
y +1/1/60+ y
MAC2166 - Introdução a Computação - 2024S1 Avaliação P3

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

Utilize caneta azul ou preta e preencha completamente a quadrícula.
Exemplo: �. Não use �.

Turma: (somente um número; consulte a pessoa responsável se não souber)

4 5 6 7 8 9 10 11 12 13 14 20

←− Marque as quadrículas ao lado para formar o seu número USP e escreva seu
nome completo em letra legível na linha pontilhada abaixo. Se seu número
possui menos que 8 dígitos complete com zeros à esquerda.

Nome:

. .

Esta prova tem duração de 120 minutos. Não desmonte a prova.

Q1 [1,5 pontos] Simule o código abaixo e selecione as opções correspondentes às linhas impressas pelo programa
(Nenhuma linha deve ser selecionada caso o programa não imprima a enésima linha)

def f1(s):

r = 10 - len(s)%10

return (s + str(r) + str(r))

def f2(c):

o = c

if c == "1":

o = "One"

elif c == "3":

o = "Three"

elif c == "6":

o = "Six"

return o

def main():

L = "aeiou"

F = "MAC2166 "

K = L.upper()

print(len(F))

G=f1(F[:7])

for i in range(len(G)-5):

if G[i] not in L:

print(f2(G[-i]))

print(f2(G[i+1]), f2(G[i+2]), end="")

print(G[8])

main()

Rascunho

Selecione a primeira linha:

1 7 8 5 AEIOU

Selecione a segunda linha:

M MAC216633 3 MAC2166 33 8

Selecione a terceira linha:

M MAC216633 A Three MAC2166 33

Selecione a quarta linha:

M A 3 Three C

Selecione a quinta linha:

A C Three Six 2

Selecione a sexta linha:

Two One C Three One Six3

Selecione a sétima linha:

Nenhuma linha One Six Three One Six3

Selecione a oitava linha:

3 Nenhuma linha One Six One Six3

y y

y +1/2/59+ y
Q2 [2,5 pontos]

Nesta questão há dois arquivos, um arquivo de entrada e um arquivo de saída. O arquivo de entrada possui os
dados das notas dos alunos de uma turma em um curso especial e está organizado em quatro linhas nas quais os dados
são separados por vírgula. A linha 0 contém os nomes dos alunos de uma turma; a linha 1 contém o Número USP dos
alunos desta turma; a linha 2 contém as notas da primeira prova do curso; e a linha 3 contém as notas da segunda
prova do curso. Esses dados estão organizados de forma que cada coluna corresponde aos dados de um mesmo aluno.

O objetivo desta questão é fazer uma função que cria um arquivo transposto no qual substituímos as duas notas de
cada aluno pela média usp, uma média �ctícia incluída no módulo pacote_usp como uma função de nome média_usp,
que recebe duas notas e retorna um novo valor. Queremos escrever uma função que recebe duas strings com os
nomes dos arquivos de entrada e saída, respectivamente, e escreve um arquivo (apagando o conteúdo previamente
existente nesse arquivo) no qual cada linha corresponde a um aluno. Por exemplo, se a média for calculada por
(nota1 + 2 ∗ nota2)/3 e o arquivo de entrada for

Longina Diana, Nóra Pradeep, Juancho Ramazan
67363, 43392, 85114
2, 5, 8
3, 7, 7

O arquivo de saída deve ser

Longina Diana, 67363, 2.6666666666666665
Nóra Pradeep, 43392, 6.333333333333333
Juancho Ramazan, 85114, 7.333333333333333

import pacote_usp

def transposta_usp(entrada, saida):

input_file = open(entrada, L1)

output_file = open(saida, L2)

dados = []

for linha in input_file:

dados.append(linha.rstrip().split(L3))

input_file.close()

for i in range(len(dados[0])):

output_file.write(L4 .strip() + ", ")

output_file.write(L5 .strip() + ", ")

nota1, nota2 = int(dados[2][i]), L6

media = L7 (nota1,nota2)

output_file.write(L8)

output_file.close()

Preencha as lacunas no código acima (L1 até L8), assinalando as respostas correspondentes abaixo.

Consideração: Para cada lacuna, assinale no máximo uma resposta.

L1: read r a 'r' 'w'

L2: write append 'w' 'a' r

L3: ; "," "\n" " " ,

L4: dados[0] dados[0][0] dados[1][i] dados[i][0] dados[0][i]

L5: dados[1][i] dados[1] dados[0][i] dados[1][0] dados[i][0]

L6:
int(dados[3][i]) str(dados[3][i]) nota1 int(dados[2][i])

dados[3][i]

L7:
pacote_usp média_usp pacote_usp.media média_usp.pacote_usp

pacote_usp.média_usp

L8:
str(media) str(media), end = "\n" int(media) + "\n" media + "\n"

str(media) + "\n"

y y

y +1/3/58+ y
Q3 [2,5 pontos]

Você foi convidado a integrar uma equipe responsável por desenvolver um pequeno sistema para gerenciar o
empréstimo de livros do Grêmio da POLI. Sua tarefa foi escrever uma bateria de testes automatizados para o sistema
que possui as seguintes funções:

def insere_livro(titulo, autor, ano):

devolve um código único para o livro inserido e o registra como disponível

def busca_livro(titulo):

devolve o código de um livro que possui o titulo convidado

ou devolve -1 caso o livro não tenha sido encontrado

def empresta_livro(codigo):

devolve True caso o livro esteja disponível e o registra como emprestado

devolve False caso o livro esteja já emprestado

def devolve_livro(codigo):

devolve True caso o livro esteja emprestado e o registra como disponível

devolve False caso o livro não esteja emprestado ou não exista

def limpa():

remove todos os livros da biblioteca

import pytest

import biblioteca

def monta_biblioteca():

biblioteca.limpa()

biblioteca.insere_livro("Amor nos tempos do cólera", "Gabriel Garcia Marques", 1984)

biblioteca.insere_livro("Engineering for Dummies", "John Eng", 1922)

biblioteca.insere_livro("Manual do politécnico revolucionário", "Carlos Marcos", 1867)

def testa_emprestimo_com_sucesso():

monta_biblioteca()

cod1 = biblioteca.busca_livro("Amor nos tempos do cólera")

L1
r1, r2 = biblioteca.empresta_livro(cod1), biblioteca.empresta_livro(cod2)

L2

def testa_emprestimo_repetido():

monta_biblioteca()

cod1 = biblioteca.busca_livro("Amor nos tempos do cólera")

L3
assert (r1, r2) == (True, False)

def testa_devolucao_com_sucesso():

monta_biblioteca()

cod1 = biblioteca.busca_livro("Amor nos tempos do cólera")

L4

L5
assert (r1, r2) == (True, False)

def testa_devolucao_sem_emprestimo():

monta_biblioteca()

L6

Preencha as lacunas no código acima (L1 até L6), assinalando as respostas correspondentes abaixo.

Consideração: Para cada lacuna, assinale no máximo uma resposta.

L1:

cod1 = biblioteca.busca_livro("Engineering for Dummies")

cod1 = biblioteca.busca_livro("Carlos Marcos")

cod3 = biblioteca.busca_livro("Engineering for Dummies")

cod2 = biblioteca.busca_livro("Amor nos tempos do cólera")

cod2 = biblioteca.busca_livro("Engineering for Dummies")

y y

y +1/4/57+ y
L2:

assert (r1, r2) == (True, False) assert (r1, r2) == (False, True)

assert (r1, r1) == (False, False) assert (r1, r2) == (True, True)

assert (r1, r2) == (False, False)

L3:

r1, r2 = biblioteca.empresta_livro(cod1), biblioteca.empresta_livro(cod2)

r1, r1 = biblioteca.empresta_livro(cod1), biblioteca.empresta_livro(cod1)

cod1, cod2 = biblioteca.empresta_livro(r1), biblioteca.empresta_livro(r2)

cod2, cod1 = biblioteca.empresta_livro(r2), biblioteca.empresta_livro(r1)

r1, r2 = biblioteca.empresta_livro(cod1), biblioteca.empresta_livro(cod1)

L4:
biblioteca.devolve_livro(cod1) biblioteca.empresta_livro(cod) devolve_livro(cod1)

empresta_livro(cod1) biblioteca.empresta_livro(cod1)

L5:

r1, r2 = biblioteca.devolve_livro(cod1), biblioteca.devolve_livro(cod2)

r1, r2 = biblioteca.devolve_livro(cod1), biblioteca.devolve_livro(cod1)

r1, r2 = biblioteca.empresta_livro(cod1), biblioteca.empresta_livro(cod1)

r2, r1 = devolve_livro(cod1), devolve_livro(cod1)

r1, r2 = biblioteca.empresta_livro(cod1), biblioteca.devolve_livro(cod1)

L6:

assert biblioteca.devolve_livro(cod1) == False assert devolve_livro(0) == True

assert biblioteca.devolve_livro(0) == True assert devolve_livro(0) == False

assert biblioteca.devolve_livro(0) == False

y y

y +1/5/56+ y
Q4 [2,5 pontos] O Bucket sort é um algoritmo de ordenação que funciona da seguinte forma. Suponha que recebemos
uma lista Lista com n números não negativos, cujo maior elemento é M . Então criamos n �baldes� (buckets), e
gostaríamos de dividir os elementos de Lista de forma que o j-ésimo balde tenha os números de Lista que estão no
intervalo [j ∗ M

n , (j+1)∗ M
n) (para j = 0, 1, . . . , n−2), e que o (n−1)-ésimo balde tenha os números de Lista que estão

no intervalo [(n− 1) ∗ M
n ,M]. Desta forma, se x está em Lista, então x é colocado precisamente no bx ∗ n/Mc-ésimo

balde se x 6= M , e se x = M , então x é colocado no (n− 1)-ésimo balde.
Por exemplo, considere Lista = [5, 85, 56, 91, 92, 18, 54, 75, 94, 12] que possui dez elementos. A lista de buckets

criada é [
[5], [18, 12], [], [], [], [56, 54], [], [75], [], [85, 91, 92, 94]

]
.

Finalmente, nós ordenamos cada balde individualmente usando a função ordena, que ordena uma sequência de
números, concatenamos os baldes ordenados, e retornamos a lista obtida.

def bucket_sort(Lista):

n, máximo = len(Lista), max(Lista) # max() é uma função do python que devolve o valor máximo de uma lista.

comp = máximo/ L1

lista_de_buckets= []

for j in range(n):

L2 .append([])

for x in L3 :

j = int(x / comp)

if j < n:

L4 .append(x)

else:

lista_de_buckets[n - 1].append(L5)

for j in range(n):

ordena(L6)

saída_final = L7

for bucket in L8 :

for x in bucket:

saída_final.append(x)

return saída_final

Preencha as lacunas no código acima (L1 até L8), de forma a obter a função descrita.
OBS: Para cada lacuna, assinale no máximo uma resposta.

L1: 0 n 2 2*n 1

L2: comp range(n) lista_de_buckets Lista x

L3: range(n) lista_de_buckets Lista n []

L4: lista_de_buckets range(n) Lista x lista_de_buckets[j]

L5: comp j x máximo n

L6:
Lista range(n) lista_de_buckets[j] lista_de_buckets

lista_de_buckets[n]

L7: Lista lista_de_buckets range(n) n []

L8: range(máximo) saída_final lista_de_buckets Lista range(n)

y y

y +1/6/55+ y
Q5 [1 ponto] Sobre (1) Módulos em Python e (2) Testes Automatizados, podemos a�rmar, respectivamente que:

(1) são uma forma de tornar o código menor, potencialmente evitando-se a escrita de muitas linhas de código; (2)
devem ser evitados pois testes manuais executados por especialistas no assunto são mais efetivos do que testes
escritos por programadores que podem ser inexperientes.

(1) permitem agrupar uma ou mais funções dentro de um arquivo (módulo) que pode ser acessado a partir de
outros arquivos (módulos); (2) quando bem escritos, oferecem a certeza de que o código está correto.

(1) permitem agrupar uma ou mais funções dentro de um arquivo (módulo) que pode ser acessado a partir de
outros arquivos (módulos); (2) quando bem escritos, oferecem aos desenvolvedores uma maior segurança de que
o código provavelmente está correto, facilitando o processo de desenvolvimento de programas complexos.

(1) permitem agrupar uma ou mais funções dentro de um arquivo (módulo) que pode ser acessado a partir de
outros arquivos (módulos); (2) devem ser evitados pois testes manuais executados por especialistas no assunto
são mais efetivos do que testes escritos por programadores que podem ser inexperientes.

(1) são uma forma de aumentar a e�ciência do código, tornando-o mais rápido; (2) quando bem escritos, oferecem
aos desenvolvedores uma maior segurança de que o código provavelmente está correto, facilitando o processo de
desenvolvimento de programas complexos.

(1) permitem agrupar funções em diferentes arquivos desde que as funções não possuam o mesmo nome; (2)
devem ser executados manualmente pelos programadores.

Com base nas alternativas acima, assinale a única alternativa correta.

y y

