∈ ri(C) for each λ ∈ [0, 1). In
particular, for λ = 1

α
:

(1− λ)y + λz = x.

Therefore, x ∈ ri(C).

Proposition 18. Let E be an Euclidean space and let {Ci}i∈I ⊆ E be a family of convex
sets such that

⋂
i∈I ri(Ci) 6= ∅. Then:

(i)
⋂
i∈I Ci =

⋂
i∈I Ci;

(ii) ri(
⋂
i∈I Ci) =

⋂
i∈I ri(Ci), if I is finite.
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Proof.

(i) First, let x ∈
⋂
i∈I Ci. Then, x ∈ Ci for each i ∈ I. By hypothesis, there exists

y ∈
⋂
i∈I ri(Ci). That is, y ∈ ri(Ci) for each i ∈ I. Thus, by Proposition 15, for each

λ ∈ [0, 1) and i ∈ I we have (1 − λ)y + λx ∈ ri(Ci). Since
⋂
i∈I ri(Ci) ⊆

⋂
i∈I Ci, it

follows that x+ εB∩
⋂
i∈I Ci 6= ∅ for each ε ∈ R++. Thus, x ∈

⋂
i∈I Ci. Conversely, let

x ∈
⋂
i∈I Ci. By definition, we have that x + εB ∩ (

⋂
i∈I Ci) for each ε ∈ R++. Hence,

for each i ∈ I and ε ∈ R++:
x+ εB ∩ Ci 6= ∅.

Thus, by definition x ∈ Ci for each i ∈ I. Therefore, x ∈
⋂
i∈I Ci.

(ii) The inclusion ri(
⋂
i∈I Ci) ⊆

⋂
i∈I ri(Ci) is easy to prove and does not depend on the

finiteness of I. Let x ∈ ri(
⋂
i∈I Ci), then there exists ε ∈ R++ such that x+ εB ⊆

⋂
i∈I Ci.

In particular, x + εB ⊆ Ci for each i ∈ I. Thus, x ∈ ri(Ci) for each i ∈ I. Therefore
x ∈

⋂
i∈I ri(Ci). Conversely, let x ∈

⋂
i∈I ri(Ci). Then, there exists ε : I → R++ such

that x+εiB ⊆ Ci for each i ∈ I. Assuming I is finite we can define ε′ := min{εi : i ∈ I}
and note that x + ε′B ⊆ Ci for each i ∈ I. That is, x + ε′B ⊆

⋂
i∈I Ci. Hence,

x ∈ ri(
⋂
i∈I Ci).

Considering C = Q produces an example illustrating why Proposition 17 does not hold
for non-convex sets. Similarly, setting C1 = Q and C2 = R \Q shows that Proposition 18 is
not true in general. If some members of the family {Ci}i∈I are closed, the first item of this
last result can be refined as follows.

Proposition 19. Let E be an Euclidean space and let {Ci}i∈I ⊆ E be a family of convex
sets. Let I0 ⊆ I such that Ci is closed for each i ∈ I0. Assume that

S := (
⋂

i∈I\I0

ri(Ci)) ∩ (
⋂
i∈I0

Ci) 6= ∅.

Then
⋂
i∈I Ci =

⋂
i∈I Ci.

Proof. Let x ∈
⋂
i∈I Ci. By hypothesis, there exists y ∈ S. In particular, y ∈ ri(Ci) for each

i ∈ I \ I0. From Proposition 15, we obtain that (1−λ)y+λx ∈ ri(Ci) for each λ ∈ [0, 1) and
i ∈ I \ I0. Thus, x + εB ∩

⋂
i∈I\I0 Ci 6= ∅ for each ε ∈ R++. Because Ci = Ci for i ∈ I0, it

follows that x+ εB ∩
⋂
i∈I Ci 6= ∅. Therefore, x ∈

⋂
i∈I Ci.

Conversely, let x ∈
⋂
i∈I Ci. By definition, we have that x+ εB ∩ (

⋂
i∈I Ci) 6= ∅ for each

ε ∈ R++. Hence, for each i ∈ I and ε ∈ R++:

x+ εB ∩ Ci 6= ∅.

Thus, by definition x ∈ Ci for each i ∈ I. In other words, x ∈
⋂
i∈I Ci.

Proposition 20. Let E and Y be Euclidean spaces, let C ⊆ E be a convex set, and let
A : E→ Y be a linear function. Then:

(i) A(C) ⊆ A(C);

(ii) ri(A(C)) = A(ri(C)).

Proof.
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(i) Let x ∈ A(C). By definition, there exists y ∈ C such that A(y) = x. Let ε ∈ R++.
By Proposition 8, we have δ ∈ R++ such that z ∈ y + δB implies that f(z) ∈ x + εB.
Since y ∈ C we can assume that z ∈ C, obtaining that f(z) ∈ A(C). Therefore,
x+ εB ∩ A(C) 6= ∅ for each ε ∈ R++. That is, x ∈ A(C).

(ii) Let x ∈ ri(A(C)) ⊆ A(C) and assume that x 6∈ A(ri(C)). Thus, for each y ∈ C such
that A(y) = x we have that i ∈ C \ ri(C). Then, for each ε ∈ R++, there exists
z ∈ y + εB such that z ∈ E \ C. Applying Proposition 8 we conclude that for each
γ ∈ R++ there exists w ∈ x+ γB such that w ∈ Y \ A(C). Therefore, x 6∈ ri(A(C)).

Conversely, let x1 ∈ A(ri(C)) and let y1 ∈ A(C). Consider x2 ∈ ri(C) such that
A(x2) = x1 and y2 ∈ C such that A(y2) = y1. By Proposition 16, we have that there
exists λ > 1 such that (1− λ)y2 + λx2 ∈ C. Thus,

(A((1− λ)y2 + λx2) = (1− λ)A(y2) + λA(x2) = (1− λ)y1 + λx1 ∈ C.

Therefore, x1 ∈ ri(A(C)) by Proposition 16.

Corollary 21. Let E be an Euclidean space, and let ∅ 6= C1, C2 ⊆ E be convex sets. Then

(i) C1 + C2 ⊆ C1 + C2;

(ii) ri(C1) + ri(C2) = ri(C1 + C2).

Proof. Consider the linear function A : E ⊕ E → E where A(x1 ⊕ x2) := x1 + x2 for each
x1 ⊕ x2 ∈ E ⊕ E and apply Proposition 20 to A and C1 ⊕ C2, which is trivially nonempty
and convex by Proposition 13.

Proposition 22. Let E and Y be Euclidean spaces, let A : E→ Y be a linear function, and
let C ⊆ E and S ⊆ Y both be polyhedral sets. Then:

(i) A(C) is polyhedral;

(ii) A−1(S) is polyhedral.

Proof.

(i) Writing C = {
∑

i∈[m] λixi : λ : I → R+,
∑

i∈[k] λi = 1}, it it obvious that

A(C) = {
∑
i∈[m]

λiA(x)i : λ : I → R+,
∑
i∈[k]

λi = 1}.

Thus, A(C) is polyhedral.

(ii) Since S is polyhedral, we have by definition S =
⋂
i∈I{y ∈ Y : 〈y, bi〉 ≤ βi} Thus,

A−1(S) =
⋂
i∈I{x ∈ E : 〈A(x), bi〉 ≤ βi}.

Corollary 23. Let E be an Euclidean space and let C1, C2 ⊆ E be polyhedral sets. Then
C1 + C2 is polyhedral.

Proof. Immediate.

The previous corollary is an obvious consequece of Proposition 22. Together with the first
item of Corollary 21 (which we will improve in Chapter 2) and the tools from hyperplane
separation, this result will be essential to derive the conditions that ensure conic duality to
hold.
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Hyperplane Separation

The notion of separation is fundamental to the development of the theory of convex
analysis. If C1 and C2 are convex subsets of an Euclidean space E, we say that a hyperplane
H := {x ∈ E : 〈a, x〉 ≤ β} separates C1 and C2 if 〈a, x1〉 ≤ β for each x1 ∈ C1 and 〈a, x2〉 ≥ β
for each x2 ∈ C2. If in addition we have C1 ∪C2 6⊆ H, then H separates C1 and C2 properly.
Moreover, if 〈a, x2〉 > β for each x2 ∈ C2, then H separates C1 and C2 strongly.

The following results will handle strong and proper separation. First, we show conditions
that allow us to separate points from sets both properly and strongly. Then, we extend these
results in order to separate a pair of nonempty convex sets. Later, we modify this condition
considering the case where one of these sets is a polyhedron.

Hopefully, this will be sufficient to bring some insight about the meanings and conse-
quences of separation. A detailed description of this theory including proofs may be found
in Chapter 11 of [30].

Proposition 24. Let E be an Euclidean space, let {x ∈ E : 〈a, x〉 = β} =: H ⊂ E be a
hyperplane, and let ∅ 6= C ⊂ E be a convex set such that C ⊆ {x ∈ E : 〈a, x〉 ≤ β}. Then
ri(C) ∩H 6= ∅ if, and only if C ⊆ H.

Proof. First, note that if C ⊆ H then ri(C) ⊆ H. Because C 6= ∅ we have that ri(C) 6= ∅.
Thus, ri(C) ∩H 6= ∅.

On the other hand, assume that ri(C) ∩H 6= ∅ and that there exists x ∈ C \H. In this
case, consider the line segment [x, y] where y ∈ ri(C) ∩ H. By Proposition 16, there exists
λ > 1 such that (1 − λ)x + λy =: z ∈ C. For such z we have that 〈a, z〉 > β, which is a
contradiction.

Theorem 25. Let E be an Euclidean space and let C ⊆ E be a closed convex set. If
y ∈ E \ C, then there exists a ∈ E \ {0} and β ∈ R such that C ⊆ {v ∈ E : 〈a, v〉 ≤ β} and
〈a, y〉 > β.

Proof. Let x̄ ∈ C and set δ := ‖x̄− y‖. Then, C ′ := C ∩ (x̄+ δB) 6= ∅ is a intersection of a
closed and a compact set and thus, C ′ is compact. By Theorem 11, there exists z ∈ C ′ that
minimizes the continuous function f : C ′ → R+ given by f(·) := ‖ · −y‖. Set a := y − z and
β := 〈a, z〉. Note that if w ∈ C \ C ′ then ‖w − y‖ ≥ ‖v − y‖ for any v ∈ C ′. Thus, z also
minimizes the extension of f to C. Let z 6= x ∈ C. Since C is convex we have [x, z] ⊆ C. So,
for each λ ∈ [0, 1]:

‖λx+(1−λ)z−y‖2 = ‖(z−y)+λ(x−z)‖2 = ‖z−y‖2+2λ〈x−z, z−y〉+λ2‖x−z‖ ≥ ‖z−y‖2.

Hence, λ‖x − z‖2 ≥ 2〈x − z, a〉. By sending λ to 0, we obtain that 〈x − z, a〉 ≤ 0. That is,
〈a, x〉 ≤ 〈a, z〉 = β. On the other hand, 〈y − z, y − z〉 > 0 is the same as 〈a, y − z〉 > 0.
Therefore, 〈a, y〉 > β.

Proposition 26. Let E be an Euclidean space, let ∅ 6= C be a convex set and let x ∈ E.
Then there exists a hyperplane separating C and x properly if, and only if x 6∈ ri(C).

Proof. First assume that x 6∈ ri(C). Note that if x 6∈ C, the result is given by Theorem
25. Otherwise, let y ∈ E \ C and z ∈ ri(C) such that x ∈ [y, z]. In this case, x minimizes
the function specified in the construction of Theorem 25. Adopting the same a ∈ E \ {0}
we obtain that 〈a, x〉 ≥ 〈a, w〉 for each w ∈ C. Finally, we obtain from Proposition 24 that
C 6⊆ H because x 6∈ ri(C).

Conversely, assume by contradiction that H is a hyperplane properly separating x and C
and x ∈ ri(C). In this case, we would have that C ⊆ H and, since x ∈ C, C ∪{x} = C ⊆ H.
This contradicts the definition of proper separation.
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Proposition 27. Let E be an Euclidean space and let ∅ 6= C1, C2 ⊆ E be convex sets.
Then, there exists a hyperplane separating C1 and C2 properly if and only if there exists
a ∈ E such that:

(i) inf{〈x, a〉 : x ∈ C1} ≥ sup{〈x, a〉 : x ∈ C2};

(ii) sup{〈x, a〉 : x ∈ C1} > inf{〈x, a〉 : x ∈ C2}.

Proof. First, assume that there exists a ∈ E satisfying (i) and (ii). Observe that a 6= 0
because otherwise we would have sup{〈x, a〉 : x ∈ C1} = inf{〈x, a〉 : x ∈ C2} = 0, which
violates (ii). Set

β := inf{〈x, a〉 : x ∈ C1}+
sup{〈x, a〉 : x ∈ C2} − inf{〈x, a〉 : x ∈ C1}

2

and considerH = {x ∈ E : 〈x, a〉 = β}. Then C2 ⊆ {x ∈ E : 〈x, a〉 ≤ β} and C1 ⊆ {x ∈ E : 〈x, a〉 ≥ β}.
Moreover, (ii) implies that C2 6⊆ H. Thus, H separates C1 and C2 properly.

Conversely, Let H be a hyperplane separating C1 and C2 properly. By definition, we can
assume that there exists a ∈ E \ {0} and β ∈ R such that C1 ⊆ {x ∈ E : 〈x, a〉 ≥ β},
C2 ⊆ {x ∈ E : 〈x, a〉 ≤ β}, and C1 ∪ C2 6⊆ H. This implies that 〈x, a〉 ≥ β for each x ∈ C1.
Hence, inf{〈x, a〉 : x ∈ C1} ≥ β. On the other hand, because C2 ⊆ {x ∈ E : 〈x, a〉 ≤ β}, we
have that sup{〈x, a〉 : x ∈ C2} ≤ β. Thus, we conclude that

sup{〈x, a〉 : x ∈ C1} ≥ inf{〈x, a〉 : x ∈ C1} ≥ sup{〈x, a〉 : x ∈ C2} ≥ inf{〈x, a〉 : x ∈ C2}.

The second inequality above corresponds to (i). Finally, since C1 ∪ C2 6⊆ H there exist
x1 ∈ C1 and x2 ∈ C2 such that 〈x1, a〉 > 〈x2, a〉. Therefore,

sup{〈x, a〉 : x ∈ C1} > inf{〈x, a〉 : x ∈ C2}.

The latter corresponds to (ii).

Proposition 28. Let E be an Euclidean space, and let∅ 6= C1, C2 ⊆ E be convex sets. Then,
there exists a hyperplane properly separating C1 and C2 if, and only if ri(C1) ∩ ri(C2) = ∅.

Proof. Consider the convex set C := C1−C2. By Corollary 21, we have that ri(C) = ri(C1)− ri(C2).
Note that 0 6∈ ri(C) because ri(C1)∩ri(C2) = ∅. By Proposition 26, there exists a hyperplane
separating {0} and C properly. Thus, by Proposition 27, we have that

(i) 0 ≥ sup{〈x, a〉 : x ∈ C};

(ii) 0 > inf{〈x, a〉 : x ∈ C}.

Note that item (i) is equivalent to inf{〈x, a〉 : x ∈ C1} ≥ sup{〈x, a〉 : x ∈ C2} while item (ii)
is equivalent to sup{〈x, a〉 : x ∈ C1} > inf{〈x, a〉 : x ∈ C2}. Then, the result follows from
Proposition 27.

Proposition 29. Let E be an Euclidean space, let C1, C2 ⊆ E be polyhedral sets. If
C1 ∩ C2 = ∅ then there exists a hyperplane separating C1 and C2 strongly.

Proof. Consider C := C1−C2 and note that C is polyhedral by Corollary 23. Note that C is
closed and that 0 6∈ C. Thus, applying Theorem 25 to C and 0 yields the desired result.

Proposition 30. Let E be an Euclidean space and let C,P ⊆ E be convex sets such that P is
polyhedral. Then there exists a hyperplane separating C and P properly and not containing
C if, and only if ri(C) ∩ P = ∅.
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Proof. First, assume that H := {x ∈ E : 〈a, x〉 ≤ β} is a hyperplane separating C and P
properly and not containing C. From our definition of separation, we obtain that 〈a, c〉 ≤ β
for each c ∈ C and 〈a, p〉 ≥ β for each p ∈ P . Because C is not contained in H, we have
that ri(C) ∩H = ∅. Thus, 〈a, c′〉 < β for each c′ ∈ ri(C). Since 〈a, p〉 ≥ β for every p ∈ P ,
it follows that ri(C) ∩ P = ∅.

Conversely, consider D := P ∩ aff(C). If D is empty, then we can separate P and aff(C)
strongly by Proposition 29. Because C ⊆ aff(C), the same hyperplane separates C and P as
required. IfD 6= ∅, we note that ri(D)∩ri(C) = ri(P )∩ri(C) = ∅. Thus, Proposition 28 gives
us a hyperplaneH separatingD and C properly. Also,H cannot contain C because otherwise
it follows C ∪D ⊆ aff(C) ⊆ H, which contradicts the definition of proper separation.

To conclude the proof, we shall use H to construct a hyperplane satisfying all our re-
quirements. Let HC be the closed half-space delimited by H that contains C and consider
W := aff(C) ∩ HC . By construction we have that C ⊆ W and, consequently, ri(C) ⊆ W.
Moreover, W is polyhedral and P ∩ ri(W ) = ∅. If actually P ∩W = ∅, the result follows
from Proposition 29. Otherwise, set M := W \ ri(W ) = H ∩ aff(C). Translating all sets if
necessary, we assume that 0 ∈ P ∩W . Now consider K := cone(P ) + M and note that K
is polyhedral by Corollary 23 and also K ∩ ri(C) = ∅. Express K as the intersection of a
finite collection {Hi}i∈I ⊆ E of closed half-spaces. Observe that P ⊆ Hi for each i ∈ I. Since
W 6⊆ K, we obtain from Proposition 24 there exists some j ∈ I such that Hj ∩ ri(W ) = ∅
and hence Hj ∩ ri(C) = ∅. Therefore, Hj separates C and P properly and does not contain
C.

Corollary 31. Let E be an Euclidean space and let C ⊆ E be a closed convex set. Then C
is the intersection of the half spaces that contain it. That is,

C =
⋂

(a,β)∈X

H(a, β)

Where H(a, β) := {x ∈ E : 〈x, a〉 ≤ β} for each a ∈ E \ {0} and β ∈ R and

X := {(a, β) ∈ (E \ {0})× R : C ⊆ H(a, β)}.

Proof. The right-hand side trivially contains C. Conversely, let x belonging to the right-
hand side and assume that x 6∈ C. By Theorem 25, there exists c ∈ E \ {0} and η ∈ R such
that 〈x, c〉 > η and 〈y, c〉 ≤ η for each y ∈ C. This implies that x does not belong to the
intersection above because we found (c, η) ∈ X such that and x 6∈ H(c, η).

Convex Functions

Let E be an Euclidean space. We say that a function f : V → R is convex if epi(f) is
convex. If C ⊆ V , we define the indicator function of C by:

δ(x |C) :=

{
0, if x ∈ C;

+∞, otherwise

Note that epi(f) = C ⊕ R+ and therefore δ(· |C) is convex if and only if C is convex.
Moreover, δ(· |C) is closed if C is closed and is polyhedral if C is a polyhedron. More
generally, an arbitrary polyhedral convex function p : E→ R is be expressed by the formula:

p(x) = g(x) + δ(x |P ) =

{
g(x), if x ∈ P ;

+∞, otherwise.
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Where g(x) = maxi∈I{〈x, ai〉 − βi} for some finite collection {ai}i∈I ⊆ E \ {0} and P is a
polyhedron. The reader may note that the epigraph of g is the intersection of finitely many
half-spaces in E ⊕ R. We next present two propositions that give us different criteria to
decide if a arbitrary function f is convex or not. Also, we provide a formula to calculate
values of the closure of a convex function.

Proposition 32. Let V be a vector space, let C ⊆ V be a convex set, and let f : C → R.
Then, f is convex if and only if:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), for each x, y ∈ C and λ ∈ [0, 1].

Proof. Let (x⊕ f(x)), (y ⊕ f(y)) ∈ epi(f). It follows:

λ(x⊕ f(x)) + (1− λ)(y ⊕ f(y)) ∈ epi(f), for each λ ∈ [0, 1]

⇐⇒ (λx+ (1− λ)y)⊕ (λf(x) + (1− λ)f(y)) ∈ epi(f), for each λ ∈ [0, 1]

⇐⇒ f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), for each λ ∈ [0, 1].

Proposition 33. Let C ⊆ R be a convex set and let f : C → R be a twice continuously
differentiable function. Then, f is convex if and only if f ′′(x) ≥ 0 for each x ∈ C.

Proof. First, we prove the backwards implication by contrapositive. Assume that there exists
v ∈ C such that f ′′(v) < 0. Then, since f ′′ is continuous there exists a segment (α, β)
such that f ′′(v) < 0 for each v ∈ (α, β). Thus, f ′ is strictly non-increasing in (α, β). Let
x, y ∈ (α, β) with x < y, let λ ∈ (0, 1) and define z := (1− λ)x+ λy. We have:

f(z)− f(x) =

∫ z

x

f ′(t)dt > f ′(z)(z − x) (1.1)

and
f(y)− f(z) =

∫ y

z

f ′(t)dt < f ′(z)(y − z). (1.2)

Moreover, note that

z−x = λy+(1−λ)x−x = λ(y−x) and (y−z) = (1−λ)y−(1−λ)x = (1−λ)(y−x). (1.3)

Substituting in equations (2.1) and (2.2), it follows:

f(z) > f(x) + λf ′(z)(y − x) (1.4)

and
f(z) > f(y)− (1− λ)f ′(z)(y − x). (1.5)

Now, we multiply (1.4) and (1.5) by (1−λ) and λ, respectively and add them to obtain:

f(z) > (1− λ)f(x) + λf(y).

Since z = (1− λ)x+ λy it follows that f is not convex from Proposition 32.
Conversely, assume that f ′′(v) ≥ 0 for each v ∈ C. Then, we know that f ′ is non-

decreasing. Let x, y ∈ C with x < y, let λ ∈ (0, 1), and consider z := (1 − λ)x + λy.
Then:

f(z)− f(x) =

∫ z

x

f ′(t)dt ≤ f ′(z)(z − x)
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and
f(y)− f(z) =

∫ y

z

f ′(t)dt ≤ f ′(z)(y − z).

Substituting the results from (1.3) in the expressions above yields:

f(z) ≤ f(x) + λf ′(z)(y − z) (1.6)

and
f(z) ≤ f(y)− (1− λ)f ′(z)(y − x). (1.7)

Finally, we multiply (1.6) and (1.7) by 1− λ and λ, respectively and sum them to obtain:

f(z) ≤ (1− λ)f(x) + λf(y).

Since z = (1− λ)x+ λy the result follows from Proposition 32.
Proposition 34. Let E be an Euclidean space, let f : E→ R be a convex function. Then

f(y) = lim
λ↑1

f((1− λ)x+ λy)

for each x ∈ ri(dom(f)) and y ∈ dom(f).
Proof. Let x ∈ ri(dom(f)) and y ∈ dom(f). We want to prove that

f(y) ≤ lim inf
λ↑1

f((1− λ)x+ λy) ≤ lim sup
λ↑1

f((1− λ)x+ λy) ≤ f(y).

Since f(y) ≥ f(y) by definition, we automatically conclude that

lim inf
λ↑1

f((1− λ)x+ λy) ≤ lim inf
λ↑1

f((1− λ)x+ λy).

Because f(y) lower semi-continuous:

f(y) ≤ lim
λ↑1

inf f((1− λ)x+ λy) ≤ lim inf
λ↑1

f((1− λ)x+ λy).

It remains to show the right-hand side of our inequality. Let β ∈ R with β ≥ f(y) so that
(y, β) ∈ epi(f) = epi(f). Also let α > f(x) and note that (x, α) ∈ ri(epi(f)) by Proposition
16. By Proposition 15, we know that (1 − λ)(x, α) + λ(y, β) ∈ ri(epi(f)) for all λ ∈ [0, 1).
Thus, since f is convex:

f((1− λ)x+ λy) < (1− λ)α + λβ for each λ ∈ [0, 1).

Hence,

lim sup
λ↑1

f((1− λ)x+ λy) ≤ lim sup
λ↑1

(1− λ)α + λβ = β.

In particular, setting β = f(y) yields the desired result.
Proposition 35. Let {fi}i∈I ⊆ ER be a finite family of convex functions. If fi is closed for
each i ∈ I and

∑
i∈I fi is proper, then

∑
i∈I fi is a closed convex function. Otherwise, if⋂

i∈I

ri(dom(fi)) 6= ∅,
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then
∑

i∈I fi =
∑

i∈I fi.

Proof. Consider f :=
∑

i∈I fi and let x ∈ ri(dom(f)) which is equal to
⋂
i∈I ri(dom(fi)) by

Proposition 18. This set is nonempty by hypothesis. By proposition 34,

f(y) = lim
λ↑1

f(λy+(1−λ)x) = lim
λ↑1

∑
i∈I

fi(λy+(1−λx)) =
∑
i∈I

lim
λ↑1

fi(λy+(1−λ)x) =
∑
i∈I

fi(y).

If each fi is closed, then fi = fi for each i ∈ I and we have the result.

Also, we remark that the effective domain of the sum of a family {fi}i∈I ⊆ RE of functions
is the intersection

⋂
i∈I dom(fi).

Corollary 31 can be refined to cover open sets as well. In this case, one obtains that the
closure of a convex set C is the intersection of the half-spaces that contain it. This result
also enlightens the idea to describe a convex set C as the intersection of all the half-spaces
that contain it. To translate this property to the language of convex functions, we define the
convex conjugate, also known as Fenchel conjugate, of a convex function f : E → R as the
function

f ∗(y) = sup
x∈E
{〈x, y〉 − f(x)} = − inf

x∈E
{f(x)− 〈x, y〉}.

The epigraph of f ∗ can be thought as the intersection of the half-spaces in E⊕R that contain
epi(f). The next proposition explores some of the basic properties of this operator.

Proposition 36. Let E be an Euclidean space and let f, g : E → R be closed convex
functions. Then:

(i) f ∗ is convex;

(ii) f ∗ is closed;

(iii) 〈x, y〉 ≤ f ∗(y) + f(x);

(iv) if g(x) ≤ f(x) for each x, then f ∗ ≥ g∗;

(v) f ∗∗ = f .

Proof.

(i) We will show that if h : E× E→ R is a convex function, then the function

φ(x) := sup
y∈E
{h(x, y)}, for each x ∈ E

is also convex.

Let x, z ∈ E and λ ∈ [0, 1]. It follows:

λφ(x) + (1− λ)φ(z) = λ sup
y∈E
{h(x, y)}+ (1− λ) sup

y∈E
{h(z, y)}

= sup
y∈E
{λh(x, y)}+ sup

y∈E
{(1− λ)h(z, y)}

≥ sup
y∈E
{λh(x, y) + (1− λ)h(z, y)}

≥ sup
y∈E
{h(λx+ (1− λ)z, y)}

= φ(λx+ (1− λ)z).
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Considering h(x, y) = 〈x, y〉 − f(y), Proposition 32 yields the desired result.

(ii) Consider the family of functions indexed by E:

φx(y) := 〈x, y〉 − f(x).

Let y ⊕ t ∈ epi(f ∗). By definition,

t ≥ f ∗(y) = sup
x∈E
{φx(y)}.

Thus, we have that f ∗(y) ≥ φx(y) for each x ∈ E. That is, y ⊕ t ∈ epi(φx) for each
x ∈ E. Hence, y ⊕ t ∈

⋂
x∈E epi(φx). Since each of the functions φx is affine, epi(f ∗) is

closed by Proposition 10.

(iii) Let y ∈ E. By definition,

f ∗(y) = sup
x∈E
{〈x, y〉 − f(x)}

≥ 〈x, y〉 − f(x), for each x ∈ E.

Therefore, f ∗(y) + f(x) ≥ 〈x, y〉 for each x, y ∈ E.

(iv) Let y ∈ E. By definition,

f ∗(y) = sup
x∈E
{〈y, x〉 − f(x)}

≥ 〈x, y〉 − f(x), for each x ∈ E
≥ 〈x, y〉 − g(x), for each x ∈ E.

The latter implies that f ∗(y) ≥ supx∈E{〈x, y〉 − g(x)} = g∗(y).

(v) Let x, y ∈ E. By Item (iii), f(x) ≥ 〈x, y〉 − f ∗(y). This implies that f(x) ≥ supy∈E{〈x, y〉 − f ∗(y)} = f ∗∗(x)
for each x ∈ E. Thus, epi(f) ⊆ epi(f ∗∗). Conversely, let (x⊕ f ∗∗(x)) ∈ epi(f ∗∗) and
assume that (x⊕ f ∗∗(x)) 6∈ epi(f).

In this case, by Theorem 25 there exist a = a1 ⊕ a2 ∈ (E⊕ R) \ {0} and β ∈ R such
that 〈x⊕ f ∗∗(x), a〉 > β and 〈y ⊕ t, a〉 ≤ β for each x⊕ t ∈ epi(f). Thus,

〈x− y, a1〉+ (f ∗∗(x)− t)a2 ≥ 0 for each x⊕ t ∈ epi(f).

If a2 > 0, this is a contradiction since t is unbounded from above and y is arbitrary. If
a2 = 0, setting y = x− λa1 for sufficiently big λ yields the desired contradiction.

We remark that the same method applied to prove (ii) could be reproduced in (i) and
that item (v) becomes f ∗∗ = f if f is not closed. Also, it is important to highlight the
example where we want to compute the conjugate of indicator function of a convex set C.
In this case, the conjugate of δ(· |C) is the support function of C and its formula is given by

δ∗(y |C) = sup
x∈E
{〈x, y〉 − δ(x |C)} = sup

x∈C
{〈x, y〉}.

Let f : E→ R be a polyhedral function and consider the polyhedron epi(f) =: P ⊆ E⊕R.
Let C1 = {(xi ⊕ µi)}i∈[k] and C2 = {(xi ⊕ µi)}i∈[m]\[k] be finite subsets of E ⊕ R such that
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P = conv(C1) + cone(C2). Then, for each y ∈ P we have:

y =
∑
i∈[m]

λi(xi ⊕ µi) =
∑
i∈[m]

(λxi ⊕ λiµi).

For some λ : [m]→ R+ with
∑

i∈[k] λi = 1. Thus we can write:

f(y) = inf

{∑
i∈[m]

λiµi :
∑
i∈[m]

λixi = y

}
.

This formula can be used to study the conjugate of a polyhedral function.

Proposition 37. Let E be an Euclidean space and let f : E→ R be a polyhedral function.
Then f ∗ is polyhedral.

Proof. By definition,

f ∗(y) = sup
x∈E
{〈x, y〉 − f(x)}

= sup
x∈E

{
〈x, y〉 − inf

{∑
i∈I

λiµi :
∑
i∈[m]

λixi = x

}}

= sup
λ

{
〈
∑
i∈[m]

λixi, y〉 −
∑
i∈[m]

λiµi

}

= sup

{∑
i∈[m]

λi(〈xi, y〉 − µi)

}

= sup

{∑
i∈[k]

λi(〈xi, yi〉 − µi) +
∑

i∈[m]\[k]

λi(〈xi, yi〉 − µi)

}
.

If 〈xi, y〉 − µi ≥ 0 for some i ≥ k + 1, the supremum above will be infinite because λi is
unbounded above. Otherwise, the supremum will be attained when λi = 1 for i such that
(〈xi, yi〉 − µi) = maxj∈[k]{(〈xj, yj〉 − µj)}. Defining the polyhedron

P ′ := {x ∈ E : 〈xi, yi〉 ≤ µi for each i ∈ [m] \ [k]}

we can write:

f ∗(y) =

{
maxi∈[k]{〈xi, yi〉 − µi}, if y ∈ P ′

+∞, otherwise.

1.3 Optimization Problems
Definition. An optimization problem is an ordered pair P = (X, f), where X is a set and
f : X → R is an extended-real-valued function. The problem P is more commonly denoted
as

minimize f(x)

subject to x ∈ X.
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The set X is called feasible region and the function f is called objective function. The
elements of X are called feasible points or feasible solutions ; everything else is infeasible.
The optimization problem P is feasible if X 6= ∅. Otherwise it is infeasible. The objective
value of x ∈ X is f(x). The optimal value of P is infx∈X f(x) ∈ R if P is feasible. Otherwise
it is +∞. A feasible solution x̄ is optimal if f(x̄) is the optimal value of the problem, i.e, if
f(x̄) ≤ f(x), for every x ∈ X. If the optimal value of P is −∞, the problem is unbounded.

When we write

maximize f(x)

subject to x ∈ X

we are referring to the optimization problem (X,−f) and we use the same terminology as
above.

Definition. Let P = (X, f) and Q = (Y, g) be optimization problems. A homomorphism
from P to Q is a function φ : X → Y such that g(φ(x)) ≤ f(x) for each x ∈ X. The
problems P and Q are said to be equivalent if there exists a homomorphism from P to Q
and vice-versa.

Proposition 38. Let P = (X, f), Q = (Y, g), and S = (Z, h) be optimization problems. If
φ : X → Y be a homomorphism from P to Q and ψ : Y → Z be a homomorphism from Q
to S, then ψ ◦ φ : X → Z is a homomorphism from P to S.

Proof. Since ψ is a homomorphism from Q to S, we have that h(ψ(y)) ≤ g(y) for each y ∈ Y .
Consider Y ⊇ Y ′ := φ(X). Then, h(ψ(y′)) ≤ g(y′) for each y′ ∈ Y ′. The latter implies that
h(ψ(φ(x))) ≤ g(φ(x)) for every x ∈ X. Since φ is a homomorphism from P to Q, we have
that g(φ(x)) ≤ f(x) for each x ∈ X. Hence, h(ψ(φ(x))) ≤ f(x) for each x ∈ X. Therefore,
ψ ◦ φ is a homomorphism from P to S.

Proposition 39. Let P = (X, f) and Q = (Y, g) be optimization problems. If φ : X → Y
is a bijective function such that g(φ(x)) = f(x) for each x ∈ X, then φ−1 : Y → X is a
homomorphism from Q to P .

Proof. Let y ∈ Y . Since the function φ is bijective, there exists a unique x ∈ X such that
x = φ−1(y). Then:

g(y) = f(x) = f(φ−1(y)) ≥ f(φ−1(y)).

Thus, φ−1 a homomorphism from Q to P .

Corollary 40. Let P = (X, f) and Q = (Y, g) be optimization problems. If there exists a
bijective function φ : X → Y such that g(φ(x)) = f(x) for each x ∈ X then P and Q are
equivalent.

Proof. Immediate from Proposition 39.

Based on these results, we now show that our concept of equivalence between optimization
problems is indeed an equivalence relation in the formal sense.

Proposition 41. Consider, for every optimization problems A and B,

A ∼ B if, and only if there exists a homomorphism from A to B and vice-versa.

Then ∼ is an equivalence relation.
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Proof. Let P = (X, f), Q = (Y, g), and S = (Z, h) be optimization problems.

(i) For reflexivity, consider the function φ : X → X given by f(x) = x for each x ∈ X.
Then, we have that f(φ(x)) = f(x) for each x ∈ X. Thus, P ∼ P by Corollary 40.

(ii) Symmetry follows from definition.

(iii) For transitivity, assume that P ∼ Q and Q ∼ S. Then, let φ1, φ2 be homomorphisms
from P to Q and from Q to P , respectively. Similarly, let ψ1, ψ2 be a homomorphism
from Q to S and from S to Q, respectively. By Proposition 38 it follows that φ1 ◦ψ1 is
a homomorphism from P to S and ψ2 ◦φ2 is a homomorphism from S to P . Therefore,
P ∼ S.

Finally, our next propositions present the advantageous features that our construction
of equivalence between optimization problems produces.

Proposition 42. Let P = (X, f) and Q = (Y, g) be equivalent optimization problems. If
either P or Q has finite optimal value α ∈ R, then α is the optimal value of both problems.

Proof. Consider the homomorphisms φ : X → Y and ψ : Y → X, which exist by hypothesis.
With no loss of generality, assume that P has optimal value α. Assume that the optimal
value β of Q is different from α. If β > α, for each x̄ ∈ X such that f(x̄) < α + β−α

2
we

have that g(φ(x̄)) ≤ α + β−α
2

, and then β is greater then the optimal value of Q. If β < α,
for each ȳ ∈ Y such that g(ȳ) ≤ β + α−β

2
we have that f(ψ(ȳ)) ≤ β + α−β

2
and thus α is not

the optimal value of P . Therefore, α = β.

Proposition 43. Let P = (X, f) and Q = (Y, g) be equivalent optimization problems. Then
P has an optimal solution if, and only if Q has an optimal solution.

Proof. Consider the homomorphisms φ : X → Y and ψ : Y → X, which exist by hypothesis.
Let α ∈ R be the optimal value of P and assume that there exists x∗ ∈ X such that

f(x∗) = α. By definition, g(φ(x∗)) ≤ α. By Proposition 42, we know that g(y) ≥ α for each
y ∈ Y . Thus, g(φ(x∗)) = α. That is, φ(x∗) is an optimal solution in Q.

Similarly, if α is the optimal value of Q and there exists y∗ ∈ Y such that g(y∗) = α,
then f(ψ(y∗)) ≤ α. By Proposition 42, we have that f(x) ≥ α for each x ∈ X. Thus, we
conclude that f(ψ(y∗)) = α. Thus, ψ(y∗) ia an optimal solution for P .

Proposition 44. Let P = (X, f) and Q = (Y, g) be equivalent optimization problems. Then
P and Q have the same outcome. That is:

(i) P is infeasible if and only if Q is infeasible.

(ii) P is unbounded if and only if Q is unbounded.

(iii) P has finite optimal value and does not have optimal solution if and only if Q has
finite optimal value and does not have optimal solution.

(iv) P has finite optimal value and optimal solution(s) if and only if Q has finite optimal
value and optimal solution(s).

Proof. Let φ : X → Y be a homomorphism from P to Q and let ψ : Y → X be a homomor-
phism from Q to P . We will show each of the items in our statement.

For the first item, assume that P is infeasible and Q is feasible. Thus, there exists y ∈ Y
and we have by definition that ψ(y) ∈ X. This contradicts the hypothesis that X = ∅.
Hence, Q is infeasible. Clearly, the converse is proven using the exact same reasoning.
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For the second item, assume that P is unbounded. Then, the set Ln := {x ∈ X : f(x) ≤ n}
is nonempty for each n ∈ N. Consider sequence {vn}n∈N such that vn ∈ Ln for each n ∈ N
and note that limn→∞ f(vn) = −∞. Set wn := φ(vn) for each n ∈ N so that wn is always fea-
sible in Q. Observe that limn→∞ g(wn) = −∞ and thus Q is unbounded. Again, the converse
is shown by the exact same argument.

The two remaining items follow immediately from Propositions 42 and 43.

1.4 Probability Spaces
The following sections are aimed at briefly introducing some crucial concepts in proba-

bility theory. These concepts are essential for a full understanding of the mathematical basis
underlying the applications that will be shown at the end of the last three chapters of this
text. Our treatment is rather superficial; for a deeper look into to the role that measure
theory plays in probability, we refer the reader to [10; 31].

Definition. Let Ω be a set. A σ-field in Ω is a collection F of subsets of Ω satisfying:

(i) Ω ∈ F ;

(ii) A ∈ F implies Ac ∈ F ;

(iii)
⋃
i∈I Ai ∈ F for each countable family {Ai}i∈I ⊆ F .

In measure theory, an ordered pair (Ω,F) where Ω is a set and F is a σ-field in Ω is
called a measurable space. It is also important to remark that for every set Ω, the collection
P(Ω) := {X : X ⊆ Ω} of all of its subsets is a σ-field in Ω.

Definition. Let Ω be a set and let C be a nonempty collection of subsets of Ω. The σ-field
generated by C is defined as

σ(C) :=
⋂
{F : F is a σ-field ,F ⊇ C}.

Proposition 45. Let Ω be a set and let C be a nonempty collection of subsets of Ω. Then
σ(C) is a σ-field in Ω.

Proof. First, note that Ω ∈ σ(C) since by definition Ω belongs to all σ-fields in Ω. Then, let
A ∈ σ(C). By definition, A ∈

⋂
{F : F is a σ-field ,F ⊇ C}, which means that A belongs to

all the σ-fields F that contain C. Then, it follows that Ac also belongs to all the mentioned
σ-fields and thus Ac ∈ σ(C). Finally, Let {Ai}i∈I ⊆ σ(C). Let F be a σ-field such that
F ⊇ C. Then, {Ai}i∈I ⊆ F and

⋃
i∈I Ai ∈ F . Since F was arbitrary, this proves that⋃

i∈I Ai ∈ σ(C).

Now that it has been proved that σ(C) is a σ-field, we are able to say that σ(C) is the small-
est σ-field that contains C. Moreover, the collection B(Rk) := σ({

∏
i∈[k](−∞, yi] : y ∈ Rk})

is the Borel σ-field in Rk.

Definition. Let Ω be a set and let F be a σ-field of subsets of Ω. A probability measure is
a function P : F → R such that:

(i) P(Ω) = 1;

(ii) P(A) ≥ 0 for each A ∈ F ;

(iii) P(
⋃
i∈I Ai) =

∑
i∈I P(Ai) for each countable pairwise disjoint family {Ai}i∈I ⊆ F .
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Definition. Let Ω be a set, let F be a σ-field in Ω, and let P : F → R be a probability
measure. The ordered triple (Ω,F ,P) is a probability space. The set Ω is its sample space
and its elements are called sample points. Moreover, the elements of F are called events.

Definition. A sequence of events is a family {Ai}i∈I of sets where I = N. The sequence
is increasing if An+1 ⊇ An for each n ∈ N and it is decreasing if An+1 ⊆ An for each
n ∈ N. In either case, the sequence is called monotone. Define lim inf Ai :=

⋃
i∈N
⋂
m≤iAm

and lim supAi :=
⋂
i∈N
⋃
m≤iAm. If lim inf Ai = lim supAn =: A the sequence is convergent

and A is called the limit of {Ai}i∈I .
Proposition 46. Let (Ω,F ,P) be a probability space. If {An}n∈N is a monotone convergent
sequence in F . Then

lim
n→∞

P(An) = P( lim
n→∞

An).

Proof. With no loss of generality, we consider a monotonically increasing sequence {An}n∈N,
i.e, An ⊆ An+1, for each n ∈ N. Define Bn := An+1 \ An, for every n ∈ N and see that
the sequence {Bn}n∈N is pairwise disjoint and, moreover,

⋃
n≤M Bn = AM , for each M ∈ N,

which implies that
lim
M→∞

⋃
n≤M

Bn = lim
M→∞

AM

and then
⋃
n∈NBn = A := limn→∞An. It follows:

P(A) = P( lim
M→∞

AM)

= P
(

lim
M→∞

⋃
n≤M

Bn

)
= P

( ⋃
n∈N

Bn

)
=
∑
n∈N

P(Bn)

= lim
M→∞

∑
n≤M

P(Bn)

= lim
M→∞

P(AM).

Proposition 47. Let (Ω,F ,P) be a probability space and let A ∈ F such that P(A) > 0.
Define

PA(B) :=
P(A ∩B)

P(A)
, for each B ∈ F .

Then (A,F ∩ A,PA) is a probability space.

Proof. First, we prove that F ∩ A is a σ-field in A. Note that A ∈ F ∩ A since A ∈ F
and A ∩ A = A. Moreover, if B ∈ F ∩ A there exists C ∈ F such that B = C ∩ A. Since
Ω \ C ∈ F it follows that A \ B = (Ω \ C) ∩ A ∈ F ∩ A. Consider a countable family
{Bi}i∈I ⊆ F ∩ A. Then, there exists a family {Ci}i∈I ⊆ F such that Bi = Ci ∩ A for each
i ∈ I. Since

⋃
i∈I Ci ∈ F , it follows that (

⋃
i∈I Ci) ∩ A =

⋃
i∈I(Ci ∩ A) ∈ F ∩ A.

It remains to show that PA : F ∩ A → R is a probability measure. The statement that
PA is non negative is trivial. Moreover,

PA(A) =
P(A ∩ A)

P(A)
=

P(A)

P(A)
= 1.
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Finally, let {Bi}i∈I ⊆ F ∩ A be a countable pairwise disjoint countable family. Then, there
exists a pairwise disjoint countable family {Ci}i∈I ⊆ F such that Bi = Ci∩A for each i ∈ I.
It follows:

PA
(⋃
i∈I

Bi

)
=

P((
⋃
i∈I Ci ∩ A))

P(A)
=

∑
i∈I P(Ci ∩ A)

P(A)
=
∑
i∈I

P(Ci ∩ A)

P(A)
=
∑
i∈I

PA(Bi).

Definition. Let (Ω,F ,P) be a probability space and let A,B ∈ F be events where P(A) > 0
and P(B) > 0 . The events A and B are said to be independent if

P(B ∩ A) = P(B)P(A).

The latter holds if and only if PB(A) = P(A) and PA(B) = P(B). Furthermore, PA(B) is
called the conditional probability of B given A and we will adopt the more common notation
P(B |A).

Definition. Let (Ω,F ,P) be a probability space and let (Λ,A) be a measurable space. A
random variable in (Ω,F) is a function X : Ω→ Λ such that

A ∈ A implies X−1(A) ∈ F .

In the measure-theoretic context, functions that satisfy the definition above are called
measurable functions.

Proposition 48. Let (Ω,F ,P) be a probability space, let (Λ,A) be a measurable space,
and let X : Ω→ Λ be a random variable in (Ω,F ,P). Define

PX(A) := P({ω ∈ Ω : X(ω) ∈ A}) = P(X−1(A)), for each A ∈ A.

Then PX is a probability measure in (Λ,A). That is, (Λ,A,PX) is a probability space.

Proof. We shall prove that the function PX : A → R is a probability measure.
Let A ∈ A. If A = Λ then PX(A) = P(X−1(Λ)) = P({ω ∈ Ω : X(ω) ∈ Λ}) = 1. The fact

that PX(A) ≥ 0 for each A ∈ A is trivially implied by its definition. To complete the proof,
consider a countable pairwise disjoint family {Ai}i∈I ⊆ A. Then so is {X−1(Ai)}i∈I ⊆ F .
Whence,

PX
(⋃
i∈I

Ai

)
= P

(
X−1

(⋃
i∈I

Ai

))
= P

(⋃
i∈I

X−1
(
Ai

))
=
∑
i∈I

P(X−1(Ai)) =
∑
i∈I

PX(Ai).

Proposition 49. Let (Ωi,Fi,Pi) be a probability space for each i ∈ [3]. Let X : Ω1 → Ω2

be a random variable in (Ω1,F1,P1). If Y : Ω2 → Ω3 be a random variable in (Ω2,F2,P2).
Then Y ◦X : Ω1 → Ω3 is a random variable in (Ω1,F1,P1).

Proof. Let A ∈ F3. Since Y is a random variable, it follows that Y −1(A) ∈ F2. Again, since
X is a random variable it follows that X−1 ◦ Y −1(A) ∈ F1. Therefore, Y ◦ X is a random
variable in (Ω1,F1,P1).

Definition. Let X : Ω→ Λ be a random variable in some probability space (Ω,F ,P). A set
S ⊆ Λ is called the support ofX if for every setW ⊆ Λ such that P({ω ∈ Ω : X(ω) ∈ W}) = 1
we have W ⊇ S. Random variables with countable support are often called discrete.

Proposition 50. Let (Ω,F ,P) be a probability space , let (Λ1,A1) and (Λ2,A2) be mea-
surable spaces, and let X : Ω→ Λ1 and Y : Ω→ Λ2 be random variables. Then:
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(i) The function PX,Y : σ(A1 ×A2)→ R given by

PX,Y (A1, A2) := P({ω ∈ Ω : (X(ω), Y (ω)) ∈ (A1, A2)})

is a probability measure.

(ii) The function P∗X : Λ1 → R given by

P∗X(A1) := PX,Y (A1,Λ2)

PX,Y and P∗X is a probability measure.

Proof.

(i) First we note that PX,Y (Λ1,Λ2) = P({ω ∈ Ω : (X(ω), Y (ω)) ∈ (Λ1,Λ2)}) = P(Ω) = 1
and that the non-negativity PX,Y is implied by the non-negativity of P. Finally, let
{Ai}i∈I ⊆ σ(A1 ×A2) be a countable pairwise disjoint family. It follows:

PX,Y
(⋃
i∈I

Ai

)
= P

(
{ω ∈ Ω : (X(ω), Y (ω)) ∈

⋃
i∈I

Ai}
)

=
∑
i∈I

P({ω ∈ Ω : (X(ω), Y (ω)) ∈ Ai})

=
∑
i∈I

PX,Y (Ai).

(ii) By item (i), it follows that P∗X(Λ1) = PX,Y (Λ1,Λ2) = 1 and that P∗X is non-negative.
Let {Ai}i∈I ⊆ A1. Then:

P∗X
(⋃
i∈I

Ai

)
= PX,Y

(⋃
i∈I

Ai,Λ2

)
=
∑
i∈I

PX,Y (Ai,Λ2) =
∑
i∈I

P∗X(Ai).

To show that PX(A) = P∗X(A) for each A ∈ A1 it suffices to note that

{ω ∈ Ω : X(ω) ∈ A} = {ω ∈ Ω : (X(ω), Y (ω)) ∈ (A,Λ2)}.

Now that it has been proved that PX and P∗X are identical, we adopt PX as our standard
notation. Moreover, note that we can define P∗Y in the exact same way. The probability
measures PX,Y and PX are the joint probability measure of X and Y and the marginal
probability measure of X. Next, we introduce the conditional probability measure of X given
Y .

Proposition 51. Let (Ω,F ,P) be a probability space , let (Λ1,A1) and (Λ2,A2) be mea-
surable spaces, and let X : Ω→ Λ1 and Y : Ω→ Λ2 be random variables. Let A2 ∈ A2 such
that PY (A2) > 0 and define PX(· |Y ∈ A2) : A1 → R such that

PX(A1 |Y ∈ A2) :=
PX,Y (A1, A2)

PY (A2)
for each A1 ∈ A1.

Then PX(· |Y ∈ A2) is a probability measure.

Proof. We first note that PX(· |Y ∈ A2) is non-negative by definition. Moreover,

PX(Λ1 |Y ∈ A2) =
PX,Y (Λ1, A2)

PY (A2)
=

PY (A2)

PY (A2)
= 1.
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Finally, consider a countable pairwise disjoint family {Ai}i∈I . It follows:

PX
(⋃
i∈I

Ai |Y ∈ A2

)
=

PX,Y ((
⋃
i∈I Ai), A2)

PY (A2)
=

∑
i∈I PX,Y (Ai, A2)

PY (A2)
=
∑
i∈I

PX(Ai|Y ∈ A2).

Obviously, PY (· |X ∈ A1) is defined in the exact same manner. Also, the results in
Propositions 50 and 51 may easily be extended for a finite collection of random variables.

Until the end of this section we present some of the theory that involves the case where
X outputs real vectors, or, in other words, X is real-valued.

Definition. Let X : Ω → Rk be a random variable. The function FX : Rk → [0, 1] defined
as

FX(a) := P({ω ∈ Ω : X(ω) ≤ a}) = P
(
X−1

(∏
i∈[k]

(−∞, ai]
))
, for each a ∈ Rk

is the cumulative distribution function of the random variable X.

Definition. Let (Ω,F ,P1) and (Ω,F ,P2) be probability spaces. Let X : Ω → Rk and
Y : Ω → Rk be random variables. We say that the random variables X and Y are iden-
tically distributed if FX(a) = FY (a) for each a ∈ Rk.

Proposition 52. Let X : Ω→ Rk be a random variable in some probability space (Ω,F ,P).
Then FX satisfies:

(i) lima→∞ FX(a) = 1;

(ii) lima→−∞ FX(a) = 0;

(iii) FX is monotonically increasing;

(iv) FX is right continuous, i.e, for each x ∈ Rk, lima↓x FX(a) = FX(x).

Proof. For the first two items, it suffices to notice that

lim
a↓−∞

X−1((−∞, a]) = ∅ and lim
a↑∞

X−1((−∞, a]) = Rk.

The third item follows from the fact that a1 ≤ a2 implies (−∞, a1] ⊆ (−∞, a2]. The final
item is shown using Propositions 46 and 48. Let {xn}n∈N be a decreasing sequence in Rk

such that xn ↓ x . Now, consider the sets {An}n∈N := {a ∈ Rk : a ≤ xn}. Since xn is a
decreasing sequence it is immediate that An is decreasing as well. Furthermore,

An =
n⋂
i=1

Ai for each n ∈ N.

Therefore,
{a ∈ Rk : a ≤ x} =

⋂
n∈N

An.

Thus,

lim
n→∞

FX(xn) = lim
n→∞

PX((An)) = PX( lim
n→∞

An) = PX({a ∈ Rk : a ≤ x}) = FX(x).
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Definition. Let X : Ω→ Rk be a random variable in some probability space (Ω,F ,P), and
let S ⊂ [k]. The marginal cumulative distribution of XS is the function

FXS(a) := lim
aSc→∞

FX(a), for each a ∈ Rk.

Definition. Let (Ω,F ,P) be a probability space, let X : Ω→ Rk be a random variable, let
S ⊂ [k], and let B ∈ B(RS) such that PXS(B) > 0. The conditional cumulative distribution
of X given XS ∈ B is the function

FX(a |XS ∈ B) :=
PX(X ≤ a ∩XS ∈ B)

PX(XS ∈ B)
, for each a ∈ Rk.

Two distinct coordinates i and j of X are independent if

FX{i,j}(a) = FXi(a)FXj(a), for each a ∈ Rk.

If the latter property hold for each distinct i, j ∈ [k], then the coordinates of X are said to
be pairwise independent.

Moreover, if ∏
i∈[k]

FXi(ai) = FX(ai), for each a ∈ Rk

The coordinates of X are said to be jointly independent.
Similarly, if S ⊆ [k] is such that

{i, j} ∩ S = ∅ and FX{i,j}(a |XS ∈ B) = FXi(a |XS ∈ B)FXj(a |XS ∈ B) for each a ∈ Rk

the coordinates of X are said to be conditionally independent given XS.

Definition. Let X : Ω→ Rk be a random variable in some probability space (Ω,F ,P). The
expected value of X is defined as:

E(X) :=

∫
Ω

XdP =

∫
Rk
XdPX

and it is said to exist if and only if the integral exists.

A straightforward fact that arises from the latter definition is that if X and Y are
identically distributed random variables, then they have the same expected value. This
happens because FX(a) = FY (a) for each a ∈ Rk implies that PX(B) = PY (B), for every
B ∈ B(Rk).

In a measure-theoretic context, E(X) is the Lebesgue integral of X. Next, we show that
the expectation functional is linear. Then, the result known as the law of the unconscious
statistician is going to be proved.

Proposition 53. Let X : Ω→ Rk and Y : Ω→ Rk be random variables in some probability
space (Ω,F ,P) and let α, β ∈ R. Then,

E(αX + βY ) = αE(X) + βE(Y ).

Proof.

E(αX + βY ) =

∫
Ω

(αX + βY )dP = α

∫
Ω

XdP + β

∫
Ω

Y dP = αE(X) + βE(Y )
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Proposition 54. Let X : Ω→ Rk be a random variable in some probability space (Ω,F ,P),
let n ∈ N, and g : Rk → Rn be measurable function. Define Y := g(X). Then,

E(Y ) =

∫
Ω

g(X)dP.

Proof. By definition we have that:

E(Y ) =

∫
Rk
g(X)dPX =

∫
Ω

g(X(ω))dP

The special case g(x) = x gives us E(X) =
∫
Rk xdPX

Definition. Let X be a random variable. The variance of X is defined as:

Var(X) := E((X − E(X))2)

Similarly to the expected value, the variance of X is said to exist if and only if the integral
exists.

There is an important thing to note about the relation between the existence of the
expected value and variance of a random variable. If the variance of a real-valued random
variable is finite, then the expected value of X is finite. However, the converse may not
be true. For instance, if X is a random variable having the Pareto distribution [1] with
parameters α and xm and α ∈ (1, 2], then, the expected value of X is finite but its variance
does not exist.

Definition. Let X : Ω → Rk be a random variable in some probability space (Ω,F ,P), let
B ∈ B(Rk) such that PX(· |XS ∈ B) > 0 and let S ⊂ [k]. The conditional expectation of
X|XS is defined as:

E(X |XS ∈ B) :=

∫
Ω

(X |XS ∈ B)dP

Similarly, define the conditional variance of X given XS as:

E((X − E(X |XS ∈ B))2 |XS ∈ B)

As in the previous cases, these values are said to exist if and only if the appropriated integrals
exist.

1.5 Learning from Data
As V.Vapnik defines in [35], statistical learning is “a theory that explores ways to estimate

functional dependence from a given collection of data”. As Vapnik himself concedes shortly
after, this is a very general definition which covers important topics in statistical theory
such as the pattern recognition, regression, and density estimation problems. Consequently,
it is hard to apply an unified framework for all problems in learning theory. In the afore-
mentioned book, the general model of a learning problem is described as an interplay between
three abstract objects.

The first of them is named generator and is usually denoted as G. It considers a proba-
bility space (Ω,F ,P) and a random variable X : Ω→ Rk. Then, it independently generates
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a finite family {ωi}i∈I ⊆ Ω according to the probability measure P. Finally, the generator
returns the collection {X(ωi)}i∈I .

The second element of the learning problem is called target operator or supervisor and
is denoted as T ∗. It is a function that transforms each input X(ωi) provided by G to some
output yi belonging to some space S that we will leave unspecified for now. It is presumed
that such operator exists and does not change but is unknown. As in [35], it is considered that
the outputs yi are conditionally independent given the inputs and are distributed according
to some probability measure.

The final ingredient of a learning problem is denominated learning machine. It observes
a finite family of ordered pairs {(X(ωi), yi)}i∈I of inputs generated by G and outputs re-
turned by T ∗. The trials (X(ωi), yi) are assumed to be pairwise independent and identically
distributed according to a function PX,Y . The learning machine then constructs an approx-
imation of T ∗ pursuing one of these two goals:

(i) Imitate the target operator T ∗, i.e, given the generator G, predict the outputs returned
by the supervisor in the best possible way with respect to a fixed criterion.

(ii) Identify the target operator, i.e, construct an operator which is close to the target with
respect to a fixed criterion.

Despite the obvious similarity between the goals described above, they have some slight
structural differences. For example, if the learning machine is eventually able to identify the
target operator then it should return precise estimations for the outputs of the supervisor.
However, the converse may not be true. For this reason, the identification problem is seen
as more difficult by those who study learning theory.

From this point of view, the learning problem can be summarized as “a problem of
choosing an appropriate function from a given set”. We’ll next introduce decision problems
and their application for these tasks should arise naturally.

1.6 Decision-Theoretic Framework
In this section we present some small amount of theory that will be the key to connect

statistical learning problems with the optimization theory developed so far. Our goal is to
construct decision problems from the definition of an experiment and establish a parallel
between them and optimization problems in the sense they were defined. We now define an
experiment:

Definition. Let (Ω,F ,P) be a probability space. The choice of a finite family {ωi}i∈I ⊆ Ω is
called an experiment. For each i ∈ I, the choice of ωi is called the i-th trial of the experiment.

Consider a research group that must make some decision about some experiment. In the
definition of a decision problem presented in [15], De Groot considers the case where the
outcomes of the experiment are unknown. Now, we present this definition and also consider
the case where the research group has given data to work on. However, we regard that in
both cases it is assumed that there exists a well defined set Ω of all possible outcomes and
that there is a probability measure P well defined in a convenient σ-field F in Ω. The reader
should observe that at this point nothing new was defined since the objects just mentioned
follow the standard definitions already given.

To model the possible decisions, assume that there exists a set D of all possible decisions
d that can be made by the researchers, alike the set Ω just presented, it is supposed that D is
defined along with a appropriate σ-field A of its subsets. It is also assumed that there exists
some σ(F ×A)-measurable function L : Ω×D → R+ that represents the reward obtained by
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the scientists for each pair (ω, d) consisting of a outcome ω of the experiment and a decision
d made by the group. The function L is not unique and may be chosen accordingly to the
preferences of the one(s) involved in the problem instance. Indeed, we refer to the seventh
chapter of [15] for a detailed discussion about this topic.

Obviously, it is assumed that no matter who the scientists are, they want to get the
best out of the experiment. However, the presence of randomness in the experiment is an
inconvenience that must be handled concerning that the objective is to simply choose d ∈ D
that minimizes the loss function. Towards this objective, the uncertain parameter ω must
somehow be managed.

The most popular way to get around this uncertainty problem is to define, for each
decision d ∈ D, the associated expected risk ρ(d) as the conditional expectation in Ω of the
outcome given the decision d. Specifically, due to lemma 54, the formula to the risk ρ(d) is
given by

ρ(d) :=

∫
Ω

L(ω, d)dP.

To extend this definition to the case where the result of the experiment is given, we define
the empirical risk as

ρ(d) :=
∑
i∈I

L(ωi, d).

Where {ωi}i∈I is the outcome of the experiment.
Based on the previous discussion, we now formally define a decision problem.

Definition. Let (Ω,F ,P) be a probability space, let (D,A) be a measurable space, and let
L : Ω×D → R+ be a σ(F ×A)-measurable function. A decision problem is the optimization
problem (D, ρ), where ρ is a risk function obtained from L. The elements of D are called
decisions. The decision problem is feasible if D 6= ∅. Otherwise it is infeasible. The risk of
d is ρ(d). The Bayes risk of the optimization problem is infd∈D ρ(d) ∈ R̄+. A decision d∗ is
a Bayes decision if ρ(d∗) is the Bayes risk, i.e, if ρ(d∗) ≤ ρ(d) for each d ∈ D. The function
L is called loss function and the set D is named decision space.

This correspondence between the definitions of optimization and decision problems leads
to some kind of symmetry between their terminology. For example, pairs like Bayes risk and
optimal value and Bayes decision and optimal solution share the same meaning. In some
sense, a decision problem is an optimization problem with a random component. In the case
where the result of the experiment is unknown, the randomness in the problem is handled
by applying the expectation functional to the random component of the loss function. When
the result of the experiment is known, we use it in order to calculate the risk function ρ.

While applying the described framework to learning problems, the previously mentioned
research group plays the role of the learning machine in one of the following manners:

To relate prediction and decision problems, consider the experiment of observing finitely
many pairs {(X(ωi), yi)}i∈I taking values in some set Rk×S and the decision of choosing the
best function, with respect to a fixed loss L : (Rk×S)×D → R+ to predict a new value of y
given a new value of X. Without any further assumption, the decision space is considered to
be the set of all functions d from Rk to S. In this context, the optimal decision d∗ is chosen
based on the minimization the empirical risk function obtained from L. We note that this
setting is fine with the definition of a decision problem because of Proposition 48.

On the other hand, we will relate imitation and decision problems by considering a finite
collection {X(ωi)}i∈I taking values in some set S. Then, we aim to attribute probabilities to
each element s os S in a ‘realistic’ way. The disparity between the ‘real’ probability of each
element s and our choice is assumed to be represented by some loss function L : S×D → R+,
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that we want to minimize. Identically to the former paragraph, Proposition 48 allows one
to consider S as the random component of the domain of L.
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Chapter 2

Conic Optimization and Duality

In Chapter 1, we defined an optimization problem as an ordered pair (S, f) where S is a
set and f is an extended-real valued function. This is a truly general definition and it gives
no clue for us to actually solve the problem. Depending on the peculiarities of S and f ,
this task can be extremely difficult or even impossible. So mathematicians focus on special
classes of problems that have some interesting properties such as duality theories, algorithms
to find exact or approximate solutions, useful applications, and so on. Attention will now be
turned to conic programming, which has all these features.

In this context, we are going to deal with the optimization of a linear functional over the
intersection of a cone and an affine subspace of the ambient space. This chapter starts with
some basic definitions and results that show how to construct convex cones as epigraphs
of real-valued functions. Then, we use the recession cone of a convex set C to investigate
conditions that imply that the image of C under some linear transformation is closed. Next,
we explore some properties of the dual cone of a convex set. Later, we will use proper cones
to construct a partial order on its ambient space. Further, we will define conic optimization
problems and their duals, and, finally, show some capital results to understand the relation
between these pairs of problems.

2.1 Conic Programming Scenario
Definition. Let E be an Euclidean space. A setK ⊆ E is a cone if for each x ∈ K and α ∈ R++

we have αx ∈ K. That is, K is a cone if αK ⊂ K for each α ∈ R++. A cone is polyhedral if
it is a polyhedron.

Proposition 55. Let E be an Euclidean space, let K ⊆ E be a cone and let f : K → R be
a function. Then epi(f) is a cone if and only if f is positively homogeneous.

Proof. First assume that f is positively homogeneous. Let x⊕ t ∈ K ⊕R and let α ∈ R++.
It follows:

x⊕ t ∈ epi(f) ⇐⇒ f(x) ≤ t

⇐⇒ αf(x) = f(αx) ≤ αt

⇐⇒ αx⊕ αt ∈ epi(f).

Conversely, if epi(f) is a cone then x ⊕ t ∈ epi(f) implies that αx ⊕ αt ∈ epi(f) for each
α ∈ R++. For each x ∈ K, it is clear that x ⊕ f(x) ∈ epi(f). Thus, αx ⊕ αf(x) ∈ epi(f)
for every α ∈ R++. So it follows that f(αx) ≤ αf(x) for each x ∈ K and α ∈ R++. On
the other hand, we also have that αx ⊕ f(αx) ∈ epi(f). Then, x ⊕ f(αx)

α
∈ epi(f). That is,

αf(x) ≤ f(αx). Combining these two inequalities yields αf(x) ≤ f(αx) ≤ αf(x). Therefore,
f is positively homogeneous.

37
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Proposition 56. Let E be an Euclidean space and let ∅ 6= K ⊆ E be a closed cone. Then
0 ∈ K.

Proof. Let x ∈ K. By definition it is true that αx ∈ K for each α ∈ R++. In this case, for
each α ∈ R++ we have that αB ∩K 6= ∅. Thus, 0 is a accumulation point of K. Since K is
closed, we have that 0 ∈ K.

Proposition 57. Let E be an Euclidean space and K ⊆ E a cone. Then, K is convex if and
only if it is closed under addition.

Proof. First suppose K is closed under addition. Let x, y ∈ K then choose α ∈ [0, 1]. Since
K is a cone we have αx ∈ K and (1− α)y ∈ K. Then, αx+ (1− α)y ∈ K.

Conversely, assume K is convex and let x, y ∈ K. We have 1
2
(x+ y) ∈ K and again, the

definition of a cone gives us that x+ y ∈ K.

Corollary 58. Let E be an Euclidean space and let K ⊆ E be a cone. If f : K → R is a
positively homogeneous function, then f is convex if and only if:

f(x+ y) ≤ f(x) + f(y), for each x, y ∈ K.

Proof. Immediate from Propositions 55 and 57.

Recession Cones and Closedness of Convex Linear Images

Definition. Let E be an Euclidean space and let ∅ 6= C ⊆ E be a convex set. The recession
cone of C is the set:

0+C := {y ∈ E : x+ αy ∈ C for each x ∈ C and α ∈ R+}.

Moreover, the subspace lin(C) := 0+C ∩−(0+C) is the lineality space of C and C is pointed
if lin(C) = {0}.

Proposition 59. Let E be an Euclidean space and let f : E→ R be positively homogeneous
a function. Then, epi(f) is pointed if, and only if

f(x) ≤ t implies f(−x) > t, for each 0 6= (x⊕ t) ∈ E⊕ R.

Proof. To prove this result, it suffices to note that:

epi(f) is pointed ⇐⇒ epi(f) ∩ (−epi(f)) = {0}
⇐⇒ (x⊕ t) ∈ epi(f) and (x⊕ t) 6= 0 implies (−x⊕−t) 6∈ epi(f)

⇐⇒ f(x) ≤ t and x 6= 0 implies f(−x) > t.

Proposition 60. Let E be an Euclidean space and let ∅ 6= C ⊆ E be a closed convex set.
Then:

(i) 0+C is a closed convex cone;

(ii) 0+C={0} if and only if C is bounded;

(iii) For each y ∈ E, if there exists x ∈ C such that x + λy ∈ C whenever λ ∈ R+, then
y ∈ 0+C;

(iv) 0+C = 0+ri(C) and lin(C) = lin(ri(C)).
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Proof.

(i) By definition, x ∈ 0+C implies that y + γx ∈ C for fixed y ∈ C and γ ∈ R+. Hence, if
α ∈ R++, then y+ γ

α
(αx) ∈ C. This implies that αx ∈ 0+C and then 0+C is a cone. To

prove that 0+C is convex, let x1, x2 ∈ 0+C and fix λ ∈ [0, 1]. Then, for any α ∈ R++

and y ∈ C, we have that

α((1− λ)x1 + λx2)) + y = (1− λ)(y + αx1) + λ(y + αx2)

belongs to C by convexity. Finally, let x ∈ 0+C. By definition, (x+ εB)∩ 0+C 6= ∅ for
each ε ∈ R++. Define εk := 1

k
for every k ∈ Z++ and let xk ∈ (x+ εkB) ∩ 0+C so that

x is the limit of the sequence {xk}k∈Z++ . Because xk is always in 0+C, it follows that

y + γxk ∈ C, for each y ∈ C and γ ∈ R+.

Since C is closed and the limit of {xk} is x, we obtain that y + λx ∈ C whenever
λ ∈ R+. This implies by definition that x ∈ 0+C. Since the converse is trivial, we
conclude that 0+C = 0+C. That is, 0+C is closed.

(ii) If C is bounded, then there exists M ∈ R++ such that C ⊆ MB. Assume that there
exists 0 6= y ∈ 0+C. Then, we have that x + λy ∈ C for every λ ∈ R+. On the other
hand:

‖x+ λy‖2 = ‖x‖2 + 2λ〈x, y〉+ ‖y‖2.

Thus, for λ ≥ M2

2〈x,y〉 we have that ‖x + λy‖ > M , which contradicts our assumption
that y ∈ 0+C since C ⊆MB.
Conversely, Assume that 0+C 6= {0} and we will show that C is not bounded. Let
0 6= y ∈ 0+C. Then, for each x ∈ C and λ ∈ R+ we have that x + λy ∈ C. Let
M ∈ R++. We already know that if λ ≥ M2

2〈x,y〉 then ‖x+λy‖ > M . That is, there is no
M ∈ R++ such that C ⊆MB. Therefore, C is not bounded.

(iii) Let 0 6= y ∈ E such that there exists x ∈ C such that x+αy ∈ C for each α ∈ R+ and
assume that there is some x′ 6= x such that there exists α′ ∈ R+ such that x′+αy 6∈ C
for α ≥ α′. Fix λ > α′ so that z := x′ + λy 6∈ C. Then, by Theorem 25 there exists
a ∈ E \ {0} and β ∈ R such that 〈a, z〉 > β and 〈a, v〉 ≤ β for each v ∈ C.

Since x+ αy ∈ C whenever α ∈ R+, we have that

〈x+ αy, a〉 = 〈x, a〉+ α〈y, a〉 ≤ β for each α ∈ R+.

Thus, 〈y, a〉 ≤ 0. On the other hand, we have that 〈x′, a〉 ≤ β because x′ ∈ C. Then:

〈x′ + λy, a〉 = 〈x′, a〉+ λ〈a, y〉 ≤ β.

Which is a contradiction.

(iv) Let y ∈ 0+ri(C). By definition we have that x + λy ∈ C whenever λ ∈ R+ and
x ∈ ri(C). Since ri(C) ⊆ C, the result follows. Conversely, let y ∈ 0+C. In particular,
we have that x + λy ∈ C for each x ∈ ri(C) and λ ∈ R+. Since x ∈ ri(C), it follows
from Proposition 15 that x+ λy actually lies in ri(C). Thus, y ∈ 0+ri(C). Finally, we
note that

lin(ri(C)) = 0+ri(C) ∩ −(0+ri(C)) = 0+C ∩ −(0+C) = lin(C).
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There are several possible corollaries from Proposition 60. In particular, if K is a closed
convex cone, then 0+K = K. Thus, K is pointed if and only if K ∩ −K = {0}. In some
sense, the recession cone of a convex set C can be understood as the largest closed convex
cone contained in C.

Proposition 61. Let E be an Euclidean space and let {Ci}i∈I be a family of closed convex
sets such that

⋂
i∈I Ci 6= ∅. Then

0+
⋂
i∈I

Ci =
⋂
i∈I

0+Ci, and lin(
⋂
i∈I

Ci) =
⋂
i∈I

lin(Ci).

Proof. Let x belong to the left-hand side of the first equation. By definition, for each
y ∈

⋂
i∈I Ci we have that x + λy ∈

⋂
i∈I Ci for every λ ∈ R++. From Proposition 60, we

conclude that x ∈ 0+Ci for each i ∈ I. That is, x ∈
⋂
i∈I 0+Ci. Conversely, let x belong to

the right-hand side. This means that x ∈ 0+Ci for each i ∈ I. Let y ∈
⋂
i∈I Ci, which is

nonempty by hypothesis. Then, y + λx ∈ Ci for each λ ∈ R+ and i ∈ I. This means that
y + λx ∈

⋂
i∈I Ci for each λ ∈ R+, or equivalently x ∈ 0+

⋂
i∈I Ci. Finally, we note that the

result for lin(C) follows immediately by associativity.

Proposition 62. Let E and Y be Euclidean spaces, let A : E → Y be a linear func-
tion, let C ⊆ E and V ⊆ Y both be closed convex sets such that V is compact. If
Z := C ∩ A−1(V ) is nonempty, then Z is closed, convex, and we have 0+Z = 0+C ∩Null(A)
and lin(Z) = lin(C) ∩ Null(A). Moreover, Z is compact if and only if 0+C ∩Null(A) = {0}.

Proof. First, note that Z is closed and convex by Propositions 13 and 10, respectively. Now,
we prove that Null(A) = 0+A−1(V ). The inclusion Null(A) ⊆ 0+A−1(V ) is obvious. Con-
versely, if there is y ∈ 0+A−1(V ) such that A(y) 6= 0. Then, A(x+ λy) = A(x) + λA(y) ∈ V
for each λ ∈ R+ and x ∈ A−1(V ), which implies that V is not bounded. Whence, Null(A) = 0+A−1(C).
Then, by Proposition 61 it follows that 0+Z = 0+C∩Null(A) and lin(Z) = lin(C) ∩ Null(A).
Moreover, by Proposition 60, Z is compact if and only if 0+C ∩ Null(A) = {0}.

Proposition 63. Let E be an Euclidean space, let ∅ 6= C ⊆ E be a convex set, and let
S ⊆ lin(C) be a subspace of E. Then

C = S + (C ∩ S⊥).

Proof. To show that S+ (C ∩S⊥) ⊆ C, let x := y+ z for some y ∈ S and z ∈ C ∩S⊥. Since
S ⊆ lin(C) we have that y ∈ lin(C). Therefore, y + z = x ∈ C because z ∈ C. Conversely,
since E = S + S⊥ and C ⊆ E, we can write any x ∈ C as y + z, where y ∈ S and z ∈ S⊥.
We know that y ∈ lin(C). Using that x ∈ C, we obtain x− y = z ∈ C. Hence, z ∈ C ∩ S⊥,
which implies that C ⊆ S + (C ∩ S⊥).

Proposition 64. Let E be an Euclidean space and let {Ci}i∈N ⊆ E be a monotonically
decreasing sequence of nonempty, closed and convex sets. Consider:

R :=
⋂
i∈N

0+Ci, and L :=
⋂
i∈N

lin(Ci).

If R = L, then
⋂
i∈NCi is nonempty.

Proof. First, note that the sequence {lin(Ci)}i∈N is monotonically decreasing and that lin(Ci)
is a subspace of E for each i ∈ N. Thus, there exists i0 ∈ N such that lin(Ci) = L whenever
i ≥ i0.
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Now, we shall prove that there exists i1 such that we have 0+Ci ∩ L⊥ = {0} for i ≥ i1.
Assume that 0+Ci ∩ L⊥ 6= {0}. Then, there exists 0 6= x ∈ 0+Ci ∩ L⊥. Since 0+Ci is a cone
and L⊥ is a subspace, we may assume that ‖x‖ = 1. So we conclude that 0+Ci∩L⊥∩B= 6= ∅
for each i ∈ N. Since this set is compact for each i ∈ N, we know that⋂

i∈N

0+Ci ∩ L⊥ ∩ B= = R ∩ L⊥ ∩ B= 6= ∅.

Because L = R, we obtain that L∩L⊥∩B= 6= ∅. This is a contradiction since L∩L⊥ = {0}.
Fix i ≥ max{i0, i1}, we have just shown that:

0+Ci ∩ L⊥ = {0}.

From Proposition 61,
0+(0+Ci ∩ L⊥) = 0+Ci ∩ L⊥ = {0}.

Thus, Proposition 60 implies that Di := Ci ∩ L⊥ is compact. Then ∩j≥iDj is nonempty,
which gives us that

⋂
i∈NCi 6= ∅ because Di ⊆ Ci for each i ≥ max{i0, i1}.

Proposition 65. Let E and Y be Euclidean spaces, let A : E→ Y be a linear function, and
let ∅ 6= C ⊆ E be a closed convex set. If 0+C ∩ Null(A) ⊆ lin(C), then A(C) is closed.

Proof. Let x ∈ A(C). By definition, for each ε ∈ R++ we have x + εB ∩ A(C) 6= ∅. For
each k ∈ Z++, consider εk := 1

k
and xk ∈ x + εkB. Observe that the limit of the sequence

{xk}k∈Z++ is x and that xk ∈ x+
⋂
i≤k εiB. Consider, for each k ∈ Z++:

Ck := {y ∈ C : A(y) ∈ x+ εkB} = C ∩ A−1(x+ εkB).

Note that xk ∈ Ck for each k ∈ Z++ and thus Ck is always nonempty. Moreover,⋂
k∈Z++

Ck = {y ∈ C : A(y) ∈ x+ εkB, for each k ∈ Z++} = {y ∈ C : A(y) = x}.

Thus, it suffices to show that
⋂
k∈Z++

Ck is nonempty. By Proposition 62 we have that,
0+Ck = 0+C ∩ Null(A), that lin(Ck) = lin(C) ∩ Null(A), and that Ck is closed and convex
for each k ∈ Z++. Also, by hypothesis we know that 0+C ∩Null(A) ⊆ lin(C), which implies
that

0+C ∩ Null(A) ⊆ lin(C) ∩ Null(A).

Since the converse is always true, we conclude that these sets are actually equal. Thus,
applying Proposition 64 we obtain that

⋂
k∈Z++

Ck 6= ∅ and thus x ∈ A(C). Therefore
A(C) ⊆ A(C). That is, A(C) is closed.

Corollary 66. Let E be an Euclidean space, let {Ci}i∈I ⊆ E be a finite family of nonempty
convex sets. If xi ∈ Ci for each i ∈ I and

∑
i∈I xi = 0 implies that xi ∈ lin(Ci) for each

i ∈ I, then
∑

i∈I Ci =
∑

i∈I Ci.

Proof. Consider the Euclidean space EI and the linear transformation A : EI → E where
A(x) =

∑
i∈I xi. Then Null(A) = {x ∈ EI :

∑
i∈I xi = 0}}. Moreover, if C :=

⊕
i∈I Ci, then

trivially 0+C =
⊕

i∈I 0+Ci and, needless to say, lin(C) =
⊕

i∈I linCi . Thus, our hypothesis
implies that 0+C∩Null(A) ⊆ lin(C). Therefore, Proposition 65 yields the desired result.

Definition. Let E be an Euclidean space and K ⊆ E be a cone. If K is closed, convex,
pointed, and has nonempty interior then K is a proper cone.
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Dual Cones and Their Properties

Definition. Let E be an Euclidean space and let ∅ 6= K ⊆ E. The dual cone of K is the
set K∗ := { y ∈ E : 〈x, y〉 ≥ 0 for every x ∈ K}.

Writing K∗ as ⋂
x∈K

{ y ∈ E : 〈x, y〉 ≥ 0}

makes it clear thatK∗ is an intersection of half-spaces. Thus,K∗ is always closed and convex.
Moreover, the homogeneity of the inner-product gives us that K∗ is a cone even when K is
not. Also, if K is a convex cone, then the support function of K is given by:

δ∗(x |K) =

{
0, if 〈x, y〉 ≤ 0 for each y ∈ K;

+∞ otherwise.

Which is the same as δ(· | −K∗). Together with Proposition 37, this implies that the dual
cone of a polyhedral cone is polyhedral. The set −K∗ is commonly called the polar cone of
K. We now present basic propositions on the basic properties of dual cones. Then, we will
show two operations on proper cones and figure how these relate with duality. Finally, we
prove some theorems of alternative relating convex cones with their respective duals. When
combined with Corollary 66, these results will culminate in Proposition 79, which is essential
to our presentation of conic optimization duality.

Proposition 67. Let E be an Euclidean space and C, S ⊆ E, . If C ⊆ S, then S∗ ⊆ C∗.

Proof. Let x ∈ S∗. Then, by definition 〈s, x〉 ≥ 0,∀s ∈ S. Since C ⊆ S we know that
〈c, x〉 ≥ 0 for each c ∈ C. Hence, x ∈ C∗.

Theorem 68. Let E be an Euclidean space andK ⊆ E a closed convex cone. ThenK∗∗ = K.

Proof. We first prove that K ⊆ K∗∗ using the definition of a dual cone. For every x ∈ K
it holds that 〈x, y〉 ≥ 0 for each y ∈ K∗. Thus K ⊆ K∗∗. The converse will be shown by
contradiction. Let w ∈ K∗∗ and assume that w 6∈ K. By Theorem 25, there exists c ∈ E\{0}
such that

〈w, c〉 < 0 and 〈x, c〉 ≥ 0 for each x ∈ K.

This fact implies that c ∈ K∗. Since 〈w, c〉 ≤ 0 it follows that w 6∈ K∗∗.

Analogously to Corollary 31 and Proposition 36, if the convex cone K from the latter is
not assumed to be closed, one obtains that K∗∗ = K.

Proposition 69. Let E be an Euclidean space and let K ⊆ E be a cone with nonempty
interior, then K∗ is a pointed cone. Moreover, if K is pointed then K∗ has nonempty interior.

Proof. Since K has nonempty interior, choose x ∈ K and δ > 0 such that x + δB ⊆ K.
Simultaneously, suppose that there exists y ∈ E such that Ry ⊆ K∗. Then,

〈αy, x+ δv〉 = α(〈y, x〉+ δ〈y, v〉) for each unitary v and for every α ∈ R.

This is impossible to happen as there must exist x0 ∈ x + δB such that α〈y, x0〉 < 0 for
sufficiently large α. Thus, we have the result. The final part of the proof follows by symmetry
from Theorem 68.

Corollary 70. If E is an Euclidean space and K ⊆ E is a proper cone, then K∗ is also a
proper cone.
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Proof. Immediate from Theorem 68 and Proposition 69.

Proposition 71. Let E be an Euclidean space and let K ⊆ E be a proper cone. Then

(i) K∗ = int(K)∗;

(ii) int(K∗) = {x ∈ E : 〈x, y〉 > 0 for each y ∈ K \ {0}}.

Proof.

(i) The inclusion K∗ ⊆ int(K)∗ follows from Proposition 67 because int(K) ⊆ K. Con-
versely, let x ∈ int(K)∗ and assume that x 6∈ K∗. Thus, there exists y ∈ K such
that 〈x, y〉 < 0. Since the function 〈x, ·〉 is continuous, there exists ε ∈ R++ such
that 〈x, z〉 < 0 for each z ∈ y + εB. Moreover, for each ε ∈ R++ we have that
y+ εB∩ int(K) 6= ∅. So we conclude that there exists z̄ ∈ int(K) such that 〈x, z̄〉 < 0,
which contradicts our assumption that x ∈ int(K)∗.

(ii) First we note that K∗ has nonempty interior by Proposition 69. Let x ∈ int(K∗) and
assume by contradiction that there exists y ∈ K\{0} such that 〈x, y〉 = 0. Let ε ∈ R++,
we shall show that there exists z ∈ x + εB such that 〈z, y〉 < 0. Set z := x − ε

‖y‖y.
Clearly, z ∈ x+ εB and also

〈z, y〉 = 〈x− ε

‖y‖
y, y〉 = − ε

‖y‖
〈y, y〉 = −ε‖y‖ < 0.

This contradicts our assumption that x ∈ int(K∗). Conversely, let x such that 〈x, y〉 > 0
for each y ∈ K \ {0}. Note that this property holds if, and only if 〈x, y〉 > 0 for each
y ∈ K ∩B=. Considering the continuous function 〈x, ·〉, we obtain from Theorem 11 is
minimized at some ȳ ∈ K ∩B= assuming value ε ∈ R++. Let δ ∈ R++ such that δ ≤ ε
and z ∈ x + δB implies that 〈z, ȳ〉 ∈ [0, 2ε]. We need to show that x + δB ⊆ K∗. So,
let z ∈ x+ δB and note that

〈z, y〉 ≥ 〈x, y〉+ δ inf
w∈B=

{〈w, y〉} ≥ ε− δ ≥ 0 for each y ∈ B= ∩K.

Thus, we conclude that z ∈ K∗.

Proposition 72. Let E and Y be Euclidean spaces, let K ⊆ E be a proper cone and let
A : E → Y be an invertible linear function. Consider Y ⊇ L := A(K). Then L is a proper
cone.

Proof. We will show that L has each of the properties of a proper cone:

(i) Fix y ∈ L and α ∈ R++. By hypothesis, we have that there exists x ∈ K such that
A(x) = y. To show that αy ∈ L, we note that αx ∈ K. Thus,A(αx) = αA(x) = αy ∈ L.
Therefore L is a cone.

(ii) Let y1, y2 ∈ L. By hypothesis, there exist x1, x2 ∈ K such that A(x1) = y1 and
A(x2) = y2. Since K is convex, it follows from Proposition 57 that x1 + x2 ∈ K. Thus,
A(x1 + x2) = A(x1) + A(x2) = y1 + y2 ∈ L. Therefore L is convex.

(iii) Since A is linear, we know that A−1 is linear as well by Proposition 8. In particular,
we have that A−1 is continuous. Then, note that L = A−1(K). Hence, L is closed by
Proposition 7.
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(iv) Since K has nonempty interior, let x ∈ int(K) and ε > 0 such that x+ εB ⊆ K. Since
A−1 is continuous, we have that there exists δ > 0 such thatA−1(A(x) + δB) ⊆ x+ εB ⊆ K.
Because A−1(L) = K, it follows that A(x)+δB ⊆ L. Thus A(x) ∈ int(L), which implies
that int(L) 6= ∅.

(v) First, observe that 0 ∈ L since 0 ∈ K and A is linear. Then, because K is pointed we
have that x ∈ K \ {0} implies −x 6∈ K. Hence, since A is invertible and L = f(K) it
follows that y ∈ L \ {0} implies −y 6∈ L. Thus, −L = {0} and then L ∩ −L = {0}.
Therefore L is pointed.

Proposition 73. Let E and Y be Euclidean spaces. Let K ⊆ E and L ⊆ Y be proper cones.
Then K ⊕ L ⊆ E⊕ Y is a proper cone.

Proof. We will show that K ⊕ L satisfies each of the properties of a proper cone:

(i) Let (z ⊕ t) ∈ (K ⊕ L) and fix α ∈ R++. Then α(z ⊕ t) = (αz ⊕ αt) ∈ (K ⊕ L) since
αz ∈ K and αt ∈ L. Thus, K ⊕ L is a cone.

(ii) The convexity of K ⊕ L follows from proposition 13.

(iii) SinceK and L are closed, the sets E\K and Y\L are open. Thus, the set (E\K)⊕(Y\L)
is also open. Then, we note that:

K ⊕ L = (E \ (E \K))⊕ (Y \ (Y \ L)) = (E× Y) \ (((E \K)⊕ Y) ∩ (E⊕ (Y \ L))).

Since (E ⊕ (Y \ L)) and ((E \ K) ⊕ Y) are open, their intersection is also open by
Proposition 10 and thus K ⊕ L is closed.

(iv) To prove that K ⊕ L is pointed, note that K ∩ −K = {0} and L ∩ −L = {0} imply
that (K ⊕ L) ∩ −(K ⊕ L) = {0⊕ 0}.

(v) The facts that int(K) 6= ∅ and int(L) 6= ∅ give the existence of (x1⊕x2) ∈ (K⊕L) such
that x1 ∈ int(K) and x2 ∈ int(L). Then, there exist ε1 and ε2 such that x1 + ε1B ⊆ K
and x2 + ε2B ⊆ L. Let ε̄ := min{ε1, ε2}. We will show that (x1 ⊕ x2) + ε̄B ⊆ (K ⊕ L).

Let (z ⊕ t) ∈ (x1 ⊕ x2) + ε̄B. Then:

‖(z ⊕ t)− (x1 ⊕ x2)‖2 = ‖z − x1‖2 + ‖t− x2‖ ≤ ε̄2.

Thus, ‖z−x1‖ ≤ ε1 and ‖t−x2‖ ≤ ε2. Hence, z ∈ (x1+ε1B) ⊆ K and t ∈ (x2 + ε2B) ⊆ L.
Therefore z ⊕ t ∈ K ⊕ L and int(K ⊕ L) 6= ∅.

The next results study how this operations that preserve the property of being a proper
cone relate with duality.

Proposition 74. Let E and Y be Euclidean spaces. Let K ⊆ E and L ⊆ Y both be convex
sets. Then (K ⊕ L)∗ = K∗ ⊕ L∗.

Proof. The inclusion (K ⊕ L)∗ ⊇ K∗ ⊕ L∗ is trivial. The converse will be shown by contra-
diction. Let x⊕ y ∈ (K ⊕ L)∗ and assume that x⊕ y 6∈ K∗ ⊕ L∗. Then, x 6∈ K∗ or y 6∈ L∗.
With no loss of generality, assume that x 6∈ K∗ and y = 0, belonging to L∗. Since x 6∈ K∗
there is k ∈ K such that 〈x, k〉 < 0. Then, clearly 〈x⊕ y, k⊕ l〉 < 0 for any l ∈ L. Therefore,
x⊕ y 6∈ (K ⊕ L)∗.
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Proposition 75. Let E and Y be Euclidean spaces, let K ⊆ E and L ⊆ Y both be convex
sets, and let A : E→ Y be an invertible linear transformation. Then:

(i) (A∗(L))∗ = A−1(L∗);

(ii) A(K)∗ = (A∗)−1(K∗).

Proof.

(i) By definition:

x ∈ (A∗(L))∗ ⇐⇒ 〈A∗(x), y〉 ≥ 0 for each y ∈ L
⇐⇒ 〈x,A(y)〉 ≥ 0 for each y ∈ L
⇐⇒ A(x) ∈ L∗

⇐⇒ x ∈ A−1(L∗).

(ii) By definition:

x ∈ A(K)∗ ⇐⇒ 〈x,A(y)〉 ≥ 0 for each y ∈ K
⇐⇒ 〈A∗(x), y〉 ≥ 0 for each y ∈ K
⇐⇒ A(x) ∈ K∗

⇐⇒ x ∈ (A∗)−1(K∗).

Proposition 76. Let E be an Euclidean space, let S ⊆ E be a subspace of E, and let K ⊆ E
be a convex cone. Then exactly one of the following two statements is true:

(i) There is no hyperplane separating S and K properly;

(ii) There exists x such that x ∈ S⊥, x ∈ −K∗, and x 6∈ K∗.

Proof. By Proposition 27, there exists a hyperplane separating S and K properly if, and
only if there exists x ∈ E \ {0} such that

inf
s∈S
{〈x, s〉} ≥ sup

k∈K
{〈x, k〉}

and
sup
s∈S
{〈x, s〉} > inf

k∈K
{〈x, k〉}.

This inequalities are equivalent to

− δ(−x |S⊥) ≥ δ(x | −K∗) (2.1)

and
δ(x |S⊥) > −δ(−x | −K∗) (2.2)

Analyzing each possible case, we easily conclude that (2.1) and (2.2) hold if, and only if
x ∈ S⊥, x ∈ −K∗, and x 6∈ K∗.

Proposition 76 has many generalizations and corollaries. We now present few of them:

Corollary 77. Let E be an Euclidean space and let {Ki}i∈I ⊆ E be a finite family of convex
cones. Then exactly one of the following two statements is true:
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(i) There exists y ∈
⋂
i∈I ri(Ki);

(ii) There exists a family {xi}i∈I such that
∑

i∈I xi = 0, xi ∈ −K∗ for each i ∈ I, and
xi 6∈ K∗i for some i ∈ I.

Proof. Consider the Euclidean space EI and the cone
⊕

i∈I Ki ⊆ EI . By Corollary 20, we
have that ri(K) =

⊕
i∈I ri(Ki). Set S := {x ∈ EI : xi = xj for each i, j ∈ I}. Then , for each

y ∈ EI :
〈x, y〉 =

∑
i∈I

〈xi, yi〉 = |I|〈xi,
∑
i∈I

yi〉.

The latter expression is zero for each x ∈ S if and only if
∑

i∈I yi = 0. Thus, S⊥ = {y ∈ EI :
∑

i∈I yi = 0}.
Applying Proposition 76 for L and K, we conclude that exactly one of the following state-
ments is true

(i) There exists y ∈ S ∩ ri(K);

(ii) There exists x such that x ∈ S⊥, x ∈ −K∗, and x 6∈ K∗.

Note that K∗ =
⊕

i∈I K
∗
i by Proposition 74. Also observe that S ∩ ri(K) 6= ∅ if, and

only if
⋂
i∈I ri(Ki) 6= ∅. Thus, the former alternatives are equivalent to

(i) There exists y ∈
⋂
i∈I ri(Ki);

(ii) There exists a family {xi}i∈I such that
∑

i∈I xi = 0, xi ∈ −K∗ for each i ∈ I, and
xi 6∈ K∗i for some i ∈ I.

Corollary 78. Let E be an Euclidean space and let {Ki}i∈I ⊆ E be a finite family of convex
cones. If

⋂
i∈I ri(Ki) 6= ∅ then

∑
i∈I K

∗
i is closed.

Proof. Since
⋂
i∈I ri(Ki) 6= ∅, we know that item (ii) of Corollary 77 is false. Thus, we can

apply Corollary 66 to the family {K∗i }i∈I , obtaining the desired result.

Corollaries 77 and 78 can obviously be proved considering a finite family of polyhedral
cones. The following proposition is a refinement of these conditions and will be essential to
our proof of strong duality in the end of this chapter.

Proposition 79. Let E be an Euclidean space, Let {Ki}i∈I ⊆ E be a finite family of
convex cones. Assume that there exists I0 ⊆ I such that Ki is polyhedral for each i ∈ I0. If⋂
i∈I0 Ki ∩

⋂
i∈I\I0 ri(Ki) 6= ∅, then

∑
i∈I K

∗
i is closed.

Proof. We already know that the result is valid when I0 = I and I0 = ∅. Then, we conclude
that the result is true for the families {Ki}i∈I0 and {Ki}i∈I\I0 . Hence, it suffices to show the
result for cones K,Kp ⊆ E, where Kp is polyhedral and ri(K) ∩Kp 6= ∅.

In this context, let S = {x ∈ E2 : x1 = x2}. We know that there exists a hyperplane
properly separating S and K ⊕ Kp if, and only if there exists a hyperplane properly sep-
arating K and Kp. By Proposition 30, this happens if, and only if ri(K) ∩ Kp = ∅. Since
ri(K) ∩Kp 6= ∅ by hypothesis, we conclude that there is no hyperplane separating S and
K ⊕Kp properly. Applying Proposition 76 for these sets, we conclude that item (ii) is false.

Just as in Corollaries 77 and 78, we obtain that the statement “There exists x ∈ K and
p ∈ Kp such that x + p = 0, x ∈ −K∗, p ∈ −K∗p , and x 6∈ K∗i or p 6∈ K∗p ” is false. Then,
Applying Corollary 66 to K and Kp yields the desired result.
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2.2 Cone Partial Order
We will next present the last concept needed to introduce conic programming. Defining

a partial order on a proper cone brings the solid advantage that its properties allow one
to generalize the concept of inequalities to Euclidean spaces. This will be our main tool to
describe the feasible region of conic programs.

Definition. Let E be an Euclidean space, K ⊆ E be a closed, convex, and pointed cone and
x, y ∈ E. Then, the cone K induces an order in E as follows:

x �
K
y ⇐⇒ x− y ∈ K.

Moreover,
x �

K
y ⇐⇒ x− y ∈ int(K).

The expression x �
K
y may be read as x is greater or equal to y in K.

The reader should notice that x ∈ K if, and only if x �
K

0. Thus, K = {x ∈ E : x �
K

0}.
Also note that the order does not depend on 〈·, ·〉. Therefore, it could be said that the coneK
induces an order in the vector space V . Here, this will not be done for simplicity. Moreover,
the order considered at the very beginning of this text for Rn can be seen as the special case
of this definition where E = Rn equipped with any inner product and K = Rn

+.

Proposition 80. Let E be an euclidean space and let K ⊆ E be a proper cone. Then, �
K

is a partial order on E.

Proof. For reflexivity, let x ∈ E. SinceK is closed, we have by Proposition 56 that x− x = 0 ∈ K.
Thus, x �K x. Antisymmetry follows from the fact that, whenever x, y ∈ E, x �K y and
y �K x, we have x − y ∈ K, and y − x = −(x − y) ∈ K. Since K is pointed, this implies
that x− y = 0. For transitivity, let x, y, z ∈ K such that x �

K
y and y �

K
z. We have :

x− y ∈ K and y − z ∈ K

Since K is convex (x− y) + (y − z) = x− z ∈ K. Hence, x �
K
z.

Hopefully, Proposition 80 makes it clear why a proper cone K being required to be
convex, pointed and closed contributes for the definition of this partial order. Requiring that
int(K) 6= ∅ allows us to consider strict inequalities. Furthermore, we can similarly consider
x �K y if, and only if −x �K −y. Also, we remark that Corollary 70 allows us to define a
partial order in K∗ as well. Next, we present an example illustrating why ’�

K
’ is not a total

order on E:

Example. Let E be Rm and K be Rm
+ . Then, take x = e1 and y = e2 and see that x−y 6∈ K

and y − x 6∈ K as both have a negative coordinate.

2.3 Conic Optimization Problems and Their Duals
In the present section, the mathematical object named conic optimization problem is

firstly introduced. Then, we define the so called dual problem in a purely syntactic way.
There are more intuitive approaches for the construction of this theory. Refer to [16] for an

algebraic approach, to [33] for the Lagrangian approach, and [30] for a more general one. Also,
[7] provides several interpretations for duality theory in the convex optimization context.
Anyway, we still adopt this construction once it makes it clearer why many symmetric
properties of the primal-dual pair of conic problems are true.
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Definition. Let E1,E2,E3 and Y1,Y2,Y3 be Euclidean spaces. Let K ⊆ E1 and L ⊆ Y1

both be proper cones. Let Kp ⊆ E2 and Lp ⊆ Y2 both be polyhedral cones. Consider
c1 ⊕ c2 ⊕ c3 ∈ E1 ⊕ E2 ⊕ E3 and b1⊕b2⊕b3 ∈ Y1⊕Y2⊕Y3. Let A : E1⊕E2⊕E3 → Y1⊕Y2⊕Y3

be a linear function.
A conic optimization problem is an optimization problem of the form:

minimize 〈x1 ⊕ x2 ⊕ x3, c1 ⊕ c2 ⊕ c3〉

subject to A(x1 ⊕ x2 ⊕ x3) �
L∗⊕L∗p⊕{0}

b1 ⊕ b2 ⊕ b3,

x1 ⊕ x2 ⊕ x3 ∈ K ⊕Kp ⊕ E3.

(2.3)

The set G := {x1 ⊕ x2 ⊕ x3 ∈ K ⊕Kp ⊕ E3 : A(x1 ⊕ x2 ⊕ x3) �
L∗⊕L∗p⊕{0}

b1 ⊕ b2 ⊕ b3} is
the feasible set of (2.3). According to the notation presented in the Preliminaries, a conic
optimization problem can be represented simply as (G, 〈·, c1 ⊕ c2 ⊕ c3〉).

We now define the dual problem of (2.3).

Definition. Consider the conic optimization problem (2.3). The dual problem of (2.3) is the
conic optimization problem

maximize 〈b1 ⊕ b2 ⊕ b3, y1 ⊕ y2 ⊕ y3〉

subject to A∗(y1 ⊕ y2 ⊕ y3) �
K∗⊕K∗p⊕{0}

c1 ⊕ c2 ⊕ c3,

y1 ⊕ y2 ⊕ y3 ∈ L⊕ Lp ⊕ Y3.

(2.4)

When these problems are presented in pairs, (2.3) can be referred as the primal problem.
To avoid excessive repetition, we also refer to a conic optimization problem as conic program
or simply conic problem.

Here, the advantages from our definitions arise as Theorems 68 and 6 clearly give us that
the dual of (2.4) is (2.3) and then these problems’ labels can be exchanged with no loss of
generality. We now focus on studying some relations between the so-called primal-dual pair
of conic problems. To simplify the notation on the following propositions, we will denote
x := x1⊕ x2⊕ x3, y := y1⊕ y2⊕ y3, c := c1⊕ c2⊕ c3, and b := b1⊕ b2⊕ b3 on (2.3) and (2.4)
until the end of this section.

Theorem 81 (Weak duality). Let α be the optimal value of (2.3) and let β be the optimal
value of (2.4). If x is feasible in (2.3) and y is feasible in (2.4), then 〈b, y〉 ≤ 〈c, x〉. In
particular, α ≥ β. Moreover, if 〈x, c〉 = 〈b, y〉 then x and y are optimal solutions for their
respective problems and α = β.

Proof. Since y is a feasible point in (2.4), we have that A∗(y) �
K∗⊕K∗p⊕{0}

c. By definition,
this is equivalent to c− A∗(y) ∈ K∗ ⊕K∗p ⊕ {0}. That is,

〈c− A∗(y), x〉 = 〈c, x〉 − 〈A∗(y), x〉 ≥ 0.

Similarly, since x is feasible in (2.3), we have that A(x) − b ∈ L∗ ⊕ L∗p ⊕ {0}, which is
equivalent to

〈A(x)− b, y〉 = 〈A(x), y〉 − 〈b, y〉 ≥ 0.

Thus, we conclude that 〈b, y〉 ≤ 〈c, x〉 by the definition of an adjoint operator. Obviously, this
implies that α ≥ β. Finally, assume that 〈x, c〉 = 〈y, b〉 and note that our latter calculations
imply that 〈x, c〉 ≤ 〈x̄, c〉 for each x̄ feasible in (2.3). That is, x is optimal. Symmetrically,
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our calculations imply that 〈y, b〉 ≥ 〈ȳ, b〉 for each ȳ feasible in (2.4). Hence, y is optimal as
well. Clearly, this implies that α = β.

Corollary 82. Let α be the optimal value of (2.3) and let β be the optimal value of (2.4).
Let x be a feasible solution in (2.3) and y be a feasible solution in (2.4). Then x and y are
optimal in their respective problems and α = β if, and only if,

〈x, c− A∗(y)〉 = 〈A(x)− b, y〉 = 0.

Proof. From Theorem 81, we obtain that, whenever x is feasible in (2.3) and y is feasible in
(2.4):

〈x, c〉 ≥ 〈A∗(y), x〉 = 〈y, A(x)〉 ≥ 〈b, y〉.

In particular, if x and y are optimal and α = β, then

〈c, x〉 = 〈b, y〉.

This forces 〈x, c〉 = 〈x,A∗(y)〉 and thus 〈x, c− A∗(y)〉 = 0.
Symmetrically, 〈A(x), y〉 = 〈b, y〉 implies that 〈A(x)− b, y〉 = 0. Conversely, assume that

〈x, c− A∗(y)〉 = 0 and 〈A(x)− b, y〉 = 0.

Then, 〈x, c〉 = 〈x,A∗(y)〉 and 〈A(x), y〉 = 〈b, y〉. Applying the definition of an adjoint oper-
ator and Theorem 81 produces the desired result.

Corollary 83. If the optimal value of the problem (2.3) is −∞, then (2.4) is infeasible.
Similarly, if the optimal value of (2.4) is +∞, then (2.3) is infeasible.

Proof. Trivial from Theorem 81.

2.4 Conditions for Strong Duality
Strong duality is the most important result in conic optimization and it states that the

optimal values of the primal and dual problems coincide given that the primal problem
is feasible and has finite optimal value. Unfortunately, this result, which is also know as
zero duality-gap, does not hold in general. However, there are several conditions that, being
satisfied by the primal problem, guarantee strong duality to hold. These conditions are called
constraint qualifications and the most common of them is Slater’s condition.

As noted in [14], when K is polyhedral, strong duality still hold regardless of the slater
condition being satisfied. This motivated us to show this result in a scenario which includes
both polyhedral and non-polyhedral constraints. Then, we will obtain that strong duality
holds with an intermediate assumption.

We say that (2.3) satisfies the restricted, or weak Slater’s condition if there exists

x1⊕x2⊕x3 ∈ int(K)⊕Kp⊕E3 such that A(x1⊕x2⊕x3)− b1⊕ b2⊕ b3 ∈ int(L)⊕Lp⊕{0}.

In this case, x is a restricted Slater point.
The following Proposition is the key to simplify our proof of strong duality.

Proposition 84. Let E be an Euclidean space, let K ⊆ E be a proper cone, let Kp ⊆ E be
a polyhedral cone and S ⊆ E a linear subspace. Assume that int(K) ∩Kp ∩ S 6= ∅. Then
(K ∩Kp ∩ S)∗ = (K∗ +K∗p + S⊥).
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Proof. The inclusion (K∩Kp∩S)∗ ⊇ (K∗+K∗p+S⊥) is easy to prove. Let a+ b+ c ∈ (K∗ +K∗p + S⊥)
and fix x ∈ (K ∩Kp ∩ S). By definition:

〈a+ b+ c, x〉 = 〈a, x〉+ 〈b, x〉+ 〈c, x〉 ≥ 0.

Since a ∈ K∗, b ∈ K∗p and c ∈ S⊥ the result is shown.
Conversely, we show that (K ∩Kp ∩ S) ⊇ (K∗ +K∗p + S⊥)∗ then, the desired result will

be given by Propositions 67 and 79 along with Theorem 68. Let x ∈ (K∗ + K∗p + S⊥)∗. By
definition,

〈a+ b+ c, x〉 = 〈a, x〉+ 〈b, x〉+ 〈c, x〉 ≥ 0 for each a+ b+ c ∈ (K∗ +K∗p + S⊥).

We want to conclude x ∈ (K ∩ Kp ∩ S). Note that if b = c = 0 we have 〈a, x〉 ≥ 0.
Similarly, a = b = 0 and a = c = 0 imply, respectively, that 〈c, x〉 ≥ 0 and 〈b, x〉 ≥ 0.
Furthermore, since S⊥ is a linear subspace, it is true that −c ∈ S⊥. Hence, 〈x, c〉 = 0 for
each c ∈ S⊥ if and only if x ∈ (S⊥)⊥ = S. Therefore, x ∈ (K ∩Kp ∩ S).

Theorem 85 (Strong duality). Consider the optimization problem (2.3). If (2.3) is bounded
below and has a restricted Slater point, then the optimal values of (2.3) and its dual (2.4)
are equal and (2.4) has an optimal solution.

Proof. Let α ∈ R be the optimal value of (2.3) and consider the following objects:

(i) K := K ⊕ E2 ⊕ E3 ⊕ R+;

(ii) Kp := E1 ⊕Kp ⊕ E3 ⊕ R+;

(iii) S := {x1⊕x2⊕x3⊕ t ∈ E1⊕E2⊕E3⊕R : A(x1⊕x2⊕x3) �L∗⊕L∗p⊕{0} t(b1⊕ b2⊕ b3)};

(iv) c := c1 ⊕ c2 ⊕ c3 ⊕−α.

Note that (K∩Kp∩S) corresponds to the feasible region of (2.3) and that c ∈ (K∩Kp∩S)∗

because α is the optimal value of this problem. Moreover, K∗ = K∗ ⊕ {0} ⊕ {0} ⊕ R+ and
K∗p = {0} ⊕K∗p ⊕ {0} ⊕ R+ by Proposition 74 and

S⊥ = {A∗(y1 ⊕ y2 ⊕ y3)⊕ (−〈b1 ⊕ b2 ⊕ b3, y1 ⊕ y2 ⊕ y3〉) : y1 ⊕ y2 ⊕ y3 ∈ L⊕ Lp ⊕ Y3}.

Since there is a restricted Slater point by hypothesis, we can apply Proposition 84 to conclude
that there exists z ∈ K∗, w ∈ K∗p and v ∈ S⊥ such that c = z + v + w. The last coordinate
of this equation gives us:

−α = (β+γ)−〈b1⊕ b2⊕ b3, y1⊕ y2⊕ y3〉 for some β, γ ∈ R+ and y1⊕ y2⊕ y3 ∈ L⊕Lp⊕Y3

This equality implies that α ≤ 〈b1⊕ b2⊕ b3, y1⊕y2⊕y3〉. Since α ≥ 〈b1⊕ b2⊕ b3, y1⊕y2⊕y3〉
by Theorem 81, the result follows. Of course, y1⊕y2⊕y3 in an optimal solution for (2.4).

We conclude this Chapter with a brief review of our path to Theorem 85. In Section
1.2, Proposition 20 has shown that closures and linear images of convex sets do not always
commute. Without this inconvenient, our use of Proposition 79 should be a triviality, allowing
us to remove remove Slater’s condition requirement on Proposition 84 and preserving the
exact same result. In this imaginary circumstance, strong duality would hold regardless of
any constraint qualification being satisfied.

In the real world, we were forced to handle this obstacle. Using recession cones as our
main tool, we determined conditions that fill the gap left by Proposition 20. Applying these
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to the summation linear function produced Corollary 66. Later, Proposition 79 allowed us
to connect our previous achievements with duality theory. In fact, this result completely
reflects the importance of Slater’s condition in our endeavor. The proof of Proposition 84
relies on this construction when we use Theorem 68. With all this machinary set, we were
able to turn the Strong Duality Theorem into an impressively simple and elegant result.
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Chapter 3

Relative Entropy Optimization

In the first chapters of this text we introduced the basics of conic programming. From
now on, our work will be focused on some specific cones. The first section of this chapter
covers the definition and basic properties of the well known, e.g. [21], exponential cone.
Then, we define the one-dimensional relative entropy cone, prove its basic properties and
expose a linear bijection that relates these two mentioned cones and show that the same
bijection actually also connects their dual cones. Later, we derive the properties of the n-
dimensional relative entropy cone from the results established in Chapter 2 and present the
so-called relative entropy programs (REP). Finally, we display a simple application of REP
to statistical learning.

3.1 The Exponential Cone
Definition. Let n ∈ N. The exponential cone is defined as:

Gn :=

{
(x⊕ θ ⊕ β) ∈ Rn ⊕ R+ ⊕ R+ : θ

∑
i∈[n]

exp

(
−xi
θ

)
≤ β

}
.

Where we consider 0 exp(α
0
) = 0 for each α ∈ R+.

The convention mentioned in the previous definition is designed to preserve the continuity
of the function θ exp(−x

θ
), which is obviously not defined for θ = 0.

Proposition 86. The function f : Rn ⊕ R+ → R+ given by:

f(x⊕ θ) := θ
∑
i∈[n]

exp

(
−xi
θ

)
for each (x⊕ θ) ∈ Rn ⊕ R+

where we consider 0 exp(−α
0

) = 0 for each α ∈ R+ is convex.

Proof. Consider the function g : R→ R+ given by g(α) := exp(−α) for each α ∈ R. Calcu-
lating the second-order derivative of g we obtain that g′′ = g and thus g′′ is strictly positive
in R. Then, since g is convex by Proposition 33, by Proposition 32:

g((1− λ)α1 + λα2) ≤ (1− λ)g(α1) + λg(α2), for each α1, α2 ∈ R and λ ∈ [0, 1].

Set α1 := x
θ
, α2 := z

µ
and λ := µ

θ+µ
for some x, z ∈ R and θ, µ ∈ R++. Substituting these

values in the previous expression yields:

exp

(
−
( θ

θ + µ

x

θ
+

µ

θ + µ

z

µ

))
≤ θ

θ + µ
exp

(
−x
θ

)
+

µ

θ + µ
exp

(
−z
µ

)
.

53
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Multiplying both sides by θ + µ gives us that:

(θ + µ) exp

(
−z − x
θ + µ

)
≤ θ exp

(
−x
θ

)
+ µ exp

(
−z
µ

)
.

Thus, the function h : R⊕R++ → R+ given by h(x⊕θ) := θ exp(−x
θ

) is convex by Corollary
58. Then, by Proposition 35 the function f : Rn⊕R++ → R+ defined as f(y ⊕ θ) :=

∑
i∈[n] h(yi ⊕ θ)

is convex. Finally, applying Proposition 34 we obtain that f is exactly the closure of f . This
implies that f is convex because epi(f) = epi(f) by definition and epi(f) is convex.

Proposition 87. The set Gn is a proper cone.

Proof. First, note that Gn = epi(f) where f is the function considered in Proposition 86,
which gives us that Gn is convex. This Proposition also tells us that Gn is closed because
epi(f) is the closure of a set. Moreover, noting that f is positively homogeneous we obtain
that Gn is a cone by Proposition 55. We also have that Gn has nonempty interior by Propo-
sition 9 because f is continuous. Finally, we note that −Gn = {0} since Gn ⊆ Rn

+⊕R+ and
0 ∈ Gn. This implies that Gn ∩ −Gn = {0}. That is, Gn is pointed.

We note that we can also obtain that Gn is closed from Proposition 9. This cone is
useful, for example, to study geometric programs [8], which will be explored in more detail
in Chapter 5. Next, we calculate the dual cone of Gn.

Proposition 88. The dual cone of Gn is the set

G∗n =

{
(y ⊕ λ⊕ α) ∈ Rn ⊕ R⊕ R : −

∑
i∈[n]

yi log
(∣∣∣yi
α

∣∣∣)+ |yi| ≤ λ

}
.

Proof. Let y ⊕ λ⊕ α ∈ Rn ⊕ R⊕ R. By definition, (y ⊕ λ⊕ α) ∈ G∗n if and only if

〈x⊕ θ ⊕ β, y ⊕ λ⊕ α〉 = 〈x, y〉+ θλ+ βα ≥ 0 for each (x⊕ θ ⊕ β) ∈ Gn.

Assume that θ ∈ R++ and note that it does not change our result by Proposition 71. Let
t ∈ Rn such that ti := xi

θ
for each i ∈ [n]. Then, for each (x⊕ θ ⊕ β) ∈ Gn:

〈x, y〉+ θλ+ βα ≥ 0 ⇐⇒ 〈x, y〉+ θλ+ α

(
θ
∑
i∈[n]

exp
(−xi
θ

))
≥ 0

⇐⇒ λ ≥ −〈x, y〉
θ

− α
∑
i∈[n]

exp
(−xi
θ

)
⇐⇒ λ ≥ −〈t, y〉 − α

∑
i∈[n]

exp(−ti).

Analyzing each term of the sum above as a function of ti, we obtain that tiyi + α exp(−ti)
is minimized when ti = − log(|yi

α
|). Thus:

min
ti∈R
{tiyi + α exp(−ti)} = yi log

(∣∣∣yi
α

∣∣∣)+ |yi|.

Summing for each i ∈ [n] yields the desired result.

The conventions we adopted on the undefined cases will be exposed below.
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3.2 The Relative Entropy Cone
The relative entropy cone is defined as the epigraph of the relative entropy function, which

is explored in detail in [13]. As in [9], this cone will be defined as a subset of R+ ⊕ R+ ⊕ R
and then this definition is extended to the n-dimensional case by taking direct sums of its
first version.

Before we start, it is important to explicitly declare that the usual, e.g [13], conventions
that 0 log(0) = 0, 0 log(0

0
) = 0, and α log(α

0
) =∞ for each α ∈ R++ will be adopted through

the remainder of this text. These conventions are meant to preserve the continuity of the
function x log(x

y
), originally well-defined in R++⊕R++. The next proposition aims at showing

that the convexity of x log(x
y
) is also preserved by our conventions.

Definition. The 1-dimensional relative entropy cone is defined as:

H1 :=

{
(x⊕ y ⊕ δ) ∈ R+ ⊕ R+ ⊕ R : x log

(
x

y

)
≤ δ

}
.

Where we consider 0 log(0) = 0, 0 log
(

0
0

)
= 0, and α log

(
α
0

)
=∞ for each α ∈ R++.

Proposition 89. The function f : R+ ⊕ R+ → R given by:

f(x⊕ y) := x log

(
x

y

)
where we consider 0 log(0) = 0, 0 log

(
0
0

)
= 0, and α log

(
α
0

)
= ∞ for each α ∈ R++ is

convex.

Proof. Consider the function g : R++ → R given by g(α) := α log(α) for each α ∈ R++.
Calculating the second-order derivative of g we obtain that g′′(α) = 1

α
for each α ∈ R++.

Then, it follows from Proposition 33 that g is convex. Thus, by Proposition 32:

g((1− λ)α1 + λα2) ≤ (1− λ)g(α1) + λg(α2), for each α1, α2 ∈ R++ and λ ∈ [0, 1].

Set α1 := x1
y1
, α2 := x2

y2
, and λ := y2

y1+y2
for some x1, x2, y1, y2 ∈ R++. Substituting these values

in the previous equations yields:(
x1

y1 + y2

+
x2

y1 + y2

)
log

(
x1

y1 + y2

+
x2

y1 + y2

)
≤ x1

y1 + y2

log

(
x1

y1

)
+

x2

y1 + y2

log

(
x2

y2

)
.

Multiplying both sides by y1 + y2 we get:

(x1 + x2) log

(
x1 + x2

y1 + y2

)
≤ x1 log

(
x1

y1

)
+ x2 log

(
x2

y2

)
.

Thus, by Proposition 58 we have that the function f : R++ ⊕ R++ → R given by f(x⊕ y) = x log(x
y
)

is convex. Applying Proposition 34 we obtain that f is the closure of f , which yields the
desired result.

Proposition 90. The set H1 is a proper cone.

Proof. First, we note that H1 = epi(f) where f is the function from Proposition 89, which
gives us that H1 is convex. Moreover, this result also gives us that H1 is closed because it is
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the closure of a set. Since f is positively homogeneous and continuous, we have that H1 is a
cone and has nonempty interior by Propositions 55 and 9, respectively. It remains to show
that H1 is pointed. Note that 0 ∈ H1 and also that the only element (x⊕ y ⊕ δ) of H1 with
non-positive x and y is 0. This implies that −H1 = {0}. Thus H1 ∩−H1 = {0}. That is, H1

is pointed.

Alike in Proposition 87, we can obtain that H1 is closed from Proposition 9. Next, we
show a linear correspondence between G1 and H1.

Proposition 91. Let (x ⊕ y ⊕ δ) ∈ R ⊕ R+ ⊕ R+. Then (x ⊕ y ⊕ δ) ∈ G1 if and only if
(y ⊕ δ ⊕ x) ∈ H1.

Proof. By definition:

(x⊕ y ⊕ δ) ∈ G1 ⇐⇒ y exp

(
−x
y

)
≤ δ

⇐⇒ −x ≤ y log

(
δ

y

)
⇐⇒ y log

(
y

δ

)
≤ x

⇐⇒ (y ⊕ δ ⊕ x) ∈ H1.

Corollary 92. Let (x ⊕ y ⊕ δ) ∈ R+ ⊕ R+ ⊕ R+. Then (x ⊕ y ⊕ δ) ∈ G∗1 if and only if
(y ⊕ δ ⊕ x) ∈ H∗1.

Proof. Let T be the permutation derived on Proposition 91. Noting that (T ∗)−1 = T and
applying Proposition 75 yield the desired result.

Definition. We define the n-dimensional relative entropy cone as:

Hn :=

{
(x⊕ y ⊕ δ) ∈ Rn

+ ⊕ Rn
+ ⊕ Rn : xi log

(
xi
yi

)
≤ δi, for each i ∈ [n]

}
.

Corollary 93. The set Hn is a proper cone.

Proof. Let H :=
⊕

i∈[n] Hi
1 ⊆ (R+ ⊕ R+ ⊕ R)n and note that H is a proper cone by Propo-

sitions 73 and 90. Consider the function A : (R+ ⊕ R+ ⊕ R)n → Rn
+ ⊕ Rn

+ ⊕ Rn such that
A((x ⊕ y ⊕ δ)i) = xi ⊕ yi ⊕ δi for each (x ⊕ y ⊕ δ) ∈ (R+ ⊕ R+ ⊕ R)n. Note that A is a
linear bijection and, as such, is invertible. Moreover A(H) = Hn. Thus, we obtain that Hn

is a proper cone from Proposition 72.

3.3 Relative Entropy Programming
Now, we use the fact that Hn is a proper cone in order to define relative entropy programs.

The previous Corollary shows that for any n ∈ N, the n-dimensional relative entropy cone
is produced using copies of H1 as primitive building blocks. This implies that direct sums
of multi-dimensional relative entropy cones equivalent to Hm for some appropriate m ∈ N.
In this scenario, it turns out that it is irrelevant to consider direct sums of relative entropy
cones to define (REP).

Definition. Let A : Rn⊕Rn⊕Rn → Rm⊕Rm⊕Rm be a linear function, let c ∈ Rn⊕Rn⊕Rn,
and let b ∈ Rm ⊕ Rm ⊕ Rm. A relative entropy program (REP) is defined as:
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minimize 〈x, c〉

subject to A(x) �H∗m b,

x ∈ Hn.

In this case, the feasible set is given by G := {x ∈ Rn ⊕ Rn ⊕ Rn : A(x) �H∗m
b, x ∈ Hn}.

According to the notation introduced in the Preliminaries, a relative entropy problem is
simply represented by (G, 〈c, ·〉).

3.4 Application: The Density Estimation Problem
Until the end of this chapter, we are working on a specific instance of the identification

problem presented in the Preliminaries. Let k ∈ N and consider a probability space (Ω,F ,P)
and a random variable X : Ω → [k]. As shown by Proposition 48, the random variable X
induces a probability measure on [k]. This measure is assumed to be unknown. Obviously,
this means that P is unknown as well. Our goal is: given a set D of probability measures
and a finite collection {ωi}i∈I ⊆ Ω, estimate the probability measure PX .

First, we will represent each probability measure on [k] as an element β of [0, 1]k such that∑
i∈[k] βi = 1. That is, we will consider the decision space Dβ := {β ∈ [0, 1]k : 〈1, β〉 = 1}.

Then, we choose the loss-function L : Ω×Dβ → R+ given by:

L(ω, β) := − log(βX(ω)), for each ω ∈ Ω and β ∈ Dβ.

Set xi := X(ωi) for each i ∈ I, nj := |{i ∈ I : X(ωi) = j}| for each j ∈ [k], and n ∈ Rk in
the obvious way. Calculating the empirical risk associated with L and the collection {xi}i∈I
yields:

ρ(β) = −
∑
i∈I

log(βxi) = −
∑
j∈[k]

nj log(βj).

Finally, our optimal solution is obtained by minimizing ρ. Equivalently, one can solve
the following REP:

minimize 〈−n, δ〉

subject to 〈1, β〉 = 1,

(1⊕ 1

β
⊕ δ) ∈ Hk.
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Chapter 4

Second-Order Cone Programming

We start this chapter by presenting a family of cones, which are constructed as the epi-
graph of some of the well-known p-norms in Rn. Then, we will show their basic properties,
just as done for Gn and Hn. These features guarantee that the conic programming theory
developed in Chapter 2 also hold for this family of cones. Next, we formally define an opti-
mization problem over the second-order cone. Later, it is shown that this class of problems
can be represented as a special case of REP. Finally, we introduce ridge regression as an
application of SOCP to the statistical learning theory shortly described in the Preliminaries
of this text.

4.1 The Second-Order Cone
Definition. Let p ≥ 1. The p-norm of x ∈ Rn is defined as:

‖x‖p :=

(∑
i∈[n]

|xi|p
) 1

p

.

Definition. The n-dimensional p-th order cone Lpn ⊂ Rn ⊕ R+ is defined as:

Lpn := {x⊕ λ ∈ Rn ⊕ R+ : ‖x‖p ≤ λ}.

Proposition 94. Each of the sets Lpn is proper a cone.

Proof. Fix n ∈ N \ {0} and p ≥ 1. Consider the function f : Rn → R given by:

f(x) := ‖x‖p, for each x ∈ Rn.

Note that Lpn = epi(f). Thus, it follows from Proposition 55 that Lpn is a cone since f is
positively homogeneous. Moreover, from the triangle inequality:

f(x+ y) = ‖x+ y‖p ≤ ‖x‖p + ‖y‖p = f(x) + f(y), for each x, y ∈ Rn.

Hence, Lpn is convex by Corollary 58. Also, since f is a composition of continuous functions
we have that f is continuous. Then, by Proposition 9 we know that Lpn is closed and has
non-empty interior. It remains to show that Lpn is pointed. Let x ⊕ λ ∈ Lpn and note that
−x⊕−λ 6∈ Lpn unless x = 0 and λ = 0. Hence, we conclude that −Lpn = {0}. Finally, noting
that 0 ∈ Lpn as well gives us that Lpn is pointed.

In the proof above, the reader may have noted that the only point where we used the
definition of the p-norm in Rn to obtain that f was continuous, and we did not use at all
any specific property of Rn. Also, it is widely known that every norm on any vector space V
is continuous. Therefore, the epigraph of every norm in any vector space V is a proper cone.

59
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The norm induced by the standard inner-product in Rn corresponds to the p-norm where
p = 2 and, from now on, we will consider the cone produced by this case. For simplicity,
we denote ‖ · ‖2 =: ‖ · ‖ and Ln := L2

n for the rest of the chapter. This proper cone is the
second-order cone and the next proposition makes use of this fact and is the final piece for
us to define conic problems over Ln.

Proposition 95. The dual cone of Ln is Ln.

Proof. Let y ⊕ α ∈ L∗n. Then 〈y, x〉 + αλ ≥ 0 for each x⊕ λ ∈ Ln. In particular, if x = −y
and λ = ‖y‖ we have that:

−‖y‖2 + α‖y‖ ≥ 0.

Therefore, α ≥ ‖y‖. That is, y ⊕ α ∈ Ln. Conversely, let y ⊕ α ∈ Ln. Then, by Proposition
2:

〈x, y〉+ αλ ≥ −‖x‖‖y‖+ αλ for each x⊕ λ ∈ Ln.

From this last inequality, we conclude that y ⊕ α ∈ L∗n.

4.2 Second-Order Cone Programming
Now that is known that Ln is a proper cone, we are finally able to present the so called

second order conic programs.

Definition. Let K and L be direct sums of second order cones contained in suitable Eu-
clidean spaces E and Y, respectively. Also let a linear function A : E→ Y.

A second order conic problem (SOCP) is defined as:

minimize 〈x, c〉

subject to A(x) �
L
b,

x ∈ K.

Where c ∈ E and b ∈ Y. Moreover, in this case the feasible set is given by the set

{x ∈ Rn ⊕ R : A(x) �
L
b, x ∈ K}.

4.3 SOCP as a Special Case of REP
At this point, we are ready to formulate a SOCP as a REP. The main idea behind the

following derivation is to write the second order cone Ln as a convenient direct sum of copies
of L2 and then transform each term in this sum into a relative entropy cone H1. After that,
direct sums of H1 are taken in order to "reconstruct" Ln.

First, we show how to write the cone Ln as a convenient direct sum of copies of L2. In [3],
the following construction was named tower of variables. Before we start, it is important to
say that we can suppose without loss of generality that exists j ∈ N such that n = 2j. The
reader should note that this can only be done because if x⊕ λ ∈ Ln, then x⊕ 0⊕ λ ∈ Ln+1.

By definition, we have that x⊕ λ ∈ Ln if and only if ‖x‖ ≤ λ, i.e :√
x2

1 + x2
2 + . . .+ x2

n ≤ λ.
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The assumption that there exists j ∈ N such that n = 2j allows us to form exactly j
2
pairs

of coordinates of x. By repeating the same process, at the end of the j-th step there is only
one variable left. This idea can be stated as the following result:

Theorem 96. Let j ∈ N and let x ⊕ λ ∈ R2j ⊕ R+. Then x ⊕ λ ∈ L2j if and only if there
exists y ∈ R2j−2

+ such that

(w2k, w2k+1)⊕ wk ∈ L2, for each k ∈ [2j − 1], (4.1)

where w := λ ⊕ y ⊕ x and we are identifying R ⊕ R2j−2 ⊕ R2j with R2j+1−1 in the obvious
way.

Proof. We shall prove this result by induction in j. First, assume that j = 2, fix x⊕ λ ∈ L4

and define y ∈ R2
+ such that y2

1 = x2
1 +x2

2 and y2
2 = x2

3 +x2
4. It is clear that (x1, x2)⊕ y1 ∈ L2

and (x3, x4)⊕ y2 ∈ L2. Then, it is left to prove that (y1, y2)⊕ λ ∈ L2. By definition:√
y2

1 + y2
2 =

√
x2

1 + x2
2 + x2

3 + x2
4 ≤ λ.

Thus, (y1, y2)⊕λ ∈ L2. Conversely, let x⊕λ ∈ R4⊕R+ and assume that there exists y ∈ R2
+

satisfying (4.1). That is, (y1, y2)⊕ λ, (x1, x2)⊕ y1, and (x3, x4)⊕ y2 all belong to L2. Thus,√
x2

1 + x2
2 + x2

3 + x2
4 ≤

√
y2

1 + y2
2 ≤ λ.

Therefore, x⊕ λ ∈ L4.
Finally, assuming that the result is true for j = n, we will show that it also holds for

j = n + 1. Let x⊕ λ ∈ L2n+1 and define s1 := (x1, . . . , x2n) and s2 := (x2n+1, . . . , x2n+1). By
the induction hypothesis, the fact that si ⊕ ‖si‖ ∈ L2n implies the existence of yi such that
(4.1) holds for i ∈ [2]. Now set y :=

⊕k−1
l=1 (y1[2l−1, 2l − 1], y2[2l−1, 2l − 1]) . It is left to show

that (‖s1‖, ‖s2‖)⊕ λ ∈ L2. It follows:√
‖s1‖2 + ‖s2‖2 =

√
x2

1 + . . .+ x2
2n+1 = ‖x‖ ≤ λ.

And then (‖s1‖, ‖s2‖)⊕ λ ∈ L2 and (4.1) holds for y.
Conversely, let x⊕λ ∈ R2n+1⊕R+ and fix y such that (4.1) holds. In particular, we have

that (w2, w3)⊕ w1 ∈ L2. Note that w1 = λ. Applying the induction hypothesis, it follows

‖x‖ ≤
√
w2

2 + w2
3 ≤ λ.

Therefore, x⊕ λ ∈ L2n+1 .

The idea of the previous prove may be replicated for any of the p-norms in Rn. However,
the following results, which show how to transform each copy of L2 in a copy of H1, are
particular of the case we are focusing on.

Theorem 97. Let x⊕ λ ∈ R2 ⊕ R+. Then:

x⊕ λ ∈ L2 if and only if
[
λ− x1 x2

x2 λ+ x1

]
∈ S2

+.

That is, L2 =

{
x⊕ λ ∈ R2 ⊕ R :

[
λ− x1 x2

x2 λ+ x1

]
∈ S2

+

}
=: A.
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Proof. Let x⊕ λ ∈ L2. By definition,

‖x‖ =
√
x2

1 + x2
2 ≤ λ implies (λ+ x1)(λ− x1)− x2

2 = det

[
λ− x1 x2

x2 λ+ x1

]
≥ 0.

Since x ⊕ λ ∈ L2, we also have that λ − x1 ≥ 0 and λ + x1 ≥ 0. Thus, by Theorem 12 it
follows that L2 is contained in the right-hand side.

Conversely, let x⊕ λ ∈ A. By Theorem 12:[
λ− x1 x2

x2 λ+ x1

]
∈ S2

+ implies det

[
λ− x1 x2

x2 λ+ x1

]
= (λ−x1)(λ+x1)−x2

2 = λ2−x2
1−x2

2 ≥ 0.

Therefore, ‖x‖ ≤ λ and then x⊕ λ ∈ L2.

Theorem 98. Let
[
a c
c b

]
∈ S2. Then

[
a c
c b

]
∈ S2

+ if and only if there exists η ∈ R+ such

that 
η log

(
η
a

)
+ η log

(
η
b

)
− 2η ≤ 2c

η log
(
η
a

)
+ η log

(
η
b

)
− 2η ≤ −2c

.

Proof. By definition:[
a c
c b

]
∈ S2

+ if and only if z>
[
a c
c b

]
z = az2

1 + bz2
2 + 2cz1z2 ≥ 0, for each z ∈ R2.

Equivalently,

az2
1 + bz2

2 + 2cz1z2 ≥ 0 and az2
1 + bz2

2 − 2cz1z2 ≥ 0, for each z ∈ R2
+.

Now, consider the variables wi = log(zi); i = 1, 2. Substituting into the preceding equation,
it follows:

a exp(2w1)+b exp(2w2)+2c exp(w1+w2) ≥ 0 and a exp(2w1)+b exp(2w2)−2c exp(w1+w2) ≥ 0.

Dividing both sides by exp(w1 + w2) it is easy to see that

a exp(w1−w2) + b exp(w2−w1) ≥ −2c and a exp(w1−w2) + b exp(w2−w1) ≥ 2c, ∀w ∈ R2.

Thus, [
a c
c b

]
∈ S2

+ ⇐⇒ inf
w∈R2
{a exp(w1 − w2) + b exp(w2 − w1)} ≥ max{2c,−2c}.

Using the result noted in the appendix of [9], we have that:

inf
w∈R2
{a exp(w1 − w2) + b exp(w2 − w1)} = sup

η∈R+

{
η log

(η
a

)
+ η log

(η
b

)
+ 2η

}
.

Which yields the desired result.

Corollary 99. Let x ⊕ λ ∈ R2 ⊕ R+. Then, x ⊕ λ ∈ L2 if and only if there exists η ∈ R+
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such that: 
δa + δb − 2η ≤ 2x2;

δa + δb − 2η ≤ −2x2;

(η ⊕ x1 − λ⊕ δa) ∈ H1;

(η ⊕ x1 + λ⊕ δb) ∈ H1.

Proof. From Theorem 97, we have that:

x⊕ λ ∈ L2 if and only if
[
λ− x1 x2

x2 λ+ x1

]
∈ S2

+.

Applying Theorem 98 gives us that the former matrix is positive semidefinite if, and only if
there exists η ∈ R+ such that:{

η log
(

η
x1−λ

)
+ η log

(
η

x1+λ

)
− 2η ≤ 2x2;

η log
(

η
x1−λ

)
+ η log

(
η

x1+λ

)
− 2η ≤ −2x2.

Or, equivalently: 
δa + δb − 2η ≤ 2x2;

δa + δb − 2η ≤ −2x2;

(η ⊕ x1 − t⊕ δa) ∈ H1;

(η ⊕ x1 + t⊕ δb) ∈ H1.

4.4 Application: Ridge Regression
4.4.1 The Regression Problem

Until the end of this chapter, we are working on a particular instance of the general
learning problem introduced in the Preliminaries. Specifically, we will handle the case of the
prediction problem where the output provided by the supervisor is quantitative, which is
commonly named regression.

Consider a probability space (Ω,F ,P), a random variable X : Ω → Rk and a finite
collection {ωi}i∈I ⊆ Ω. Let xi := X(ωi) for each i ∈ I. Assume that we observed a finite
family of pairs {(xi, yi)}i∈I , where xi is an input provided by the generator and yi is the
corresponding output returned from the target operator T ∗ : Rk → R. As mentioned in
the previous paragraph, our goal is to choose a function d : Rk → R which makes good
approximations for future outputs of T ∗. To restrict our search a bit, we consider that d is
affine, which obliges it to be of the form:

d(z′) = β′0 +
∑
j∈[k]

β′jz
′
j = 〈β′0 ⊕ β′, 1⊕ z′〉, for each z′ ∈ Rk.

By considering z := 1⊕ z′ and β := β′0 ⊕ β′ we obtain the following simplification of the
formula for d.

d(z′) = 〈β, z〉, for each z′ ∈ Rk.

At this point, it is important to remark that this last formula for d allows us to acknowl-
edge the decision space as Dβ := Rk+1, since Theorem 3 implies that each β ∈ Rk+1 uniquely
represents an affine function d : Rk → R, where we are identifying Rk+1 with R⊕ Rk in the
obvious way.
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Under these hypotheses, the problem of anticipating future outcomes from a generator
function is labeled linear regression and there is a vast theory around it, specially when the
quadratic loss function, given by:

L((x, y), d) := (y − d(x))2 = (y − 〈β, 1⊕ x〉)2

is adopted.
Applying the expectation operator to the function L, we obtain the result that is known

in the literature as the bias-variance decomposition of the squared deviation loss.

Proposition 100. Let (Ω,F ,P) be a probability space, let X : Ω → Rk be a random
variable. Consider the loss function L : (Rk × R)×Dβ → R given by:

L((x, y), d) := (y − d(x))2 = (y − 〈β, 1⊕ x〉)2, where x = X(ω) for some ω ∈ Ω.

Define E(d(x)) := µ. Then, E(L((x, y), d) = E(µ− y)2 + Var(d(x)).

Proof.

E(L((x, y), d)) = E((d(x)− y)2)

= E((d(x)− µ+ µ− y)2)

= E(((d(x)− µ) + (µ− y))2)

= E((d(x)− µ)2 + 2(d(x)− µ)(µ− y) + (µ− y)2)

= E((d(x)− µ)2) + 2(µ− y)(E(d(x))− µ) + E(µ− y)2

= E((d(x)− µ)2) + E(µ− y)2

= Var(d(x)) + E(µ− y)2.

Proposition 100 motivated statisticians to restrict the search to unbiased affine estima-
tors since, in this case, the optimal solution for the regression problem can be obtained
analytically. The following result is a derivation of this solution and a very similar proof to
the one we present can be found in [24].

Theorem 101. Let (Ω,F ,P) be a probability space, let X : Ω→ Rk be a random variable,
and consider a finite collection {ωi}i∈I ⊆ Ω. Let xi := X(ωi) for each i ∈ I. Consider a family
{(xi, yi)}i∈I , where yi ∈ R for each i ∈ I. Define the empirical risk function ρ : Dβ → R given
by:

ρ(β) :=
∑
i∈I

(yi − 〈β, 1⊕ xi〉)2, for each β ∈ Dβ.

Define U := {β ∈ Dβ : E(〈β, x〉 − y) = 0}. Define X ∈ RI×k such that X(i, j) = Xj−1(ωi)
for each j ∈ [k] with j ≥ 2 and X(1, i) = 1 for each i ∈ I. Consider Y ∈ RI so that Yi = yi
for each i ∈ I. Then, the optimal solution for the optimization problem (ρ,U) is:

β∗ = (X>X)−1X>Y.

Proof. Rewriting the function ρ using matrix notation yields:

ρ(β) = (Y −Xβ)>(Y −Xβ).

Calculating the first and second-order derivatives of ρ, we obtain the following results:

∂ρ

∂β
= 2X>(y −Xβ)
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∂2ρ

∂β∂βt
= 2X>X.

As the data matrix X has full rank and it is positive definite [25], we set the first derivative
to zero

X>(y −Xβ) = 0

and then we have the unique solution

β∗ = (X>X)−1X>y.

4.4.2 The Curse of Dimensionality

At first sight, the result given by the preceding theorem seems to be the endpoint for
linear regression theory as it gives an analytical expression for its solution. However, when
the dimension of the data set is high, the classical method can lead to estimators with
extremely high variance, which is not good to make predictions. One way to get around this
problem, known as curse of dimensionality, was proposed by Kennard and Hoerl in [23].

The main idea behind ridge regression is to add penalties to the quadratic risk function
proportional to the length of the coefficient vector beta that represents the estimator d. That
is, adopt the following risk function:

ρ̄(β) :=
∑
i∈I

(yi − 〈β, 1⊕ xi〉)2 + λ‖β‖2 , λ ∈ R+.

The risk function ρ̄, obviously, encourages the vector β to be ‘smaller’ with respect to
the to the 2-norm in the proportion that λ is ‘bigger’. Fortunately, the ridge regression
problem

minimize ρ̄(β)

subject to β ∈ Rk+1

has also a analytic solution, given by:

β∗ = (X>X + λI)−1X>Y.

4.4.3 A Conic Formulation For Ridge Regression

As briefly argued at the end of the last subsection, the new risk function ρ̄ is minimized
by some coefficient vector β∗ with smaller length than the ordinary least squares estimator.
Instinctively, one may think that in this case, we could restrict our search to vectors that
have their length bounded by some constant and still have the same optimal solution as the
new problem. This hypothetic intuitive view of the ridge regression problem is confirmed by
the following proposition:

Proposition 102. Let (Ω,F ,P) be a probability space, let X : Ω → Rk be a random
variable, and consider a finite collection {ωi}i∈I ⊆ Ω. Let xi := X(ωi) for each i ∈ I.
Consider the family {(xi, yi)}i∈I , where yi ∈ R for each i ∈ I and the ridge empirical risk
function ρ̄ : Dβ → R given by:

ρ̄(β) :=
∑
i∈I

(yi − 〈β, 1⊕ xi〉)2 + λ‖β‖, for each β ∈ Dβ.

Then, for each λ ≥ 0 there exists α ≥ 0 such that the optimization problems (ρ̄,Rk+1)
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and (ρ, αB) have the same optimal solution.

Proof. Define Lλ := infβ∈Rk+1

∑
i∈I(yi − 〈β, 1⊕ xi〉)2 + λ‖β‖ for each λ ∈ R+. We first note

that Lλ is the optimal value of the optimization problem (Rk+1, ρ̄). Thus, the existence of an
analytical solution for the ridge regression problem guarantees that there exists β∗ ∈ Rk+1

such that
∑

i∈I(yi − 〈β∗, 1⊕ xi〉)2 + λ‖β∗‖ = Lλ. Then:

Lλ =
∑
i∈I

(yi − 〈β∗, 1⊕ xi〉)2 + λ‖β∗‖ =⇒ Lλ ≥ λ‖β∗‖ =⇒ ‖β∗‖ ≤ Lλ
λ
.

Therefore, for α ≥ Lλ
λ

we have that β∗ ∈ αB or, equivalently, (β∗, α) ∈ L2
k+1.

Based on the previous result, we are now able write the ridge regression problem as

minimize ρ(β)

subject to (β, α) ∈ L2
k+1

for some suitable α ∈ R+ given by Proposition 102. Thus, adopting the definitions of X
and Y from Theorem 101, we may rewrite the function ρ as ρ(β) = ‖Y − βX‖2. Therefore,
the ridge regression problem is equivalent to the following SOCP:

minimize t

subject to (Y − βX⊕ t) ∈ L2
|I|,

(β ⊕ α) ∈ L2
k+1.
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Chapter 5

Geometric Programming

Unlike the families of optimization problems presented in Chapters 3 and 4, geometric
programs (GP) are not conic problems by definition. Thus, we start this chapter presenting
monomials and posynomials, which are the building blocks of a GP. Then, we present ge-
ometric programs and show that they can also be expressed as REP. Finally, we introduce
logistic regression as an application of GP to statistical learning.

5.1 Monomials and Posynomials
The introduction of monomials and posynomials usually employs excessive indexing. As

an attempt of clarifying the notation as much as possible, we define the function log : Rn
++ → Rn

such that (log(x))i = log(xi) for each x ∈ Rn
++.

Similarly, consider the function exp: Rn → Rn
++ so that (exp(x))i = exp(xi) for each

x ∈ Rn. Moreover, if x, a ∈ Rn, we denote xa :=
∏

i∈[n] x
ai
i .

Definition. A monomial is a function f : Rn
++ → R of the form

f(x) = γxa for each x ∈ Rn
++.

The number γ ∈ R+ is the coefficient of the monomial and a ∈ Rn is the vector of
exponents of f .

Anyone that has already taken an algebra course might have feel strange about the latter
definition. By taking a deeper look into it, it should become clear that all we are doing is
generalizing the more commonly used definition of a monomial function by allowing real
exponents instead of requiring them to be positive integers. In the same sense, the following
definition is meant to generalize the well-known definition of a polynomial.

Definition. A posynomial is a function f : Rn
++ → R of the form:

f(x) =
∑
a∈F

γ(a)xa for each x ∈ Rn
++

for some finite F ⊂ Rn and γ : F → R+. That is, a posynomial is the sum of finitely many
monomials.

To avoid indexing, it is important to understand the fact that each posynomial is uniquely
represented by some finite set F and a function γ : F → R+. Moreover, we remark that
when dealing with a collection of posynomials, it can always be assumed without any loss of
generality that all of them are composed by the same number of monomials, since one can
always add monomials with coefficient 0.

The term posynomial suggests a combination of the words polynomial and positive.
We now present some properties of this special type of function that follow directly from its

67
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definition. In the next section, these results will enable the standard definition of a geometric
optimization problem to be generalized.

Proposition 103. Let f, g : Rn
++ → R be posynomials. Then:

(i) (f + g)(x) is a posynomial;

(ii) (fg)(x) is a posynomial;

(iii) (f
g
)(x) is a posynomial if g is a monomial.

Proof. (i) By definition,

(f + g)(x) =
∑
a∈F

γ(a)xa +
∑
a∈G

δ(a)xa

=
∑

a∈F∪G

(γ(a) + δ(a))xa.

Since F and G are finite, we have that F ∪G is finite. Thus, (f+g)(x) is a posynomial.

(ii) Similarly to the latter, we write:

(fg)(x)
∑
a∈F

γ(a)xa
∑
b∈G

δ(b)xb =
∑
a∈F

∑
b∈G

γ(a)δ(b)xa+b

Note that the function fg is the sum of |F ||G| monomials. Hence, fg is a posynomial.

(iii) The function (f
g

)
(x) =

∑
a∈F γ(a)xa

λxv
=
∑
a∈F

γ(a)

λ
xa−v

is trivially a posynomial.

It is also trivial to see that cf is a posynomial whenever c is a nonnegative constant.
Also, the second property immediately implies that fk is a posynomial for each nonnegative
integer k.

5.2 Geometric Optimization Problems
Definition. Let f0 : Rn

++ → R be a posynomial, let F≤ be a finite family of posynomials
such that f : Rn

++ → R for each f ∈ F≤, and let F= be a finite family monomials such that
g : Rn

++ → R for every g ∈ F=.
A geometric program (GP) is an optimization problem of the form

minimize f0(x)

subject to f(x) ≤ 1 ∀f ∈ F≤,
g(x) = 1 ∀g ∈ F=,

x ∈ Rn
++.

(5.1)

Problem (5.1) is also known as a standard form GP and it can be generalized in several
different ways. For example, if f is a posynomial and λ is a positive constant, the constraint
f(x) ≤ λ can be expressed as h(x) ≤ 1 where h(x) = f(x)

λ
. More generally, if we consider

a monomial g, the inequality f(x) ≤ g(x) can be rewritten as h(x) ≤ 1 where h(x) = f(x)
g(x)
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since h(x) is also a posynomial by Proposition 103. Obviously, a similar approach can be
easily applied to the equality constraints. Also, a minimization program can be transformed
into a maximization one by taking the multiplicative inverse of the objective function, which
is also a posynomial.

5.3 GP as a Special Case of REP
The main goal of this chapter is to show that any GP may be cast as a REP. This process

will be done in two steps. The first of them is to make a change of variable in the standard
form GP, obtaining a convex optimization problem. Then, this new version of (5.1) will be
shown to be equivalent to a REP.

Following the steps shortly described in the past paragraph, we start rewriting the defini-
tion of a GP so that our change of variable will become evident. The only difference between
this formulation and (5.1) is the fact that the definitions of posynomials and monomials is
used in order to write the standard form GP in terms of them. It is also important to say
that we will represent each monomial g ∈ F= as a exponent b ∈ Rn and its image under an
appropriate function δ : Rn → R+, which stands for the coefficient. Similarly, each function
f ∈ F0 ∪ F≤ will be represented by the finite set F containing each of its exponents and a
function γF : F → R+, just as described previously. Thus, we begin with:

minimize
∑
a∈F0

γF0(a)xa

subject to
∑
a∈F

γF (a)xa ≤ 1 ∀F ∈ F≤,

δ(b)xb = 1 ∀b ∈ F=,

x ∈ Rn
++.

(5.2)

Consider the variable y := log(x). Substituting y into (5.2), we obtain the following equiv-
alent problem:

minimize
∑
a∈F0

γF0(a) exp(〈y, a〉)

subject to
∑
a∈F

γF (a) exp(〈y, a〉) ≤ 1 ∀F ∈ F≤,

δ(b) exp(〈y, b〉) = 1 ∀b ∈ F=,

y ∈ Rn.

(5.3)

Now, define wa := 〈y, a〉, for each a ∈ F0 ∪ F≤ and vb = 〈y, b〉 for each b ∈ F=. This last
step gives us the problem:

minimize
∑
a∈F0

γF0(a) exp(wa)

subject to
∑
a∈F

γF (a) exp(wa) ≤ 1 ∀F ∈ F≤,

δ(b) exp(vb) = 1 ∀b ∈ F=,

wa = 〈y, a〉 ∀a∈ F , ∀F ∈ F0 ∪ F≤,
vb = 〈y, b〉 ∀b∈ F=,

y ∈ Rn.

(5.4)

Finally, we note that the exponential function is monotone in each coordinate and also
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that each of the coefficients γ and δ are nonnegative. Hence, we can introduce variables za
as an upper-bound to exp(wa) for each a ∈ F , for each F ∈ {F0,F≤}. Similarly, define ub
bounding exp(vb) for each b ∈ F= in order to obtain the equivalent optimization problem:

minimize 〈γ0, z0〉

subject to 〈γF , zF 〉 ≤ 1 ∀F ∈ F≤,
〈δ(b), ub〉 = 1 ∀b ∈ F=,

wa = 〈y, a〉 ∀a∈ F , ∀F ∈ F0 ∪ F≤,
vb = 〈y, b〉 ∀b∈ F=,

wa ≤ log(za) ∀a∈ F , ∀F ∈ F0 ∪ F≤,
vb ≤ log(ub)∀b∈ F=,

y ∈ Rn.

(5.5)

Where
γ0 :=

⊕
a∈F0

γ(a), z0 :=
⊕
a∈F0

za

and
γF :=

⊕
a∈F

γ(a)zF :=
⊕
a∈F

za for each F ∈ F≤.

Therefore, the problem 5.1 can be expressed as:

minimize 〈γ0, z0〉

subject to 〈γF , zF 〉 ≤ 1 ∀F ∈ F≤,
〈δ(b), ub〉 = 1 ∀b ∈ F=,

wa = 〈y, a〉 ∀a∈ F , ∀F ∈ F0 ∪ F≤,
vb = 〈y, b〉 ∀b∈ F=,

(1, za,−wa) ∈ H1 ∀a∈ F , ∀F ∈ F0 ∪ F≤,
(1, ub,−vb) ∈ H1 ∀b∈ F=,

y ∈ Rn.

(5.6)

This last problem is an REP. Because we just applyed invertible functions which preserve
objective values, all the optimization problems displayed above are equivalent by Corollary
40.

In [21], the author adopts a similar approach to write a GP as a conic program in the
exponential cone. Together with Proposition 91, this suggests reinforces the relation between
Hn and Gn.

5.4 Application: Logistic Regression
5.4.1 The Binary Classification Problem

This section is devoted to the case of the prediction problem where the outcome provided
by the target operator is qualitative and takes values in the set {0, 1}. Namely, we will be
working on a binary classification problem.

Similarly to the approach proposed for the Ridge Regression problem, we start by con-
sidering a probability space (Ω,F ,P), a random variable X : Ω → Rk, and finite family
{ωi}i∈I ⊆ Ω. Assume that we observed a finite family of pairs {(xi, yi)}i∈I , where each of
these pairs consists of a input xi := X(ωi) provided by the generator and an output yi,
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returned from the target operator T ∗ : Rk → {0, 1}. Our goal is to construct a function
d ∈ D := {0, 1}Rk which makes good approximations for future outputs of T ∗.

Since in this problem the range of T ∗ is discrete, it would be unhandy to evaluate the
error on an eventual prediction by squared deviation. An alternative that is more suitable
for this context is to consider the loss function L : (Rk × {0, 1})×D → R+ given by:

L((x, y), d) :=

{
1, if d(x) 6= y;

0, otherwise.

To put it in words, the loss function we are adopting attributes 1 in case of a wrong
estimative and 0 in case of a right one. In this scenario, the following proposition, which
is a simple calculation of the expected risk ρ(d) induced by the loss function L, gives some
direction to solve the problem:

Proposition 104. Let (Ω,F ,P) be a probability space, let X : Ω → Rk be a random
variable, and consider the loss function L : (Rk × {0, 1})×D → R+ given by:

L((x, y), d) :=

{
1, if d(x) 6= y;

0, otherwise.

Then, the expected risk ρ(d) equals P(d(x) 6= y).

Proof. We compute the expected value of L:

E(L((x, y), d)) = 0 · P(d(x) = y) + 1 · P(d(x) 6= y)

= P(d(x) 6= y).

Note that P(d(x) 6= y) = P(d(x) = 1 ∩ y = 0) + P(d(x) = 0 ∩ y = 1). Using this fact to
rewrite the latter result, we obtain:

P(d(x) 6= y) =

{
P(y = 0 |X = x), if d(x) = 1;

P(y = 1 |X = x), if d(x) = 0.

5.4.2 Logistic Regression as a Plug-in Classifier

Proposition 104 guides us in the direction of a simple method to estimate the outcome
of a qualitative variable y. Nonetheless, applying this method requires an estimative for
P(Y = 1 |X = x) =: p(x) and then we decide based on whether p(x) ≥ 1

2
.

An advantageous feature that ridge regression presents and would be convenient to pre-
serve is the fact that the estimator is chosen to be affine. As mentioned in the occasion, this
assumption enables us to conveniently apply Theorem 3 to consider the decision space to be
Rk+1, where we are identifying Rk+1 with R⊕ Rk in the obvious way.

The simplest procedure to replicate this property would be to simply assume that p(x)
is an affine function of x. In this case, we would be able to assume that p(x) = 〈β, 1⊕x〉 for
some β := β0⊕β̄ ∈ R⊕Rk. However, this would imply p(x) ∈ (−∞,∞), which is undesirable
since p(x) is defined as a probability. To get around this problem, [38] suggests the following
parametrization:

p(x) =
exp(〈β, x′〉)

1 + exp(〈β, x′〉)
=

1

1 + exp(−〈β, x′〉)
.

Where x′ := 1⊕ x.
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Note that, with this parametrization, we guarantee that p(x) ∈ (0, 1) for each x ∈ Rk and
then our requirement is satisfied. Moreover, the decision space that we wanted is retained,
allowing us to look after an optimal vector β∗ ∈ Rk+1. It is also important to remark that
the function F : R→ R given by:

F (θ) :=
exp(θ)

1 + exp(θ)
=

1

1 + exp(θ)

is the logistic function and also has applications in, for example, differential equations [37].
This fact motivates the problem that we are working on to be called logistic regression.

Even though the choice of the logistic function for the parametrization was influenced
by a medical application due to the symmetric sigmoid shape of its graphic, when we look
at its inverse applied to our problem, we obtain:

log

(
p(x)

1− p(x)

)
= 〈β, x′〉 = log

(
P(Y = 1 |X = x)

P(Y = 0 |X = x)

)
.

This provides the statistical interpretation for the parametrization as the latter is the loga-
rithm of the odd ratio of the event {Y = 1|X = x}.

We are now left with the problem of estimating the β coefficients of the function p(x).
The standard way to solve this final problem is the maximum likelihood method, which
simply consists in finding the coefficient vector β that maximizes the likelihood function,
which in this case is given by:

S({(xi, yi)}i∈I , β) =
∏
i∈I

p(xi)
yi(1− p(xi))1−yi

=
∏
i∈I

(
exp(〈β, x′〉)

1 + exp(〈β, x′i〉)

)yi( 1

1 + exp(〈β, x′i〉)

)1−yi
.

Intuitively, to maximize the likelihood function is to find the coefficient vector β that
makes the sample {(xi, yi)}i∈I as plausible as possible.

5.4.3 A GP Formulation for Logistic Regression

At this point, all that is left to do is to maximize the function S({xi, yi}i∈I , β). First,
define the sets I0 := {i ∈ I : yi = 0} and I1 := I \I0 and note that I0∩I1 = ∅ and I0∪I1 = I.
Also consider x′i := 1⊕ xi for each i ∈ I. Then:

S({(xi, yi)}i∈I , β) =
∏
i∈I1

p(xi)
∏
i∈I0

(1− p(xi)).
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Next, we apply the natural logarithm to both sides of the previous equation, obtaining:

log(S({(xi, yi)}i∈I , β)) = log

(∏
i∈I1

p(xi)
∏
i∈I0

(1− p(xi))
)

= log

(∏
i∈I1

(
exp(〈β, x′i〉)

1 + exp(〈β, x′i〉)

)∏
i∈I0

(
1

1 + exp(〈β, x′i〉)

))
=
∑
i∈I1

log

(
exp(〈β, x′i〉)

1 + exp(〈β, x′i〉)

)
+
∑
i∈I0

log

(
1

1 + exp(〈β, x′i〉)

)
=
∑
i∈I1

log(exp(〈β, x′i〉))−
∑
i∈I1

log(1 + exp(〈β, x′i〉))−
∑
i∈I0

log(1 + exp(〈β, x′i〉))

=
∑
i∈I1

log(exp(〈β, x′i〉))−
∑
i∈I

log(1 + exp(〈β, x′i〉))

=
∑
i∈I1

〈β, x′i〉 −
∑
i∈I

log(1 + exp(〈β, x′i〉)).

And then we derived the following optimization problem:

maximize
∑
i∈I1

log(exp(〈β, x′i〉))−
∑
i∈I

log(1 + exp(〈β, x′i〉))

subject to β ∈Rk+1.

Finally, we consider the homomorphism b := exp(β). Substituting in the objective function
of the preceding problem yields:∑

i∈I1

〈β, x′i〉 −
∑
i∈I

log(1 + exp(〈β, x′i〉))

=
∑
i∈I1

〈log(b), x′i〉 −
∑
i∈I

log(1 + exp(〈log(b), x′i〉))

=
∑
i∈I1

log(bx
′
i)−

∑
i∈I

log(1 + exp(log(bx
′
i)))

= log(
∏
i∈I1

bx
′
i)− log(

∏
i∈I

(1 + bx
′
i))

= log

( ∏
i∈I1 b

x′i∏
i∈I(1 + bx

′
i)

)
.

Since the natural logarithm is a strictly increasing function, it suffices to analyze its
argument, which is clearly nonnegative. Set f : Rk+1

++ → R given by:

f(b) :=

∏
i∈I1 b

x′i∏
i∈I(1 + bx

′
i)

for each b ∈ Rk+1
++ .

Note that the multiplicative inverse of f is a posynomial. Therefore, the logistic regression
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problem is equivalent to the following GP:

minimize
1

f(b)

subject to b ∈Rk+1
++ .
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Concluding Remarks

Convex analysis is the most important tool to understand conic optimization from our
theoretical point of view. In this text we touched only on the crucial aspects to our pur-
poses, ommiting other interesting topics. Most of the theory of convex functions and Fenchel
conjugates, and deeper consequences of Carathéodory’s Theorem are among the points that
remained undiscussed. All these can be found in [5; 7; 30]. Also, there are several alterna-
tive approaches for convex analysis, we recommend [2] for a introduction of the subject in
potentially infinite-dimensional vector spaces, and [28] for the study of convexity in metric
spaces.

Many of the results we presented also deserve further attention. For example, the theo-
rems of alternative at the end of Section 2.1 may be refined concerning any nonempty convex
set C. In this case, one should derive conditions depending on the barrier cone of C and its
dual, that happens to be 0+C. In special, Proposition 76 seems to be an endless source of
potentially interesting corollaries and refining it could extend the scope of its applications.
We also presented several results concerning closed convex sets, e.g Theorems 68, 25, and
Proposition 65. These proofs can easily be replicated regarding (relatively) open sets as well.
Considering this modification, one obtains the same results in a slightly more general setting.
Finally, most of the theory we covered is formulated in [30] in terms of convex functions.

The cones we presented in Chapter 3 can be in a more general context. Actually, both
Gn and Hn are conceived as the epigraph of the perspective of a convex function and, in this
sense, can be regarded as members of a more comprehensive family of cones. The book [7]
defines and presents basic results on perspectives of convex functions. Additionally, in [9]
the authors doubt if semidefinite programs can also be formulated as a special case of REP.
In Chapter 4, we used the semidefinite cone to write L2 as H2. Those results show that we
can write S2

+ as H2. If we were able to write Sn+ as copies of S2
+, this would be sufficient to

formulate semidefinite programs as REP.
As mentioned above, we approached conic programming from a theoretical perspective.

For this reason, algorithmic aspects were outside of the scope of this text. The main algo-
rithms for solving conic problems are the so-called interior-point methods. These are studied
in [20] while [26] contains tons of information on how to solve conic problems in practice.

Other variants of optimization problems are abundant in literature. Linear programs
(LP) are by far the most popular ‘family’ of optimization problems. They are indeed a
particular case of conic problems defined over the nonnegative orthant. However, familirity
with this theory is absolutely helpful to improve on intuition and we recommend [34] for the
interested reader. Integer programming requires linear programming as a prerequisite and
we suggest [11] as a reference. Combinatorial optimization also demands some knowledge
of graph theory added to LP. For these we indicate [6] and [12], respectively. Non-linear
programming (NLP) is based on multidimensional real-analysis even though there are struc-
tural similarities beetween LP and NLP, specially in duality theory. The book [4] provides
more information about this topic. More generally, our definition of optimization is quite un-
popular. For this reason, the properties embedded in the definition can be further explored.
Also, other formulation ‘tricks’ apart from invertible functions preserving objective values

75
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may be formalized using our conception of equivalence.
Despite of the simplicity of the applications we presented, it is pleasant to see that they

coincide with “the three main learning problems” pointed out in [36] and they could be
studied in more general ways.

For instance, similar types of linear regression that aim to shrink the coefficient vector
have already been extensively explored. The addition of an ‘extra’ term to the loss function
is often called a penalization. See, e.g [24; 35] for lasso regression. To unify the approach
to this family of regression problems, it would be convenient that each of the penalization
terms could be represented in terms of Hn. Because it is common to penalize the loss function
proportionally to some of the p-norms of the coefficient vector β, expressing each of the cones
Lpn in terms of Hn would help handling this task.

Our approach to logistic regression could also have been more general in at least two ways.
The first one would be to admit more outcomes, in this case we would solve a multinomial
classification problem. The second possibility is to modify our loss function so that our
decision function changes its bounds or we could even claim that there is not enough evidence
to decide the value of a future outcome. In this scenario, we could still use the same method
to estimate p(x).

Anyway, it seems to be possible to combine this problems to produce more sofisticated
models. Also, in virtue of the scarce literature on REP, there is much work to be done in
the applications of this problems, including other areas of science.
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