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Chapter 1

Introduction

1.1 Background

The idea of any filter is to make sense out of noisy data, to make data

clearer or separate noise from data. There are several reasons for data

to be noisy or unobserved, like measurement errors or frequency of mea-

surement. In the early 1960’s this problem was of particular interest to

engineers who wished to monitor and control dynamic systems such as a

space shuttle launch. It is of extreme importance to have a precise mea-

surement of current conditions (velocity, location etc...) of the shuttle in

order to have a successful launch. The modeling method used in dynamic

systems is generally called ’State Space Method’ and the optimal solution

of a linear dynamic system under a gaussian environment is given by the

Kalman Filter. State Space modeling may be found in several different

subjects such as Control Engineering, Signal Processing, Machine Learn-

ing and Time Series Analysis. It’s a generic framework used to model a

dynamic system, be it in continuous or discrete time, in which one may

separate what the user can observe and the real state of the variables of

1



Introduction 2

interest in the system. In Control Engineering, one looks at a system and

simulates what would happen to it if one changes the control variable, for

example what happens to the trajectory of a rocket when fuel injection is

activated during flight. In Signal Processing and Time Series Analysis, one

tries to extract the state of a system given a measurement of some vari-

ables. It may be tracking a boat on the ocean using radar or decomposing

the Gross Domestic Product time series into trend, seasonal and level. The

notation used in the following text is the same as in Pole et. al (1994)[5]

and Petris et. al (2009)[1]

With the general idea introduced, given a sequence of observations Yt, of

m time series and θt as a vector of states, i.e. the variables we are interested

in, of dimension p - we can model a dynamic system with an observation

equation and a state equation:

Yt = f(θt, h(vt))

θt = g(θt−1, ut, wt)
(1.1)

The first equation is the observation one, which depends on the current

state variable and contains some form of measurement error vt, p×1 vector,

the second is the state equation which, assuming the markovian property,

depends on the lagged state, a set of control variables ut and the innovation

wt, m× 1 vector, which is assumed independent of the measurement error.

It does not assume linearity of the variables, the innovations and errors

and also doesn’t give any structure of their probability distribution - but

if assumed linearity and Gaussian errors and innovations, the state space

approach is commonly called Dynamic Linear Model(DLM), which is the
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type of model we will work from now on. Curiously, when the set of states

is a subset of the integer set, the state space approach may also be called

a Hidden Markov Chain.
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1.2 Statistical Basics

In order to understand how the Kalman Filter works, there is a need to

develop ideas of conditional probability. The core of Probability theory is

to assign a likelihood to all events that might happen under a certain ex-

periment. Kolmogorov’s probability axioms state that a probability space

is defined by a sample space Ω, an event space E and a probability mea-

sure P - but in real life we do not know the real probability measure,

i.e. there’s uncertainty surrounding any estimate of the real outcome like-

lihood of events. To help resolve this question, a bayesian approach to

probability theory has come into play, which is basically continuously up-

dating our estimate according to new information flow. This approach is

called bayesian due to Thomas Bayes and his famous theorem of inverse

probability. It states that, let A and B be two events contained in E, the

conditional probability of A given that B has occurred is:

P (A|B) = P (A∩B)
P (B) = P (B|A)∗P (A)

P (B)
(1.2)

Another important property we need in dynamic systems is that it is se-

quential. We know that some variables like the mean height of men in the

USA in a given year, the human genome or the position of a car are sequen-

tially ordered and thus allow an online revaluation of our analysis. This

means we can conditionally update our estimates each time a new obser-

vation arrives or a new measurement is taken. Linking with the bayesian

approach above, given a sequence of data or time series Y1:t and a variable

of interest θt we can use Bayes’ theorem to update the distribution of our

variable:
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P (θt|Y1:t) = P (Y1:t|θt−1)P (θt)
P (Y1:t)

(1.3)

This means we can compute recursively the distribution of our variable of

interest - which in way is exactly what we do in the Kalman filter. It might

be a good idea to illustrate it with an example. Say we have θt, the height

of the water inside a swimming pool and we take daily measurements, Y1:t.

Let’s first consider that θt is fixed in time so θt = θ. As our measurement is

not precise due to the movement of the waves, there is a difference between

Y and the, unobserved, height of the water - an error that we assume to

be normally distributed with 0 mean and variance σ2. Notice that we do

not know the value of θ, but we actually want to estimate it from our

observations. Mathematically speaking we have:

Yt = θ + εt, εt ∼ N (0, σ2) (1.4)

So Yt ∼ N (θ, σ2) and if we assume that our initial estimate of θ0 ∼
N (m0, C0) is normally distributed with mean m0 and variance C0, we can

use our bayesian algorithm to update our estimate of θ when a new ob-

servation is made. Remembering that constants in distribution may be

drop as we can always normalize our distribution afterwards, we have the

updated distribution of θ:

P (θ|Y1) ∝ exp

{
−(Y1 − θ)2

2σ2

}
exp

{
−(θ −m0)

2

2C0

}
∝ exp

{
1

2σ2C0

[
(σ2 + C0)θ

2 − 2(σ2m0 + C0Y1)θ
]} (1.5)
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Using the fact that X ∼ N (µ, σ2) ∝ exp
{
−X2−2µX

2σ2

}
we may reach to

the conclusion that the new distribution of θ given this observation Y1

is θ ∼ N (m1, C1) where m1 is C0

C0+σ2Y1 + σ2

C0+σ2m0 whereas C1 is C0σ
2

C0+σ2 .

Extending to further observations 1,...,n we would have then:

P (θ|Y1:n) ∝
n∏
t=1

exp

{
−(Yt − θ)2

2σ2

}
exp

{
−(θ −m0)

2

2C0

}
∝ exp

{
1

2σ2C0

[
(σ2 + nC0)θ

2 − 2(σ2m0 + nC0Ȳ )θ
]}

Then we would get θ|Y1:n is θ ∼ N (mn, Cn) where mn is C0

C0+σ2/nȲ +
σ2/n

C0+σ2/nm0, whereas Cn is C0σ
2

nC0+σ2 . Of course, we could also do it recur-

sively, i.e. calculating P (θ|Y1:n) using P (θ|Y1:n−1) and the new observation

Yn. Using the same methodology we reach:

mn = Cn−1

Cn−1+σ2Yn−1 + σ2

Cn−1+σ2mn−1

= mn−1 + Cn−1

Cn−1+σ2 (Yn −mn−1)

Cn = Cn−1σ
2

Cn−1+σ2

Interpreting these equations show that our estimate of the height of the

water pool is a weighted average of our initial estimate and mean of our

measurements, while the weights are proportional to the noise of one an-

other, i.e. the higher the noise in our initial estimate the more we will
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trust our measurements whereas the higher the noise in our the measure-

ment errors is, we take longer to fully incorporate the observations we have

made. Interesting to see is that in the recursive equation we can interpret

our updated estimate as our prior estimate plus the error in our prediction

weighted by what we already will call Kalman gain.
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1.3 Dynamic Linear Models

A general DLM is a linear recursive system that takes such form:

Yt = F ′tθt + wt, wt ∼ N (0, Vt)

θt = Gtθt−1 + vt, vt ∼ N (0,Wt)
(1.6)

Where Ft is a m × p matrix and Gt is a m ×m matrix. Wt is the m ×m
covariance matrix of the innovations and Vt is the p× p covariance matrix

of the measurement errors. A particular case is the local level model or

random walk with noise, which aproximates the series as local means. See

figure 1.1 for a visualization of what is meant.

yt = µt + εt, εt ∼ N (0, σ2
ε )

µt = µt−1 + ζt, ζt ∼ N (0, σ2
ζ)

(1.7)

A good example of an application of the local level model is the level of

a river1. In this case we estimate a model for the level of the Nile river

during a 2 centuries period. In the figure we can notice that the river has

two distinct levels during different periods. Between 1871 and 1900, the

river oscillates around the 1100 level whereas in the 1900 to 1970 period

the river is consistently under the 1000 level.

Further assumption is made about the distribution, the covariances are

time invariant. In this case, the matrixes F and G are time invariant and

equal to a scalar 1. If σ2
ζ = 0, µt = µ, µ is equal to y, a constant mean.

Another special case is the linear growth model, or local level with drift or

trend:
1This example is located in Petris et. al (2009)[1], pages 7 and 53-58
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Figure 1.1: Example of a series and the local level model

yt = µt + εt, εt ∼ N (0, σ2
ε )

µt = µt−1 + θt + ζt, ζt ∼ N (0, σ2
ζ)

θt = θt−1 + νt, νt ∼ N (0, σ2
ν)

(1.8)

See figure 1.3 for a linear growth model example and also figure 1.4 for a

real life example where such a model could be used - the world’s internet

usage over time. In another terminology, it could be said that the series

contains a stochastic level and trend. In this case, the matrixes would look

like:

θt =

[
µt

θt

]
F =

[
1

0

]
G =

[
1 1

0 1

]
W =

[
σ2
ζ 0

0 σ2
ν

]
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Figure 1.2: Nile river

Figure 1.3: Example of a linear growth model
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Figure 1.4: World’s internet usage

Another model to be shown is the dynamic regression model, in which the

regression coefficient is allowed to vary in time.

yt = µt + βtxt + εt, εt ∼ N (0, σ2
ε )

µt = µt−1 + θt + ζt, ζt ∼ N (0, σ2
ζ)

θt = θt−1 + νt, νt ∼ N (0, σ2
ν)

βt = βt−1 + ξt, ξt ∼ N (0, σ2
ξ)

(1.9)
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θt =


µt

θt

βt

 F =


1

0

xt

 G =


1 1 0

0 1 0

0 0 1

 W =


σ2
ζ 0 0

0 σ2
ν 0

0 0 σ2
ν


Interesting to note is that if W = 0, we return to the classic linear re-

gression model. There are several other models including seasonality and

multivariate settings. A particular model from the regression one is the

auto-regressive model In general such model can be described as:

Yt =
n∑
i=1

φiYt−i + εt

We can put it on state space form if we choose θ = [φ1 . . . φn] and F =

[Yt−1 . . . Yt−n]. This shows how general the state space modeling approach

really is.
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1.4 Filtering

In the DLM case, the Kalman filter is the optimal filter[2], in the mean

squared error sense, to estimate the value of the state at a given point

in time t, considering the observations up to t, i.e. using only the values

of {yi}i=0...t. It means that given the correct state space structure, and

the correct variances of the state innovations and measurement errors, the

Kalman Filter will minimize ||Yt − Ŷ(t−1):(t)||22, delivering the best one

step ahead point predictor. Remembering that the assumption of gaussian

erros, we must only estimate the mean and variance parameters to fully

characterize the distribution of the states. The recursive algorithm of the

Kalman filter, with θ0 ∼ N(m0, C0), following Petris et. al (2009)[1], is now

presented. First we calculate the parameters of the predictive distribution

of θt given y1:t−1:

at = E (θt |y1:t−1) = Gtmt−1

Rt = V ar (θt |y1:t−1) = GtCt−1G
′
t +Wt

(1.10)

Then we must calculate the parameters of the predictive distribution of yt

given y1:t−1:

ft = E (yt |y1:t−1) = F ′tat

Qt = V ar (yt |y1:t−1) = F ′tRtFt + Vt
(1.11)

2The prediction error of t at t-1
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Before we re-update our estimates of mean and variance, we need to cal-

culate the prediction error and what is called the Kalman gain:

et = yt − ft
Kt = RtFtQ

−1
t

(1.12)

Finally, the filter gives out the estimates for the prediction in t+1:

mt = at −Ktet

Ct = Rt −KtQtK
′
t

(1.13)

Where:

at is the prediction of the state for t

mt is the expected value of the state at time t

ft is the forecast of the observation at time t

et is forecast error

Rt is signal variance

Qt is the noise variance

Kt is the Kalman gain, a ponderation of the signal and noise variance

The most important step is the calculation of the Kalman gain. As the we

can inspect from mt = at −Ktet, the predicted state for t+1 is equal to a

weighted average of the predicted state at t and the prediction error of t,

where the weight is known as Kalman gain - it is how you balance what

you already know about your variables of interests and the new information

and evidence you gain from the observations. The derivation of the Kalman

gain is given by:
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1.5 Deriving the Kalman gain

The Kalman filter is derived by minimizing the mean squared error and

thus discovering the Kalman gain formula. The error we are referring to

is θt − mt. Remembering that Ct = E[(θt − mt)(θt − mt)
′], R = E[(θt −

at)(θt − at)′] and mt = at +Kt(yt −mt), we propose that K = RF ′Q−1:

Minimizing the mean squared error is equal to minimizing the trace of Ct,

which can be rewritten in the following form:

Ct = E[(θt − at +Kt(Yt −mt))(θt − at +Kt(Yt −mt)
′]

Ct = E[(I −KtF )(θt − at)−Ktvt)((I −KtF )(θt − at)−Ktvt)
′]

Assuming the model Yt = F ′θt + vt is correct and that the measurement

error vt is uncorrelated with the state and its estimate, we have:

Ct = (I −KtF )E[(θt − at)(θt − at)′](I −KtF )′ +KtVtK
′
t

= Rt−KtFRt−RtF
′K ′t+Kt(FRtF+Vt)K

′
t = Rt−KtFRt−RtF

′K ′t+KtQtK
′
t

The trace of Ct − T (C)t is: T (Rt) − 2T (KtFRt) + T (KtQtK
′
t). The first

order condition of this problem is:

dT (Ct)

dKt
= 0− 2FR′t + 2KtQt = 0⇒ Kt = RF ′Q−1
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1.6 Estimation

Of course, in the real world, there’s no certainty if the model used is cor-

rect, nor do we have the the variances Wt and Vt, they are unobservable.

In order to estimate these variances, also known as hyperparameters, one

may use maximum likelihood estimation, i.e. run the Kalman Filter sev-

eral times until one finds the hyperparameter vector that maximizes the

likelihood of the sample {yi}i=0...T have come from the estimated proba-

bility distribution - i.e. the likelihood of the decomposed forecast errors.

Another way of estimating the hyperparameters is to use sampling methods

like Gibbs Sampler or Metropolis-Hastings Algorithm, or more in general

Monte Carlo Markov Chain methods, which after an initial estimate of

the hyperparameters, the method samples a new estimate using a proper

probability function.



Chapter 2

Applications

2.1 Introduction

Now we apply the concepts we’ve learned in the previous chapter to the

Brazilian economy. Three different applications have been chosen to show

how flexible and interesting this way of modeling time series that is. The

applications are focused on macroeconomic and financial time series.

The first application is the estimation of the output gap time series of

Brazilian economy. Economists generally look into GDP - Gross Domes-

tic Product - in order to diagnose the current state of the economy and

through years of research, they have developed the concepts of business

cycles and potential GDP. Potential GDP is the product that is achievable

by a country if all resources, labour and capital, are efficiently and sustain-

ably allocated. The business cycle is more of an evidence or empirical fact

that economies endure periods of great prosperity and recessions and thus

creating a cycle of boom and bust. The output gap is then a measure of

the current business cycle, i.e. the difference between potential and current

GDP.

17
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The second application is to model the brazilian exchange rate. The ex-

change rate is a measure of what the market expects in order to exchange

one currency for another, i.e. how many units of a foreign currency is re-

quired in order to acquire one unit of the domestic currency. This rates

has several implications for a country such as buying and selling goods and

services with the rest of the world might be cheaper or more expensive

depending on how the current rate is. An exporter that produces goods

that are priced using a foreign currency wants a devalued currency. As

his costs are based on the domestic currency, the same revenue will yield

a bigger profit whether the currency is under or overvalued. The case for

the importer or domestic consumer is the reciprocal as their income is de-

nominated in domestic currency, but goods and services they might buy

are based on the foreign currency. The question then becomes, when is an

exchange rate over or undervalued? Using several macroeconomic variables

and our modeling method we try to answer that question.

The last application is related to the Brazilian financial market. In finance

theory, there is an elegant model called CAPM - Capital asset pricing model

- which states that the expected excess return of a given risky asset should

be equivalent to the return of the risk-free asset plus the risk premium

times an adjustment factor known as β. The idea is to estimate this β -

which can be a time-varying factor - for several stocks of the main Brazilian

stock index, Ibovespa.
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2.2 Modeling the output gap

The GDP is a measure of what a country produces and can be calculated

by the final demand of goods and services and often is expressed as a

simple sum of private and government consumption and investments. The

potential GDP is the sustainable production output, or final demand, that

a country can achieve without putting too much pressure on domestic prices

or generates too much unemployment - it can be viewed as an equilibrium

output. Without going too deeply into economic theory, external shocks

like oil prices, liquidity crisis, geopolitical issues etc... can create distortions

in the economy and thus deviate the current GDP path from potential

GDP. These deviations then form what is known as output gap or the

business cycle.

How can we model these unobservable variables? First let’s assume that

as population and capital stock grow, potential GDP also has a tendency

to grow - so we can use a linear growth model for it. For the business

cycle, if we assume that potential GDP acts as an ’attractor’, i.e. current

GDP tends to approach the potential GDP, we can model it as mean-

reversion process using an AR model. Noticing that current GDP can then

be decomposed as a sum of potential GDP and business cycle, we have:

GDPt = GDP Pot
t +BCt + εt, εt ∼ N (0, σ2

ε )

GDP Pot
t = GDP Pot

t−1 + ∆t + ζt, ζt ∼ N (0, σ2
ζ)

∆t = ∆t−1 + ζt, ζt ∼ N (0, σ2
ζ)

BCt = φ1BCt−1 + φ2BCt−2 + νt, νt ∼ N (0, σ2
ν)

(2.1)
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Now that we have a model, we look a little bit closer at the data we will

manipulate. We use IBGE’s - the brazilian institute of geography and

statistics - quarterly seasonalizy adjusted GDP series measured in chained

1995 reais from 1975 to 2011. In order to create a more stable model we

use the log transformation. The figures show how Brazil has grown and

how the growth rates have varied through time.

Figure 2.1: Brazilian GDP

One way to analyze the output of our model is to visualize figure 2.3 and

draw some parallels between historic moments of Brazilian and the business

cycle. As we can see, in the early 1980’s real GDP was much lower than

potential GDP whereas after 1985 real GDP was significantly higher than
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Figure 2.2: Brazilian GDP

Figure 2.3: The time series of real GDP and potential GDP
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potential GDP. An educated guess to answer the potential question of why

this deviation from potential GDP occurred is to check history of the world

economy and the brazilian politics. In 1979, the 2nd oil crisis ensued which

not only lowered world GDP, but also ignited the Latin American debt

crisis, where several countries defaulted in their debt, including Brazil in

1983. And why did real GDP bounce back and grow even beyond potential?

In 1985 the military regime gave place to a new democracy, which in order

to bring legitimacy into the government, it boosted growth so that the

population would not try to bring the old order back. During the 90’s real

GDP showed a mild under-performance in relation to potential GDP, but

nothing out of the ordinary. Another interesting period is post 2004, in

which, again, real GDP overshoots potential GDP and coincides with the

change in political dominance from right to left, or in party terms, from

PSDB to PT.

Figure 2.4: The decomposition between potential GDP and the business cycle
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2.3 Modeling the Brazilian Real

The Brazilian Real was adopted as the common brazilian currency during

the Real plan in 1994, whose first objective was to fight and drive down

inflation rates. Until 1999, the Real worked under a crawling peg regime,

i.e. the central bank slowly depreciated the currency in order to keep pace

with the inflation rate differential of United States and Brazil. The regime

worked very well to bring inflation to more normal levels than the ones

seen during 80’s, but during the stress of financial markets of 1997 and

1998 due to the Asian and Russian crisis, ultimately the central bank did

not have any reserves left to maintain credible control of the exchange rate

and thus the regime change to a floating one.

This little introduction is a caveat for our modeling of the exchange rate.

In this application we will use the dynamic linear regression to explain

the movements of the Brazilian Real. A normal regression would leave the

regression coefficients static over time, but in a dynamic one the coefficients

vary over time which would allow more information to flow into the model

and give a better explanation of how these variables interact.

We will use the following variables to explain the exchange rate path after

the change in currency regime, circa 2000:

DXY - It’s an index of the value of the United States dollar relative to a

basket of foreign currencies. This variable is important as it is a measure

of broad USD weakness or strength.

CRB - A commodity index as Brazil is a big commodities producer and

exporter.
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One year brazilian interest rates differential - Interest rates play an impor-

tant part of asset allocation and as such, a higher brazilian interest rate

relative to US would increase the propensity of an investor allocating more

money into Brazil and thus increasing demand for the Brazilian Real. A

proxy used in this paper is the difference between the 1 year PreDI swap

rate and the US 1 year.

The justification for these variables is due to common sense and economic

theory. As in Marcal and Barbieri (2010) [3] they cite four main fundamen-

tal determinants for the exchange rate: Terms of Trade - the price of the

country’s exports relative to the price of imports, Net Foreign Asset Po-

sition, Productivity difference between tradable and non-tradable sectors

and Interest rate Parity. In order to have a significant amount of data we’d

like to use daily observations and as such we use some available proxies for

these variables - for the Terms of Trade we use the CRB, as our exports

is mostly made out of commodities. The DXY index is used in order to

gauge other factors affecting the USD but are not Brazil related, but still

influence the brazilian exchange rate.

The data used can be visualized through the following figures and table:

IR BRL DXY CRB

Mean 13.31 2.25 90.8 0.32

Standard Deviation 5.287214 0.530506 13.71959 0.088695

ρ(1) 0.998485 0.99859 0.999335 0.999838

The model which we will estimate is the following:
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Figure 2.5: The BRL and the DXY

Figure 2.6: The BRL and the interest rate differential

BRLt = αt + β1,tCRBt + β2,tDXYt + β3,tDifft + εt, εt ∼ N (0, σ2
ε )

βi,t = βi,t−1 + ζt, ζt ∼ N (0, σ2
ζ)

(2.2)

The results are shown in the next figures as we analyze the dynamic of

each factor.
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Figure 2.7: The BRL and the Commodity Index (inverted scale)

Figure 2.8: The evolution of CRB’s β
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Figure 2.9: The evolution of Interest Rate Differential’s β

Figure 2.10: The evolution of DXY’s β
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The most interesting thing is the fact that after observation 2000 (circa

2008) we have a major change in DXY’s and CRB’s β′s increasing the

weight on these variables on the exchange rate, which most likely is linked

to the 2008 financial crisis and it’s consequences to global risk assets.
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2.4 Dynamic CAPM using Brazilian Stocks

CAPM, or Capital Asset Pricing model, is an important financial theory

first proposed by William Sharpe (1964)[6] after the work of optimal port-

folio theory of Harry Markowitz (1952)[4]. CAPM, under some fairly con-

straint conditions, tries to explain the behavior of asset returns in equilib-

rium conditions, i.e. in a equilibrium state, given asset risks and investors

preferences, how much should an asset return for a certain level of risk.

Important to note is that the risk being accounted for is the systematic

risk, as the remaining idiosyncratic risk can be diversified away by adding

more assets to the portfolio. The systematic risk can also be named market

risk, i.e. the risk that impacts all assets - even though not equally. CAPM

in a nutshell is a linear regression model that relates linearly an asset (a

stock in this case) to the overall market return, or in mathematical terms:

Ri,t = αt + β1R
M
t + εt, εt ∼ N (0, σ2

ε )

(2.3)

Where Ri,t is asset i’s return at time t and RM
t is the markets return at

time t, while the regression coefficient β has an intuitive meaning, it is the

sensitivity of asset i to systematic risk. CAPM was build as a two-period

model and most implementations assume that β is fixed in time. Our

application is to check β’s time homogeneity is true in the brazilian market

for two of the main stocks: Vale do Rio Doce and Petrobras. The data

used is the closing prices of each stock from 1/1/2000 to 1/12/2011 and the
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following chart shows the evolution of each stock price during that period.

For the market return we use the Ibovespa index for the same period.

Figure 2.11: Price of Vale and Petrobras

Figure 2.12: Ibovespa Index

The results were interesting, as the figures show the β’s of each stock are

not constant, even though the average of each β is very similar to simple

linear regression coefficient as shown in the table below.

Petrobras Vale

Mean 0.86 0.82

Std Dev 0.177 0.4

LM Coefficient 0.89 0.84
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Figure 2.13: Evolution of Petrobras’ β
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Figure 2.14: Evolution of Vale’s β
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2.5 Conclusions

This study has been conducted in order to show the flexibility and poten-

tial of using dynamic linear models in real-life examples. Even though the

examples here shown are only relevant to the realm of economics, there are

several other applications to engineering, biology, physics that are made

possible or easier using the same or similar methodology used in the previ-

ous pages such as Kalman Filter. The three examples use the same princi-

ples, whereas the models estimated are very different from each other.
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