Cálculo Avançado

Notas de aula do Prof. Marcos M. Alexandrino (IME-USP) (com co autoria de Dra. Yunelsy N. Alvarez) Cálculo Avançado/ Copyright @2023 M. M. Alexandrino e Y. N. Alvarez

Sumário

Prefácio						
Ag	Agradecimentos					
1	Variedades mergulhadas em espaços Euclidianos					
	1.1	Subm	ersões e imersões	1		
	1.2	Espaço	os tangentes e métrica induzida	11		
	1.3 Campos de vetores e o campo gradiente			15		
		1.3.1	Campos de vetores	15		
		1.3.2	Campo gradiente	16		
		1.3.3	Colchete de campos, um primeiro contato	18		
	1.4	Multij	plicadores de Lagrange	19		
	1.5 Hessiano		ano	25		
		1.5.1	Extremos locais	28		
		1.5.2	Critérios de classificação de pontos críticos	33		
		1.5.3	Fórmula de Taylor de ordem maior	38		
		1.5.4	Máximos e mínimos absolutos	39		
	1.6	*Curvatura de Gauss de superfícies		41		
	1.7	1.7 *Hessiana orlada				
		1.7.1	Motivação e o Teorema do Hessiano Orlado	49		
		1.7.2	**Ideia da Prova	51		
2	Uma introdução a Geometria Riemanniana					
	2.1	1 Métricas e variedades Riemannianas				
	2.2	Conexão Riemanniana e o Transporte Paralelo				
	2.3	Geodésicas				

2.4	Curvatura intrínseca, campos de Jacobi e Equação de Gauss				
	2.4.1	Tensor curvatura e curvatura seccional	77		
	2.4.2	Campos de Jacobi e variações por geodésicas	79		
	2.4.3	Equação de Gauss e o teorema Egregium de Gauss	85		
2.5	Curva	tura média e superfícies mínimas	90		
	2.5.1	Superfícies mínimas	90		
	2.5.2	EDP das superfícies mínimas	93		
		-			
dice Remissivo					

Índice Remissivo

Prefácio

Estas são notas de aulas da disciplina ministrada pelo Prof. Marcos Alexandrino que estão sendo completamente revisadas e ampliadas pela co-autora Dra. Yunelsy Nápoles Alvarez (durante seu pos-doc no IME-USP). Esta previsto que tais notas sejam a primerira parte (primeiro volume) de um projeto mais elaborado (Calculo Avançado e Geometria Riemanniana), sendo que nos próximos volumes contaremos com co-autorias dos Profs. Francisco C. Caramello Jr e Leonardo F. Cavenaghi.

Os objetivos deste volume de Cálculo Avançado são:

Primeiro partindo sempre de motivações de Cálculo II e Cálculo III introduzir os vários conceitos da disciplina, dentre eles: variedade mergulhada, teorema de submersão, imersão, posto, campos de vetores, teorema de Frobenius, integração em \mathbb{R}^n incluindo teorema de Fubini e mudança de variáveis, e uma introdução a formas diferenciáveis em variedades com uma versão do teorema de Stokes com suas aplicações a Cálculo III.

Segundo, ao longo do texto, sempre que for oportuno, colocar tópicos adicionais destacando ao leitor(a) as conexões da disciplinas com tópicos mais avançados (vários deles com um alerta (*) para informar o leitor(a) que o tópico pode ser pulado de acordo com sua conveniência). Dentre tais tópicos podemos destacar: conceitos de Geometria Diferencial (curvatura de Gauss, conexão, geodésica), Hessianos orlados, conceitos da Teoria Geométrica de Controle e o Teorema de Stefan-Sussmann (incluindo sua demonstração), formulação da mecânica Hamiltoniana e Lagrangiana, e uma ideia do enunciado e da prova do princípio do máximo de Pontryagin.

São Paulo, 2022

Marcos M. Alexandrino

Cálculo Avançado/ Copyright @2023 M. M. Alexandrino e Y. N. Alvarez

Agradecimentos

Estas são notas em preparação. Agradecemos muito envio de correções e sugestões para o email malex@ime.usp.br

Cálculo Avançado/ Copyright @2023 M. M. Alexandrino e Y. N. Alvarez

1

Variedades mergulhadas em espaços Euclidianos

Neste capítulo vamos apresentar alguns resultados sobre teoria das variedades mergulhadas e fixar algumas notações. Por meio de recordações de alguns resultados e exercícios esperamos destacar ao leitor ou leitora que muitos dos conceitos e resultados sobre variedades que iremos utilizar são generalizações naturais de resultados que foram apresentados em disciplinas anteriores de Cálculo II ou Cálculo III.

1.1. Submersões e imersões

Já nos primeiros semestre de graduação, engenheiros, matemáticos e físicos encontravam **espaços de configurações** M (todas possíveis posições de um certo sistema) como sendo "bons"subconjuntos em espaços Euclidianos \mathbb{R}^{m+k} . Em geral tais conjuntos eram descrito via pre imagens de k-vínculos $g_i : U \subset \mathbb{R}^{m+k} \to \mathbb{R}$, i.e., $M = G^{-1}(c) = \{x \in \mathbb{R}^{m+k}, G(x) = c\}$ onde $G : U \subset \mathbb{R}^{m+k} \to \mathbb{R}^k$ para $G(x) = (g_1(x), \dots, g_k(x)) \in c = (c_1, \dots, c_k) \in \mathbb{R}^k$. Sobre boas condições conseguiamos estabeler os m graus de liberdade do M como sendo dimensão do espaço menos o número de vinculos. Tais conjuntos eram na verdade o que chamaremos aqui de variedades mergulhadas e os graus de liberdade suas dimensões. As boas condições sobre os vínculos serão revista no teorema de submersão. Antes de estabeler as definições formais, recordemos alguns exemplos onde tais conjuntos apareciam. O leitor agora não precisa se preocupar em verificar algumas das afirmações e sim se concentrar mais na intuição e ideias dos exemplos.

Exemplo 1.1.

Dados 2 partículas $p,q \in \mathbb{R}^3$ a uma distância fixa de 1 unidade, o espaço de configuração deste sistema, pode ser descrito como

$$g^{-1}(1) = \{(p,q) \in \mathbb{R}^3 \times \mathbb{R}^3, g(p,q) = 1\}$$

onde a função $g: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ definida por

$$g(p,q) = ||p - q||^2 = \sum_{i=1}^{3} |p_i - q_i|^2$$

é nosso vinculo.

Exemplo 1.2.

Consideremos o espaço de configuração de um "braço robótico"em um plano com braço em si e antebraço de comprimentos l_1 e l_2 , i.e., conjunto de todo os possíveis 2 segmentos de reta no plano $\overline{0p} \in \overline{pq}$ com $||p|| = l_1 \in ||p-q|| = l_2$. A configuração do braço é determinada pelo ângulo θ_1 entre eixo $x_1 \in \overline{0p} \in \theta_2$ ângulo entre eixo $x_1 \in \overline{pq}$. Dado $z_i = e^{i\theta_i}$ temos então que o espaço de configuração é $M = S^1 \times S^1 = \{(z_1, z_2) \in \mathbb{C} \times \mathbb{C}|, G(z_1, z_2) = (1, 1)\}$ onde $G : \mathbb{C} \times \mathbb{C} \to \mathbb{R}^2$ como $G(z_1, z_2) = (|z_1|^2, |z_2|^2)$

Exemplo 1.3.

Consideremos agora o espaço de configuração de *um sólido em* \mathbb{R}^3 *com centro de massa em* 0, i.e., o conjunto de todas bases ortonormais $\{q_i\}_{i=1\cdots 3}$ com a mesma orientação da base canônica. Ao colocar as bases nas colunas de matrizes, tal conjunto pode então ser descrito como as matrizes ortogonais com determinante 1, ou seja primeiro consideramos as **matrizes ortogonais**

$$\mathbb{O}(3) := G^{-1}(Id) = \{Q \in \mathbb{GL}^{3 \times 3}(\mathbb{R}^3) | G(Q) = Id\}$$

onde $G : \mathbb{GL}^{3\times3} \to S$ é $G(A) = AA^t$, sendo que $\mathbb{GL}^{3\times3}$ denota as matrizes com determinante diferente de zero e S as matrizes simétricas. Possível verificar que $\mathbb{GL}^{3\times3}$ pode ser identificado com um aberto de \mathbb{R}^9 e S com \mathbb{R}^6 . Nosso grupo $\mathbb{O}(3)$ terá 3 graus de liberdade. O espaço de configuração desejado

Continuação.

então é a componente conexa de $\mathbb{O}(3)$ das matrizes com determinante 1 denotado por $\mathbb{SO}(3)$ (que tem o mesmo grau de liberdade ou seja com 3 graus de liberdade). De fato é possível mostrar que as matrizes de determinante 1 podem ser conectadas continuamente a matriz identidade Id, enquanto as de determinante -1 podem ser conectadas com a matriz -Id

Observação 1.4.

Mais geralmente **um sistema mecânico interligado** estará mergulhado em um **sistema mecânico livre** que é descrito como produto de *m* copias de $\mathbb{SO}(3) \times \mathbb{R}^3$ (cada cópia descrevendo um corpo rígido e seu centro de massa) com *n* cópias de \mathbb{R}^3 (cada cópia descrevendo uma partícula). Em particular, no Exemplo 1.2

$$\varphi: S^1 \times S^1 \to (\mathbb{SO}(3) \times \mathbb{R}^3) \times (\mathbb{SO}(3) \times \mathbb{R}^3) (z_1, z_2) \mapsto ((Q(z_1), R(z_1)), (Q(z_2), R(z_2, z_1)))$$

onde $Q(z_i) : \mathbb{C} \times \mathbb{R} \to \mathbb{C} \times \mathbb{R}$ é rotação definida como $Q(z_i)(z,t) = (z_i z, t)$ e as aplicações centro de massa são: $R_1(z_1) = r_1 Q(z_1) e_1$, $R_2(z_2, z_1) = l_1 Q(z_1) e_1 + r_2 Q(z_2) e_1$. Aqui r_1 é a distância do centro de massa de $\overline{0p}$ a 0 e r_2 é a distância do centro de massa de \overline{pq} ao link p.

Observação 1.5.

Nossos conjuntos, que serão exemplos naturais de variedades, podem aparecer não só como espaço de configuração de um sistema, mas também como um subconjunto do espaço de fases (posição velocidade) de algum sistema dinâmico. Considere por exemplo, uma particular com massa m localizada em uma reta presa a uma mola perfeita. O movimento de tal partícula é descrita pelo oscilador harmônico $m\alpha''(t) = -k\alpha(t) = -U'(\alpha(t))$ onde $U(q) = \frac{k}{2}q^2$ é a função potencial. Defina E: $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$ como a energia total, i.e., $E(q, \dot{q}) = \frac{m}{2}(\dot{q})^2 + U(q)$. Visto que $\frac{d}{dt}E(\alpha(t), \alpha'(t)) = 0$, (o que pode ser facilmente verificado pela regra da cadeia) concluímos que $E(\alpha(t), \alpha'(t)) = c$. Em outras palavras, posição e velocidade da partícula ficam restritas à elipse $E^{-1}(c) = \{(q, \dot{q}) \in \mathbb{R} \times \mathbb{R}, E(q, \dot{q}) = c\}$.

Após alguns exemplos e motivações estamos prontos para a definição formal de variedade mergulhada a seguir. Tal definição implicara, a grosso modo, que um pedaço da superfície é levada em um aberto de um plano.

Definição 1.6. Variedade mergulhada

Um conjunto $M^m \subset \mathbb{R}^{m+k}$ é uma *m*-variedade mergulhada no espaço Euclidiano \mathbb{R}^{m+k} (ou subvariedade do \mathbb{R}^{m+k}) se para cada $p \in M$ existe uma vizinhança (aberto e conexo) $U \subset \mathbb{R}^{m+k}$ de p, vizinhança $V \subset \mathbb{R}^{m+k}$ de q e um difeomorfismo $\psi : U \to V$ tal que $\psi(p) = q$ e $\psi(U \cap M) = V \cap \{\mathbb{R}^m \times \{0\}\}$. Chamamos a aplicação $\psi|_{U \cap M}$ de sistema de coordenada, e $\varphi := \psi^{-1}|_{V \cap \{\mathbb{R}^m \times \{0\}\}}$ é chamada de parametrização.

Exemplo 1.7. Gráficos

Seja $h: \mathbb{R}^2 \to \mathbb{R}$ é uma função suave. Considere o gráfico de h em \mathbb{R}^3 , ou seja, o conjunto

$$M = \{ (x_1, x_2, x_3) \in \mathbb{R}^3; \ x_3 = h(x_1, x_2) \}.$$

Então M é uma variedade mergulhada em \mathbb{R}^3 pois a aplicação $\psi:\mathbb{R}^3\to\mathbb{R}^3$ definida por

$$\psi(x_1, x_2, x_3) = (x_1, x_2, x_3 - h(x_1, x_2))$$

satisfaz as propriedades da Definição 1.6. De fato, como

$$D\psi(x_1, x_2, x_3) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -\frac{\partial h}{\partial x_1} & -\frac{\partial h}{\partial x_2} & 1 \end{bmatrix}$$

para todo $(x_1, x_2, x_3) \in \mathbb{R}^3$, então, pelo Teorema da Função Inversa, ψ é um difeomorfismo local de \mathbb{R}^3 . Além disso, $\psi|_M = \mathbb{R}^2 \times \{0\}$.

Como caso particular observamos que o paraboloide é uma superfície mergulhada pois é o gráfico sobre \mathbb{R}^2 da função $h(x_1, x_2) = x_1^2 + x_2^2$.

Subvariedades mergulhadas do espaço Euclidiano apareciam naturalmente descrita por "bons vínculos", ou seja via submersões. Recorde que uma aplicação suave $G: U \subset \mathbb{R}^{m+k} \to \mathbb{R}^k$ é chamada **submersão** se DG_x é sobrejetora $\forall x \in U$.

Teorema 1.8. Teorema da Submersão

Seja $G: U \subset \mathbb{R}^{m+k} \to \mathbb{R}^k$ uma submersão suave. Então para todo $p_0 \in U$ existe uma vizinhança $U_0 \subset U$ de p_0 tal que a partição $\mathcal{F} = \{G^{-1}(c), c \in \mathbb{R}^k\} \cap U_0$ é difeomorfa à **folheação canônica** $\mathcal{F}_0 = \{\pi^{-1}(c), c \in \mathbb{R}\}$, onde $\pi : \mathbb{R}^{m+k} \to \mathbb{R}^k$ é definida como $\pi(x, y) = y$. Mais precisamente existe um difeomorfismo $\varphi : V_0 \to$ U_0 tal que $G \circ \varphi(x, y) = \pi(x, y) = y$.

Exemplo 1.9.

Para ilustrar o Teorema 1.8, consideremos novamente o Exemplo 1.7. Se definirmos a função $g:\mathbb{R}^3\to\mathbb{R}$ por

$$g(x_1, x_2, x_3) = x_3 - h(x_1, x_2),$$

vemos que $\mathcal{F} = \{g^{-1}(c), c \in \mathbb{R}\}$ é o conjunto das translações verticais do gráfico da função h (as quais são movimentos rígidos). Como o gráfico de h é difeomorfo a \mathbb{R}^2 , então \mathcal{F} é difeomorfa a \mathcal{F}_0 .

Neste caso, o difeomorfismo $\varphi:\mathbb{R}^3 \to \mathbb{R}^3$ definido por

$$\varphi(x_1, x_2, x_3) = (x_1, x_2, x_3 + h(x_1, x_2))$$

Continuação.

satisfaz

 $g \circ \varphi(x_1, x_2, x_3) = x_3 = \pi(x_1, x_2, x_3).$

Figura 1.2: As folheações \mathcal{F}_0 e \mathcal{F} no caso em que $h(x_1,x_2)=x_1^2+x_2^2$

Prova do Teorema 1.8. Seja $A : \mathbb{R}^m \times \mathbb{R}^k \to \mathbb{R}^m \times \mathbb{R}^k$ um movimento rígido (isometria no espaço Euclidiano) tal que a matriz $D_y \widetilde{G}_{p_0}$ é invertível onde $\widetilde{G} = G \circ A$. Defina $\psi(x, y) = (x, \widetilde{G}(x, y))$ e observe que

$$D\psi_{p_0} = \left[\begin{array}{cc} Id & 0 \\ D_x \widetilde{G}_{p_0} & D_y \widetilde{G}_{p_0} \end{array} \right]$$

é um isomorfismo. Logo pelo teorema da função inversa $\psi : U_0 \to V_0$ é um difeomorfismo. Seja $L = \{(x, c) \in (\mathbb{R}^m \times \mathbb{R}^k) \cap V_0\}.$

$$\psi^{-1}(L) = \{(x, y) \in U_0, \psi(x, y) = (x, c)\}$$
$$= \{(x, c) \in U_0, \widetilde{G}(x, y) = c\}$$

Assim $G \circ A \circ \psi^{-1}(x,c) = c$. A demonstração termina definindo $\varphi = A \circ \psi^{-1}$.

Dado uma aplicação $G: U \subset \mathbb{R}^{m+k} \to \mathbb{R}^k$ suave. Suponha que para $c \in G(U)$ temos que DG_x é sobrejetor $\forall x \in G^{-1}(c)$. Neste caso dizemos que c é **valor regular**.

Observe que dado um valor regular c e um ponto $x \in G^{-1}(c)$ então, como DG_x é sobrejetor, DG_p é sobrejetor para todos os pontos p próximos a x ou seja G se torna uma submersão na vizinhança de $x \in G^{-1}(c)$. Podemos então inferir o seguinte corolário usualmente conhecimento como **teorema do valor regular**.

Corolário 1.10. Seja $G : U \subset \mathbb{R}^{m+k} \to \mathbb{R}^k$ uma aplicação suave e c um valor regular. Então $M = G^{-1}(c)$ é variedade mergulhada no \mathbb{R}^{m+k} .

Excercício 1.11. Gráficos Seja $H: U \subset \mathbb{R}^m \to \mathbb{R}^k$ aplicação suave. Defina o gráfico

$$M = \{(x, y) \in U \times \mathbb{R}^k, y = H(x)\}$$

e a função $G:U imes \mathbb{R}^k
ightarrow \mathbb{R}^k$ como

$$G(x,y) = \sum_{i=1}^{k} (h_i(x) - y_i)e_{m+i},$$

Verifique que:

- (a) $M = G^{-1}(0)$,
- (b) G é submersão.

Segue também da demonstração do Teorema 1.8 o resultado a seguir.

Teorema 1.12. Teorema da Função Implícita

Seja $G: U \subset \mathbb{R}^{m+k} \to \mathbb{R}^k$ uma submersão suave. Então $M = G^{-1}(c)$ é um gráfico local. Mais precisamente suponha que a matriz $D_y G_{(p_1,p_2)}$ é um isomorfismo onde (p_1, p_2) é tal que $c = G(p_1, p_2)$. Então existe uma vizinhança B de (p_1, p_2) , uma vizinhança $W \subset \mathbb{R}^m$ de p_1 uma aplicação suave $H: W \to \mathbb{R}^k$ tal que: $(x, y) \in B \cap M$ se e somente se y = H(x) com $x \in W$. Em particular G(x, H(x)) = c.

Demonstração. Na demonstração do Teorema 1.8 basta considerar A = Id. Com c fixado temos $\psi^{-1}(x,c) = (x, \widetilde{H}(x,c))$. Então definimos $H(x) = \widetilde{H}(x,c)$. \Box

Excercício 1.13. Superfície de Revolução

Seja $g:\mathbb{R}^2
ightarrow \mathbb{R}$ uma função suave. Suponha que c é valor regular da função

Continuação.

$$(r, x_3) o g(r^2, x_3)$$
. Seja $M = \{(x_1, x_2, x_3) \in \mathbb{R}^3, g(x_1^2 + x_2^2, x_3) = c\}.$

Verifique que M é **superfície de revolução**, i.e., variedade mergulhada de dimensão 2 invariante por rotações que fixam o eixo x_3 (vide o exemplo da Figura 1.3).

Figura 1.3: $S = \{x \in \mathbb{R}^3 | x_1^2 + x_2^2 + \frac{1}{4}x_3^2 = 1\}$ ilustra o Exercício 1.13

Observação 1.14.

No exercício anterior temos então uma variedade M que admite uma aplicação μ : $G \times M \to M$ (onde $G = S^1 = \{z \in \mathbb{C}; |z| = 1\}, M = \mathbb{R}^3 = \mathbb{C} \times \mathbb{R}$), definida como

$$\mu(g,(z,t)) = (gz,t).$$

Observe que tal aplicação μ atende as propriedades a seguir:

- $\mu(e, x) = x;$
- $\mu(g_2,\mu(g_1,x)) = \mu(g_2g_1,x).$

Em geral, uma aplicação $\mu : G \times M \to M$ (G um grupo de Lie, por exemplo, um grupo fechado de matrizes, e M uma variedade) que satisfaz essas propriedades será denominada **ação**.

No exercício que se segue, temos um exemplo de uma variedade que admite a estrutura (suave) de um grupo, i.e., um exemplo de um grupo de Lie (vide detalhes Capítulo 2).

Excercício 1.15.

Seja $F: M^{3\times3}(\mathbb{R}) \to S^{3\times3}(\mathbb{R})$ a aplicação definida por $F(A) = AA^t$, onde $M^{3\times3}(\mathbb{R})$ são as matrizes quadradas 3×3 com entradas reais, $S^{3\times3}(\mathbb{R})$ são as matrizes simétricas com entradas reais e A^t denota a matriz transposta de A. Verifique que $DF(A): \mathbb{R}^9 = T_A M^{3\times3} \to \mathbb{R}^6 = T_{Id} S^{3\times3}$ é sobrejetor, por exemplo aplicando DF(A) aos vetores AS para matrizes simétricas S (os quais são candidatos a serem vetores normais a $\mathbb{O}(3)$ com pé em A). Conclua pelo teorema de submersão que $\mathbb{O}(3)$ é variedade mergulhada.

Observação 1.16.

Como observado anteriormente SO(3) é a componente conexa de O(3) contendo a identidade e assim também é variedade. As contas feitas no exercício acima se generalizam, mutatis mutandis para dimensões maiores. $O(n) \in SO(n)$ serão nossos exemplos neste livro de grupos de Lie compactos, mas outro grupo de Lie compacto igualmente fundamental é o grupo SU(n). Bom lembrar que também que $\mathbb{GL}^{n \times n}(\mathbb{R})$ (matrizes com determinante diferente de zero) e SL(n) (matrizes com determinante 1) são bons exemplos de grupos (de Lie) não compactos.

Uma outra forma em que encontravamos variedades mergulhadas no espaço Euclidiano era via as imersões (as parametrizações). Recorde que uma aplicação suave $\varphi : U \subset \mathbb{R}^m \to \mathbb{R}^{m+k}$ é chamada **imersão** se $D\varphi_x$ é injetora para todo $x \in U$.

Teorema 1.17. Teorema de imersão

Seja $\varphi : U \subset \mathbb{R}^m \to \mathbb{R}^{m+k}$ uma imersão. Então dado $p \in U$ existe uma vizinhança $U_0 \subset U$ de p tal que $\varphi(U_0)$ é variedade mergulhada. Mais precisamente existe uma vizinhança U_1 de $\varphi(p_0)$, uma vizinhança U_2 de (p, 0) em \mathbb{R}^{m+k} e um difeomorfismo $\psi : U_1 \subset \mathbb{R}^m \times \mathbb{R}^k \to U_2 \subset \mathbb{R}^m \times \mathbb{R}^k$ tal que $\psi \circ \varphi(x) = (x, 0)$.

Demonstração. Escolha um movimento rígido $A : \mathbb{R}^{m+k} \to \mathbb{R}^{m+k}$ tal que a aplicação $\tilde{\varphi} = A \circ \varphi$ tem a propriedade que a matriz $(\frac{\partial \tilde{\varphi}_i}{\partial x_j})(p)$ é invertível onde $1 \leq j \leq m$ e $1 \leq i \leq m$.

Vamos definir então

$$F(x,y) = (\widetilde{\varphi}_1(x), \dots, \widetilde{\varphi}_m(x), \widetilde{\varphi}_{m+1}(x) + y_1, \dots, \widetilde{\varphi}_{m+k}(x) + y_k)$$

= $\widetilde{\varphi}(x) + (0,y)$

Observe que a matriz

$$DF_p = \left[\begin{array}{cc} \pi_1 \circ D\varphi_p & 0\\ \pi_2 \circ D\varphi_p & Id \end{array} \right]$$

é invertível, onde $\pi_1(x, y) = x e \pi_2(x, y) = y$.

Concluimos assim pelo teorema da função inversa que $F: U_2 \to U_1$ é um difeomorfismo, para vizinhanças U_i apropriadas. A demonstração termina observando que a aplicação definada como $\psi = F^{-1} \circ A$ atende as propriedades necessárias.

Excercício 1.18.

Seja M^2 superfície mergulhada em \mathbb{R}^3 invariante por rotação no eixo x_3 , ou seja, uma superfície de rotação. Verifique que a aplicação $\varphi: U \to M$ definida como

$$\varphi(t, \theta) = (r(t)\cos(\theta), r(t)\sin(\theta), h(t))$$

é uma parametrização de M^2 , onde $\beta(t) = (r(t), 0, h(t))$ é uma paramatrização da curva geratriz com as propriedades que $\|\beta'\| \neq 0$ e $r(t) \neq 0$. Em outras palavras verifique que φ é uma imersão e sua imagem está contida em M^2 , vide Figura 1.4.

Figura 1.4: A aplicação $\varphi(t, \theta) = ((\cos(t) - 3)\cos(\theta), (\cos(t) - 3)\sin(\theta), \sin(t))$ é uma paramatrização que ilustra o Exercício 1.18.

1.2. Espaços tangentes e métrica induzida

Antes de definir espaço tangente, precisamos fixar o conceito de vetores com pé e fibrado tangente do espaço Euclidano. Dado um aberto $U \subset \mathbb{R}^m$, definimos:

- fibrado tangente de U como $TU = U \times \mathbb{R}^m$,
- projeção pé $\pi: TU \to U$ como $\pi(q, v) = q$,
- espaço tangente $T_q U = \mathbb{R}^m = \pi^{-1}(q)$

Um elemento $v_q \in T_q U$ será chamado **vetor com pé** e frequentemente pode modelar uma **velocidade** de uma partícula passando pela *posição q*. De fato, v_q é o vetor velocidade da curva $q + tv_q$ (onde t é suficientemente pequeno).

Note também que, dado uma curva suave $\alpha : (-\epsilon, \epsilon) \subset \mathbb{R} \to U$, a velocidade $\alpha'(t) \in T_{\alpha(t)}U$ para todo $t \in (-\epsilon, \epsilon)$.

Além disso, se $F : U \subset \mathbb{R}^m \to \mathbb{R}^{m+k}$ uma aplicação suave, então $\beta(t) = F \circ \alpha(t)$ é uma curva suave em \mathbb{R}^{m+k} . Pela regra da cadeia segue que $\beta'(t) = DF_{\alpha(t)}(\alpha'(t))$. Em particular, se $q = \alpha(0)$, então DF_q leva $\alpha'(0) \in T_q U$ em $\beta'(0) \in T_{F(q)} \mathbb{R}^{m+k}$. Isto é,

$$DF_q: T_qU \to T_{F(q)}\mathbb{R}^{m+k}$$

Definição 1.19.

Seja $M^m \subset \mathbb{R}^{m+k}$ uma *m*-variedade mergulhada e $\varphi : U \subset \mathbb{R}^m \to V \subset M$ uma parametrização. Então o subespaço $T_pM = D\varphi_qT_qU \subset T_p\mathbb{R}^{m+k}$ é chamado de **espaço tangente** no ponto $p = \varphi(q)$.

Figura 1.5: Dado uma imersão $\varphi : U \subset \mathbb{R}^2 \to \mathbb{R}^3$, uma base $\{v_q, w_q\}$ de T_qU é levada em uma base $\{d\varphi_q v_q, d\varphi_q w_q\}$ de T_qM

O exercício a seguir mostra que o espaço tangente não depende da parametrização escolhida, logo, está *bem definido*.

Excercício 1.20.

Considere duas parametrizações $\varphi_i : V_i \subset \mathbb{R}^m \to M$ de uma variedade mergulhada $M^m \subset \mathbb{R}^{m+k}$ tal que $W := \varphi_1(V_1) \cap \varphi_2(V_2) \neq \emptyset$. Verifique que se $\varphi_1(0) = p = \varphi_2(0)$ então $(D\varphi_1)_0 \mathbb{R}^m = (D\varphi_2)_0 \mathbb{R}^m$.

Veremos a seguir diferentes interpretações do espaço tangente. Em particular, o plano tangente de uma superfície pode ser visto como o espaço dos vetores velocidades de curvas contidas na superfície (vide Figura 1.6). Além disso, se a superfície for uma superfície de nível $M^2 = g^{-1}(c) = \{x \in \mathbb{R}^3; g(x) = c\}$, então o plano tangente passando por p será o plano afim perpendicular à $\nabla g(p)$.

Proposição 1.21.

Seja $M^m \subset \mathbb{R}^{m+k}$ uma variedade mergulhada. Mostre que $v \in T_p M$ se e somente se existe curva $\alpha : (-\epsilon, \epsilon) \to M$ com $\alpha(0) = p \in \alpha'(0) = v$ (ou seja, $v \notin$ uma velocidade de uma curva contida em M).

Demonstração. Seja $\varphi : U \subset \mathbb{R}^m \to M$ uma parametrização tal que $\varphi(0) = p$. Como $v \in T_p M$, existe $w \in T_0 U$ tal que $v = D\varphi_0(w)$ (veja Definição 1.19). Seja ε suficientemente pequeno de forma tal que o seguimento $r(t) = tw, t \in (-\varepsilon, \varepsilon)$, esteja contido em U. Assim, a curva $\alpha(t) = \varphi \circ r(t)$ é uma curva em M satisfazendo $\alpha(0) = \varphi(r(0)) = \varphi(p)$ e $\alpha'(0) = D\varphi_0(r'(0)) = D\varphi_0(w) = v$, como desejado.

Proposição 1.22.

Seja $M^m \subset \mathbb{R}^{m+k}$ uma variedade mergulhada. Verifique que se M é pré imagem de valor c de uma submersão $G : U \subset \mathbb{R}^{m+k} \to \mathbb{R}^k$, então T_pM coincide com o núcleo de DG em p.

Demonstração. Seja $v \in T_pM$ o vetor velocidade de uma curva $\alpha : (-\varepsilon, \varepsilon) \to M$ passando por p (veja Proposição 1.21). Sendo $M = G^{-1}(c)$, temos que $G \circ \alpha(t) = c$ para todo $t \in (-\varepsilon, \varepsilon)$. Logo,

$$DG_p(v) = DG_{\alpha(0)}(\alpha'(0)) = (G \circ \alpha)'(0) = 0,$$

mostrando que v pertence ao núcleo de DG_p .

Seja $v \in T_pM$ qualquer, o vetor velocidade de uma curva $\alpha : (-\varepsilon, \varepsilon) \to M$ passando por p (veja Proposição 1.21). Sendo $M = G^{-1}(c)$, temos que $G \circ \alpha(t) = c$ para todo $t \in (-\varepsilon, \varepsilon)$. Logo,

$$DG_p(v) = DG_{\alpha(0)}(\alpha'(0)) = (G \circ \alpha)'(0) = 0,$$

mostrando que v pertence ao núcleo de DG_p . Como v é qualquer, segue que $T_pM \subset \text{Ker} (DG_p)$.

Por outro lado, como G é uma submersão, $\dim(T_pM) = \dim(\operatorname{Im}(DG_p)) = m$. Além disso, de Álgebra Linear sabemos que

$$\dim(\mathbb{R}^{m+k}) = \dim \operatorname{Ker}(DG_p)) + \dim(\operatorname{Im}(DG_p)),$$

donde

$$\dim(\operatorname{Ker}(DG_p)) = m = \dim(T_pM),$$

concluindo que esses espaços coincidem.

Observação 1.23.

A Proposição 1.22 implica que os vetores de T_pM são ortogonais aos gradientes das componentes de G. De fato, supondo que $G(x) = (g_1(x), \ldots, g_k(x))$, temos que

$$0 = (G \circ \alpha)'(0)$$

= $((g_1 \circ \alpha)'(0), \dots, (g_k \circ \alpha)'(0))$
= $(\langle \nabla g_1(\alpha(0)), \alpha'(0) \rangle, \dots, \langle \nabla g_k(\alpha(0)), \alpha'(0) \rangle)$

Exemplo 1.24.

Seja $g: U \subset \mathbb{R}^3 \to \mathbb{R}$ função de classe C^1 e $M = \{x \in U \in \mathbb{R}^3 | g(x) = c\}$ uma superfície regular (i.e., $\nabla g(x) \neq 0 \ \forall x \in M$). Dado $q = (q_1, q_2, q_3) \in M$ verifiquemos que o plano tangente no ponto $q \notin d$ ado pela equação

$$\frac{\partial g}{\partial x_1}(q)(x_1-q_1) + \frac{\partial g}{\partial x_2}(q)(x_2-q_2) + \frac{\partial g}{\partial x_3}(q)(x_3-q_3) = 0.$$

De fato, pela Proposição 1.22 e a Observação 1.23, temos que $\nabla g(q)$ é ortogonal ao vetor $x - q \in T_pM$. Portanto,

$$\langle \nabla g(q), x - q \rangle = 0$$

de onde segue a equação desejada.

Excercício 1.25.

Determine o plano tangente ao toro $M = \{x \in \mathbb{R}^3 \ (\sqrt{x_1^2 + x_2^2} - 3)^2 + x_3^2 = 1\}$ passando pelo ponto $q = (\frac{7}{4}, \frac{7\sqrt{3}}{4}, \frac{2\sqrt{3}}{4}).$

Figura 1.6: Plano tangente ao toro do Exercício 1.25

Excercício 1.26.

Determine $T_I \mathbb{O}(n)$, $T_A \mathbb{O}(n)$, onde A é qualquer matriz em $\mathbb{O}(n)$ e I é o a matriz identidade de $\mathbb{M}^{n \times n}(\mathbb{R})$.

Sabendo que o espaço tangente a uma subvariedade mergulhada é um subespaço vetorial, é algo natural querer pensar em algumas estruturas usuais dos espaços vetoriais tais como produto interno e norma.

Definição 1.27.

Seja M variedade mergulhada em \mathbb{R}^{m+k} . Definimos a *métrica induzida* ou *primeira forma* como sendo o produto interno em R^{m+k} restrito a cada espaço tangente, isto é,

$$g_p(u,v) = \langle u, v \rangle, \ \forall \ u, v \in T_p M, \ \forall \ p \in M.$$

Além disso, dada uma parametrização $\varphi : U \subset \mathbb{R}^m \to M$, os valores $g_{ij} = \langle d\varphi_p(e_i), d\varphi_p(e_j) \rangle$, são os coeficientes da métrica induzida referentes a essa parametrização.

Excercício 1.28. Superfície de Revolução

Considere Muma superfície de revolução em $\mathbb{R}^3.$ Temos então a parametrização

$$\psi(t,s) = \big(r(t)\cos(s), r(t)\sin(s), h(t)\big),$$

onde $t \to \beta(t) = (r(t), h(t))$ é a curva geratriz com $\|\beta'(t)\| \neq 0$. Então

$$\psi_t = \frac{\partial \psi}{\partial t} = (r'(t)\cos(s), r'(t)\sin(s), h'(t))$$
$$\psi_s = \frac{\partial \psi}{\partial s} = (-r(t)\sin(s), r(t)\cos(s), 0)$$

Verifique que a métrica em coordenadas é:

$$[g_{ij}] = \begin{bmatrix} (r'(t))^2 + (h'(t))^2 & 0\\ 0 & (r(t))^2 \end{bmatrix}$$

1.3. Campos de vetores e o campo gradiente

Vamos nesta seção recordar alguns conceitos e resultados vistos em Cálculo II. Mais resultados sobre campos de vetores serão discutidos no Capítulo 2.

1.3.1. Campos de vetores

Um campo \vec{F} suave em um aberto $U \subset \mathbb{R}^m$ é uma aplicação suave $\vec{F} : U \to U \times \mathbb{R}^m$ definida como $\vec{F}(x) = (x, F(x))$ onde $F(x) = (f_1(x), \dots, f_m(x))$

é uma aplicação suave $F : U \to \mathbb{R}^m$. Ou seja uma aplicação do nosso espaço de configurações U para o nosso espaço de fases $U \times \mathbb{R}^m$ tal que $\pi \circ \vec{F}(x) = x$ onde $\pi : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^m$ é a projeção canônica $\pi(x, v) = x$. Visto que nosso espaço de fases é um produto trivial é possível escrever o campo \vec{F} em termos dos campos canônicos $\vec{e}_i(x) = (x, e_i)$ da forma

$$\vec{F} = \sum_{i} f_i \vec{e}_i, \tag{1.3.1}$$

vide Figura 1.3.2.

Dado um campo \vec{F} campo em $U \subset \mathbb{R}^m$ de classe C^k e $p \in U$. Então existe uma (única) curva $\gamma: (-\epsilon, \epsilon) \to U$ de classe C^k tal que

$$\gamma'(t) = \vec{F}(\gamma(t))$$
$$p = \gamma(0)$$

Exemplo 1.29. Seja $F(x) = \begin{bmatrix} 1 & 0 \\ 0 & \frac{3}{2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ i.e., $\vec{F}(x_1, x_2) = x_1 \vec{e}_1 + \frac{3}{2} x_2 \vec{e}_2$ e p = (1, 2). Então, por Cálculo I, $\gamma(t) = (\exp(t), 2\exp(\frac{3}{2}t))$

O exemplo acima ilustra o que chamamos **campo linear**, ou seja a aplicação $F : \mathbb{R}^m \to \mathbb{R}^m$ é linear (i.e., F(x) = Ax).

1.3.2. Campo gradiente

Chamamos de campo gradiente de uma função função diferenciável f ao campo

$$\nabla f = \sum_{i=1}^{m} \frac{\partial f}{\partial x_i} \vec{e_i}.$$

Note que a equação acima parece depender dos campos canônicos. O Teorema de Representação de Riezs nos permite retirar essa dependência como podemos ver na seguinte definição.

Definição 1.30.

Seja $f: U \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ uma função diferenciável. Definimos o vetor gradiente de f em $p \in U$, denotado por $\nabla f(p)$, como sendo o único vetor de \mathbb{R}^n

Figura 1.7: Campo $\vec{F} = x_1 \frac{\partial}{\partial x_1} + \frac{3}{2} x_2 \frac{\partial}{x_2}$

Continuação.

satisfazendo

$$df(p)X = \langle \nabla f(p), X \rangle \ \forall X \in \mathbb{R}^m$$

Observe que,

$$\frac{\partial f}{\partial x_i}(p) = df(p)e_i = \langle \nabla f(p), e_i \rangle.$$
(1.3.2)

Logo,

$$\nabla f(p) = \sum_{i=1}^{n} \left\langle \nabla f(p), e_i \right\rangle e_i = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(p) e_i.$$
(1.3.3)

Como aprendemos em Cálculo, segue da regra da cadeia, que campo gradiente indica direção e sentido de maior crescimento da função f e como vimos antes ele é ortogonal as superfícies de níveis $f^{-1}(c)$.

Observação 1.31.

Nem todo campo vetorial é gradiente de uma função. Por exemplo seja $\vec{F}(x_1, x_2) = x_2 \vec{e}_1 - x_1 \vec{e}_2$ Vamos supor por absurdo que existisse uma função f tal que $\nabla f = \vec{F}$. Então teríamos $\frac{\partial f}{\partial x_1} = x_2$ e $\frac{\partial f}{\partial x_2} = -x_1$. Por outro lado, $\frac{\partial^2 f}{\partial x_1 \partial x_2} = \frac{\partial^2 f}{\partial x_2 \partial x_1}$ Chegamos assim a um absurdo pois $\frac{\partial^2 f}{\partial x_1 \partial x_2} = -1$ e $\frac{\partial^2 f}{\partial x_2 \partial x_1} = 1$. Logo não existe a tal f.

Uma vez recordado o relevante conceito de campos, podemos definir **um campo** suave \vec{F} de uma variedade mergulhada $M^m \subset \mathbb{R}^{m+k}$ como sendo uma aplicação que a cada $p \in M$ associa $\vec{F}(p) \in T_p M$ e que admite uma extensão local de um campo em \mathbb{R}^{m+k} . Vamos denotar o conjunto de campos suaves de M como $\mathfrak{X}(M)$.

Campo gradiente Riemanniano

Vimos que dado uma função $u: \mathbb{R}^m \to \mathbb{R}$ diferenciável,

$$du_p X = \langle \nabla u(p), X \rangle, \, \forall X \in T_p \mathbb{R}^m.$$

Definição 1.32.

Considere uma função $u : U \subset \mathbb{R}^m \to \mathbb{R}$ diferenciável e $M \subset U$ uma subvariadade mergulhada em \mathbb{R}^{m+k} . Defina $f : M \to \mathbb{R}$ a restrição da função u a M, ou seja, $f = u|_M$. Definimos o campo **gradiente Riemanniano grad** f(p) como o campo tangente a M que atende:

$$df_p X = \langle \operatorname{grad} f(p), X \rangle, \, \forall X \in T_p M.$$
(1.3.4)

Em particular, grad f(p) é a parte tangente de $\nabla u(p)$.

Observação 1.33. No caso em que $M = g^{-1}(c)$, pre-imagem de um valor regular de uma função $g: U \subset R^{m+k} \to \mathbb{R}$, segue

grad
$$f(p) = \nabla u(p) - \left\langle \nabla u(p), \frac{\nabla g(p)}{\|\nabla g(p)\|} \right\rangle \frac{\nabla g(p)}{\|\nabla g(p)\|}$$

Segue diretamente de (1.3.4) que a maior taxa de variação de $f = u|_M$ ocorre na direção e sentido do vetor gradiente Riemanniano.

1.3.3. Colchete de campos, um primeiro contato

Nesta subseção apresentaremos rapidamente o operador colchete de campos e algumas de suas propriedades. No Capítulo 2 discutiremos seu significado geométrico. A grosso modo veremos que o colchete de campos mede a não comutatividade de campos. Porém, no momento estamos apenas interessados em sua definição no espaço Euclidiano e algumas de suas propriedades (a serem utilizadas em breve).

Sejam $\vec{V} = \sum_{i} v_i(x) \vec{e_i}$ e $\vec{W} = \sum_{i} w_i(x) \vec{e_i}$ dois campos de vetores no espaço

Euclidiano \mathbb{R}^{m+k} . Definimos o **campo colchete** como sendo

$$[\vec{V}, \vec{W}] = D_V W - D_W V, \tag{1.3.5}$$

onde (vide Exemplo 2.4)

$$D_W \vec{V_p} = \sum_{i=1}^m dv_i(W) \vec{e_i}.$$

Excercício 1.34.

Escreva $[\vec{V}, \vec{W}]$ em termos dos campos canônicos $\vec{e_i}$.

Proposição 1.35.

- + Se \vec{V} e \vec{W} são tangentes a uma subvariedade mergulhada M^m então $[\vec{V},\vec{W}]$ é tangente a M
- [V,W] = -[W,V]
- $[V, W + \lambda Z] = [V, W] + \lambda [V, Z]$
- [[V, W], Z] + [[Z, V], W] + [[W, Z], V] = 0

1.4. Multiplicadores de Lagrange

Problemas de otimização estão presentes no dia a dia de engenheiros e economistas, usualmente tais problemas estão sujeitos (desde o ponto de vista prático ou lógico) a uma ou várias restrições. Tais restrições podem ser vistas como variedades mergulhadas em espaços Euclideanos. Nesta seção iremos aplicar alguns dos conceitos e resultados anteriores para provar o clássico resultado de multiplicadores de Lagrange.

Proposição 1.36.

Considere uma função suave $g: U \subset \mathbb{R}^2$ e sua curva de nível associada a um valor regular c,

 $C = g^{-1}(c) = \{ x \in \mathbb{R}^2, g(x) = c \}.$

Seja $f : U \to \mathbb{R}$ função suave. Suponha que $f|_C$ (ou seja f restrita a C) tenha um ponto de máximo ou mínimo em $p \in C$. Então, $\nabla f(p)$ é perpendicular a C, ou

Continuação.

seja, existe $\lambda \in \mathbb{R}$ tal que

 $\nabla f(p) = \lambda \nabla g(p).$

Demonstração. Vamos dar uma prova para o caso em que p é máximo, o outro caso é análogo.

Como c é valor regular temos que existe uma parametrização $\alpha : (-\epsilon, \epsilon) \to C$ com $\alpha'(t) \neq 0$ e $\alpha(0) = p$ (e.g., poderiamos usar o teorema da função implícita e tomar $\alpha(t) = (t+x_0, h(t+x_0))$). Temos então que $c = g(\alpha(t))$ para $t \in (-\epsilon, \epsilon)$ e derivando concluímos

$$0 = \frac{dc}{dt}\Big|_{t=0} = \frac{d}{dt}g(\alpha(t))\Big|_{t=0} = \langle \nabla g(p), \alpha'(0) \rangle$$

Por outro lado, como f tem máximo em $p = \gamma(0)$ temos que $t \to f(\gamma(t))$ tem ponto crítico no interior e assim

$$0 = \frac{d}{dt} f(\alpha(t)) \Big|_{t=0} = \langle \nabla f(p), \alpha'(0) \rangle$$

As duas equações acima garantem que $\nabla g(p)$ e $\nabla f(p)$ são paralelos ou seja $\nabla f(p) = \lambda \nabla g(p)$.

Exemplo 1.37. Cobb-Douglas e orçamento de 2 produtos

Consideremos o seguinte problema clássico de micro-economia.

Seja $C = \{x \in \mathbb{R}^2 | g(x_1, x_2) = 2x_1 + x_2 - w = 0 \text{ e } x_1, x_2 \ge 0\}$ a curva que representa um vínculo orçamentário de dois produtos. Considere que a função de utilidade esteja dada pela função de Cobb Douglas

$$u(x) = x_1^{\frac{1}{2}} x_2^{\frac{1}{2}}.$$

O objetivo é maximizar a utilidade do consumidor dada a sua restrição orçamentária, isto é, maximizar a função u restrita a C.

Pela Proposição 1.36, se $s = (s_1, s_2)$ é um ponto de máximo, ele deve antender

$$\begin{pmatrix} \frac{1}{2}s_1^{-\frac{1}{2}}s_2^{\frac{1}{2}}, \frac{1}{2}s_2^{-\frac{1}{2}}s_1^{\frac{1}{2}} \\ w = 2s_1 + s_2 \end{cases} = \nabla u(s) = \lambda \nabla g(s) = \lambda(2, 1)$$

Resolvendo o sistema acima concluímos que $s(w) = (\frac{w}{4}, \frac{w}{2})$. Ou seja, as quantidades dos produtos 1 e 2 que maximizam a função utilidade são $\frac{w}{4}$ e $\frac{w}{2}$, respectivamente. A utilidade máxima é $u(s(w)) = \frac{w}{2\sqrt{2}}$.

Figura 1.8: Representação para w = 8 da restrição orçamentária, a utilidade máxima sujeita à restrição orçamentária (curva de nível u = u(s(8))), e os gradientes de ambas funções no ponto de máximo

Observação 1.38. Shadow prices e família de vínculos

No caso bem particular de Cobb Douglas temos a existência de um único máximo s(w) para cada vínculo $C_w = g^{-1}(w)$, o que nos dá uma curva diferenciável $w \to s(w) \in C_w$, vide Figura 1.9. Em particular $g \circ s(w) = w$ Por ser máximo temos: $\nabla u(s(w)) = \lambda(w) \nabla g(s(w))$ Assim, ao multiplicar ambos os lados

Figura 1.9: curvas de máximos no caso particular de u sendo **Cobb Douglas** e vários vinculos dado por orçamentos, ilustrando Exemplo 1.37 e Observação 1.38. Lembre que em problemas gerais de multiplicadores de Lagrange não precisa existir uma curva bem definida $w \rightarrow s(w)$

A seguir generalizaremos os multiplicadores de Lagrange para curvas planas para subvariedades mergulhadas no espaço Euclideano.

Teorema 1.39. Multiplicadores de Lagrange Sejam $G: U \subset \mathbb{R}^{m+k} \to \mathbb{R}^k$ uma aplicação de classe C^1 definida por $G(x) = (g_1(x), \dots, g_k(x))$ e $M = \{x \in \mathbb{R}^{m+k} | G(x) = c\}$ uma subvariedade regular. Seja $u: \tilde{U} \subset \mathbb{R}^{m+k} \to \mathbb{R}$ uma função de classe C^1 . Suponha que existe Continuação.

 $q \in M$ tal que $u|_M$ tem valor máximo ou mínimo local. Então, $\nabla u(q)$ é ortogonal a T_qM , ou seja, existe $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ tal que

$$\nabla u(q) = \sum_{i=1}^{k} \lambda_i \nabla g_i(q).$$

Demonstração. Da Proposição 1.21 temos que para cada $v_q \in T_q M$ existe uma curva $\alpha : (-\epsilon, \epsilon) \subset \mathbb{R} \to M \mod \alpha'(0) = v_q$. Visto que $u|_M$ (função restrita a M) tem um máximo ou mínimo em $q \in M$, temos que a função $h(t) = u(\alpha(t))$ tem máximo ou mínimo interior em t = 0, logo, h'(0) = 0. Assim, pela regra da cadeia, $0 = h'(0) = \langle \nabla u(q), \alpha'(0) \rangle = \langle \nabla u(q), v_q \rangle$. Como isto pode ser feito para qualquer outro $v_q \in T_q M$ concluímos que $\nabla u(q)$ é ortogonal a $T_q M$.

Por outro lado, sabemos que para cada $1 \leq i \leq k$, $\nabla g_i(q)$ é também ortogonal a $T_q M$ (vide a Observação 1.23). Além disso, sendo DG(x) sobrejetora $\forall x \in M$, o conjunto $\{\nabla g_i\}_{i=1}^k$ é uma base de $T_q M^{\perp}$ (complemento ortogonal¹ de $T_q M$). Concluí-se que $\nabla u(p)$ é combinação linear de $\{\nabla g_i\}_{i=1}^k$ como desejado. \Box

Do Teorema 1.39 podemos concluir que uma possibilidade para determinar os máximos ou mínimos de uma função $u: \tilde{U} \subset \mathbb{R}^{m+k} \to \mathbb{R}$ de classe C^1 sobre uma subvariedade regular $M = G^{-1}(c_1, \ldots, c_k)$ é a de resolver o sistema

$$\begin{cases} \nabla u(q) &= \sum_{i=1}^{k} \lambda_i \nabla g_i(q) \\ c_1 &= g_1(q) \\ \vdots \\ c_k &= g_k(q) \end{cases}$$

Exemplo 1.40. Cobb-Douglas e orçamento para três produtos Seja $S = \{x \in \mathbb{R}^3 | 6x_1 + 3x_2 + 2x_3 = 6x_i > 0\}$ a superfície que representa um vínculo orçamentário de três produtos. Vamos considerar a função utilidade $u(x) = \sqrt[3]{x_1x_2x_3}$. Para determinar o ponto $q \in S$ onde $u|_S$ assume maior valor resolvemos o sistema dado pelo multiplicador de Langrange.

¹Lembre-se que o complemento ortogonal de um subespaço vetorial é o conjunto de vetores do espaço que são ortogonais a tal subespaço.

Continuação.

Temos

$$\begin{pmatrix} \frac{1}{3}x_1^{-\frac{2}{3}}x_2^{\frac{1}{3}}x_3^{\frac{1}{3}}, \frac{1}{3}x_2^{-\frac{2}{3}}x_1^{\frac{1}{3}}x_3^{\frac{1}{3}}, \frac{1}{3}x_3^{-\frac{2}{3}}x_2^{\frac{1}{3}}x_1^{\frac{1}{3}} \end{pmatrix} = \lambda(6, 3, 2)$$

$$6 = 6x_1 + 3x_2 + 2x_3,$$

donde $q = (\frac{1}{3}, \frac{2}{3}, 1)$ e $u(q) = \sqrt[3]{\frac{2}{9}}$. Visto que \overline{S} (fecho de S) é fechado e limitado, e que o máximo não acontece no bordo ∂S (onde u é zero) q tem que ser de fato o ponto de máximo.

Figura 1.10: Superfície de nível $u^{-1}\left(\sqrt[3]{\frac{2}{9}}\right)$ (associada à função utilidade u) tangente ao vínculo orçamentário S no ponto de máximo q, e o vetor $N = \nabla g(q)$.

Excercício 1.41.

Determine o volume do maior paralelepípedo de faces paralelas aos planos coordenados que pode ser inscrito em $S = \{x \in \mathbb{R}^3 | 9x_1^2 + 36x_2^2 + 4x_3^2 = 36\}$

Vamos agora reapresentar o teorema dos multiplicadores de Lagrange em termos do gradiente Riemannianao (grad).

Proposição 1.42.

Seja M uma subvariedade mergulhada em \mathbb{R}^{m+k} e suponha que $f : M \to \mathbb{R}$ uma função diferenciável que tem um ponto de máximo ou mínimo local em $p \in M$. Então grad f(p) = 0.

Demonstração. Seja p um ponto de máximo ou mínimo da função f. Sabemos que em uma vizinhança $U \subset \mathbb{R}^{m+k}$ de $p, M \cap U$ é a imagem inversa de um valor regular de uma aplicação diferenciável $G: U \to \mathbb{R}^k$.

Seja $\overline{f} : V \subset \mathbb{R}^{m+k} \to \mathbb{R}$ uma extensão de f a uma vizinhança de \mathbb{R}^{m+k} de $p, (V \subset U)$ ou seja, $\overline{f} : V \to \mathbb{R}$ tal que $\overline{f}|_{V \cap M} = f$. Pela Proposição 1.39, $\nabla \overline{f}$ é ortogonal a M, logo sua projeção ortogonal em T_pM é 0, mostrando que grad f(p) = 0.

1.5. Hessiano

Seja $f: U \subset \mathbb{R}^m \to \mathbb{R}$ uma função de classe C^2 . Sabemos que $df(p) : \mathbb{R}^m \to \mathbb{R}$ é uma aplicação linear definida por $df(p) = \left[\frac{\partial f}{\partial x_1}(p) \cdots \frac{\partial f}{\partial x_m}(p)\right]$

Deixando o p variar, temos uma aplicação $df: U \subset \mathbb{R}^m \to \mathbb{R}^m$ que é suave. Podemos então considerar a derivada da aplicação df.

Definição 1.43.

Seja $f: U \subset \mathbb{R}^m \to \mathbb{R}$ uma função de classe C^2 . A segunda derivada de f no ponto $p \in U$, Hess f(p) = D(df)(p), é chamada de *Hessiano de f em p*.

Assim, temos

$$\operatorname{Hess} f(p) = \begin{bmatrix} d\frac{\partial f}{\partial x_1}(p) \\ \vdots \\ d\frac{\partial f}{\partial x_m}(p) \end{bmatrix} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1}(p) & \cdots & \frac{\partial^2 f}{\partial x_m \partial x_1}(p) \\ \vdots & \cdots & \vdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_m}(p) & \cdots & \frac{\partial^2 f}{\partial x_m \partial x_m}(p) \end{bmatrix}$$
(1.5.1)

Exercício 1.44. Determine o *Hess f* das funções $f : \mathbb{R}^2 \to \mathbb{R}$.

(a)
$$f(x_1, x_2) = 2x_1^2 + 2x_2^2$$

(b)
$$f(x_1, x_2) = -2x_1^2 - 2x_2^2$$

(c)
$$f(x_1, x_2) = 2x_1^2 - 2x_2^2$$

(d)
$$f(x_1, x_2) = x_1 x_2$$

Relembre que dado uma matriz $A \ m \times n$, podemos definir uma nova matriz $B \ n \times m$ como sendo a matriz transporta A^t ou seja $b_{i,j}$ é definido como a_{ji} . Por exemplo se $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ então $B = A^t = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$. Além disso, uma matriz $m \times m$ A é chamada simétrica se $A = A^t$.

A matriz $m \times m$ na equação 1.5.1 é chamada de *matriz Hessiana de f*. Dado que f é de classe C^2 , temos que

$$\frac{\partial^2 f}{\partial x_i \partial x_i}(p) = \frac{\partial^2 f}{\partial x_i \partial x_j}(p)$$

pelo teorema de Schwarz e, portanto, Hess f(p) é uma matriz simétrica. Consequentemente, a segunda derivada de f, D(df)(p) = Hess f(p) é uma aplicação linear simétrica.

Neste ponto convêm lembrar um teorema muito útil de Álgebra Linear para matrizes simétricas

Teorema 1.45. Espectral

Seja A uma matriz simétrica $m \times m$. Então existe uma base ortonormal $\{q_i\}$ de \mathbb{R}^m (i.e., $\langle q_i, q_j \rangle = 0$ se $i \neq j$ e $||q_i|| = 1$) tal que:

- 1. $Aq_i = \lambda_i q_i$, i.e., q_i é auto-vetor;
- 2. $Q^t A Q = \Lambda$, onde Q é a matriz com colunas q_i e Λ é a matriz diagonal de auto-valores λ_i .

Demonstração. vide Strang-Algebra Linear e aplicações

Lembre que a equação $Av = \lambda v$ é equivale à equação $(A - \lambda Id)v = 0$, e tal sistema tem solução não trivial se, e somente se, $(A - \lambda Id)$ não for invertível, ou seja, se, e somente se, $p(\lambda) = \det(A - \lambda Id) = 0$.

§1.5. Hessiano

Lembre também que a transformação linear R associada a uma matriz ortogonal Q é um movimento rígido, ou seja, $\langle Rx, Ry \rangle = \langle x, y \rangle$ e assim ||Qx|| = ||x||.

Exercício 1.46.

1. Mostre que os autovalores da matriz

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

são 1 e - 1 e que uma base ortonormal de auto-vetores é

$$\left\{q_1 = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right), q_2 = \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)\right\}.$$

2. Dadas a matriz

$$[Q] = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$$

cujas colunas são q_1 e q_2 , a aplicação linear $Q : \mathbb{R}^2 \to \mathbb{R}^2$ definida por Q(x) = [Q]x e a função $f : \mathbb{R}^2 \to \mathbb{R}$ $f(x) = x^t A x = 2x_1 x_2$, determine

$$f \circ Q(y) = f(y_1q_1 + y_2q_2).$$

Observação 1.47.

No Exemplo 1.46 tem-se que o gráfico da função (não linear) f é uma rotação do gráfico de $f \circ Q$ (a qual é uma sela de cavalo) como mostra a figura a seguir:

1.5.1. Extremos locais

De Cálculo I sabemos que os extremos locais de uma função suave são pontos críticos da mesma. Isto é, se $f: (-\epsilon, \epsilon) \subset \mathbb{R} \to \mathbb{R}$ é uma função suave e $p \in (-\epsilon, \epsilon)$, é um máximo ou mínimo local de f, então f'(p) = 0.

Porém a função $f(x) = x^3$ nos mostra que nem todo ponto crítico é um ponto de máximo ou mínimo local (de fato, f'(0) = 0 e x = 0 não é nem máximo nem mínimo).

Isto motivou a procura de critérios mais precisos como, por exemplo, o *Critério da segunda derivada*:

Seja $p \in (-\epsilon, \epsilon)$ é um ponto crítico de f(f'(p) = 0). Temos:

- 1. se f''(p) > 0 então p é mínimo local;
- 2. f''(p) < 0 então p é máximo local;

A prova se baseia no uso da fórmula de Taylor, i.e.,

$$f(x) = f(p) + f'(p)(x-p) + \frac{1}{2}f''(p)(x-p)^2 + R(x-p)$$

onde x está suficientemente próximo de p e $\lim_{x \to p} \frac{R}{(x-p)^2} = 0.$
De fato, se f'(p) = 0 e f''(p) > 0, então, dividindo a Formula de Taylor por $(x - p)^2$ temos:

$$\frac{f(x) - f(p)}{(x - p)^2} = \frac{1}{2}f''(p) + \frac{R(x - p)}{(x - p)^2} > 0$$

e, assim, f(x) > f(p) para x próximo a p (p é mínimo local).

Iremos aqui generalizar tais argumentos para funções sobre abertos de \mathbb{R}^n .

Exemplo 1.48.

A função $f(x) = 2x^2 - x^4$ tem um ponto crítico em p = 0 e a reta tangente ao gráfico de f em p é o eixo x. Para x próximo a p a função f é aproximada por $h(x) = \frac{1}{2}f''(p)(x-p)^2 = 2x^2$

Figura 1.12: Gráfico de $f(x) = 2x^2 - x^4$, sua reta tangente em p = 0 e sua aproximação quadrática

Definição 1.49.

Sejam U um aberto de \mathbb{R}^n e $f: U \subset \mathbb{R}^m \to \mathbb{R}$ função diferenciável, dizemos que $p \in U$ é ponto de mínimo local (interior) se existe $\epsilon > 0$ tal que $\forall x \in B_{\epsilon}(p) \subset U$ tem-se $f(x) \ge f(p)$.

Analogamente, $q \in U$ é ponto *de máximo local* (interior) se existe $\epsilon > 0$ tal que $\forall x \in B_{\epsilon}(q) \subset U$ tem-se $f(x) \leq f(q)$. **Exemplo 1.50.** Dado $f(x) = 2x_1^2 + 2x_2^2 - (x_1^4 + 2x_1^2x_2^2 + x_2^4)$, é possível observar na figura a seguir que p = (0, 0) é ponto de mínimo local de f.

Proposição 1.51. Sejam $f: U \subset \mathbb{R}^m \to \mathbb{R}$ uma função diferenciável e $p \in U$ um ponto de mínimo ou máximo local (interior). Então p é ponto crítico de f, i.e., $\nabla f(p) = 0$.

Demonstração. Dado $v_p \in T_p \mathbb{R}^m$, considere uma curva suave $\alpha : (-\epsilon, \epsilon) \to U$ tal que $\alpha'(0) = v_p$. Seja $h = f \circ \alpha$. Como p é máximo ou mínimo local, então t = 0 é máximo ou mínimo interior de $h = f \circ \alpha$, logo

$$0 = h'(0) = \langle \nabla f(p), \alpha'(0) \rangle.$$

Como isto vale para todo vetor tangente concluímos que $\nabla f(p) = 0$.

Exemplo 1.52. Dado $f(x) = -x_1^2 - x_2^2 + 2$, p = (0, 0) é ponto de máximo interior e, portanto, ponto crítico. Note que o vetor normal do plano tangente é $N = \left(-\frac{\partial f}{\partial x_1}(p), -\frac{\partial f}{\partial x_2}(p), 1\right) = (0, 0, 1)$, logo, o plano tangente é paralelo ao plano de equação $\{x_3 = 0\}$.

Mas, se de um lado todo ponto de máximo ou mínimo interior é ponto crítico, nem todo ponto crítico é ponto de máximo ou mínimo local. Assim, tal como em Calculo I, precisaremos de critérios mais finos para classificar pontos críticos, i.e., determinar se eles são de máximo, de mínimo ou sela.

Teorema 1.54. Fórmula de Taylor de ordem 2

Continuação.

Seja
$$f: U \subset \mathbb{R}^m \to \mathbb{R}$$
 função de classe C^3 . Então:

$$f(x) = f(p) + df(p)(x-p) + \frac{1}{2}(x-p)^{t} \text{Hess } f(p)(x-p) + R(x-p)$$

= $f(p) + \langle \nabla f(p), (x-p) \rangle + \langle \text{Hess } f(p)(x-p), x-p \rangle + R(x-p)$
onde $\lim_{x \to p} \frac{R(x-p)}{||x-p||^{2}} = 0.$

Observação 1.55. Seja $f: U \subset \mathbb{R}^2 \to \mathbb{R}$ de classe C^2 . Então $P_2(x) = f(p) + \begin{bmatrix} \frac{\partial f}{\partial x_1}(p) & \frac{\partial f}{\partial x_2}(p) \end{bmatrix} \begin{bmatrix} x_1 - p_1 \\ x_2 - p_2 \end{bmatrix}$ $+ \frac{1}{2} \begin{bmatrix} x_1 - p_1 & x_2 - p_2 \end{bmatrix} \begin{bmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1}(p) & \frac{\partial^2 f}{\partial x_2 \partial x_2}(p) \\ \frac{\partial^2 f}{\partial x_1 \partial x_2}(p) & \frac{\partial^2 f}{\partial x_2 \partial x_2}(p) \end{bmatrix} \begin{bmatrix} x_1 - p_1 \\ x_2 - p_2 \end{bmatrix}$ $= f(p) + \frac{\partial f}{\partial x_1}(p)(x_1 - p_1) + \frac{\partial f}{\partial x_2}(p)(x_2 - p_2)$ $+ \frac{1}{2} \frac{\partial^2 f}{\partial x_1 \partial x_1}(p)(x_1 - p_1)^2 + \frac{\partial^2 f}{\partial x_2 \partial x_1}(p)(x_1 - p_1)(x_2 - p_2)$ $+ \frac{1}{2} \frac{\partial^2 f}{\partial x_2 \partial x_2}(p)(x_2 - p_2)^2$

O Teorema 1.54 garante que o polinômio

$$P_2(x) = f(p) + df(p)(x-p) + \frac{1}{2}(x-p)^t \text{Hess } f(p)(x-p)$$

chamado de polinômio de Taylor de grau 2 em torno de p, aproxima a função f numa vizinhança de p.

Além disso, se p for um ponto crítico de f, então a forma quadrática

$$h(x) = \frac{1}{2}(x-p)^{t} \operatorname{Hess} f(p)(x-p)$$

aproxima a função. Isso sugere que, tal como em Cálculo I, classificar pontos críticos esteja relacionado com a compreensão da segunda derivada.

Note que no Problema 1.44, P_2 em torno de p = (0,0) coincide com a própia função de f.

Exemplo 1.56.

Seja $f(x_1, x_2) = 2x_1^2 + 2x_2^2 - (x_1^4 + 2x_1^2x_2^2 + x_2^4)$. Considerando p = 0 temos (pelo Problema 1.44) que $P_2(x) = 2x_1^2 + 2x_2^2$.

Note que (pela figura) p = (0,0) é um ponto de mínimo e assim um ponto crítico, i.e., $\nabla f(p) = (0,0)$. Logo, o plano tangente ao gráfico de f em p é $\{x_3 = f(p) = 0\}$.

A Fórmula de Taylor garante que, próximo a p = (0,0) o gráfico de f é aproximado por $h(x) = \frac{1}{2}(x-p)^t \text{Hess } f(p)(x-p) = P_2(x).$

Figura 1.16: Gráfico de $f(x_1, x_2) = 2x_1^2 + 2x_2^2 - (x_1^4 + 2x_1^2x_2^2 + x_2^4)$, plano tangente e aproximação quadrática

1.5.2. Critérios de classificação de pontos críticos

Teorema 1.57.

Seja $f: U \subset \mathbb{R}^m \to \mathbb{R}$ de classe C^3 . Suponha que $p \in U$ seja ponto crítico (i.e, df(p) = 0) e det Hess $f(p) \neq 0$

- (a) Se todos os auto-valores λ_i de Hess f(p) são positivos (i.e., $\lambda_i > 0$), então p é mínimo.
- (b) Se todos os auto-valores λ_i de Hess f(p) são negativos (i.e., $\lambda_i < 0$), então p é máximo.
- (c) Se parte dos auto-valores λ_i de Hess f(p) são positivos, e a outra parte negativa, então p é sela.

Exemplo 1.58. A função $f(x) = x_1^2 + x_2^2 + \frac{3}{2}$ tem um mínimo local em (0, 0). Observe que Hess f(0, 0) tem 2 como autovalor de multiplicidade 2.

Figura 1.17:

A função $f(x) = -x_1^2 - x_2^2 + 2$ tem um máximo local em (0,0). O Hessiano de f tem um único autovalor -2 de multiplicidade 2.

Figura 1.18:

Por outro lado, a função $f(x) = x_1^2 - x_2^2 + \frac{3}{2}$ não tem nem máximo nem mínimo no ponto (0, 0). De fato, os autovalores de Hess f(0, 0) são 2 2 -2.

§1.5. Hessiano

Prova do Teorema 1.57. Vamos supor inicialmente que p está na origem, f(p) = 0 e $0 < \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_m$ são os auto-valores de Hess f(p).

Pela formula de Taylor temos:

$$f(x) = \frac{1}{2}(x)^t \text{Hess } f(p)(x) + R$$

Pelo teorema Espectral

$$Q^{t} \text{Hess } f(p)(x)Q = \begin{bmatrix} \lambda_{1} & 0 & 0 & \cdots & 0\\ 0 & \lambda_{2} & 0 & \cdots & 0\\ 0 & 0 & \lambda_{3} & \cdots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & 0 & \cdots & \lambda_{m} \end{bmatrix} = \Lambda$$

onde $Q = \begin{bmatrix} q_1 & q_2 & \cdots & q_m \end{bmatrix}$ é a matriz ortogonal cujas colunas são os autovetores (ortonormais) q_1, q_2, \ldots, q_m de Hess f(p)(x) associados a $\lambda_1, \lambda_2, \ldots, \lambda_m$.

Sejam $y_i, 1 \leq i \leq m$, as coordenadas de x com respeito à base $\{q_1, q_2, \ldots, q_m\}$, ou seja,

$$x = y_1 q_1 + y_2 q_2 + \dots + y_m q_m = Qy, \tag{*}$$

onde $y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$. Substituindo nas duas equações acima temos: $f(x) = \frac{1}{2}y^t Q^t \operatorname{Hess} f(p)Qy + R$ $= \frac{1}{2}y^t (Q^t \operatorname{Hess} f(p)Q)y + R$ $= \frac{1}{2}y^t \Lambda y + R$ $= \frac{1}{2} (\lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_m y_m^2) + R \qquad (**)$

Dividindo por $||x||^2 = ||y||^2$ temos:

$$\frac{f(x)}{\|x\|^2} \ge \frac{1}{2}\lambda_1 + \frac{R}{\|x\|^2} > 0$$

para x próximo a p ou seja p é mínimo.

Entendido o fenômeno, podemos desenvolver um critério mais fácil de ser implementado (no qual não será necessário calcular os auto-valores explicitamente, mas apenas ter uma maneira de detectar seus sinais).

Iremos explorar o caso particular de dimensão dois.

Corolário 1.59. Seja $f: U \subset \mathbb{R}^2 \to \mathbb{R}$ de classe C^3 . Suponha que $p \in U$ seja ponto crítico (i.e, df(p) = 0) e det Hess $f(p) \neq 0$

- (a) Se $\det \operatorname{Hess} f(p) > 0$ e $\frac{\partial^2 f}{\partial x_1 \partial x_1}(p) > 0$ então p é mínimo.
- (b) Se det Hess f(p) > 0 e $\frac{\partial^2 f}{\partial x_1 \partial x_1}(p) < 0$ então p é máximo.

(c) Se det Hess f(p) < 0 então p é sela.

Comentário (prova da proposição): A demonstração da proposição segue como caso particular do Teorema anterior e do Teorema *critério positivo definido* comentado a seguir.

¹O leitor pode verificar a obteção de (*) e (**) usando operações básicas de matrizes, começando por dimensões baixas.

Porém também é possível aplicar o Teorema anterior e o seguinte argumento geométrico: suponha que hipótese (a) seja verificada. Como det Hess $f(0) = \lambda_1 \lambda_2 > 0$ temos $\lambda_1 > 0, \lambda_2 > 0$ ou $\lambda_1 < 0, \lambda_2 < 0$ Assim pela demonstração do teorema anterior, o gráfico S da função $h(x) = x^t$ Hess f(0)x é um parabolóide elíptico para cima (se $\lambda_i > 0$) ou para baixo se ($\lambda_i < 0$). Para decidir qual das opções observe que o gráfico de $h(x_1, 0) = x_1^2 \frac{\partial^2 f}{\partial^2 x_1}(0)$ descreve a parabola $C = S \cap \{x_2 = 0\}$. Como esta parabola é para cima (pois por hipótese $\frac{\partial^2 f}{\partial^2 x_1}(0) > 0$), o gráfico de S é para cima. Logo $\lambda_1 > 0, \lambda_2 > 0$ e pelo Teorema anterior, 0 é ponto de mínimo. Os outros itens se provam de forma similar.

Comentário (critério positivo definido): A proposição anterior é relacionada ao seguinte resultado de Algebra Linear.

Teorema 1.60.

Considere uma matriz simétrica A. Então as seguintes afirmações são equivalentes:

- 1. Os auto-valores de A são todos positivos (i.e, $\lambda_i > 0$);
- 2. $x^t A x > 0$, $\forall x \neq 0$ (A é positiva-definida);
- 3. det $A_k > 0$ para todas as submatrizes A_k a esquerda, i.e as matrizes $k \times k$ definidas como $(a_k)_{ij} = a_{ij}$ para $0 \le i \le k \ e \ 0 \le j \le k$.

Por exemplo, se m = 2 e A = Hess f(0), então $A_1 = \left[\frac{\partial^2 f}{\partial x_1 \partial x_1}(0)\right]$ e $A_2 = \text{Hess } f(0)$, e assim re-obtemos as hipóteses do item (a) da proposição anterior.

Observação: Para demonstração vide Strang-Álgebra Linear e aplicações

Exercício 1.61. Considere $f : \mathbb{R}^2 \to \mathbb{R}$ função definida como $f(x_1, x_2) = 2(2x_1 - x_1^2)(2x_2 - x_2^2)$. Determine e classifique os pontos críticos.

Figura 1.20: Gráfico da função do Problema 1.61, onde podemos observar que (1, 1) é ponto de máximo local, e os pontos (0, 0), (0, 2), (2, 0), (2, 2) são pontos de sela

Observação 1.62. Curvatura de Gauss (Vide Seção 1.6)

Quando temos $f: U \subset \mathbb{R}^2 \to \mathbb{R}$ função de classe C^3 onde $(0,0) \in U$ é ponto crítico, temos que o plano tangente do gráfico em (0,0, f(0,0)) é paralelo a $\{x_3 = 0\}$. Neste caso, $K(q) = \det \operatorname{Hess} f(0,0) = \lambda_1 \lambda_2$ é chamada Curvatura de Gauss no ponto q = (0,0, f(0,0)). Assim se K(q) > 0 o gráfico de f é aproximado por uma paraboloide elíptico e se K(q) < 0 é aproximado por um paraboloide hiperbolico (sela de cavalo).

Mais geralmente, dado um gráfico S qualquer e $q \in S$ podemos, após movimento rígido, descreve-lo (pelo menos localmente) como um novo gráfico de uma função hem relação ao plano plano tangente T_qS . Assim o conceito de curvatura de Gauss (presente na área da matemática chamada Geometria Diferencial) pode ser definido para qualquer ponto $q \in S$ bem como sua interpretação geométrica.

1.5.3. Fórmula de Taylor de ordem maior

Para facilitar a discussão vamos nos limitar a um aberto $U \subset \mathbb{R}^2$.

Seja $v = (v_1, v_2)$ vetor em \mathbb{R}^2 . Considerando o conjunto de todas as funções de classe C^k em U (denotada por $C^k(U)$) podermos criar uma aplicação linear $T: C^k(U) \to C^{k-1}(U)$ definida como

$$T(f) = v_1 \frac{\partial f}{\partial x_1} + v_2 \frac{\partial f}{\partial x_2}$$

Denotaremos $v \cdot \nabla = T$ e assim

$$v \cdot \nabla = v_1 \frac{\partial}{\partial x_1} + v_2 \frac{\partial}{\partial x_2}$$

Com esta notação

$$\begin{aligned} (v \cdot \nabla)(w \cdot \nabla)f(p) &= (v_1 \frac{\partial}{\partial x_1} + v_2 \frac{\partial}{\partial x_2})(w_1 \frac{\partial}{\partial x_1} + w_2 \frac{\partial}{\partial x_2})f \\ &= v_1 w_1 \frac{\partial^2 f}{\partial x_1 \partial x_1}(p) + v_1 w_2 \frac{\partial^2 f}{\partial x_1 \partial x_2}(p) \\ &+ v_2 w_1 \frac{\partial^2 f}{\partial x_2 \partial x_1}(p) + v_2 w_2 \frac{\partial^2 f}{\partial x_2 \partial x_2}(p) \\ &= \left[v_1 \quad v_2\right] \begin{bmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_2}(p) & \frac{\partial^2 f}{\partial x_2 \partial x_2}(p) \\ \frac{\partial^2 f}{\partial x_1 \partial x_2}(p) & \frac{\partial^2 f}{\partial x_2 \partial x_2}(p) \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \\ &= v^t \text{Hess } f(p)w \end{aligned}$$

Em particular $\frac{1}{2}v^t$ Hess f $(p)v = \frac{1}{2}(v \cdot \nabla)^2 f(p)$.

Teorema 1.63. Seja $f: U \subset \mathbb{R}^2 \to \mathbb{R}$ função de classe C^{k+1} , $p \in U$ e v = (x - p). Então:

$$f(v+p) = f(p) + (v \cdot \nabla)f(p)$$

$$+ \frac{1}{2}(v \cdot \nabla)^{2}f(p)$$

$$+ \frac{1}{3!}(v \cdot \nabla)^{3}f(p)$$

$$+ \frac{1}{4!}(v \cdot \nabla)^{4}f(p)$$

$$+ \cdots$$

$$+ \frac{1}{k!}(v \cdot \nabla)^{k}f(p)$$

$$+ R(v)$$

Onde $\lim_{v\to 0} \frac{R(v)}{\|v\|^k} = 0$

1.5.4. Máximos e mínimos absolutos

Em certos casos particulares é possível até determinar máximos e mínimos absolutos. Para isto usaremos o seguinte resultado:

Teorema 1.64.

Sejam $f: U \subset \mathbb{R}^m \to \mathbb{R}$ uma função contínua e $K \subset U$ um conjunto fechado e limitado (ou seja fechado tal que $K \subset B_R(0)$). Então a função restrita $f|_K$ possui um valor máximo e um valor mínimo.

O Teorema 1.64 sugere o seguinte algoritmo: Passo 1: Determinar pontos críticos no interior de *K*;

Passo 2: determinar candidatos a máximo ou mínimos de $f|_{\partial K}$ (ex, via parametrizações ou multiplicadores de Langrange)

Passo 3: comparar os candidatos determinados nos passos anteriores.

Exemplo 1.65.

Seja $f: \mathbb{R}^2 \to \mathbb{R}$ definida como $f(x) = 2x_1^2 + x_1 + x_2^2 - 2$ e $K = \{x \in \mathbb{R}^2 | g(x) = x_1^2 + x_2^2 \leq 4\}$. Vamos determinar os valores de máximos e mínimos absolutos de $f|_K$ seguindo o algoritmo anterior.

Passo 1: A solução do problema abla f(x) = (0,0) para x no interior de K é $x = (-\frac{1}{4},0)$

Passo 2: Para determinar candidatos a máximo ou mínimos de $f|_{\partial K}$ usaremos neste exemplo multiplicadores de Langrange.

$$(4x_1 + 1, 2x_2) = \nabla f(x) = \lambda \nabla g(x) = \lambda (2x_1, 2x_2)$$

$$4 = x_1^2 + x_2^2$$

Cujas soluções são: $(2,0), (-2,0), (-\frac{1}{2}, \frac{\sqrt{15}}{2}), (-\frac{1}{2}, -\frac{\sqrt{15}}{2})$

Passo 3: Avaliando f nos pontos obtidos nos Passos 1 e Passo 2 concluimos: $-\frac{17}{8} = f(-\frac{1}{4}, 0)$ é valor mínimo absoluto, e f(2, 0) = 8 valor máximo absoluto.

Note que, como se mostra na figura a seguir, o ponto (2,0) é um ponto de máximo global de $f|_K$ que está no bordo de K e não é um ponto crítico de f.

1.6. *Curvatura de Gauss de superfícies

Por motivos didáticos estaremos considerando aqui sempre $M = g^{-1}(c)$ uma superfície regular onde c será um valor regular de uma função $g: U \subset \mathbb{R}^3 \to \mathbb{R}$.

Após vermos o conceito de plano tangente de uma superfície de nível M seria natural nos perguntarmos por objetos que meçam quão diferente localmente a superfície possa ser de um plano. Uma possível abordagem seria olhar o vetor normal unitário $\eta = \frac{\nabla g}{\|\nabla g\|}$ e nos perguntarmos quão rápido ele gira. Ou seja pensando nele intuitivamente como uma alavanca (ou um Joystick de videogame) gostariamos de ver quão rápido ele muda de posição. Claramente se ele nunca mudar de posição ou seja se sua derivada for zero, então M é (ou pelo menos parece ser) um plano. Isto nos motiva a definir o seguinte operador

Definição 1.66.

Dado um superfície regular $M^2 = g^{-1}(c)$ em \mathbb{R}^3 e campo unitário $\eta = \frac{\nabla g}{\|\nabla g\|}$ podemos definir a aplicação simétrica $S_\eta : T_p M \to T_p M$ como

$$\mathcal{S}_p(X) := -D\eta_p X =: D_X \eta(p)$$

chamada operador forma (shape operator) ou Weingarten operator.

A definição acima claramente demanda várias explicações.

A primeira seria porque este operador de fato é *um operador linear de* T_pM para T_pM . Para ver isto considere uma curva $t \to \alpha(t) \in M$ com $\alpha'(0) = X \in T_pM$. Podemos então definir a função $f(t) = \langle \eta \circ \alpha(t), \eta \circ \alpha(t) \rangle = 1$. Ao derivar f em t = 0 concluimos que:

$$0 = f'(0) = 2\langle -\mathcal{S}_{\eta}X, \eta(p) \rangle$$

A equação acima então implica que de fato $\mathcal{S}_{\eta}: T_pM \to T_pM$

A segunda explicação que deveriamos dar é porque a aplicação $S_{\eta} : T_p M \rightarrow T_p M$ é simétrica (e talvez porque este incômodo sinal de menos). Como isto exige um pouco mais de contas, coloquemos esta explicação em um pequeno lema.

Lema 1.67. $S_{\eta}(p): T_pM \to T_pM$ é de fato simétrica.

Demonstração.

$$\begin{aligned} \langle \mathcal{S}_{\eta} X, Y \rangle &= \langle -(D_X \eta)_p, Y \rangle \\ &\stackrel{(*)}{=} \langle \eta_p, D_X Y \rangle \\ &\stackrel{(**)}{=} \langle \eta_p, D_Y X \rangle \\ &\stackrel{(*)}{=} \langle -(D_Y \eta)_p, X \rangle \\ &= \langle \mathcal{S}_{\eta} Y, X \rangle \end{aligned}$$

Igualdade (*) segue definindo $f(t) = \langle \eta \circ \alpha(t), Y \circ \alpha(t) \rangle = 0$ e derivando em t = 0 (ou seja alterando levemente o truque acima discutindo). A igualdade (**) seguirá da expressão 1.3.5 para o campo colchete.

Uma vez definido o operador forma, podemos tentar medir quanto ele difere de zero, e assim tentar estabelecer uma medida de quanto M difere de um plano (pelo menos localmente). Por ser um operador simétrico nada mais natural do que olhar para seus autovalores.

Definição 1.68. Os autovalores $\lambda_1 \in \lambda_2$ de $S_{\eta}(p) : T_pM \to T_pM$ são chamados **curvaturas principais**.

Antes interpretar o significado destes auto-valores, recordemos um resultado de Cálculo útil em nossa discussão sobre curvaturas principais.

Proposição 1.69.

Seja $h: U \subset \mathbb{R}^2 \to \mathbb{R}$ função de classe C^3 . Suponha que $p \in U$ seja ponto crítico (i.e, dh(p) = 0) e que os autovalores λ_i de Hess h(p) sejam diferentes de zero, i.e, det Hess $h(p) \neq 0$. Defina $K(p) = \lambda_1 \cdot \lambda_2$.

- (a) Se todos os auto-valores λ_i de $\operatorname{Hess} h(p)$ são positivos, então p é mínimo, K(p) > 0 e o gráfico associado a h é aproximado (perto de p) por um paraboloide elíptico.
- (b) Se todos os auto-valores λ_i de Hess h(p) são negativos (i.e., $\lambda_i < 0$), então p é máximo, K(p) > 0 e o gráfico associado a h é aproximado (perto de p) por um paraboloide elíptico.
- (c) Se um auto-valor de Hess h(p) é positivo e o outro negativo, então p é ponto de sela, K(p) < 0 e o gráfico associado a h é aproximado (perto de p) por um parabolide hiperbólico.

Proposição 1.70.

Seja M o gráfico em \mathbb{R}^3 de uma função $h: U \subset \mathbb{R}^2 \to \mathbb{R}$ suave tal que $(0,0) \in U$, $h(0,0) = 0 \in \nabla h(0,0) = (0,0)$. Temos então:

- (a) $T_{(0,0,0)}M = \mathbb{R}^2 \times \{0\},\$
- (b) se $\eta(0,0,0) = (0,0,1)$ então $S_{\eta}(v,0) = (\text{Hess } h(0,0)v,0)$, onde S_{η} é o operador forma.
- (c) Conclua que as curvaturas principais são auto-valores $\lambda_1 e \lambda_2$ do $\operatorname{Hess} h(0,0)$ e assim que M pode ser aproximado por um parabolóide elíptico (respectivamente paraboloide hiperboloide) se $\lambda_1 \lambda_2 > 0$ (respectivamente se $\lambda_1 \lambda_2 < 0$).

Demonstração. (a) Ao definir $g(x) = x_3 - h(x_1, x_2)$ temos que o vetor normal $\nabla g(x) = (-\frac{\partial h}{\partial x_1}, -\frac{\partial h}{\partial x_2}, 1)$. Assim $\eta(0, 0, 0) = \nabla g(0, 0, 0) = (0, 0, 1)$ e consequentemente o plano tangente em (0, 0, 0) é $\mathbb{R}^2 \times \{0\}$.

(b) Definamos a parametrização $\psi(x_1, x_2) = (x_1, x_2, h(x_1, x_2))$ e com ela vetor normal e sua representação em uma parametrização (ou seja $\eta \circ \psi = \tilde{\eta}$)

$$\tilde{\eta}(x_1, x_2) = \frac{(-h_{x_1}, -h_{x_2}, 1)}{\sqrt{h_{x_1}^2 + h_{x_2}^2 + 1}}$$

onde $h_{x_i} = -\frac{\partial h}{\partial x_i}$. Seja $\alpha = \psi(\tilde{\alpha})$. Temos então:

 $\mathcal{S}_{\eta}\alpha'(0) = -\frac{d}{u}\tilde{\eta}\circ\tilde{\alpha}(t)|_{t=0}$

$$= -\left(\frac{d}{dt}\left((h_{x_1}\circ\tilde{\alpha}(t))^2 + (h_{x_2}\circ\tilde{\alpha}(t))^2 + 1\right)^{-1/2}\Big|_{t=0}\begin{bmatrix}0\\0\\1\end{bmatrix} + \frac{d}{dt}\begin{bmatrix}-h_{x_1}\circ\tilde{\alpha}(t)\\-h_{x_2}\circ\tilde{\alpha}(t)\\1\end{bmatrix}\Big|_{t=0}\right)$$

$$= 0 + \begin{bmatrix} h_{x_1x_1}(0,0) & h_{x_2x_1}(0,0) \\ h_{x_1x_2}(0,0) & h_{x_2x_2}(0,0) \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \tilde{\alpha}'_1(0) \\ \tilde{\alpha}'_2(0) \end{bmatrix}$$

lembrando que $lpha'(0)=(ildelpha_1'(0), ildelpha_2'(0),0)$

(c) segue direto da Proposição 1.69.

Agora que temos uma interpretação do que são as curvaturas principais no caso particular descrito acima, podemos observar que toda superfície $M = g^{-1}(c)$ pode ser rodada e localmente na vizinhança do ponto p recaimos na situação descrita na Proposição 1.70. Assim a proposição acima motiva a definição de curvatura de Gauss a seguir e implica o corolário apresentado abaixo.

Definição 1.71.

Dado uma superfície regular $M = g^{-1}(c)$ e sejam λ_1, λ_2 curvaturas principais associadas a $\eta(p) = \frac{\nabla g}{\|\nabla g\|}(p)$. A curvatura de Gauss em $p \in M$ é definida como $K(p) = \lambda_1 \cdot \lambda_2$.

Corolário 1.72. Seja $M = g^{-1}(c)$ superfície regular.

(a) Se K(p) > 0 então M é aproximado (perto de p) por um paraboloide elíptico,

 \square

Continuação.

(b) se K(p) < 0 então M é aproximado (perto de p) por um paraboloide hiperbólico.

Observação 1.73.

Note que embora os sinais das curvaturas principais possam depender da escolha do sentido do vetor normal unitário η (ou seja para $\hat{\eta} = -\eta$, $\hat{\lambda}_i = -\lambda_i$) a curvatura de Gauss não depende da escolha do sentido do vetor η .

Excercício 1.74.

Utilizando diretamente a definição de S_{η} , determine as curvaturas principais e curvatura de Gauss de um plano em \mathbb{R}^3 e da esfera (canônica) $\mathbb{S}^2(r)$ de raio r e centro zero em \mathbb{R}^3 com vetor normal apontando para fora.

Para exemplos mais complicados, podemos calcular explicitamente curvaturas principais e curvatura de Gauss via parametrização, mas, antes de formalizar isto, precisamos do conceito de segunda forma, que não é mais que a aplicação bilinear associada ao operador de Weingarten (que, como vimos, é uma aplicação linear autoadjunta)

Definição 1.75.

Seja $M\subset \mathbb{R}^2$ uma subvariedade mergulhada. A forma quadrática $II_p:T_pM\to \mathbb{R}$ definida por

$$II_p(X) = \langle S_\eta(X), X \rangle, \qquad (1.6.1)$$

é chamada de segunda forma fundamental.

Observação 1.76.

Se $\psi: U \subset \mathbb{R}^2 \to M$ é uma parametrização de M, η vetor normal e $\tilde{\eta}$ definido como $\tilde{\eta} = \eta \circ \psi$. então os coeficientes da segunda forma fundamental estão dados por

$$b_{ij} = \langle -\tilde{\eta}_{x_i}, \psi_{x_j} \rangle = \langle \tilde{\eta}, \psi_{u_i, u_j} \rangle.$$

Proposição 1.77.

Sejam M superfície mergulhada em \mathbb{R}^3 e g_{ij} e b_{ij} os coeficientes da primeira e segunda forma, respectivamente. Então:

(a) a representação matricial do operador forma está dada por

$$\left[\mathcal{S}_{\eta}\right] = \frac{1}{g_{11}g_{22} - g_{12}^2} \begin{bmatrix} g_{22} & -g_{12} \\ -g_{21} & g_{11} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix};$$

(b) a curvatura de Gauss é dada por

$$\widetilde{K}(x_1, x_2) = \frac{b_{11}b_{22} - b_{12}^2}{g_{11}g_{22} - g_{12}^2};$$

(c) a média das curvaturas principais, $H = \frac{\lambda_1 + \lambda_2}{2}$, é calculada em coordenadas como:

$$\widetilde{H}(x_1, x_2) = \frac{1}{2} \left(\frac{b_{11}g_{22} - 2b_{12}g_{12} + g_{11}b_{22}}{g_{11}g_{22} - g_{12}^2} \right) + \frac{1}{2} \left(\frac{b_{12}g_{22} - 2b_{12}g_{12} + g_{11}b_{22}}{g_{11}g_{22} - g_{12}^2} \right) + \frac{1}{2} \left(\frac{b_{12}g_{22} - 2b_{12}g_{12} + g_{11}b_{22}}{g_{11}g_{22} - g_{12}^2} \right) + \frac{1}{2} \left(\frac{b_{12}g_{22} - 2b_{12}g_{12} + g_{11}b_{22}}{g_{11}g_{22} - g_{12}^2} \right) + \frac{1}{2} \left(\frac{b_{12}g_{22} - 2b_{12}g_{12} + g_{11}b_{22}}{g_{11}g_{22} - g_{12}^2} \right) + \frac{1}{2} \left(\frac{b_{12}g_{22} - 2b_{12}g_{12} + g_{11}b_{22}}{g_{11}g_{22} - g_{12}^2} \right) + \frac{1}{2} \left(\frac{b_{12}g_{22} - 2b_{12}g_{12} + g_{11}b_{22}}{g_{11}g_{22} - g_{12}^2} \right) + \frac{1}{2} \left(\frac{b_{12}g_{22} - 2b_{12}g_{12} + g_{11}b_{22}}{g_{11}g_{22} - g_{12}^2} \right) + \frac{1}{2} \left(\frac{b_{12}g_{22} - b_{12}g_{12} + g_{12}g_{22}}{g_{11}g_{22} - g_{12}^2} \right) + \frac{1}{2} \left(\frac{b_{12}g_{22} - b_{12}g_{12} + g_{12}g_{22}}{g_{12}g_{22} - g_{12}^2} \right) + \frac{1}{2} \left(\frac{b_{12}g_{22} - b_{12}g_{22} + g_{12}g_{22}}{g_{12}g_{22} - g_{12}^2} \right) + \frac{1}{2} \left(\frac{b_{12}g_{22} - b_{12}g_{22}}{g_{12}g_{22} - g_{12}^2} \right) + \frac{1}{2} \left(\frac{b_{12}g_{22} - b_{12}g_{22}}{g_{12}g_{22} - g_{12}^2} \right) + \frac{1}{2} \left(\frac{b_{12}g_{22} - b_{12}g_{22}}{g_{12}g_{22} - g_{12}^2} \right) + \frac{1}{2} \left(\frac{b_{12}g_{22} - b_{12}g_{22}}{g_{12}g_{22} - g_{12}^2} \right) + \frac{1}{2} \left(\frac{b_{12}g_{22}}{g_{12}g_{22} - g_{12}^2} \right) + \frac{1}{2} \left(\frac{b_{12}g_{22} - b_{12}g_{22}}{g_{12}g_{22} - g_{12}^2} \right) + \frac{1}{2} \left(\frac{b_{12}g_{22} - b_{12}g_{22}}{g_{12}g_{22} - g_{12}^2} \right) + \frac{1}{2} \left(\frac{b_{12}g_{22} - b_{12}g_{22}}{g_{12}g_{22} - g_{12}^2} \right) + \frac{1}{2} \left(\frac{b_{12}g_{22} - b_{12}g_{22}}{g_{12}g_{22} - g_{12}^2} \right) + \frac{1}{2} \left(\frac{b_{12}g_{22} - b_{12}g_{22}}{g_{12}g_{22} - g_{12}^2} \right) + \frac{1}{2} \left(\frac{b_{12}g_{22} - b_{12}g_{22}}{g_{12}g_{22} - g_{12}^2} \right) + \frac{1}{2} \left(\frac{b_{12}g_{22} - b_{12}g_{22}}{g_{12}g_{22} - g_{12}^2} \right) + \frac{1}{2} \left(\frac{b_{12}g_{22} - b_{12}g_{22}}{g_{12}g_{22}} \right) + \frac{1}{2} \left(\frac{b_{12}g_{22} - b_{12}g_{22}}{g_{12}g_{22}} \right) + \frac{1}{2} \left(\frac{b_{12}g_{22} - b_{12}g_{22}}{g_{12}g_{22}} \right) + \frac{1}{2} \left(\frac{b_{12}g_{22} - b_$$

(d) e as curvaturas principais por $\lambda_i = H \pm \sqrt{H^2 - K}$.

Demonstração. Sejam a_{ij} funções tais que:

$$\begin{aligned} &-\tilde{\eta}_{x_1} &= a_{11}\psi_{x_1} + a_{21}\psi_{x_2} \\ &-\tilde{\eta}_{x_2} &= a_{12}\psi_{x_1} + a_{22}\psi_{x_2} \end{aligned}$$

Múltiplicando tais equações por ψ_{x_i} temos:

$$\begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

a qual implica o item (a).

No caso dos itens (b) e (c) basta observar que $K = \det[S_{\eta}]$ e $H = \operatorname{tr}[S_{\eta}]$ (deixamos o cálculo explícito aos leitores).

Para demonstrar (d) observe que o cálculo dos auto-valores de S_{η} pode ser feito calculando o polinômio característico da matriz $[S_{\eta}] = [a_{ij}]$ Assim,

$$0 = P(\lambda) = \det([\mathcal{S}_{\eta}] - \lambda Id) = \lambda^{2} - \operatorname{tr}[\mathcal{S}_{\eta}]\lambda + \det[\mathcal{S}_{\eta}] = \lambda^{2} - 2H\lambda + K. \ \Box$$

Exemplo 1.78. Superfície de Revolução

Considere Muma superfície de revolução em $\mathbb{R}^3.$ Temos então a parametrização

$$\psi(t,s) = (r(t)\cos(s), r(t)\sin(s), h(t))$$

onde $t \to \beta(t) = (r(t), h(t))$ é a curva geratriz com $\|\beta'(t)\| \neq 0$.

$$\psi_t = \frac{\partial \psi}{\partial t} = (r'(t)\cos(s), r'(t)\sin(s), h'(t))$$
$$\psi_s = \frac{\partial \psi}{\partial s} = (-r(t)\sin(s), r(t)\cos(s), 0)$$

Logo a métrica em coordenadas é:

$$[g_{ij}] = \begin{bmatrix} (r'(t))^2 + (h'(t))^2 & 0\\ 0 & (r(t))^2 \end{bmatrix}$$

Para calcula b_{ij} primeiro calculemos o vetor normal.

$$\tilde{\eta}(t,s) = \frac{\psi_t \times \psi_s}{\|\psi_t \times \psi_s\|} = \frac{\left(-\cos(s)h'(t), -\sin(s)h'(t), r'(t)\right)}{\sqrt{(h')^2 + (r')^2}}$$

Em seguida calculemos as derivadas segundas:

$$\psi_{tt} = \frac{\partial^2 \psi}{\partial^2 t} = (r''(t)\cos(s), r''(t)\sin(s), h''(t))$$
$$\psi_{ts} = \frac{\partial^2 \psi}{\partial t \partial s} = (-r'(t)\sin(s), r'(t)\cos(s), 0)$$
$$\psi_{ss} = \frac{\partial^2 \psi}{\partial^2 s} = (-r(t)\cos(s), -r(t)\sin(s), 0)$$
$$[b_{ij}] = \frac{1}{\sqrt{(h')^2 + (r')^2}} \begin{bmatrix} -r''(t)h'(t) + h''(t)r'(t) & 0\\ 0 & r(t)h'(t) \end{bmatrix}$$

Continuação.

Usando o item (b) da Proposição 1.77 podemos calcular a curvatura de Gauss.

$$\begin{split} K(p) = & \frac{1}{((r'(t))^2 + (h'(t))^2) r^2} \frac{(-r''(t)h'(t) + r'(t)h''(t)) r(t)h'(t)}{\sqrt{(r'(t))^2 + (h'(t))^2}} \\ = & \frac{-r''(t)(h'(t))^2 + r'(t)h'(t)h''(t)}{r(t) ((r'(t))^2 + (h'(t))^2)^{3/2}}. \end{split}$$

Analogamente, pelo item (c) da Proposição 1.77 segue

$$H(p) = \frac{1}{2r^2 \left((r'(t))^2 + (h'(t))^2 \right)} \\ \cdot \frac{(-r''(t)h'(t) + r'(t)h''(t)) (r(t))^2 + \left((r'(t))^2 + (h'(t))^2 \right) r(t)h'(t)}{\sqrt{(r'(t))^2 + (h'(t))^2}} \\ = \frac{-r''(t)h'(t)(r'(t))^2 + (r(t))^2 r'(t)h''(t) + r(t)(r'(t))^2 h'(t) + r(t)(h'(t))^3}{2r^2 \left((r'(t))^2 + (h'(t))^2 \right)}$$

Finalmente, se a curva β está parametrizada por comprimento de arco, ou seja, $\|\beta'\| = 1$, segue

$$\begin{split} K(p) = & \frac{-r''(t)(1-(r'(t))^2) + r'(t)(-r'(t)r''(t))}{r(t)\left((r'(t))^2 + 1 - (r'(t))^2\right)^{3/2}} \\ = & \frac{-r''(t)(1-(r'(t))^2) - r''(t)(r'(t))^2}{r(t)} \\ = & -\frac{r''(t)}{r(t)}. \end{split}$$

1.7. *Hessiana orlada

Recordamos no Teorema 1.39 o clássico teorema de multiplicadores de Lagrange, que garante uma condição necessária para que a restrição de uma função u em um variedade regular $M = G^{-1}(c)$ tenha máximo ou mínimo em um ponto $p \in M$. Porém tal critério não garantiu que de fato a solução seja um ponto de máximo ou mínimo i.e., é um critério necessário porém não suficiente para existência de máximos e mínimos. Nos problemas clássicos de multiplicadores de Lagrange, as funções u, são particulares o suficiente para admitirem apenas números finitos de candidatos a máximos e mínimos, então comparando-se os valores e usando compacidade de M estabelece-se que o valor menor é de fato o mínimo absoluto e o valor maior o máximo absoluto.

Recordaremos aqui o critério de Hessianos orlados (ou bordered hessian) o qual garante se um ponto critício $q \in M$ é máximo ou mínimo local da função restrita a variedade M.

Utilizaremos esta discussão para já introduzir o conceito de conexão Riemanniana associada a métrica induzida do ambiente. Por motivos puramente didáticos estaremos considerando aqui sempre $S = g^{-1}(c)$ uma superfície onde c será um valor regular de uma função $g: U \subset \mathbb{R}^3 \to \mathbb{R}$. Embora de fato seja possível em um ponto crítico falar de Hessiano intrínsico sem envolver a estrutura geométrica (métrica induzida), utilizando apenas os colchetes dos campos, achamos que esta seria uma boa oportunidade para introduzir o conceito de derivação intrínsica e ver como ele pode ser uma ferramente útil.

Motivação e o Teorema do Hessiano Orlado 1.7.1.

Sejam $u: \mathbb{R}^3 \to \mathbb{R}$ função definida como $u(x) = \frac{1}{2}(\lambda_1 x_1^2 + \lambda_2 x_2^2 + \lambda_3 x_3^2)$, a superficie $S = \{x \in \mathbb{R}^3 \mid g(x) = x_1 = c\}, p = (c, 0, 0)$ e $f = u|_S$. Desejamos saber se p é ponto de máximo ou mínimo local de f e ao mesmo tempo motivar a apresentação do critério da Hessiana orlada.

Fácil ver que

- $f(x_2, x_3) = \frac{1}{2}(\lambda_1 c^2 + \lambda_2 x_2^2 + \lambda_3 x_3^2)$
- $\operatorname{grad} f(0,0) = (0,0)$
- Hess $f(0,0) = \begin{bmatrix} \lambda_2 & 0 \\ 0 & \lambda_3 \end{bmatrix}$ Assim p é máximo local de f se $\lambda_2 < 0, \lambda_3 < 0$ e é mínimo se $\lambda_2 > 0, \lambda_3 > 0$

Fizemos uma conta intrínsica. Mas e se quisermos fazer uma conta extrínsica, i.e., usando *u*? Primeiro notemos que

$$\nabla u(p) = (\lambda_1 c, 0, 0) = \lambda \nabla g(p) = \lambda(1, 0, 0)$$

Ou seja, por multiplicador de Lagrange, p é o candidato para ser máximo ou mí-

nimo. Note também que Hess $\mathbf{u}(p) = \begin{bmatrix} \lambda_1 & 0 & 0\\ 0 & \lambda_2 & 0\\ 0 & 0 & \lambda_3 \end{bmatrix}$ e assim contém informa-

ção a mais, i.e não precisamos saber sinal de λ_1 . Suponha que voce esteja ensinando um computador a se livrar da informação adicional (i.e., λ_1). Um bom

truque é usar a seguinte matriz orlada (colocando abla g(p) = (1,0,0) no bordo).

$$\overline{H}_3 = \overline{\text{Hess u}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & \lambda_1 & 0 & 0 \\ 0 & 0 & \lambda_2 & 0 \\ 0 & 0 & 0 & \lambda_3 \end{bmatrix} e \overline{H}_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{bmatrix}$$

Visto que det $\overline{H}_2 = (-1)\lambda_2$ e det $\overline{H}_3 = (-1)\lambda_2\lambda_3$ concluimos que:

- Se det $\overline{H}_2 < 0$ e det $\overline{H}_3 < 0$, então p é mínimo de $f(\lambda_2 > 0, \lambda_3 > 0)$.
- Se $\det \overline{H}_2 > 0$ e $\det \overline{H}_3 < 0$, então p é máximo de f ($\lambda_2 < 0, \lambda_3 < 0$).

O truque da matriz orlada parece ser bom no caso em que a superfície S é um plano. Mas se S não for um plano? (vide Observação 1.6) Se S tiver curvatura diferente de zero? Para lidar com tal questão no lugar de usar Hess u(p) precisaremos em geral usar uma outra matriz simétrica H, relacionada ao conceito Hessiano Riemanniano (o qual vamos discutir dentro em breve).

Definição 1.79. Matriz Hessiana orlada Sejam $S = \{x \in \mathbb{R}^3 | g(x) = c\}$ superfície regular e $p \in S$ é tal que $\nabla u(p) = \lambda \nabla g(p)$, onde $u \in g$ são suaves. Definimos:

$$H = \operatorname{Hess} u(p) - \lambda \operatorname{Hess} g(p)$$

Antes de discutir mais sobre *H* vamos apresentar o resultado desta seção que foi ilustrado pela nossa motivação.

Teorema 1.80.

- Seja $p \in S$ com $\nabla u(p) = \lambda \nabla g(p)$. Suponha que $\frac{\partial g}{\partial x_1}(p) \neq 0$.
 - Se det $\overline{H}_2 < 0$ e det $\overline{H}_3 < 0$ então p é mínimo local de f.
 - Se det $\overline{H}_2 > 0$ e det $\overline{H}_3 < 0$ então p é máximo local de f.

onde

$$\overline{H}_{3} = \overline{H} = \begin{bmatrix} 0 & \frac{\partial g}{\partial x_{1}}(p) & \frac{\partial g}{\partial x_{2}}(p) & \frac{\partial g}{\partial x_{3}}(p) \\ \frac{\partial g}{\partial x_{1}}(p) & H_{11} & H_{12} & H_{13} \\ \frac{\partial g}{\partial x_{2}}(p) & H_{21} & H_{22} & H_{23} \\ \frac{\partial g}{\partial x_{3}}(p) & H_{31} & H_{32} & H_{33} \end{bmatrix}$$

§ 1.7. *Hessiana orlada

Continuação.

$$\overline{H_2} = \begin{bmatrix} 0 & \frac{\partial g}{\partial x_1}(p) & \frac{\partial g}{\partial x_2}(p) \\ \frac{\partial g}{\partial x_1}(p) & H_{11} & H_{12} \\ \frac{\partial g}{\partial x_2}(p) & H_{21} & H_{22} \end{bmatrix}$$

Observação 1.81.

As vezes H pode ser expresso com outra notação. De fato, seja $L: \mathbb{R}^3 \times \mathbb{R} \to \mathbb{R}$ função, defina

$$L(\lambda, x) = u(x) - \lambda(g(x) - c).$$

Então

$$\nabla L(\lambda, x) = (g(x) - c, \nabla u(x) - \lambda \nabla g(x))$$

Se $\nabla u(p) = \lambda \nabla g(p)$ então H coincide com a matriz 3×3 esquerda superior de Hess $L(p, \lambda)$.

1.7.2. **Ideia da Prova

Derivada Intrínseca e o Hessiano Riemanniano

Inspirado na discussão do gradiente Riemanniano grad f(p) podemos nos perguntar: Dados campos $\vec{X} e \vec{Y}$ tangentes a superfície S como derivar \vec{X} na direção de \vec{Y} de forma que o resultado continue tangente a S? Afinal mesmo que os 2 campos sejam tangente a S, $(D\vec{X})\vec{Y}$ pode não ser tangente a S. A solução será considerar a parte tangente de $(D\vec{X})\vec{Y}$.

Definição 1.82. Conexão Riemanniana

Dado campos $X,Y \in \mathfrak{X}(S)$ definimos o operador $\nabla : \mathfrak{X}(S) \times \mathfrak{X}(S) \to \mathfrak{X}(S)$ como

$$\nabla_Y \vec{X}(p) = D\vec{X}(p)Y - \left\langle (D\vec{X}(p)Y), \frac{\nabla g(p)}{\|\nabla g(p)\|} \right\rangle \frac{\nabla g(p)}{\|\nabla g(p)\|}$$

Tal operador será chamado **conexão Riemanniana associada a métrica indu**zida.

Uma vez que sabemos derivar campos \vec{X} tangentes a S, podemos derivar o grad f, definindo o conceito do Hessiano intrínsico ou Riemanniano $\mathcal{H}(p)$.

Definição 1.83. Hessiano Riemanniano

$$\mathcal{H}(p)(X,Y) = \langle \nabla_X \operatorname{grad} f, Y \rangle, \ X, Y \in T_p S$$

Proposição 1.84. Seja $p \in S$, com grad f(p) = 0.

- Se $\mathcal{H}(p)$ é positivo definido (i.e., tenha auto-valores positivo). então $p \in S$ é ponto de mínimo local.
- Se $\mathcal{H}(p)$ é negativo definido (i.e., tenha auto-valores negativos). então $p \in S$ é ponto de máximo local.

De volta a discussão extrínsica

A Proposição 1.84 já resolve, pelo menos em teoria, nossa questão de determinar se um ponto crítico é ou não um ponto de máximo ou mínimo local. Porém na prática aplica-la diretamente para fazer uma conta, pode ser uma má ideia. Primeiro trata-se de uma conta intrinsica. Teriamos que sempre parametrizar a superfície de nível? Segundo e de fato a questão mais séria (que já aparecia no problema análogo em \mathbb{R}^2) é que se só necessitamos saber os sinais dos autovalores, deveriamos ter um algoritmo onde esta informação fosse obtida sem gastar tanto tempo para calcular explicitamente algo que de fato não vamos utilizar. Cabe lembrar que nossa discussão para superfícies pode (e é) generalizada para dimensões maiores, e assim o tempo gasto para calcular auto-valores pode ser relevante. A álgebra linear nos dá um critério para resolver este tipo de questão. Então nosso objetivo será converter nossa conta intrínsica para uma conta extrínsica (vide Exercício 1.85 e Proposição 1.86) e adpatar um critério de algebra linear (vide Proposição 1.87) para determinar os sinais dos auto-valores, provando assim o Teorema 1.80.

Usando a definição de \mathcal{H} é possível resolver o próximo exercício:

Excercício 1.85. Para todo $X, Y \in T_p S$

$$\mathcal{H}(p)(X,Y) = \operatorname{Hess} u(p)(X,Y) - \left\langle \frac{\nabla u}{\|\nabla g\|}(p), \frac{\nabla g}{\|\nabla g\|}(p) \right\rangle \operatorname{Hess} g(X,Y)$$

No caso em que $\nabla u(p) = \lambda \nabla g(p)$, notamos que $H|_{T_pS \times T_pS} = \mathcal{H}(p)$ Assim podemos reformular a Proposição 1.84 da seguinte maneira:

Proposição 1.86. Seja $p \in S$ tal que $\nabla u(p) = \lambda \nabla g(p)$ (i.e, $\operatorname{grad} f(p) = 0$). Então:

- Se $H|_{T_pS \times T_pS}$ é positivo definido, então $p \in S$ é ponto de mínimo local.
- Se $H|_{T_nS \times T_nS}$ é negativo definido então $p \in S$ é ponto de máximo local.

A próxima proposição de Algebra Linear pode ser demonstrada usando a matriz apresentada na motivação, o teorema espectral e a lei de inércia de Sylvester

Proposição 1.87.

Seja A matriz simétrica e suponha que existe um plano V tal que a aplicação bilinear associada a A restrita a $V \times V$ seja também simétrica. Ou seja existe aplicação simétrica $\mathcal{H}: V \to V$ tal que $Y^tAX = Y^t\mathcal{H}X$ para todo $X, Y \in V$. Vamos também supor que \mathcal{H} não seja degenerado. Seja w vetor normal a V. Suponha que $w_1 \neq 0$.

(a) Se det $\overline{A}_2 < 0$ e det $\overline{A}_3 < 0$ então $y^t A x|_{V \times V}$ é positivo definido.

(b) Se det $\overline{A}_2 > 0$ e det $\overline{A}_3 < 0$ então $y^t Ax|_{V \times V}$ é negativo definido.

$\overline{A}_3 = \overline{A} =$	$\begin{bmatrix} 0 \\ w_1 \\ w_2 \\ w_2 \end{bmatrix}$	w_1 A_{11} A_{21} A_{21}	w_2 A_{12} A_{22} A_{22}	w_3 A_{13} A_{23} A_{23}
$\overline{A_2} =$	$\begin{bmatrix} 0\\w_1\\w_2 \end{bmatrix}$	$w_1 \\ A_{11} \\ A_{21}$	$ \begin{array}{c} w_2 \\ A_{12} \\ A_{22} \end{array} $	1133

Demonstração. Seja a base $\{q_1, q_2, q_3\}$ como $q_1 = \frac{w}{\|w\|}$, $\mathcal{H}q_2 = \lambda_2 q_2$ e $\mathcal{H}q_3 = \lambda_3 q_3$. Temos então que $Aq_2 = b_{12}q_1 + \lambda_2 q_2$ e $Aq_3 = b_{13}q_1 + \lambda_3 q_3$, onde $b_{12} = \langle H(q_1), q_2 \rangle$ e $b_{13} = \langle H(q_1), q_3 \rangle$. Definamos agora base para $\mathbb{R}^4 \overline{q}_0 = (1, 0, 0, 0)$, $\overline{q}_i = (0, q_i)$, para $i = 1 \cdots 3$. Definindo Q a matriz ortogonal com colunas \overline{q}_j não é difícil verificar que:

$$Q^{t}\overline{A}Q = B = \begin{bmatrix} 0 & \|w\| & 0 & 0\\ \|w\| & c_{11} & b_{12} & b_{13}\\ 0 & b_{12} & \lambda_{2} & 0\\ 0 & b_{13} & 0 & \lambda_{3} \end{bmatrix}$$

Por escalonamento (análogo a decomposição LU), e utilizando o fato de λ_2 e λ_3 serem diferentes de zero temos que B é conjugado a:

$$C = \begin{bmatrix} 0 & \|w\| & 0 & 0 \\ \|w\| & \tilde{c}_{11} & 0 & 0 \\ 0 & 0 & \lambda_2 & 0 \\ 0 & o & 0 & \lambda_3 \end{bmatrix}$$

Por outro lado ao escalonar diretamente A temos que A é conjugada a

$$D = \begin{bmatrix} 0 & w_1 & 0 & 0 \\ w_1 & 0 & 0 & 0 \\ 0 & 0 & d_2 & 0 \\ 0 & 0 & 0 & d_3 \end{bmatrix}$$

Uma vez que B e D são equivalentes, temos pela lei de inércia de Sylvester, que sinal de d_2 e d_3 são iguais a λ_2 e λ_3 , respectivamente. A hipótese do item (a) e argumento usual de decomposição LU implicam que d_2 e d_3 tem sinais positivos e assim λ_2 e λ_3 são positivos. De forma análoga a hipótese do item (b) implica que d_2 e d_3 tem sinais negativos e assim λ_2 e λ_3 são negativos.

Proposições 1.86 e 1.87 implicam o Teorema 1.80.

2

Uma introdução a Geometria Riemanniana

Neste capítulo apresentamos alguns resultados clássicos de um curso de graduação/ mestrado em Geometria Diferencial. O leitor pode já ler este capítulo como uma forma de aplicar os vários conceitos do Capítulo 1 sobre variedade mergulhada, supondo por exemplo que (M, \mathbf{g}) é uma variedade mergulhada em um espaço Euclidiano \mathbb{R}^{m+k} e \mathbf{g} é a métrica induzida, ou pular este capítulo, ler o próximo e voltar posteriormente, compreendendo então algumas sutilezas que comentamos aqui.

2.1. Métricas e variedades Riemannianas

Vimos anteriormente que uma variedade M^m em um espaço Euclidiano \mathbb{R}^{m+k} admite uma métrica induzida g_0 , vindo do produto Euclidiano em \mathbb{R}^{m+k} . Apesar de sua utilidade por vezes podemos estar interessados em outras formas de ter um produtor interno g_x associado a cada espaço tangente $T_x M$.

Chamaremos uma aplicação que a cada ponto $x \in M$ associa um produto interno g_x de T_xM de **métrica** em M.

Por exemplo veremos em outro capítulo que ao considerarmos uma particular em uma superfície M^2 em \mathbb{R}^3 sob força conservativa $-\nabla U$ (e.g, campo gravidacional), a tragetória $t \to \alpha(t)$ da particula obedece uma equação de Newton tangente, i.e., $(\alpha''(t))^{\perp} = -\operatorname{grad} U$ onde $\operatorname{grad} U$ é o gradiente Riemanniano i., e $\operatorname{grad} U = (\nabla U)^{\perp}$. Como discutiremos mais tarde (como uma forma de ilustrar a linguagem Lagrangiana e Hamiltoniana) uma reparametrização de $t \to \alpha(t)$ poderá ser vista como uma curva que minimiza localmente distância (geodésica) referente a uma outra métrica, $g = (c - U)g_0$ (quando assumimos potencial menor que constante c). Existem outras métricas métricas relevantes em mecânica, vide Observação 2.1

Em Geometria Diferencial estaremos pedindo também que tal métrica $x \rightarrow g_x$ seja **suave**. Uma forma sofisticada de dizer que tal aplicação é suave, seria dizer que é *uma seção suave dos 2-tensores simétricos positivos definidos em TM*.

Uma forma mais pedestre de explicar isto, pode ser via parametrizações. Lembremos que dado um ponto $p_0 \in M$, temos uma parametrização $\varphi : V \to U \subset M$ para p_0 contido em U. Seja $\frac{\partial}{\partial x_i} = d\varphi e_i \circ \varphi^{-1}$ campos (coordenados) em U. Com isto em mente dizemos que uma aplicação $x \to g_x$ é uma **métrica suave** se as funções $x \to g_{ij} = g(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j})$ são suaves em U, para todo U.

Uma variedade M com uma métrica suave g é chamado **variedade Riemanni**ana (M, g).

Observação 2.1.

A energia cinética de um objeto (B, μ) (região B com uma medida μ) no tempo $t \notin KE(t) = \frac{1}{2} \int_{B} ||\dot{Q}(t)x + \dot{R}(t)||^{2}\mu$ para $t \to \alpha(t) = (Q(t), R(t)) \in$ $\mathbb{SO}(3) \times \mathbb{R}^{3}$ onde $Q(t) \in \mathbb{SO}(3)$ é a matriz ortogonal cujas colunas descrevem (no tempo t) a posição do objeto (com respeito ao seu centro de massa) e R(t) a posição do seu centro de massa no tempo t. Podemos então definir $g(\alpha'(0), \alpha'(0)) = KE(0)$ o que nos dá uma aplicação bilinear simétrica não negativa definida g. De forma análoga dado vários objetos $(B_1, \mu_1) \cdots (B_n, \mu_n)$ temos para cada (B_i, μ_i) uma forma não negativa g_i . Vamos supor que $g = \sum_i g_i$ é não degenerado (o que ocorre em vários casos estudados). Dado um sistema mecânico interligado M mergulhado no sistema mecânico livre $(\mathbb{SO}(3) \times \mathbb{R}^3) \times \cdots \times (\mathbb{SO}(3) \times \mathbb{R}^3)$ a métrica em M é a métrica induzida. Em particular no caso do braço robótico, vide Exemplo 1.2 e Observação 1.4 temos para a parametrização

$$\begin{array}{lll} \varphi: U \subset \mathbb{R}^2 & \to & M \subset \left(\mathbb{SO}(3) \times \mathbb{R}^3 \right) \times \left(\mathbb{SO}(3) \times \mathbb{R}^3 \right) \\ (\theta_1, \theta_2) & \mapsto & \left((Q(e^{i\theta_1}), R(e^{i\theta_1})), (Q(e^{i\theta_2}), R(e^{i\theta_2}, e^{i\theta_1})) \right) \end{array}$$

que:

$$\varphi^* \mathbf{g} = \begin{bmatrix} \lambda_1 + \frac{1}{4}(m_1 + 4m_2)l_1^2 & \frac{m_2}{2}l_1l_2\cos(\theta_1 - \theta_2) \\ \frac{m_2}{2}l_1l_2\cos(\theta_1 - \theta_2) & \lambda_2 + \frac{1}{4}m_2l_2^2 \end{bmatrix}$$

onde $\lambda_1 e \lambda_2$ são as chamadas inércias principais (auto-valores do tensor de inérsia, os quais sempre são não negativos). Para maiores discussões vide **livro F. Bullo, A.**

Continuação.

Lewis?? ^a

^aContas explicitas na Observação 2.1 podem ser feitas por exemplo usando o fato que $KE(t) = KE_{trans}(t) + KE_{rot}(t)$ onde energia cinética de translação é definida como $KE_{trans}(t) = \frac{1}{2}\mu(B)\|\dot{R}(t)\|^2$ e energia cinética de rotação é definida como $KE_{rot}(t) = \frac{1}{2}\langle I_c Z(t), Z(t) \rangle$ para $I_c(v) = -\int_B \mathcal{A}_{x-c}\mathcal{A}_{x-c}(v)\mu$ tensor de inersia (simétrico não negativo definido) referente ao centro de massa c(t) = R(t). Aqui dado $\xi = (\xi_1, \xi_2, \xi_3)$ temos $\mathcal{A}_{\xi} = \begin{bmatrix} 0 & -\xi_3 & \xi_2 \\ \xi_3 & 0 & -\xi_1 \end{bmatrix} e Z(t)$ é tal que $\mathcal{A}_{Z(t)} = Q^t \dot{Q}(t)$

$$\mathcal{A}_{\xi} = \begin{bmatrix} \xi_3 & 0 & -\xi_1 \\ -\xi_2 & \xi_1 & 0 \end{bmatrix} e^{Z(t)} e^{t} \operatorname{tal} \operatorname{que} \mathcal{A}_{Z(t)} = Q^t Q(t)$$

2.2. Conexão Riemanniana e o Transporte Paralelo

Definição 2.2.

Seja (*M*, g) variedade Riemanniana. Uma **conexão Riemanniana** (ou conexão de Levi-Civita) associada a métrica g é uma aplicação R-bilinear

$$\nabla : \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$$

que atende para qualquer $X, Y, Z, \in \mathfrak{X}(M)$ e $f \in C^{\infty}(M)$:

(a) $\nabla_{fX}Y = f\nabla_XY$

(b)
$$\nabla_X fY = f \nabla_X Y + (X \cdot f) Y$$

- (c) $X \cdot g(Y, Z) = g(\nabla_X Y, Z) + g(Y, \nabla_X Z)$ (compativel com a métrica).
- (d) $\nabla_X Y \nabla_Y X = [X, Y]$ (simétrica ou livre de torsão)

Proposição 2.3.

Seja (M, g) uma variedade Riemanniana. Então existe uma única conexão Riemanniana em TM. Tal conexão é dada pela **fórmula de Koszul** abaixo:

$$2g(\nabla_Y X, Z) = X \cdot g(Y, Z) - Z \cdot g(X, Y) + Y \cdot g(Z, X)$$

-
$$g([X, Y], Z) - g([X, Z], Y) - g([Y, Z], X)$$

Demonstração. Suponha que a conexão Riemanniana existe. Então temos pela com-

Cálculo Avançado/ Copyright @2023 M. M. Alexandrino e Y. N. Alvarez

patibilidade com a métrica que:

$$X \cdot g(Y, Z) = g(\nabla_X Y, Z) + g(Y, \nabla_X Z)$$
$$Z \cdot g(X, Y) = g(\nabla_Z X, Y) + g(X, \nabla_Z Y)$$
$$Y \cdot g(Z, X) = g(\nabla_Y Z, X) + g(Z, \nabla_Y X)$$

As equações acima e o fato da conexão ser livre de torsão implicam que:

$$X \cdot g(Y,Z) - Z \cdot g(X,Y) + Y \cdot g(Z,X) = 2 g(\nabla_Y X,Z) + g([X,Y],Z) + g([X,Z],Y) + g([Y,Z],X)$$

a qual por sua vez implica a fórmula de Koszul. Por fim, pode-se verificar que a fórmula de Koszul define uma conexão Riemanniana. 🛛

Exemplo 2.4. Dado um campo $\vec{V} = \sum_{i=1}^{m} v_i \vec{e_i}$ (vide equação 1.3.1), vamos definir a **derivada Euclidiana do campo** \vec{V} na direção de um vetor W (com pé em p), como

$$D_W \vec{V}_p = \sum_{i=1}^m dv_i(W) \vec{e}_i.$$

Proposição 2.5.

Seja M^m variedade mergulhada em \mathbb{R}^{m+k} . Dado $p \in M$ defina $\pi_p : T_p \mathbb{R}^{m+k} \to T_p M$ como projeção ortogonal no espaço tangente $T_p M$ de um vetor com pé em $p \in M$ (não necessariamente tangente a variedade M). Defina o operador conexão tangente como $\nabla : \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$ onde

$$(\nabla_X Y)_p = \pi_p((D_X Y)_p).$$

Este operador é de fato a conexão Riemanniana associada a métrica induzida

Demonstração. É fácil verificar que é **R**-bilinear. Então basta verificar os itens da Definição 2.2 . Como ela é única, então será a conexão da métrica induzida.

(a)

$$\begin{aligned} (\nabla_{fX}Y)_p &= \pi_p((D_{fX}Y)_p) \\ &= \pi_p(f(p)(D_XY)_p) \\ &= f(p)\pi_p((D_XY)_p) \\ &= f(p)(\nabla_XY)_p. \end{aligned}$$

(b) Como
$$Y \in \mathfrak{X}(M), \pi(p)(Y) = Y$$
, logo
 $(\nabla_X fY)_p = \pi(p)(D_X fY)_p$
 $= \pi(p)(fD_X Y + X(f)Y)_p$
 $= f(p)\pi(p)(D_X Y)_p + X(f)_p\pi(p)(Y)$
 $= f(p)(\nabla_X Y)_p + (X \cdot f)Y_p.$

(c) Seja $p \in M$ e $\alpha : (-\varepsilon, \varepsilon) \subset \mathbb{R} \to M$ uma curva em M tal que $\alpha(0) = p$ e $\alpha'(0) = X$. Sejam $\tilde{Y} \in \tilde{Z}$ extensões de $Y \in Z$ a \mathbb{R}^{m+k} . Temos

$$\begin{aligned} X \cdot \mathbf{g}(Y, Z) &= \frac{d}{dt} \mathbf{g}(Y_{\alpha}(t), Z_{\alpha}(t)) \Big|_{t=0} \\ &= \frac{d}{dt} \left\langle \tilde{Y}_{\alpha}(t), \tilde{Z}_{\alpha}(t) \right\rangle \Big|_{t=0} \\ &= \left\langle D_{\alpha'(t)} \tilde{Y}_{\alpha}(t), \tilde{Z}_{\alpha}(t) \right\rangle \Big|_{t=0} + \left\langle \tilde{Y}_{\alpha}(t), D_{\alpha'(t)} \tilde{Z}_{\alpha}(t) \right\rangle \Big|_{t=0} \\ &= \left\langle \nabla_{\alpha'(t)} Y_{\alpha}(t), Z_{\alpha}(t) \right\rangle \Big|_{t=0} + \left\langle Y_{\alpha}(t), \nabla_{\alpha'(t)} Z_{\alpha}(t) \right\rangle \Big|_{t=0} \\ &= \mathbf{g}(\nabla_{\alpha'(t)} Y_{\alpha(t)}, Z_{\alpha(t)}) \Big|_{t=0} + \mathbf{g}(Y_{\alpha(t)}, \nabla_{\alpha'(t)} Z_{\alpha(t)}) \Big|_{t=0} . \\ &= \mathbf{g}(\nabla_X Y, Z) + \mathbf{g}(Y, \nabla_X Z). \end{aligned}$$

(d) Para resolver o item (d) iremos assumir o seguinte fato:

$$D_XY - D_YX =: [X, Y] \in \mathfrak{X}(M), \forall X, Y \in \mathfrak{X}(M).$$

Assim sendo, temos:

$$\nabla_X Y - \nabla_Y X = \pi_p ((D_X Y)_p) - \pi_p ((D_Y X)_p)$$
$$= \pi_p ((D_X Y)_p - (D_Y X)_p)$$
$$= \pi_p ([X, Y])$$
$$= [X, Y],$$

onde a última igualdade segue do fato suposto.

Definição 2.6.

Um difeomorfismo $F: (M^m, \mathbf{g}^M) \to (N^m, g^N)$ entre variedades Riemannianas é chamado **isometria** se $DF: (T_xM, \mathbf{g}_x^M) \to (T_{F(x)}N, g_{F(x)}^N)$ é isometria para todo $x \in M^1$.

Em outras palavras uma isometria entre variedades preserva métrica e assim objetos definidos com métrica.

Excercício 2.7.

Cálculo Avançado/ Copyright @2023 M. M. Alexandrino e Y. N. Alvarez

Sejam (M_1, \mathbf{g}_1) e $(N, \widetilde{\mathbf{h}})$ variedades Riemannianas e ∇ e $\widetilde{\nabla}$ suas conexões Riemannianas. Seja $F: M \to \widetilde{M}$ isometria. Utilizando a fórmula de Koszul Mostre que $dF_p \nabla_{X_1} X_2 = (\widetilde{\nabla}_{\widetilde{x}_1} \widetilde{X}_2)_{F(p)}$, onde $\widetilde{X}_i \circ F = dFX_i$ para $X_i \in \mathfrak{X}(M)$.

Sugestão: Utilize o fato que $[\widetilde{X}_1, \widetilde{X}_2] \circ F = dF[\widetilde{X}_1, \widetilde{X}_2]$ e a equação de Koszul.

Vamos agora descrever nossa conexão Riemanniana utilizando coordenadas:

Seja U uma vizinhança coordenada de $p \in M$ e $\{\xi_i\}$ referenciais de $TM|_U$, e.g. $\xi_j(p) = \frac{\partial}{\partial x_j} := d\psi^{-1}(e_j)$ onde $\psi : (U) \to V \subset \mathbb{R}^n$ é um sistema de coordendas..

Suponha $W = \sum_i w_i \frac{\partial}{\partial x_i}$ e $V = \sum_j v_j \xi_j$ Temos então que

$$\nabla_W V = \nabla_W \sum_j v_j \xi_j$$

= $\sum_j (W \cdot v_j) \xi_j + \sum_j v_j \nabla_W \xi_j$
= $\sum_k (W \cdot v_k) \xi_k + \sum_{i,j} v_j w_i \nabla_{\frac{\partial}{\partial x_i}} \xi_j$

A equação acima então implica que

$$\nabla_W V = \sum_k \{ (W \cdot v_k) + \sum_{i,j} w_i v_j \Gamma^k_{i,j} \} \xi_k$$
(2.2.1)

¹Talvez caiba apenas aqui ter um exemplo em mente. Sejam duas variedades M^m e N^m mergulhadas em espaços euclidianos. Suponha que uma aplicação bijetora $F: M \to N$ admita extensões locais suaves e a inversa F^{-1} também admita extensões locais suaves. Neste caso F é chamada um difeomorfismo. Derivada DF_x neste exemplo é apenas restrição ao espaço tangente $T_x M$ da derivada da extensão.

onde a função $\Gamma_{i,j}^k$ é chamada símbolo de Cristoffel e é definida como

$$\nabla_{\frac{\partial}{\partial x_i}}\xi_j = \sum_k \Gamma^k_{i,j}\xi_k$$

Observação 2.8.

É importante observar que a fórmula acima garante que $(\nabla_W V)_p$ depende apenas do vetor W(p) e não do campo W.

Excercício 2.9.

Sejam M superfície mergulhada em \mathbb{R}^3 , ∇ a conexão Riemanniana associada a métrica induzida $g \in \Gamma_{ij}$ os símbolos de Cristofell associados a uma parametrização $\varphi : |U \subset \mathbb{R}^2 \to V \subset M$ Verifique as igualdades a seguir (as quais garantem que Γ_{ij} podem ser obtidas diretamente da métrica g, ou seja que ∇ pode ser definido em termos de g).

$$\begin{split} \Gamma_{11}^{1}g_{11} + \Gamma_{11}^{2}g_{12} &= \frac{1}{2}\frac{\partial}{\partial u_{1}}g_{11} \\ \Gamma_{11}^{1}g_{12} + \Gamma_{11}^{2}g_{22} &= \frac{\partial}{\partial u_{1}}g_{12} - \frac{1}{2}\frac{\partial}{\partial u_{2}}g_{11} \\ \Gamma_{12}^{1}g_{11} + \Gamma_{12}^{2}g_{12} &= \frac{1}{2}\frac{\partial}{\partial x_{2}}g_{11} \\ \Gamma_{12}^{1}g_{12} + \Gamma_{12}^{2}g_{22} &= \frac{1}{2}\frac{\partial}{\partial x_{1}}g_{22} \\ \Gamma_{22}^{1}g_{11} + \Gamma_{22}^{2}g_{12} &= \frac{\partial}{\partial u_{2}}g_{12} - \frac{1}{2}\frac{\partial}{\partial x_{1}}g_{22} \\ \Gamma_{22}^{1}g_{12} + \Gamma_{22}^{2}g_{22} &= \frac{1}{2}\frac{\partial}{\partial u_{2}}g_{22} \end{split}$$

Excercício 2.10.

Seja $\varphi(t, \theta) = (r(t)\cos(\theta), r(t)\sin(\theta), h(t))$ parametrização de superfície de revolução M^2 em \mathbb{R}^3 . Suponha que $(h'(t))^2 + (r'(t))^2 = 1$. Verifique que

Continuação.

que os símbolos de Cristofell associada a φ são:

$$\begin{array}{rclrcl} \Gamma^1_{11} &=& 0 & , & \Gamma^2_{11} &=& -r(t)r'(t) \\ \Gamma^1_{12} &=& \frac{r'(t)}{r(t)} & , & \Gamma^2_{12} &=& 0 \\ \Gamma^1_{22} &=& 0 & , & \Gamma^2_{22} &=& 0 \end{array}$$

Observação 2.11. *Utilizando a fórmula de Koszul é possível concluir:*

$$\Gamma_{i,j}^{m} = \frac{1}{2} \sum_{k} \left(\frac{\partial \mathbf{g}_{j,k}}{\partial x_{i}} + \frac{\partial \mathbf{g}_{k,i}}{\partial x_{j}} - \frac{\partial \mathbf{g}_{i,j}}{\partial x_{k}} \right) \mathbf{g}^{k,m}$$

onde (\mathbf{g}^{ij}) é a matriz inversa de $(\mathbf{g}_{i,j})$ e $\Gamma_{i,j}^k$ são os símbolos de Cristoffel.

A equação (2.2.1) admite uma formulação matricial.

$$\nabla_W V = D_W V + A(W)V \tag{2.2.2}$$

onde $D_W V$ é a derivada de campos em \mathbb{R}^n e $A(\cdot)$ é a matriz de 1-formas definida como

$$a_{k,j}(\cdot) := \sum_{i} \Gamma_{i,j}^k \mathrm{d} x_i$$

onde $dx_i(\frac{\partial}{\partial x_j}) = \delta_{ij}$ i.e., fixo p temos que os funcionais lineares $dx_i : T_p M \to \mathbb{R}$ são os duais dos vetores $(\frac{\partial}{\partial x_i}(p))$

Observação 2.12.

A equação (2.2.2) implica que o espaço de conexões é um **espaço afim**. De fato dado duas conexões D + A e $D + \widetilde{A}$ podemos definir a soma destes vetores com pé como $D + A + \widetilde{A}$ e a multiplicação por $\lambda \in \mathbb{R}$ como $D + \lambda A$. Por este motivo, um operador que atende (a) e (b) da Definição 2.2 é chamado **conexão afim**.

Conexão nos permite derivar campos tangentes a uma variedade. Mas se tivermos um campo $t \to V(t)$ que está apenas definido ao longo de uma curva $t \to \alpha(t)$, como derivar? Lembrando que se a curva não for mergulhada não necessariamente um campo ao longo de uma curva se estende para um campo em M ou seja V(t) não precisa ser $\tilde{V} \circ \alpha(t)$ para $\tilde{V} \in \mathfrak{X}(M)$. Assim a resposta a esta pergunta **não é** simplesmente dizer restrinja a conexão ao longo da curva. Felizmente como veremos na proposição a seguir, de fato a questão não é complicada.

Proposição 2.13.

(

Sejam ∇ a conexão Riemanniana de $(M, \mathbf{g}) \in \alpha : I \to M$ uma curva suave por partes. Denote $\Gamma(\alpha^*TM)$ o espaço dos campos vetoriais ao longo da curva α . Então existe um único operador $\frac{\nabla}{dt} : \Gamma(\alpha^*TM) \to \Gamma(\alpha^*TM)$ tal que

(a)
$$\frac{\nabla}{dt}(V+W) = \frac{\nabla}{dt}V + \frac{\nabla}{dt}W$$

(b)
$$\frac{\nabla}{dt}(fV) = f'V + f\frac{\nabla}{dt}V$$
 para $f: I \to \mathbb{R}$ suave.

(c) Se $\tilde{V}\in \Gamma(E)$ e $V(t):=\tilde{V}(\alpha(t))$ então $\frac{\nabla}{dt}V=\nabla_{\alpha'}\tilde{V}$

Demonstração. Se $\frac{\nabla}{dt}$ atende a propriedade (*c*) então ela deve se descrita em coordenadas como:

$$\left(\frac{\nabla}{dt}V\right)(t) = \sum_{k} \{v'_{k}(t) + \sum_{i,j} x'_{i}(t) v_{j}(t) \Gamma^{k}_{i,j} \circ \alpha(t)\} \xi_{k} \circ \alpha(t)$$

Onde $V(t) = \sum_{k} v_k(t) \xi_k \circ \alpha(t) \circ \alpha'(t) = \sum_{i} x'_i(t) \frac{\partial}{\partial x_i} \circ \alpha(t)$. Em outras palavras

$$\frac{\nabla V}{dt} = \frac{DV}{dt} + A(\alpha'(t))V(t).$$

Também é claro que a equação acima atende (a) e (b)e assim temos a existência local. A unicidade local e existência local garantem então a existência e unicidade global.

Munidos com o conceito de derivada covariante podemos introduzir o conceito de paralelismo. Um campo $t \to V(t) \in T_{\alpha(t)}M$ ao longo de uma curva α é chamado **paralelo** se $\frac{\nabla}{dt}V(t) = 0$ para todo t.

Proposição 2.14.

Sejam ∇ a conexão Riemanniana de $(M, \mathbf{g}) \in \alpha : [a, b] \to M$ uma curva suave por partes. Seja $V \in T_{\alpha(a)}$. Então existe uma único campo $V \in \Gamma(\alpha^*TM)$ paralelo tal que V(a) = V. *Demonstração*. Considere uma partição $a = t_0 < t_1 < \cdots < t_n = b$ tal que a curva restrita $\alpha|_{[t_i,t_{i+1}]}$ está contida em uma vizinhança coordenada. Vamos provar primeiro o resultado para cada uma destas curvas. Como vimos na demonstração da Proposição 2.13, em uma vizinhança coordenada, $\frac{\nabla}{dt}V = 0$ equivale a

$$0 = \sum_{k} \{ v'_{k}(t) + \sum_{i,j} x'_{i}(t) v_{j}(t) \Gamma^{k}_{i,j} \circ \alpha(t) \}$$
(2.2.3)

Tal E.D.O tem uma única solução $\sum_j v_j(t)\xi_j \circ \alpha(t)$ em $[t_i, t_{i+1}]$ que coincide em t_i com um certo vetor dado $V \in E_{\alpha(t_i)}$ e isto demonstra o resultado para $\alpha|_{[t_i, t_{i+1}]}$. Pela unicidade das soluções, as soluções coincide nas interseções das vizinhanças coordenadas e isto permite estender a solução para todo [a, b].

Com as hipóteses da proposição acima o vetor $V(b) \in T_{\alpha(b)}M$ é chamado **transporte paralelo** do vetor $V \in T_{\alpha(a)}M$ e denotado por

$$\mathcal{P}_{\alpha}V := V(b).$$

Observação 2.15.

Com um transporte paralelo podemos **conectar** as fibras $TM_{\alpha(a)}$ com $TM_{\alpha(b)}$, dai o nome conexão. É importante observar que em geral o transporte paralelo depende do caminho, vide Exercício 2.17.

Excercício 2.16.

Seja (M, g) variedade Riemanniana com conexão Riemanniana ∇ . Seja α : $[0,1] \rightarrow M$ curva suave por partes. Demonstre que o transporte paralelo ao longo de α induz isometria entre $T_{\alpha(0)}M$ e $T_{\alpha(1)}M$.

Excercício 2.17.

Sejam M superfície mergulhada em \mathbb{R}^3 e ∇ conexão Riemanniana associada a métrica induzida. Seja $\gamma : [0, a] \to M$ uma geodésica com velocidade 1 ou seja $\frac{\nabla}{dt}\gamma'(t) = 0$ (ou seja pedaço de grande círculo). Dado $e_2 \in T_{\gamma(0)}M$ unitário com $g(e_2(0), \gamma'(0)) = c$.

(a) Defina $t \to e_2(t)$ campo paralelo ao longo de γ com $e_2(0) = e_2$. Verifique que $g(e_2(t), \gamma'(t)) = c$ para todo t,

Figura 2.1: ilustrando Exercício 2.17

Continuação.

(b) Seja \mathbb{S}^2 esfera com métrica canônica (i.e, induzida de \mathbb{R}^3) Verifique que, dado $X \in T_p \mathbb{S}^2$ e $Y \in T_p \mathbb{S}^2$, existe caminho (suave por partes) com com $Y = \mathcal{P}_{\alpha} X$, vide Figura 2.1.

Observação 2.18. Conexão em fibrado vetorial

Aqui é o momento adequado para destacarmos ao leitor, que muito do que discutimos até agora poderia ser refeito mutatis mutandis (com exceção do item (d) da definição da conexão Riemanniana e da unicidade da conexão) para um fibrado vetorial $\mathbb{R}^k o E o B$ que admita uma métrica nas fibras (frequentemente chamamos isto de fibrado euclidiano). Por exemplo poderiamos considerar uma variedade mergulhada M^m em um espaço euclidiano, mas no lugar de considerar a conexão tangente (derivar no ambiente e projetar no espaço tangente) poderiamos considerar a conexão normal (derivar no ambiente e projetar no espaços normais) do fibrado normal $E = \nu(M) = \bigcup_x \nu_x M$ (onde $\nu_x M$ denota os vetores normais a $T_x M$. Mais precisamente poderiamos definir $\nabla^{\nu}: \xi(M) \times \Gamma(E) \to \Gamma(E)$ como $\nabla^{\nu}_{X} \xi = (D_X \xi)^{\nu}$ A métrica fibras do fibrado normal são simplesmente a restrição da métrica aos vetores normais de sua variedade mergulhada. Assim conexão, derivada covariante, transporte paralelo que preserva métrica nas fibras, podem ser feitos. De fato uma das razões para denotarmos ξ_i no lugar de nossos vetores coordenados (quando consideramos a conexão Riemanniana) é ja deixar a notação correta para esta generalização direta. Até o presente o que não conseguimos generalizar neste contexto mais geral seria a

unicidade da conexão (adaptada a métrica), justamente por não podermos falar mais no conceito livre de torção (que deixa de fazer sentido). O leitor que se sente mais confiante com a linguagem de fibrado vetorial pode tentar rever as provas levando em consideração esta observação.

Observação 2.19. Conexão pull-back

A derivada covariante ao longo de uma curva é na verdade a conexão pull-back no fibrado pullback $\alpha^*(E)$, conceito que discutimos rapidamente na observação a seguir. Seja (E^{m+k}, M^m, π) uma fibrado vetorial com conexão afim ∇ . Seja $\varphi : B \rightarrow M$ uma aplicação suave entre uma variedade B e a variedade M. O espaço total do fibrado pull-back é definido como

$$\varphi^* E := \{ (p, V) \in M \times E | \varphi(p) = \pi(V) \}$$

 (E, B, π_1) se torna então um fibrado vetorial, onde a projeção $\pi_1 : \varphi^* E \to B$ é definida como $\pi_1(p, V) = p$. Observe também que $\varphi \circ \pi_1 = \pi \circ \tilde{\varphi}$ onde $\tilde{\varphi} : \varphi^* E \to E$ é definido como $\tilde{\varphi}(p, V) = V$.

De forma análoga a prova da Proposição 2.13 é possível mostrar que existe uma única conexão $\varphi^* \nabla$ em $\varphi^* E$ tal que

$$(\varphi^* \nabla)_W V \circ \varphi = \nabla_{dF(W)} V$$

onde $V \in \Gamma(E)$ e $W \in \mathfrak{X}(M)$.

Observação 2.20. Grupo de Holonomia

Dado um ponto p de uma variedade M (base de um fibrado E^{m+k} com conexão ∇) e uma curva fechada $\alpha : [0,1] \to M^m$ (i.,e $\alpha(0) = \alpha(1)$) o transporte paralelo $\|_{\alpha} : E_p \to E_p$ induz um isomorfismo entre as fibras de E_p . O grupo gerado por tais isomorfismo é chamado **grupo de Holonomia** de p e denotado por Hol_p .

- O teorema de Ambrose-Singer garante que o grupo de Holonomia Hol_p de uma conexão ∇ em um fibrado (E, M, π) é de fato um grupo de Lie.
- Quando consideramos a conexão Riemanniana em uma variedade simplesmente conexa, compacta(mais geralmente completa) a decomposição da representação da componente conexa $Hol(p)^0 \times (T_pM = V_0 \oplus \cdots \oplus V_k) \rightarrow$

 $(T_pM = V_0 \oplus \cdots \oplus V_k)$ implica a decomposição do próprio M ou seja $M = M_0 \times \cdots \times M_k$.

• No caso em que a conexão é Riemanniana, o grupo de Holonomia passa a desempenhar um papel importante na classificação de variedades. O celebrado teorema de Berger garante que se o grupo de holonomia de uma variedade Riemanniana (irredutível) não agir de forma transitiva em $T_p^1 M = \{v \in T_p M, ||v|| = 1\}$ então M será um espaço localmente simétrico.

Aqui vale apena ressaltar que um espaço M é chamadado localmente simétrico se para qualquer $p \in M$ existe uma isometria $\sigma_p : B_{\epsilon}(p) \to B_{\epsilon}(p)$ que reverte toda geodésica γ saindo de p i.e., $\gamma(0) = p$ ou seja $\sigma_p \circ \gamma(t) =$ $\gamma(-t)$. Por outro lado os espaços simétricos (que recobrem os espaços localmente simétricos) são classificados. Assim sendo o conhecimento da ação do grupo de Hol_p pode determinar completamente uma variedade M se M for simplesmente conexa irredutível e o grupo não agir transitivamente na esfera unitária $T_p M^1$.

2.3. Geodésicas

Seja M uma variedade com métrica g. O produto interno em cada espaço tangente $T_x M$, nos permite calcular normas em cada espaço tangente $||X|| = \sqrt{g(X,X)}$ (onde $X \in T_x M$) e assim podemos definir comprimento de uma curva suave por partes, i.e., seja $\alpha : [0, a] \to M$ então $L(\alpha) = \int_0^a ||\alpha'(t)|| dt$. Comprimento de curva nos permite então definir **a distância entre pontos** $p, q \in M$ como sendo $d(p,q) = \inf_{\alpha \in \Omega} L(\alpha)$ onde Ω é o conjunto das curvas suaves por partes $\alpha : [0, a] \to M$ com $\alpha(0) = p \in \alpha(a) = q$.

No espaço Euclidiano as curvas de aceleração zero são justamente as curvas que minimizam distâncias. Assim um candidato natural para curvas que minimizam *localmente distâncias* em uma variedade Riemanniana (M, g) serão as curvas de aceleração nula.

Definição 2.21.

Uma curva suave $\gamma: (-a, a) \rightarrow (M, g)$ é chamada **geodésica** se

$$\frac{\nabla}{dt}\gamma'(t) = 0, \forall t \in (-a, a)$$

Aceitando alguns resultados, nesta seção teremos nosso primeiro contato com este fundamental conceito, o qual será mais cuidadosamente discutido em outras disciplinas, como por exemplo Geometria Riemanniana.

Observação 2.22. Observe que se $\gamma : I \to (M, g)$ é geodésica, então $\|\gamma'(t)\|$ é constante. De fato $\frac{d}{dt}(g(\gamma'(t), \gamma'(t))) = 2g(\frac{\nabla}{dt}\gamma'(t), \gamma'(t)) = 0$. Segue então que se γ é geodésica, $L(\gamma) = \int_{a}^{b} \|\gamma'(t)\| dt = c(b-a)$ onde $c = \|\gamma'(t)\|$.

Excercício 2.23.

Seja M^m subvariedade mergulhada em \mathbb{R}^{m+k} . Dado uma curva $\gamma: I \to M$ verifique que γ é geodésica se e somente se γ'' é perpendicular a M. Conclua que segmentos dos grandes círculos da esfera \mathbb{S}^m são geodésicas.

Excercício 2.24.

Seja M uma superfície mergulhada de revolução em \mathbb{R}^3 , onde g é métrica induzida. Demonstre que sua curva geratriz é geodésica de M.

Observação 2.25.

Segmentos de grandes círculos na esfera não necessariamente minimizam distâncias. Por exemplo, se $\alpha : [0, \frac{3\pi}{2}] \to \mathbb{S}^m$ é uma geodésica com velocidade unitária, então ela não minimiza distância entre $\alpha(0) \in \alpha(\frac{3\pi}{2})$. De fato, $L(\alpha) = \frac{3\pi}{2}$.

Por outro lado, se consideramos um outro segmento do mesmo grande círculo, $\beta : [0, \pi/2] \to \mathbb{S}^m \operatorname{com} \alpha(0) = \beta(0) e \alpha(\frac{3\pi}{2}) = \beta(\pi/2)$ temos que $L(\beta) = \frac{\pi}{2} < L(\alpha)$.

Ou seja, geodésicas não minimizam (grandes) distâncias, *mas como veremos em breve sempre minimizam distâncias* localmente.

Em coordenadas $\frac{\nabla}{dt}\gamma'(t) = 0$ equivale, a seguinte EDO de segunda ordem.

$$0 = x_k''(t) + \sum_{ij} x_i'(t) x_j'(t) \Gamma_{ij}^k(x(t)), \ \forall \ k$$
(2.3.1)

Temos então que, pelo menos localmente, dado as duas condições iniciais posição $p \in M$ (pé do vetor) e e velocidade $v_p \in T_pM$, deveria existir uma única geodésica $\gamma_{v_p} : (-\epsilon, \epsilon) \to M \operatorname{com} \gamma_{v_p}(0) = p \operatorname{e} \gamma'_{v_p}(0) = v_p$. Transformando a E.D.O de segunda ordem (2.3.1) em uma E.D.O de primeira ordem em $TM = \bigcup_{x \in M} T_xM$ e aplicando resultado de E.D.O sobre suavidade das condições iniciais é possível provar o resultado a seguir.

Proposição 2.26.

Dado $p \in M$ existe uma vizinhança U de p em M, números $\delta, \epsilon > 0$ e uma aplicação $\varphi : (-\epsilon, \epsilon) \times \mathcal{U} \to M$ com $\mathcal{U} := \{V_q \in TM, q \in U, ||V_q|| < \delta\}$ tal que $\gamma_{v_p}(\cdot) = \varphi(\cdot, V_q)$ é a única geodésica com $\gamma'_{v_p}(0) = \frac{d}{dt}\varphi(t, V_q)|_{t=0} = V_q$ e $\varphi(0, V_q) = q$.

Em geral reparemetrizar uma solução γ de uma E.D.O de segunda ordem (mesmo que seja por constantes i., e $\beta(t) = \gamma(ct)$ não dará uma nova solução da E.D.O. Porém a equação (2.3.1) tem um formato muito especial (dizemos em Geometria Riemanniana que ela atende propriedades de um spray) e assim temos o resultado a seguir.

Proposição 2.27.
Seja
$$\gamma_{v_q}(\cdot) = \varphi(\cdot, V_q)$$
 geodésica definida em $(-\epsilon, \epsilon)$. Seja $a > 0$ então:
(a) A geodésica $t \to \gamma_{av_q}(t) = \varphi(t, aV_q)$ está definida em $(-\frac{\epsilon}{a}, \frac{\epsilon}{a})$
(b) $\gamma_{av_q}(t) = \varphi(t, aV_q) = \varphi(at, V_q) = \gamma_{v_q}(at)$.

Demonstração. Note que o item (b) implica o item (a). Visto que $\frac{d}{dt}\varphi(at, V_q)|_{t=0} = aV_q$ basta mostrar que $t \to \varphi(at, V_q)$ é geodésica. Isto segue do fato que em coordenadas y(t) = x(at) atende a equação (2.3.1).

As duas proposições acima então implicam que:

Proposição 2.28.

Dado $p \in M$ existe uma vizinhança U de p em M, um número $\delta > 0$ e uma aplicação $\varphi : (-2,2) \times \mathcal{U} \to M$ com $\mathcal{U} := \{V_q \in TM, q \in U, ||V_q|| < \delta\}$

tal que
$$\varphi(\cdot,V_q)$$
 é a única geodésica com $rac{d}{dt} \varphi(t,V_q)|_{t=0} = V_q$ e $\varphi(0,V_q) = q.$

Definição 2.29.

Podemos definir agora a aplicação exponencial como

$$\exp_q: B_{\delta}(0) \subset T_q M \to M$$
$$V_q \to \varphi(1, V_q)$$

Observação 2.30.

Visto que $\varphi(1, V_q) = \varphi(||V_q||, \frac{V_q}{||V_q||})$ temos que $\exp_q(V)$ é o ponto em M obtido percorrendo um comprimento $||V_q||$ ao longo da imagem da geodésica que sai de q com velocidade $\frac{V_q}{||V_q||}$.

Proposição 2.31.

Seja $q \in M$. Então $d(\exp_q)_0 = Id$ e assim sendo existe um $\epsilon > 0$ tal que $\exp_q : B_{\epsilon}(0) \to M$ é um difeomorfismo sobre um aberto em M.

Demonstração.

$$\frac{d}{dt} \exp_q(tV)|_{t=0} = \frac{d}{dt} \varphi(1, tV_q)|_{t=0}$$
$$= \frac{d}{dt} \varphi(t, V_q)|_{t=0}$$
$$= V_q$$

e assim $d(\exp_q)_0$ é a identidade. O resto da proposição segue do teorema da função inversa.

Tal vizinhança B_{ϵ} será chamada de **vizinhança normal**.

Observação 2.32.

Veremos no próximo capítuo que se M é um grupo de Lie matricial compacto (e.g., SO(n)), com métrica bi-invariante (e.g., $\langle gX, gY \rangle_g = \operatorname{tr}(XY^t)$) a exponencial

§ 2.3. Geodésicas

Continuação.

Riemanniana em e coincidirá com a exponencial de matrizes.

No que se segue, demonstraremos o conhecido lema de Gauss o qual garante que geodésicas radiais são ortogonais as esferas normais. Antes porém faz-se necessário apresentar o lema abaixo, o qual será útil em diversos momentos.

Lema 2.33. Seja $f : [a, b] \times [c, d] \rightarrow M$ aplicação suave. Então

$$\frac{\nabla}{\partial s}\frac{\partial f}{\partial t} = \frac{\nabla}{\partial t}\frac{\partial f}{\partial s}$$

Teorema 2.34. Lema de Gauss Seja $B_{\tilde{\delta}}(0)$ uma bola em $T_q M$ tal que a restrição da exponencial $\exp_q : B_{\tilde{\delta}}(0) \to M$ está bem definida. Sejam $\mathbb{S}^{n-1}_{\delta}$ a esfera contida em $B_{\tilde{\delta}}(0)$ com $\delta < \tilde{\delta}$ e $v : (-\epsilon, \epsilon) \to \mathbb{S}^{n-1}_{\delta}$ curva suave. Defina $f(s,t) = \exp_q(tv(s))$. Então

$$\mathbf{g}(\frac{\partial f}{\partial s}, \frac{\partial f}{\partial t}) = 0$$

Demonstração. Observe primeiro que

$$g(\frac{\partial f}{\partial s}, \frac{\partial f}{\partial t})_{f(s,t)} = g(d(\exp_q)_{tv(s)}tv'(s), d(\exp_q)_{tv(s)}v(s))$$

Podemos então concluir que:

$$g(\frac{\partial f}{\partial s}, \frac{\partial f}{\partial t})_{f(s,0)} = 0$$

Assim para demonstrar o lema de Gauss é suficiente verificar que a derivada em relação a t da função $g(\frac{\partial f}{\partial s}, \frac{\partial f}{\partial t})_{f(s,t)}$ é zero para todo t.

$$\begin{aligned} \frac{\partial}{\partial t} \left(g(\frac{\partial f}{\partial s}, \frac{\partial f}{\partial t}) \right) &= g(\frac{\nabla}{\partial t} \frac{\partial f}{\partial s}, \frac{\partial f}{\partial t}) + g(\frac{\partial f}{\partial s}, \frac{\nabla}{\partial t} \frac{\partial f}{\partial t}) \\ &= g(\frac{\nabla}{\partial t} \frac{\partial f}{\partial s}, \frac{\partial f}{\partial t}) \\ &= g(\frac{\nabla}{\partial s} \frac{\partial f}{\partial t}, \frac{\partial f}{\partial t}) \\ &= \frac{1}{2} \frac{\partial}{\partial s} g(\frac{\partial f}{\partial t}, \frac{\partial f}{\partial t}) \\ &= \frac{1}{2} \frac{\partial}{\partial s} \|v(s)\|^2 \\ &= 0 \end{aligned}$$

onde a segunda igualdade deve-se ao fato de $f(s, \cdot)$ ser geodésica, a terceira igualdade deve-se ao Lema 2.33 e a última igualdade deve-se ao fato de $v(\cdot)$ ser uma curva contida em uma esfera.

O lema de Gauss nos permite demonstrar que geodésicas minizam localmente caminhos. Mais precisamente temos a seguinte proposição.

Proposição 2.35. Seja $B_{\delta}(q)$ uma bola normal. Defina $\alpha : [0,1] \to B_{\delta}(0)$ como $\alpha(t) = \exp_q(tv)$ com $||v|| < \delta$. Seja $\beta : [0,1] \to M$ curva suave por partes tal que $\alpha(0) = \beta(0)$ $e \alpha(1) = \beta(1)$. Então

 $L(\alpha) \le L(\beta)$

Se a igualdade vale, então as imagens de α e β coincidem.

Demonstração. Vamos primeiro considerar o caso em que $\beta([0,1]) \subset B_{\delta}(q)$.

Podemos supor sem perda de generalidade que $\beta(t) \neq q$ para t > 0. Seja $\tilde{\beta} := (\exp_q |_{B_{\delta}(0)})^{-1} \circ \beta$. Defina as seguintes funções suaves por partes:

$$f: [0,\delta) \times \mathbb{S}_1^{n-1} \ni (R,V) \to \exp_q(RV) \in B_\delta(q)$$
$$r: [0,1] \ni t \to \|\tilde{\beta}(t)\| \in [0,\delta)$$
$$v: (0,1] \ni t \to \frac{\tilde{\beta}(t)}{\|\tilde{\beta}(t)\|} \in \mathbb{S}_1^{n-1}$$

Observe que $\beta(t) = f(r(t), v(t))$. Temos então pelo lema de Gauss que:

$$\begin{split} \int_{\epsilon}^{1} \|\beta'(t)\| dt &= \sum_{i} \int_{t_{i}}^{t_{i+1}} \|\beta'(t)\| dt \\ &= \sum_{i} \int_{t_{i}}^{t_{i+1}} \sqrt{(r'(t))^{2} + g(\frac{\partial f}{\partial V}v'(t), \frac{\partial f}{\partial V}v'(t))} dt \\ &\geq \sum_{i} \int_{t_{i}}^{t_{i+1}} |r'(t)| dt \\ &\geq \sum_{i} \int_{t_{i}}^{t_{i+1}} r'(t) dt \\ &= r(1) - r(\epsilon) \end{split}$$

Logo $L(\beta) \ge r(1) = L(\alpha)$. Note que se as igualdades são satisfeitas então as imagens de $\alpha \in \beta$ coincidem.

Por fim vamos considerar o caso em que $\beta([0, 1])$ não está completamente contido em $B_{\delta}(q)$. Seja t_1 o primeiro tempo tal que $\beta(t_1)$ está na fronteira da bola. Então temos pela discussão anterior:

$$L(\beta) > L(\beta|_{[0,t_1]}) \ge \delta > L(\alpha).$$

A Proposição 2.35 pode ser melhorada como comentamos no teorema a seguir.

Teorema 2.36. Vizinhança convexa

Seja (M, g) variedade Riemanniana. Então para cada $q \in M$ existem números $\delta > 0, \epsilon > 0$ tal que as seguintes afirmações são validas.

- (a) Para qualquer $p \in B_{\epsilon}(q)$ temos $\exp_p |_{B_{\delta}(0)}$ é um difeomorfismo e que $B_{\epsilon}(q) \subset \exp_p(B_{\delta}(0)).$
- (b) Para cada 2 pontos p₁ e p₂ em B_ε(q) existe um único segmento minimizante de geodésica ligando p₁ a p₂.
- (c) O segmento (do item (b)) fica contido em $B_{\epsilon}(q)$ e depende suavemente dos pontos inicial e final.

Excercício 2.37.

Utilizando a Proposição 2.35, demonstre que o item (a) implica o item (b) no teorema da vizinhança convexa, enunciado acima.

Embora não demonstremos o teorema da vizinhança convexa, vamos apresentar uma boa aplicação.

Proposição 2.38.

Seja $\gamma : [0,1] \to (M,g)$ curva suave por partes tal que $d(\gamma(0), \gamma(1)) = L(\alpha)$. Então γ é imagem de uma geodésica.

Demonstração. Observe primeiro que para cada $t \in [0, 1]$ existe um intervalo I_t tal que $\gamma(I_t)$ está contida em uma bola normal convexa.

Afirmamos que $\gamma(I_t)$ é imagem de um segmento de geodésica. De fato seja $I_t = [a, b]$ então como $\gamma(I_t)$ está contida em uma bola normal convexa então existe uma único segmento de geodésica α ligando $\gamma(a)$ a $\gamma(b)$ tal que $L(\alpha) = d(\gamma(a), \gamma(b))$. Suponha por absurdo que $\gamma(I_t)$ seja diferente de α . Então defina a concatenação $\beta = \gamma_{[a,b]} * \alpha * \gamma_{[0,a]}$ Note que $\beta(0) = \gamma(0), \beta(1) = \gamma(1)$ e $L(\beta) < L(\alpha)$ o que contraria a definição de γ .

Seja $I_{t_i}^0$ uma cobertura finita do intervalo compacto [0, 1] tais que $\gamma(I_{t_i})$ está em uma bola normal convexa. Se $s \in I_{t_i}^0 \cap I_{t_{i+1}}^0$ então considere um intervalo I_s^0 tal que $I_s^0 \subset I_{t_i}^0 \cap I_{t_{i+1}}^0$ e tal que $\gamma(I_s)$ esta contida em uma bola normal convexa. Como vimos acima $\gamma(I_s)$ é um segmento de geodesica contido nos segmentos de geodésicas $\gamma(I_{t_i}) \in \gamma(I_{t_{i+1}})$. Logo por EDO os segmentos de geodésicas $\gamma(I_{t_i})$ $\gamma(I_{t_{i+1}})$ ficam contidos em um segmento de geodésica maior e isto termina a prova.

Vamos terminar esta seção com mais uma interessante aplicação do teorema de bola normal (convexa). No teorema abaixo damos uma ideia da demonstração do teorema de Hopf-Rinow para o caso compacto usando apenas o conceito de bola normal e um argumento chamado *encurtamento* o qual é util no estudo de geodésicas em particular das geodésicas fechadas.

Teorema 2.39. Suponha que *M* é variedade Riemanniana compacta. Então:

(a) para todo $q \in M$ a aplicação exponencial $\exp_a: T_qM
ightarrow M$ está bem

definida (ie., M é geodesicamente completo).

(b) dados q e p em M, existe um segmento de geodésica $\gamma : [0, R] \to M$ (parametrizado por comprimento de arco) ligando q a p (i.e., $\gamma(0) = q e$ $\gamma(R) = p$) que realiza distância, i.e, $L(\gamma) = R = d(q, p)$. que realiza distância (i.e,

Demonstração. Afim de ter uma ideia da demonstração do item (a), aceitemos que a Equação 2.3.1 garante a existência de um campo (chamado campo geodésico) $\vec{G} \in \mathfrak{X}(TM)$ sendo que a projeção de sua linha integral coincide a geodésicas em M. Agora podemos restringir \vec{G} ao fibrado tangente unitario $T^1(M) := \{V_x \in T_x M, ||V_x|| = 1\}_{x \in M}$. Ao aplicar o resultado que afirma que todo campo suave definido em variedade compacta gera um grupo a 1 parametro de difeomorfismos podemos concluir que o fluxo de \vec{G} restrito $T^1(M)$ é completo (i.e, está definido para todo tempo) e assim projetando em M concluimos que M é geodesicamente completo.

Vamos agora dar ideia da prova do item (b). Como M é compacta podemos considerar uma cobertura finita de bolas B_{δ_i} que são vizinhanças normais convexas (vide Teorema 2.36). A esta cobertura considere δ o *número de Lebesgue* associado a ela, ou seja se $d(x, y) < \delta$ então $x, y \in B_{\delta_i}$ para algum *i*. Sejam R = d(q, p) e $0 < t_1 < t_2 \cdots t_{m-1} = R$ uma partição tal que $\Delta t_i := (t_i - t_{i-1}) < \frac{\delta}{4}$

Considere uma sequencia de curvas $\tilde{\gamma}_n : [0, b_n] \to M$ parametrizadas por comprimento de arco tal que $L(\tilde{\gamma}_n)$ converge a $R \operatorname{com} \tilde{\gamma}_n(0) = q \operatorname{e} \tilde{\gamma}_n(b_n) = p$. Considere $N > N_0$ tal que $R \leq L(\tilde{\gamma}_n) < R + \epsilon_0$ onde $\epsilon_0 < \frac{\delta}{8}$. Em particular observe que $b_n < R + \epsilon_0$ Defina $t_m^n := b_n$ (sendo que $t_{m-1} \leq t_m$).

Finalmente defina γ_n como a curva composta por união de segmentos de geodésicas ligando $x_n^{i-1} := \tilde{\gamma}_n(t_{i-1}) \operatorname{com} x_n^i := \tilde{\gamma}_n(t_i)$. De fato a escolha de Δt_i garante que existe uma única geodésica ligando tais pontos. Chamaremos γ_n o encurtamento de $\tilde{\gamma}_n$. Visto que M é compacta, passando por uma subsequencia (que continuaremos a denotar por $\{x_n^i\}_n$) podemos garantir que $\lim_{n\to\infty} x_n^i = x^i$. Novamente a escolha de Δt_i e propriedade do número de Lebesgue δ garante que existe um único segmento de geodésica ligando x^{i-1} e x^i . Vamos denotar por γ a curva que é a união destes segmentos de geodésicas. Note que $\gamma_n|_{[t_{i-1},t_i]}$ converge para $\gamma|_{[t_{i-1},t_i]}$. Visto que $L(\gamma_n)$ converge para R concluimos que $L(\gamma) = R$. Logo pela Proposição 2.38 concluimos que γ é a geodésica minimizante ligando q a p.

Excercício 2.40. *

Seja M	variedade Riemanniana compacta não simplesmente conexa. I	De-
monstre	e que por cada q existe um loop geodésico (i.,e uma geodésica \sim	γ :
$[0,1] \rightarrow$	$ ightarrow M$ tal que $\gamma(0)=\gamma(1)$, porém $\gamma'(0)$ não precisa ser igual a $\gamma'(1)$	1)).

Dado as técnicas apresentadas acima é conveniente dizer algumas palavras sobre um dos primeiros resultados sobre existência de geodésicas fechadas em variedades compactas (assunto muito estudado na Geometria Riemanniana). Seja β : $[0,1] \rightarrow M$ uma curva fechada (i.e, $\beta(0) = \beta(1)$) em uma variedade compacta M. Considere 2 partições τ_i e t_i definidas da seguinte forma, $\tau_0 = \tau_k - 1 < t_0 = 0 < \tau_1 < t_1 < \tau_2 < t_2 \cdots \tau_k < t_k = 1$ com Δt_i e $\Delta \tau_i$ pequenos o suficiente (onde a estimativa é feita adequadamente usando cobertura de bolas convexas e o número de Lebesgue). Aplicando o processo de encurtamento a curva fechada β (referente a partição t_i) discutido na demonstração acima, obetemos uma curva fechada γ_1 união de segmentos de geodésicas. Agora usando o encurtamento (referente a partição τ_i) a curva γ_1 obtemos uma nova curva fechada união de segmentos de geodésicas. Vamos denota-la por γ . Criamos então um processo que chamaremos **duplo-encurtamento** $\mathcal{P}(\beta) = \gamma$.

É possível demonstrar que as curvas fechadas união de segmentos de geodésicas $\mathcal{P}^n(\beta)$ converge para uma geodésica fechada γ , i.e, $\gamma'(0) = \gamma'(1)$, que em princípio poderia ser um ponto. Então surge a questão de como garantir que γ não é trivial. Podemos então pensar em 2 casos. O primeiro mais simples onde $\pi_1(M)$ é não trivial. Neste caso poderiamos ter começado com uma curva fechada β que não é homotopica a um ponto e aplicarmos o processo duplo a esta curva. Temos assim neste caso que γ é uma geodésica fechada não trivial, pois $\gamma e \beta$ estão na mesma classe de homotopia que não fixa extremos e β não pode ser deformada a um ponto. Finalmente considere o caso em que M é simplesmente conexo. Sabe-se por topologia algébrica que pelo menos um dos grupos de homotopia a um ponto. Aplicando duplo encurtamento a cada um dos paralelos concluimos que deve existir uma geodésica fechada, pois caso contrário a esfera seria homotópica a um disco, que por sua vez é homotópico a um ponto.

O leitor poderá encontrar em literatura mais especializada outros resultados sobre geodésicas fechadas em variedades (e.,g se existem mais de uma, como elas crescem etc). ²

²Alguns resultados sobre geodésicas fechadas em espaços singulares tais como orbifolds, podem ser encontrados em Alexandrino Javaloyes-on closed geodesics in the leaf space of singular Riemannian foliations.

2.4. Curvatura intrínseca, campos de Jacobi e Equação de Gauss

Vamos aqui considerar uma variedade Riemanniana (M^m, \mathbf{g}) . Na Subseção 2.4.3 precisaremos supor também que M^m está mergulhada em uma variedade Riemanniana $(\widetilde{M}^{m+k}, \widetilde{\mathbf{g}})$ sendo \mathbf{g} a métrica induzida por $\widetilde{\mathbf{g}}$. O leitor que se sentir mais confortável poderá supor sempre que $\widetilde{M}^{m+k} = \mathbb{R}^{m+k}$, supor que $\widetilde{\mathbf{g}}$ é a métrica induzida na variedade mergulhada M^m . Mesmo com tal simplificação, o leitor poderá aproveitar boa parte dos resultados aqui discutidos.

O principal resultado desta seção será o Teorema 2.64 que em particular implicará o teorema egregium de Gauss o qual afirma que a curvatura de Gauss (objeto extrinsicamente calculado) de uma superfície no espaço Euclidiano, coincide com a curvatura seccional(objeto intrinsicamente definido, vide Subseção 2.4.1). Para compreender uma das várias interpretações das curvaturas seccionais(que diferem da curvatura de Gauss nos caso em que \widetilde{M} não é o espaço Euclidiano) apresentamos o conceito de campos de Jacobi, vide Subseção 2.4.2. Campos de Jacobi são os vetores velocidades de variações por geodésicas. Aproveitamos o conceito de campo de Jacobi para provar a Proposição 2.53 a qual em particular implica que variedades Riemannianas com mesma curvatura seccional constante são localmente isométricas.

Embora campos de Jacobi sejam ferramentas fundamentais na Geometria Diferencial, o leitor que esteja somente interessado no Teorema 2.64, poderá se quiser, ler apenas a Definição 2.4.1 e Proposição 2.44 e seguir para Subseção 2.4.3.

2.4.1. Tensor curvatura e curvatura seccional

Iniciemos definindo um operador em campos tangente a M

$$\begin{array}{rcl} R:\mathfrak{X}(M)\times\mathfrak{X}(M)\times\mathfrak{X}(M) &\to & \mathfrak{X}(M) \\ & & (X,Y,\xi) &\to & R(X,Y)\xi \end{array}$$

onde

$$R(X,Y)\xi := \nabla_{[X,Y]}\xi - \nabla_X\nabla_Y\xi + \nabla_Y\nabla_X\xi$$

Por meio de cálculos diretos, é possível verificar o resultado a seguir.

Os itens (a), (b), (c) acima garantem então que R_p depende apenas dos vetores X(p), Y(p) e Z(p) e não dos campos X, Y, Z. Assim R é um (1, 3) tensor,i.e., $R_p: T_pM \times T_pM \times T_pM \to T_p$ é 3-linear. R será chamado **tensor curvatura**.

Item (f) garante que o **operador de Jacobi** $R_{v_p} : T_pM \to T_pM$ definido como $R_{v_p}(\cdot) := R(v_p, \cdot)v_p$ é uma transformação linear simétrica. Em particular, R_{v_p} admite uma base de auto-vetores, ortonormais a v_p .

Observação 2.42. interpretações

- Segue direto da definição que se o tensor curvatura é nulo então $\nabla_{\frac{\partial}{\partial x_i}}$ comuta com $\nabla_{\frac{\partial}{\partial x_i}}$.
- Como veremos na Subseção 2.4.2, o operador de Jacobi $R_{\gamma'_0(t)}$ também ajuda a medir quão rápido geodésicas $t \to \gamma_s(t)$ saindo do mesmo ponto $p_0 = \gamma_s(0)$ se afastam.
- Tensor curvatura mede quanto o o transporte paralelo depende de caminhos curtos, em particular, se R=0 então o transporte paralelo não depende de caminhos curtos.
- Veremos no Capítulo 4, como consequência de uma versão local do teorema de

Gauss Bonnet, uma relação entre curvatura seccional (a ser definida abaixo) e triângulos geodésicos em superfícies, ideia que pode ser generalizada para geometria em espaços métricos.

Seja $\sigma \subset T_pM$ um subespaço bi-dimensional e $X, Y \in \sigma$ vetores linearmente independente. Então definimos a **curvatura secional** em σ como:

$$K(X,Y) := \frac{\mathbf{g}(R(X,Y)X,Y)}{\mathbf{g}(X,X)\mathbf{g}(Y,Y) - \mathbf{g}(X,Y)^2}$$

De fato é possivel mostrar que K(X, Y) é o mesmo para qualquer outra base de σ . Também é possivel mostrar que tendo todas as curvaturas secionais de todos os subespaços bi-dimensionais de T_pM então pode-se reconstruir o tensor R_p .

A próxima proposição é um resultado útil sobre tensor curvatura de espaço de curvatura constante .

Proposição 2.43. (M, g) tem curvaturas secionais constantes iguais a K_0 se e somente se

$$g(R(X,Y)Z,T) = K_0(g(X,Z)g(Y,T) - g(X,T)g(Y,Z))$$

2.4.2. Campos de Jacobi e variações por geodésicas

Seja $\gamma : I \to (M, g)$ geodésica em uma variedade Riemanniana M com dimensão n. Um campo suave J ao longo de γ é chamado **campo de Jacobi** se ele atende a **equação de Jacobi**:

$$\frac{\nabla}{dt}\frac{\nabla}{dt}J + R_{\gamma'(t)}J(t) = 0.$$
(2.4.1)

onde $R_{\gamma'(t)}(\cdot) = R(\gamma', \cdot)\gamma'$ é o operador de Jacobi. Como vemos a seguir todo vetor velocidade de uma variação por geodésica é um campo de Jacobi.

Proposição 2.44.

Seja $f: (-\epsilon, \epsilon) \times [a, b] \to M$ uma aplicação suave tal que $t \to \gamma_s(t) = f(s, t)$ é geodésica para todo $s \in (-\epsilon, \epsilon)$. Então $J(t) = \frac{\partial f}{\partial s}(0, t)$ é campo de Jacobi ao longo da geodésica $t \to \gamma(t) = \gamma_0 = f(0, t)$. *Demonstração*. A prova é um cálculo direto, aceitando que o tensor curvatura restrito a variação (o que formalmente é chamado **pullback da curvatura** via *f*) não terá o termo de colchete.

$$\begin{split} \frac{\nabla}{dt} \frac{\nabla}{dt} J &= \frac{\nabla}{dt} \frac{\nabla}{dt} \frac{\partial f}{\partial s} \\ &= \frac{\nabla}{dt} \frac{\nabla}{dt} \frac{\partial f}{\partial t} \\ &= \frac{\nabla}{ds} \frac{\nabla}{dt} \frac{\partial f}{\partial t} - R(\frac{\partial f}{\partial t}, \frac{\partial f}{\partial s}) \frac{\partial f}{\partial t} \\ &= -R(\gamma', J)\gamma' \end{split}$$

Veremos na Proposição 2.46 que o resultado reciproco também será verdadeiro ou seja todo campo de Jacobi pode ser obtido por variações por geodésicas. Antes porém vamos descrever um campo de Jacobi em termos de um referencial paralelo e observar que ele de fato atende uma EDO e extrair algumas conclusões simples de tal equação diferencial.

Sejam J um campo de Jacobi ao longo de uma geodésica $\gamma e t \rightarrow \{e_i(t)\}_{i=0...n-1}$ um referencial ortonormal paralelo ao longo de γ onde $e_0 := \gamma'/||\gamma'||$. Neste caso para

$$J(t) = \sum_{i=0}^{n-1} f_i(t)e_i(t)$$

temos

Cálculo Avançado/ Copyright @2023 M. M. Alexandrino e Y. N. Alvarez

$$\frac{\nabla}{dt}\frac{\nabla}{dt}J = \sum_{i=0}^{n-1} f_i''(t)e_i(t).$$

Concluimos então que a equação de Jacobi pode ser escrita como

$$f''_{j}(t) + \sum_{i} f_{i}g(R(\gamma', e_{i})\gamma', e_{j}) = 0 \,\forall j$$
(2.4.2)

Em termos matricias temos

$$J'' + CJ = 0 (2.4.3)$$

onde $C = (c_{ij}) e c_{ij} = g(R(\gamma', e_i)\gamma', e_j)$. Em outras palavras C é a representação matricial de $R_{\gamma'}$ na base $\{e_i\}$. Note que $c_{ij} = c_{ji} e c_{0j} = 0$.

As equações acima nos permite inferir algumas conclusões imediatas sobre campos de Jacobi as quais resumimos na proposição a seguir.

- **Proposição 2.45.** (a) Se $V, W \in T_{\gamma(0)}M$ então existe um único campo de Jacobi J ao longo da geodésica $\gamma : [0,1] \to M$ tal que J(0) = V e $\frac{\nabla}{dt}J(0) = W$.
 - (b) Existem 2 n campos de Jacobi linearmente independentes.
 - (c) γ' e $t\gamma'$ são campos de Jacobi, os quais são soluções de $f_0''=0$
 - (d) Existem 2(n-1) campos de Jacobi perpendicular à γ (não necessáriamente ortogonais entre si).
 - (e) $g(J, \gamma') = t g(J'(0), \gamma') + g(J(0), \gamma'(0))$

Demonstração. Os itens (a),(b),(c) são imediatos. O item (d) segue da equação (2.4.3) levando em conta que $c_{0j} = 0$. Para verificar o item (e) basta observar que

$$g(J, \gamma') = \|\gamma'\| f_0$$

= $\|\gamma'\| (tf'_0(0) + f_0(0))$
= $\|\gamma'\| (tg(J'(0), \frac{\gamma'(0)}{\|\gamma'(0)\|}) + g(J(0), \frac{\gamma'(0)}{\|\gamma'(0)\|})).$

Podemos agora mostrar	que todo	campo	de Jacobi	é vetor	velocidade	de uma
variação por geodésicas.						

Proposição 2.46.

Seja J um campo de Jacobi ao longo de uma geodésica $\gamma : (-\epsilon, \epsilon) \to M$. Considere uma curva $\beta : (-1, 1) \to W$ com $\beta'(0) = J(0)$, um campo $s \to V(s)$ ao longo de β com $V(0) = \gamma'(0)$ e $\frac{\nabla}{ds}V(0) = \frac{\nabla}{dt}J(0)$. Suponha que a variação $f(s,t) := \exp_{\beta(s)}(tV(s))$ está bem definida. Então $J(t) = \frac{\partial f}{\partial s}(0,t)$.

Demonstração. Observe que $\frac{\partial f}{\partial s}(0,0) = J(0)$. Devemos verificar que $\frac{\nabla}{dt} \frac{\partial f}{\partial s}(0,0) = \frac{\nabla}{dt}J(0)$ e o resultado seguirá pela Proposição 2.44 e pela unicidade de EDO. Para

tanto basta observar que

$$\frac{\nabla}{dt}\frac{\partial f}{\partial s}(0,0) = \frac{\nabla}{ds}\frac{\partial f}{\partial t}(0,0)$$

$$= \frac{\nabla}{ds}(d(\exp_{\beta(s)})_{0}V(s))|_{s=0}$$

$$= \frac{\nabla}{ds}(V(s))|_{s=0}$$

$$= \frac{\nabla}{dt}J(0).$$

Observação 2.47.

É facil achar uma curva β tal que $\beta'(0) = J(0)$. Sejam $s \to X(s)$ e $s \to Y(s)$ os campos paralelos ao longo de β com $X(0) = \gamma'(0)$ e $Y(0) = \frac{\nabla}{dt}J(0)$. O campo $s \to V(s)$ pode então ser definido como V(s) := X(s) + sY(s). Se a aplicação \exp está sempre bem definida, e.g., M compacta então f está bem definida. Caso contrário, pode-se proceder da seguinte forma. Primeiro verifica-se que f está certamente bem definida para intervalos pequenos de s e t. Depois, grudando variações f_i ao longo de γ podemos construir a desejada variação f.

É conveniente considerar o caso particular de campos de Jacobi com J(0) = 0.

Corolário 2.48.

Suponha que $\exp_p : B_{\delta}(0) \to M$ está bem definida e seja $B := \exp_p(B_{\delta}(0))$. Seja J um campo de Jacobi ao longo de uma geodésica $\gamma \subset B$ com condições iniciais $J(0) = 0 \ e \ \frac{\nabla}{dt} J(0) = W$. Então

$$J(t) = \mathrm{d}(\exp_p)_{t\gamma'(0)} tW$$

Demonstração. Basta considerar na demonstração anterior a curva $\beta(s) = p$ e um campo $V(s) = \sum_i a_i(s)e_i(p) \operatorname{com} V(0) = \gamma'(0)$ e V'(0) = W. Observe que

$$\frac{\nabla}{ds}V(0) = V'(0) = \sum_{i} a'_{i}(0)e_{i}(p).$$

O resultado segue observando que

$$\frac{\partial f}{\partial s}(0,t) = \mathrm{d}(\exp_p)_{tV(0)} tV'(0).$$

Observação 2.49.

Por vezes é conveniente reescrever o corolário acima em termos de variações. Mais precisamente se J é um campo de Jacobi ao longo de uma geodésica $\gamma \operatorname{com} J(0) = 0$ e $W = \frac{\nabla}{dt}J(0)$ então $J(t) = \frac{\partial f}{\partial s}(0,t)$ onde $f(s,t) = \exp_p(tV(s))$ e V: $(-\epsilon,\epsilon) \to T_pM$ é curva com V'(0) = W e $V(0) = \gamma'(0)$.

Consideraremos agora campos de Jacobi em espaços de curvatura constante.

Proposição 2.50.

Sejam (M, g) variedade Riemanniana com curvaturas secionais constantes $K e \gamma$: $[0, a] \to M$ geodésica com vetor velocidade 1. Então o campo de Jacobi J ao longo de γ com condições iniciais $J(0) = 0 e \frac{\nabla}{dt} J(0) = w$ para w perpendicular a $\gamma'(0)$ é $J(t) = c_K(t)w(t)$ onde $w(\cdot)$ é o transporte paralelo de w ao longo de γ e c_K é a função definida como $c_K(t) := \frac{\sin(t\sqrt{K})}{\sqrt{K}}$ se $K > 0, c_K(t) := t$ se K = 0 e $c_K(t) := \frac{\sinh(t\sqrt{-K})}{\sqrt{-K}}$ se K < 0.

Demonstração. Considere o campo $\widetilde{J}(t):=c_K(t)w(t)$. Sabemos pela Proposição 2.43 que

$$g(R(\gamma', \widetilde{J})\gamma', e_i) = Kg(\widetilde{J}, e_i)$$

Assim

$$R(\gamma',\widetilde{J})\gamma' = K\widetilde{J}$$

Loco o campo \widetilde{J} atende a equação de Jacobi, ou seja

$$\frac{\nabla}{dt}\frac{\nabla}{dt}\widetilde{J} + K\widetilde{J} = 0.$$

O resultado segue da unicidade das soluções da equação de Jacobi, dado condições iniciais.

Temos então o seguinte corolário.

Corolário 2.51.

Seja M variedade Riemanniana com curvatura constante K. Suponha que \exp_p : $B_{\delta}(0) \to M$ está bem definida. Seja $f(s,t) = \exp_p(tv(s))$ onde $v : (-\epsilon, \epsilon) \to$

 $\mathbb{S}_1^{n-1} \subset T_p M$ é curva com ||V'(0)|| = 1 e $|t| < \delta$. Então $||J(t)|| = |c_K|$ onde c_K foi definido na proposição anterior e $J(t) := \frac{\partial f}{\partial s}(0, t)$.

Observação 2.52. Fórmula de Taylor

Caso M não possuia curvaturas secionais constante, ainda sim podemos ter uma estimativa de ||J||. De fato sejam $f \in J$ definidos como no corolário anterior. Então:

$$\|J(t)\|^2 = t^2 - \frac{1}{3}K(p,\sigma)t^4 + O(t^4)$$

$$\|J(t)\| = t - \frac{1}{6}K(p,\sigma)t^3 + O(t^3)$$

onde σ é o espaço bi-dimensional gerado por V(0) e V'(0).

A seguir iremos utilizar nosso conhecimento sobre campos de Jacobi em espaços de curvatura constante para descrever a métrica g em termos de coordenadas geodésicas polares.

Proposição 2.53.

Sejam (M^n, g) variedade Riemanniana com curvaturas secionais constantes $K \in \psi : (0, \delta) \times \mathbb{S}^{n-1} \to B_{\delta}(p)$ parametrização geodésica polar, i.e., $\psi(r, v) := \exp_p(rAv)$ onde $A : (\mathbb{R}^n, g_0) \to (T_pM, g)$ é isometria linear. Então a métrica g em coordenadas geodésicas polares (i.e., ψ^*g) é $dr^2 + (c_k(r))^2 ds^2$ onde ds^2 é a métrica canônica da esfera \mathbb{S}^{n-1} e a função c_K foi definida na Proposição 2.50.

Demonstração. Seja $\{e_i\} \subset T_v \mathbb{S}^{n-1}$ referencial ortonormal. Pelo Corolário 2.48

$$J_i(r) := d(\exp_p)_{rAv} rAe_i$$

= $d\psi_{(r,v)}(0, e_i),$

é campo de Jacobi ao longo da geodésica $r \to \exp_p(rAv)$. Utilizando Proposição 2.50 podemos verificar que

$$g(J_i, J_j) = \delta_{i,j} c_K^2.$$
 (2.4.4)

Por fim defina

$$J_0(r) := d(\exp_p)_{rAv}Av$$
$$= d\psi_{(r,v)}(1,0)$$

e utilizando o Lema de Gauss concluimos que

$$g(J_0, J_i) = 0. (2.4.5)$$

O resultado então seguirá das equações (2.4.4) e (2.4.5).

Observação 2.54.

A descrição acima implica em particular que: duas variedades Riemannianas com mesma dimensão e mesmas curvaturas secionais constantes iguais a constante c são localmente isométricas.

Observação 2.55.

Como comentamos acima, uma isometria $F : M^m \to N^m$ leva geodésica em geodésica, assim para todo p existe uma vizinhança U de p e V de q = F(p) tal que $F : U \to V$ é descrito como

$$\exp_q \circ A \circ \exp_p^{-1}$$
, para isometria $A: T_p M \to T_q N$, (2.4.6)

De fato A = DF(p). Uma pergunta natural é sobre que condições a reciproca é verdadeira. O teorema de Cartan (cuja demonstração usa campos de Jacobi) apresenta condições técnicas (descrita em termos do tensor curvatura e transportes paralelo ao longo de geodésicas radiais) para que a Equação (2.4.6) determine uma isometria. O teorema de Cartan de fato pode ser utilizado para demonstrar uma versão melhor da observação acima, ou seja se 2 variedades são simplesmente conexa e tem curvatura constante c elas são isométricas (e não apenas localmente isométricas). Quando consideramos dimensão 2, o teorema de Cartan ganha um formato bem elegante: Seja $A: T_pM^2 \to T_qN^2$ isometria, então $F = \exp_q \circ A \circ \exp_p^{-1}: U \subset M^2 \to$ $V \subset N^2$ é isometria, caso K(F(x)) = K(x) para cada $x \in M^2$.

2.4.3. Equação de Gauss e o teorema Egregium de Gauss

Como comentamos no início da seção, agora vamos supor que que M^m está mergulhada em uma variedade Riemanniana $(\widetilde{M}^{m+k}, \tilde{g})$ sendo g a métrica induzida por \tilde{g} . Para evitar sobrecarga de notação iremos denotar as 2 métricas simplesmente por g.

Vamos rever algumas ideias apresentadas na Seção 1.6 agora neste contexto um pouco mais geral.

A relação entre a conexão do ambiente $\widetilde{\nabla}$ e a conexão tangente ∇ é descrita pelo tensor $B: \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$ definido a seguir Definição 2.56. Tensor Segunda Forma

$$B(X,Y) = \widetilde{\nabla}_{\tilde{X}} \widetilde{Y} - \nabla_X Y$$

onde \widetilde{X} e \widetilde{Y} são extensões de X e Y.

Proposição 2.57.

- (a) B é bem definido (não depende das extensões)
- (b) $B \notin (1,2)$ tensor simétrico.

Demonstração. O item (a) e o fato de B ser um (1, 2) tensor pode ser demonstrado utilizando referencial adaptado e o fato de

$$\widetilde{\nabla}_{\tilde{X}}\tilde{Y} = D_X\tilde{Y} + \widetilde{A}(X)\tilde{Y}.$$

Para demonstrar que B é simétrico note

$$B(X,Y) = \widetilde{\nabla}_{\tilde{X}} \tilde{Y} - \nabla_X Y$$

= $\widetilde{\nabla}_{\tilde{Y}} \tilde{X} + [\tilde{X}, \tilde{Y}]$
- $(\nabla_Y X + [X, Y])$
= $B(Y, X).$

 \square

Por vezes também será conveniente tratar o (1,2) tensor B acima, como o (0,3) tensor abaixo.

Definição 2.58. Segunda forma

$$\Pi_{\eta}(X,Y) = g(B(X,Y),\eta)$$

onde X, Y são tangentes a M e η é um vetor normal.

Visto que B é simétrico, podemos então definir um operador simétrico (em relação ao produto g) $S_{\xi} : T_p M \to T_p M$ via o tensor segunda forma:

Definição 2.59. Operador forma

$$g(\mathcal{S}_{\eta}X,Y) = \Pi_{\eta}(X,Y)$$

O significado geométrico do operador forma pode ser compreendido mais claramente na proposição a seguir. Em particular para hipersuperfícies no espaço Euclidiano pode ser interpretado como *uma forma de medir quão rapido o vetor normal unitário varia, ou seja quão rápido uma hipersuperfície "curva". Em particular se o operador forma for sempre zero a hipersuperfície será um hiperspaço.*

Proposição 2.60. Seja $\eta \in \nu_p(M)$ e $\tilde{\eta}$ uma extensão de η em uma vizinhança de p em \widetilde{M} . Então

$$\mathcal{S}_{\eta}(X) = -\pi \left(\widetilde{\nabla}_X \widetilde{\eta} \right)$$

onde $\pi: T_p\widetilde{M} \to T_pM$ é a projeção ortogonal e $X \in T_pM$

Demonstração. Seja $Y \in T_p M$ um vetor qualquer fixo e \tilde{Y} uma extensão deste vetor. Observe primeiro que como $g(\eta, Y) = 0$ temos, apos derivar por X que $g(\widetilde{\nabla}_X \tilde{Y}, \tilde{\eta}) = -g(\tilde{Y}, \widetilde{\nabla}_X \tilde{\eta})$ e assim

$$g(\mathcal{S}_{\eta}X, Y) = g(\widetilde{\nabla}_{X}\widetilde{Y} - \nabla_{X}Y, \widetilde{\eta})$$
$$= g(\widetilde{\nabla}_{X}\widetilde{Y}, \widetilde{\eta})$$
$$= g(Y, -\widetilde{\nabla}_{X}\widetilde{\eta})$$

A equação acima e a arbitrariedade da escolha do vetor Y conclue a prova da proposição.

Observação 2.61.

Natural nos perguntarmos o que significa $B \in S_{\eta}$ serem zero. Dizemos que M é totalmente geodésica em p se $B_p = 0$. Mais geralmente M é totalmente geodésica se $B_p = 0$ para todo $p \in M$. Exemplos de subvariedades totalmente geodésicas:

- M é subespaço vetorial de $\widetilde{M} = \mathbb{R}^{m+k}$;
- V um subespaço de \mathbb{R}^{m+1} , defina $M := V \cap \mathbb{S}^m$ e $\widetilde{M} = \mathbb{S}^m$;

• M sendo subgrupo fechado de $\widetilde{M} = SO(n)$ com métrica $\langle X, Y \rangle = \text{tr} X Y^t$.

Uma vez estabelecidos alguns exemplos onde S_{η} são nulas, é natural considerarmos casos onde tais operadores simétricos não são nulos e assim somos levados a considerar seus auto-valores e tentarmos entender o significado destes.

Definição 2.62.

Seja η vetor normal unitário de M. Os autovalores λ_i do operador forma $S_{\eta}: T_p M \to T_p M$ são chamados **curvaturas principais**. Frequentemente os auto-vetores são chamados direções principais e os auto-espaço E_{λ} associados a uma curvatura principal λ de auto-espaço principal.

Uma interpretação geométrica das curvaturas principais já foi apresentada na Seção 1.6. Em particular, observamos que toda superfície é aproximada ou por um paraboloide elíptico ou por um paraboloide hiperbólico se $\lambda_1 \cdot \lambda_2 > 0$ ou se $\lambda_1 \cdot \lambda_2 < 0$. O produto $\lambda_1 \cdot \lambda_2$ em p era então chamado de **Curvatura de Gauss** e como ficará claro abaixo (teorema Egregium de Gauss), tal curvatura coincide de fato com a curvatura seccional K(p).

O próximo exercício fornece mais uma interessante interpretação sobre as curvaturas principais, agora destacando o significado de $\frac{1}{\lambda_i}$, as assim chamadas **distancias focais** que a grosso modo medem lugares onde superfícies "focalizam".

Excercício 2.63.

Seja M uma superfície mergulhada em $\widetilde{M} = \mathbb{R}^3$ e ξ vetor normal unitário a M. Defina $\eta_{r\xi} : M \to \mathbb{R}^3$ como $\eta_{r\xi}(x) = x + r\xi$

- (a) Sejam e_1 e e_2 direções principais em T_pM com curvaturas principais λ_1 e λ_2 . Verifique que $d\eta_{r\xi}e_i = (1 r\lambda_i)e_i$
- (b) Conclua que se $r \neq \frac{1}{\lambda_i}$ em vizinhança \tilde{U} de p, então existe vizinhança $U \subset \tilde{U}$ de p tal que $\eta_{r\xi}(U)$ é superfície mergulhada.

Chegamos agora ao resultado principal desta seção que relaciona curvatura intrinsica, curvatura do ambiente e segunda forma.

Teorema 2.64. eq. de Gauss

$$g(R(X,Y)X,Y) - g(\widetilde{R}(X,Y)X,Y) = g(B(X,X),B(Y,Y)) - g(B(X,Y),B(Y,X))$$

onde X, Y são tangentes a M.

Demonstração. Seja $\{e_{\beta}\}$ referencial ortonormal a M definido em uma vizinhança de $p \in M$. Ou seja para todo $x \in M$ próximo a p, temos que $\{e_{\beta}(x)\}$ é base de $\nu_x(M) := TM_x^{\perp}$. Temos então que $B(X,Y) = \sum_{\beta} g(\widetilde{\nabla}_X Y, e_{\beta}) e_{\beta}$ Estamos aqui usando a notação $\widetilde{\nabla}_X Y$ para denotar $\widetilde{\nabla}_X \widetilde{Y}$ onde \widetilde{Y} é extensão de Y próximo a p. Logo

$$\widetilde{\nabla}_Y X = \nabla_Y X + \sum_{\beta} g(\widetilde{\nabla}_Y X, e_{\beta}) e_{\beta}$$

Uma vez que $g(e_{\beta}, Y) = 0$ temos que:

$$g(\nabla_X \nabla_Y X, Y) = g(\nabla_X \nabla_Y X, Y) + \sum_{\beta} g(\widetilde{\nabla}_Y X, e_{\beta}) g(\widetilde{\nabla}_X e_{\beta}, Y) = g(\nabla_X \nabla_Y X, Y) - \sum_{\beta} g(\nabla_Y X, e_{\beta}) g(e_{\beta}, \widetilde{\nabla}_X Y)$$

e assim concluimos:

$$g(\widetilde{\nabla}_X \widetilde{\nabla}_Y X, Y) = g(\nabla_X \nabla_Y X, Y) - g(B(X, Y), B(Y, X)).$$
(2.4.7)

De forma análoga obtemos

$$g(\widetilde{\nabla}_Y \widetilde{\nabla}_X X, Y) = g(\nabla_Y \nabla_X X, Y) - g(B(X, X), B(Y, Y)).$$
(2.4.8)

Por fim note que:

$$g(\widetilde{\nabla}_{[X,Y]}X,Y) = g(\nabla_{[X,Y]}X,Y).$$
(2.4.9)

As eq. (2.4.7), (2.4.8) e (2.4.9) implicam a Equação de Gauss.

A equação de Gauss nos permite algumas conclusões diretas. Em particular no item (b) do exercício abaixo vemos o celebrado **teorema Egregium de Gauss**, que observa que a curvatura secional de uma superfície em \mathbb{R}^3 (que é definido intrinsiciamente) pode ser calculada como o produto das curvaturas principais (que é calculado extrinsicamente).

Cálculo Avançado/ Copyright @2023 M. M. Alexandrino e Y. N. Alvarez

- (a) Verifique que $K(e_1, e_2) \tilde{K}(e_1, e_2) = \lambda_1 \lambda_2$ onde e_1, e_2 são direções principais de $T_p M$ associadas as curvaturas principais $\lambda_1 e \lambda_2$.
- (b) Conclua que se $\widetilde{M} = \mathbb{R}^3$ com métrica Euclidiana, então a curvatura sectional da superfície $M \notin K(p) = \lambda_1 \lambda_2$.

2.5. Curvatura média e superfícies mínimas

Nesta seção vamos estudar conceitos que estão diretamente relacionados à média das curvaturas principais (vide item (c) da Proposição 1.77). Para isso, vamos introduzir formalmente este conceito.

Definição 2.66.

Seja uma superfície S em \mathbb{R}^3 e $p \in S$. A média das curvaturas principais

$$H = \frac{k_1 + k_2}{2},$$

é chamada de curvatura média de S no ponto p, e o vetor H = HN é chamado de vetor curvatura média.

Observação 2.67.

Assim como no caso da curvatura de Gauss (Observação 1.73), o sentido do vetor curvatura média não depende do sentido do vetor normal, pois se mudamos o sentido deste, também muda o sinal da curvatura média e, portanto, o sentido de **H** permanece invariante.

2.5.1. Superfícies mínimas

A palavra mínima neste contexto está relacionada com o problema de encontrar a superfície com a menor área dentre todas as superfícies que tem a mesma fronteira.

De fato, se consideremos uma superfície S em \mathbb{R}^3 e consideramos variações normais de tal superfície, ou seja, para cada $\lambda \in \mathbb{R}$, consideramos a aplicação

$$\psi_{\lambda}: \begin{array}{ccc} U & \longrightarrow & \mathbb{R}^3 \\ (x_1, x_2) & \longmapsto & \psi(x_1, x_2) + \lambda h(x_1, x_2) N(x_1, x_2) \end{array},$$

onde N é o normal à superfície e $h(x_1, x_2)$ uma função arbitrária e diferenciável em U, então a primeira variação da área é dada por:

$$A'(0) = -2 \iint_D hH\sqrt{\det(g)}dx_1dx_2.$$
 (2.5.1)

Então podemos estabelecer a seguinte proposição.

Proposição 2.68.

Seja S uma superfície mergulhada $\psi : U \longrightarrow \mathbb{R}^3$. Então ela é um ponto crítico do funcional da área para uma dada condição de contorno se, e somente se, a sua curvatura média é identicamente nula.

Demonstração. Se $H \equiv 0$ é claro que a condição é satisfeita pois vale (2.5.1). Reciprocamente, suponhamos que A'(0) = 0 e que existe $q \in D$ tal que $H(q) \neq 0$, então existe uma vizinhança V na qual H não se anula. Escolhamos $h : \overline{D} \longrightarrow \mathbb{R}$ diferenciável tal que h(q) = H(q), hH > 0 em V e h tem suporte compacto em V. Assim A'(0) < 0 para a variação determinada por essa função h, o que é uma contradição.

Definição 2.69.

Uma superfície mergulhada S é chamada de superfície mínima se a curvatura média é zero em cada ponto da superfície.

Observação 2.70.

A seguinte questão é, então, natural: se S é uma superfície mínima que tem como bordo a curva Γ , ela minimiza globalmente a área? A resposta a esta pergunta é negativa e isto foi observado por H. A. Schwarz (ver obras completas publicadas em 1890) mostrando que, quando a fórmula da segunda variação do funcional área para a superfície mínima que tem como bordo Γ é estritamente menor que zero, ela não minimiza globalmente a área. Porém, as mesmas minimizam localmente a área e a

prova pode ser encontrada em [?].

Lema 2.71.

Uma superfície mínima está caracterizada em termos da primeira e segunda forma fundamental pela equação

$$g_{11}b_{22} + g_{22}b_{11} - 2g_{12}b_{12} = 0. (2.5.2)$$

Demonstração. Segue diretamente do item (c) da Proposição 1.77.

Exemplo 2.72. O catenoide

O catenoide é a superfície gerada pela rotação da catenária $x_2 = a \cosh\left(\frac{x_3}{a}\right)$, a > 0 em torno do eixo x_3 (veja figura 2.2).

Logo, ele é a imagem da aplicação

 $\psi(s,t) = (a\cosh(t)\cos(s), a\cosh(t)\sin(s), at).$

Fazendo uso da fórmula para H obtida no Exemplo 1.78 – observando que, neste caso, $r(t) = a \cosh(t) e h(t) = at$ – obtêm-se H = 0 (deixamos o cálculo explícito ao cargo do leitor). Logo tal superfície é mínima.

Um fato interessante do catenoide é que pode ser caracterizado como a única superfície mínima de revolução (não plana).

Excercício 2.73.

Se S é uma superfície mínima de revolução em \mathbb{R}^3 (não plana), então S é um catenoide ou um pedaço dele.

Sugestao: Fazendo H = 0 na fórmula do Exemplo 1.78, mostre que as únicas possibilidades para $r \in h$ são as do exemplo precedente.

2.5.2. EDP das superfícies mínimas

Vamos considerar o caso em que a superfície mínima seja o gráfico de uma função diferenciável $f: U \subset \mathbb{R}^2 \to \mathbb{R}$. Sabemos que uma parametrização é dada por:

$$\psi(x_1, x_2) = (x_1, x_2, x_3 - f(x_1, x_2)).$$

Assim,

$$d\psi_p(e_1) = \left(1, 0, \frac{\partial f}{\partial x_1}\right)$$
 e $d\psi_p(e_2) = \left(0, 1, \frac{\partial f}{\partial x_2}\right)$.

Logo, da Definição 1.27 segue que os coeficientes da métrica induzida estão dados por

$$g_{11} = 1 + \left(\frac{\partial f}{\partial x_1}\right)^2, \ g_{12} = \left(\frac{\partial f}{\partial x_1}\right) \left(\frac{\partial f}{\partial x_2}\right), \ e \ g_{22} = 1 + \left(\frac{\partial f}{\partial x_2}\right)^2.$$

O vetor normal unitário é, portanto,

$$N = \frac{\left(-\frac{\partial f}{\partial x_1}, -\frac{\partial f}{\partial x_1}, 1\right)}{\sqrt{\left(\frac{\partial f}{\partial x_1}\right)^2 + \left(\frac{\partial f}{\partial x_1}\right)^2 + 1}},$$

e, como

$$\frac{\partial^2 \psi}{\partial x_i \partial x_j} = \left(0, 0, \frac{\partial^2 f}{\partial x_i \partial x_j}\right),\,$$

segue que os coeficientes da segunda forma são

$$b_{ij} = \frac{\frac{\partial^2 f}{\partial x_i \partial x_j}}{\sqrt{\left(\frac{\partial f}{\partial x_1}\right)^2 + \left(\frac{\partial f}{\partial x_1}\right)^2 + 1}}.$$

Com isto obtemos uma equação equivalente à equação (2.5.2), que é uma equação diferencial parcial quasilinear e elíptica dada por:

$$\left(1 + \left(\frac{\partial f}{\partial x_2}\right)^2\right) \left(\frac{\partial^2 f}{\partial x_1^2}\right) - 2\frac{\partial f}{\partial x_1}\frac{\partial f}{\partial x_2}\frac{\partial^2 f}{\partial x_1\partial x_2} + \left(1 + \left(\frac{\partial f}{\partial x_1}\right)^2\right) \left(\frac{\partial^2 f}{\partial x_2^2}\right) = 0.$$
(2.5.3)

Sendo que toda superfície mergulhada é localmente um gráfico, a equação (2.5.3) nos permite encontrar exemplos específicos de superfícies mínimas. Tal equação é chamada de *EDP das superfícies mínimas*.

Exemplo 2.74.

Vamos usar a equação (2.5.3) para mostrar que o helicoide é uma superfície mínima. O helicoide de passo um está dado pela imersão

$$\psi(x_1, x_2) = (x_2 \cos x_1, x_2 \sin x_1, x_1).$$

Figura 2.3: O helicoide como uma superfície regrada.

Supondo que $x_1 \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ e $x_2 \neq 0$, temos que

$$\frac{x_2(x_1, x_2)}{x_1(x_1, x_2)} = \tan x_1,$$

logo,

$$x_3 = \arctan \frac{x_2}{x_1}.$$

Portanto, o helicoide é, localmente, o gráfico da função

$$f(x_1, x_2) = \arctan \frac{x_2}{x_1},$$

onde $x_1 \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ e $x_2 \neq 0$. Logo,

$$\frac{\partial f}{\partial x_1} = \frac{1}{1 + \left(\frac{x_2}{x_1}\right)^2} \cdot \frac{-x_2}{x_1^2} = \frac{-x_2}{x_1^2 + x_2^2}$$
$$\frac{\partial f}{\partial x_2} = \frac{1}{1 + \left(\frac{x_2}{x_1}\right)^2} \cdot \frac{1}{x_1} = \frac{x_1}{x_1^2 + x_2^2}$$
$$\frac{\partial^2 f}{\partial x_1^2} = \frac{x_2 \cdot 2x_1}{\left(x_1^2 + x_2^2\right)^2} = \frac{2x_1x_2}{\left(x_1^2 + x_2^2\right)^2}$$
$$\frac{\partial^2 f}{\partial x_2^2} = \frac{-2x_1x_2}{\left(x_1^2 + x_2^2\right)^2}$$
$$\frac{\partial^2 f}{\partial x_1 \partial x_2} = \frac{-\left(x_1^2 + x_2^2\right) + x_2 \cdot 2x_2}{\left(x_1^2 + x_2^2\right)^2} = \frac{x_2^2 - x_1^2}{\left(x_1^2 + x_2^2\right)^2}$$

Donde,

$$\left(1 + \left(\frac{\partial f}{\partial x_2}\right)^2\right)\frac{\partial^2 f}{\partial x_1^2} = \frac{\left(x_1^2 + x_2^2\right)^2 + x_1^2}{\left(x_1^2 + x_2^2\right)^2} \cdot \frac{2x_1x_2}{\left(x_1^2 + x_2^2\right)^2}$$
(2.5.4)

$$\left(1 + \left(\frac{\partial f}{\partial x_1}\right)^2\right)\frac{\partial^2 f}{\partial x_2^2} = \frac{\left(x_1^2 + x_2^2\right)^2 + x_2^2}{\left(x_1^2 + x_2^2\right)^2} \cdot \frac{-2x_1x_2}{\left(x_1^2 + x_2^2\right)^2}.$$
 (2.5.5)

Somando (2.5.4) e (2.5.5) obtemos,

$$\begin{pmatrix} 1 + \left(\frac{\partial f}{\partial x_2}\right)^2 \end{pmatrix} \frac{\partial^2 f}{\partial x_1^2} + \left(1 + \left(\frac{\partial f}{\partial x_1}\right)^2\right) \frac{\partial^2 f}{\partial x_2^2} \\ = \frac{2x_1 x_2}{\left(x_1^2 + x_2^2\right)^2} \left(\frac{\left(x_1^2 + x_2^2\right)^2 + x_1^2 - \left(x_1^2 + x_2^2\right)^2 - x_2^2}{\left(x_1^2 + x_2^2\right)^2}\right) \\ = \frac{2x_1 x_2}{\left(x_1^2 + x_2^2\right)^2} \cdot \frac{-\left(x_2^2 - x_1^2\right)}{\left(x_1^2 + x_2^2\right)^2} \\ = 2 \cdot \frac{-x_2}{\left(x_1^2 + x_2^2\right)} \cdot \frac{x_1}{\left(x_1^2 + x_2^2\right)} \cdot \frac{x_2^2 - x_1^2}{\left(x_1^2 + x_2^2\right)^2} \\ = 2 \frac{\partial f}{\partial x_1} \frac{\partial f}{\partial x_2} \frac{\partial^2 f}{\partial x_1 \partial x_2}.$$

O helicoide pode ser caracterizado como a única superfície mínima regrada.

Excercício 2.75. *

Toda superfície mínima regrada ou é parte de um plano ou é parte de um helicoide.

Sugestao: Use o fato de que uma superfície regrada³ é a imagem da parametrização

$$\psi(x_1, x_2) = \gamma(x_1) + x_2 w(x_1), \ x_1 \in I \subset \mathbb{R}, \ x_2 \in \mathbb{R},$$

onde $\{\gamma(t), w(t)\}$ é a família a 1-parâmetro geradora da superfície. Obtenha a fórmula para a curvatura média de uma superfície com tal parametrização, e mostre a seguir que se a mesma for 0 então as expressões de γ e w são as do helicoide.

³As superfícies regradas são aquelas que tem a propriedade de que por cada um dos seus pontos passa uma reta que está inteiramente contida na superfície.

Índice Remissivo

conexão Riemanniana, 58 Critério da segunda derivada, 28 curvatura de Gauss, 44 média, 90 vetor, 90 curvatura secional, 79 EDP das superfícies mínimas, 94 forma fundamental segunda, 45 função de Cobb-Douglas, 23 Hessiano de f em p, 25 máximo local, 29 média, curvatura, 90 mínima superfície, 91 mínimas, EDP das superfícies, 94 mínimo local, 29

matriz hessiana, 26 polinômio de Taylor de grau 2 em torno de p, 32 ponto crítico, 30 primeira forma, 15 segunda forma fundamental, 45 superfície mínima, 91 superfícies mínimas, EDP das, 94 tensor curvatura de espaço de curvatura constante, 79 teorema expectral, 26 variedades mergulhadas, 4 vetor curvatura média, 90 gradiente, 16

Todo list