30 Lista de Exercício de MAT5711 (10 semestre 2006)

Questão 1. a) Enuncie o teorema de Fubini.

b) Demonstre o teorema de Fubini.

Questão 2. Calcule $\int_U f$ para f(x,y) = y e

$$U := \{(x, y) \in \mathbb{R}^2 | x \ge y^2, x + y \le 2\}$$

Questão 3. Calcule $\int_1^4 \int_{\frac{\ln(y)}{y}}^{\ln(2)} \frac{1}{\exp(x)+1} dx dy$

Questão 4. Calcule a integral de f(x, y, z) = x no tetraedro limitado pelos planos coordenados e o plano x + 2y + 3z = 6.

Questão 5. 1. Exercicio 2.26 do Spivak (construção da função chapeu).

2. Enuncie e demonstre o teorema da partição da unidade com suporte compacto, quando o espaço em questao é compacto.

Questão 6. a) Enuncie o teorema de mudança de variaveis.

b) Seja $g:U\subset\mathbb{R}^2\to V\subset\mathbb{R}^2$ uma aplicacao suave tal que $g(x,y)=(g_1(x,y),y)$. Suponha que $\frac{\partial g_1}{\partial x}$ é sempre diferente de zero. Demonstre o teorema de mudança de variaveis para f=1 e considerando g como a mudança de variaveis.

Questão 7. Calcule $\int_U \sqrt{x^2 + y^2 + z^2}$ onde

$$U := \{(x, y, z) \in \mathbb{R}^3 | z \ge \sqrt{3x^2 + 3y^2}, x^2 + y^2 + z^2 \le 1\}$$

Questão 8. Calcule $\int_U x^2 + y^2$ onde

$$U:=\{(x,y,z)\in\mathbb{R}^3|\sqrt{x^2+y^2}\leq z\leq 2\}$$

Questão 9. Calcule $\int_U \sqrt{x^2 + y^2}$ onde

$$U := \{(x, y) \in \mathbb{R}^2 | (x - 1)^2 + y^2 \le 1\}$$

Questão 10. 1. Faça o Exercicio 4-3 do Spivak

- 2. Leia as demonstrações dos teoremas 4-8, 4-9, 4-10 do Spivak
- 3. Faça Exercícios 4-19, 4-20, 4-21 do Spivak.

Questão 11. Uma k-forma ω em uma variedade suave M. Suponha que $\psi^*\omega$ é suave onde $\psi: U \subset \mathbb{R}^n \to V \subset M$ é uma parametrização. Mostre que $\tilde{\psi}^*\omega$ é suave para qualquer outra parametrização $\tilde{\psi}$ de M.

Questão 12. Seja ω uma k-forma suave em uma variedade suave M. Para i=1,2 considere parametrizações $\psi_i:U_i\subset\mathbb{R}^n\to V_i\subset M$ e aplicações suaves H_i tais que $H_i|V_i=\psi_i^{-1}$. Suponha que a interseção de V_1 com V_2 não é vazia. Mostre que $H_1^*d\psi_1^*\omega=H_2^*d\psi_2^*\omega$.

Questão 13. Sejam $s: \mathbb{R}^n \to \mathbb{R}^{n+1}$ e $\pi: \mathbb{R}^{n+1} \to \mathbb{R}^n$ aplicações definidas como s(x) = (x,0) e $\pi(x,t) = x$ respectivamente. Dado $\omega \in \Omega^k(\mathbb{R}^{n+1})$ (i.e., ω é uma k forma suave em \mathbb{R}^{n+1}) é possivel notar que ela é combinação linear das seguintes formas:

- I) $\pi^* \phi \cdot f(x,t)$ onde ϕ é k-forma suave em \mathbb{R}^n .
- II) $\pi^* \phi \wedge f(x,t) dt$ onde $\phi \in (k-1)$ -forma suave em \mathbb{R}^n .

Seja $K: \Omega^k(\mathbb{R}^{n+1}) \to \Omega^{k-1}(\mathbb{R}^{n+1})$ uma aplicação linear definida como $K(\omega) = 0$ se ω é do tipo I) e $K(\omega) = \pi^*\phi \cdot \int_0^t f(x,s)ds$ para ω do tipo II).

- a) Prove que $Id \pi^* s^* = (-1)^{k-1} (dK Kd)$.
- b) Mostre que $H^k(\mathbb{R}^{n+1}) = H^k(\mathbb{R}^n)$
- c) Conclua que $H^k(\mathbb{R}^n) = 0$ se k > 0 e $H^k(\mathbb{R}^n) = \mathbb{R}$ se k = 0.

Questão 14. Seja S uma superfície mergulhada em \mathbb{R}^3 orientada por um vetor normal unitário N. Suponha que existe uma parametrização $\psi: U \subset \mathbb{R}^2 \to S \subset \mathbb{R}^3$ injetora tal que U é limitado e $N = \frac{\frac{\partial \psi}{\partial u_1} \times \frac{\partial \psi}{\partial u_2}}{\|\frac{\partial \psi}{\partial u_1} \times \frac{\partial \psi}{\partial u_2}\|}$. Seja ω a forma volume de \mathbb{R}^3 e $\tilde{\omega}$ a forma volume de S, i.e., a 2-forma $\omega(N,\cdot,\cdot)$ restrita a S.

a) Mostre que

$$\psi^* \tilde{\omega} = \| \frac{\partial \psi}{\partial u_1} \times \frac{\partial \psi}{\partial u_2} \| du_1 \wedge du_2 \|$$

. Conclua que

$$\int_S f \, \cdot \tilde{\omega} = \int_U f \circ \psi \, \cdot \| \frac{\partial \psi}{\partial u_1} \times \frac{\partial \psi}{\partial u_2} \|$$

onde f é uma função suave definida em \mathbb{R}^3 .

b) Suponha que S é definida pelas equações abaixo.

$$S = \{(x, y, z) \in \mathbb{R}^3 | z = 9 + 2x - y, x^2 + y^2 \le 1\}$$

Calcule a area de S.

Questão 15 (Exame de Maio 2006). Considere a superfície definida abaixo:

$$S = \{(x, y, z) \in \mathbb{R}^3 | z = 1 - x^2 - y^2, z > 0\}$$

- a) Calcule a integral de f(x, y, z) = 1 z sobre S.
- b) Considere o campo definido abaixo:

$$F(x, y, z) = (x + \exp(y), yz + \sin^{2}(x), 5 + z^{2})$$

Calcule o fluxo do campo F através da superfície S orientada pelo vetor normal unitário n o qual tem terceira componente positiva.

Questão 16 (Exame de Maio de 2006). a) Enuncie o teorema de Stokes para uma variedade M de classe C^{∞} que tem dimensão m.

b) Demonstre o teorema de Stokes para os seguintes casos particulares:

- b.1) $M = \mathbb{R}^2$
- b.2) $M = \{(x, y) \in \mathbb{R}^2 / y \ge 0\}$
- c) Utilizando partição da unidade, demonstre o teorema de Stokes para uma variedade de classe C^{∞} de dimensão 2.
- **Questão 17** (Exame de Maio de 2006). a) Sejam ω a forma volume de \mathbb{R}^3 e X um campo de classe C^{∞} em \mathbb{R}^3 . Defina $i_X\omega$ como sendo a 2-forma $\omega(X,\cdot,\cdot)$. Mostre que $d(i_X\omega)=\operatorname{div}(X)\omega$.
 - b) Sejam S uma superfície mergulhada em \mathbb{R}^3 fechada de classe C^{∞} e U o sólido que tem S como fronteira. Suponha que S é orientada por um vetor normal unitário n apontando para fora. Mostre que $i_X\omega$ restrita a S é a 2-forma $< X, n > \tilde{\omega}$ onde $\tilde{\omega}$ é a 2-forma volume de S.
 - c) Por fim, demonstre o teorema de Gauss, i.e.,

$$\int_{U} \operatorname{div}(X)\omega = \int_{S} < n, X > \tilde{\omega}$$