EEEEN BN +1/1/60+

MAC2166 - Introdugao a Computacao - 2024S1 Avaliagao P2

@@@@@@@@ Utilize caneta azul ou preta e preencha completamente a quadricula.

A EEE]

Exemplo: B. Nao use X.

Turma: (somente um numero; consulte a pessoa responsavel se ndo souber)
[2][2][2][2][2][2][2][2]
D OINEE 0N ERBHD D

[4][4][4][4][4][4][4][4]

+— Marque as quadriculas ao lado para formar o seu nimero USP e escreva seu

nome completo em letra legivel na linha pontilhada abaixo. Se seu ntmero
@@@@@@@@ possui menos que 8 digitos complete com zeros a esquerda.

Nome:
[8][8][8][8][8][8][8][8]

eleIPIEIEIEIE] | -

Esta prova tem duragdo de 120 minutos. Nao desmonte a prova.
Q1 [1,5 pontos] Simule o codigo abaixo e selecione as op¢oes correspondentes a saida impressa do programa.

def £(L, x):
L.append(x)
i = len(L)-2
while x < L[i]:
L[i+1] = L[il

i-=1

L[i+1] = x
def g(P):
s =0

for i in range(1,len(P)):
if P[i] > P[i-1]:
s += 1
return s
def main():

L = [28, 34, 72, 10, 82, 56, 63]

P [1, 3, 2, 4, 0, 5]
P.append(len(P))
print (LIg(P)]1)
temp = P[2]
P[2] = P[5]
P[5] = temp
for i in range(len(P)-5):
print (L[P[ix2]1])
f(L, 42)
A = L[2:5]
print (A[1]1)
print (A[2])
main()

Selecione o primeiro nimero impresso:
[] 42 []34 []56
Selecione o segundo ntimero impresso:
[[]34 [[]82 []e3
Selecione o terceiro nimero impresso:
[]56 [[]34 []7
Selecione o quarto nimero impresso:
[]72 []34 []42
Selecione o quinto ntimero impresso:

[]10 []63 [] 72

Rascunho

[] 72 []e3 [] 82 []10 [] 28
[] 42 [] 28 []72 []56 [] 10
[] 42 []10 []e63 []28 [82
[] 10 [] 82 [] 28 []e3 [] 56
[]28 [56 []34 []42 []s2

EEEE B B +1/2/59+

Q2 [2,5 pontos]

Implemente uma fung¢do chamada frequencia_relativa(L) que recebe como parametro uma lista L e devolve
duas listas indicando a frequéncia relativa dos elementos de L. Por exemplo, para a lista L = [3, 4, 5,4, 5, 2, 7, 4, 4,
2], a fungao frequencia_relativa deve devolver as seguintes listas:

3, 4, 5, 2, 7], [0.1, 0.4, 0.2, 0.2, 0.1]
indicando que o niimero 3 representa 10% dos elementos, o niimero 4 representa 40% dos elementos e assim por diante.

Para facilitar a implementacao da fun¢éo frequencia_ relativa, primeiro implemente a fun¢io pertence(elemento,
lista) que verifica se um inteiro elemento ocorre na dada lista. Se ele ocorre, a funcao devolve a posicao da primeira
ocorréncia, caso contrario devolve -1.

def pertence(elemento, lista):
for i in range(’Li D:

if lista[i] == [L2 E

return ’LB
return -1

def frequencia_relativa(L):
elementos_distintos = []
L4 |
for elemento in L:
L5 |
if indice == -

elementos_distintos.append(elemento)
L6
else:

frequencialindice] += 1

for i in range(len(frequencia)):
L7 |

return ’LS ‘

Preencha as lacunas no codigo acima (L1 até L8), assinalando as respostas correspondentes abaixo.

Consideragao: Para cada lacuna, assinale no méaximo uma resposta.

L1: [:] len(lista) [:] lista [:] len(i) [:] elemento [:] listal[i]

L2: [:] listalelemento] [:] elemento [:] 0 [:] listali] [:] len(lista)

L3: [:] listali] [:] +1 [:] elemento [:] lista [:] i

L4 [:] frequencia = [] [:] elementos_distintos.append(frequencia) [:] frequencia = [[]]
' elementos_distintos.append(L) [:] frequencia = 0
[:] indice = frequencia_relativa(L) [:] indice = frequencia_relativa(elemento, elementos_distintos)
L5: elemento = pertence(elementos_distintos, indice) [:] indice = pertence(elementos_distintos, elemento)

[:] indice = pertence(elemento, elementos_distintos)

L6: [:] frequencia.append(-1) [:] frequencia.append(1) [:] elemento.next()
' frequencial[indice] = 1 frequencia.append(0)
L7 [:] frequenciali] /= 1/len(L) [:] frequenciali] +=1 [:] frequencial[i] *= len(L)
' frequenciali] /= L frequencial[i] /= len(L)
L8: [:] elemento, elementos_distintos [:] L, frequencia [:] frequencia, elementos_distintos

frequencia, elemento elementos_distintos, frequencia

EEER B B +1/3/58+ ®
Q3 [2,5 pontos] A trajetoria de uma nave pode ser descrita por uma lista de t pontos T = [Po, P1, ..., Pt-1],
com as posi¢oes Pi = [xi,yi], 0 < i < t, amostradas da nave em intervalos fixos de tempo.
Dadas as trajetorias de um conjunto de n naves, na forma de uma lista LN = [To, Tt, ..., Tn-1], faca uma

fun¢do nave_percorreu_maior_distancia em Python que calcula qual nave percorreu a maior distancia total. A
funcao deve devolver o indice da nave que percorreu a maior distancia e o valor desta distancia.

Faca uma funcio distancia que calcula a distincia de uma nave na posi¢do P = [x,y] até a superficie de um
astro (corpo celeste) A = [[xc,yc],R], onde xc e yc sdo a posi¢do do seu centro e R o valor do seu raio. Considere
que a nave possui dimensoes despreziveis em relacao ao tamanho do astro e que nao ha colisao.

Dada a trajetéria de uma nave T = [Po, P1, ..., Pt-1] e um astro A = [[xc,yc],R], faca uma funcao
distancia_minima que devolve qual foi a menor distancia que a nave esteve do astro ao longo da sua trajetoéria.

Dadas as trajetorias de n naves, numeradas de 0 a n-1, na forma de uma lista LN = [To, Ti1, ..., Tn-1], e uma
lista de m astros LA = [Ao, ..., Am-1], faga um programa que diz qual nave percorreu a maior distincia e quais
foram as distancias minimas que cada nave assumiu ao longo de sua trajetoria em rela¢ao a cada um dos astros.

def nave_percorreu_maior_distancia(LN):

im, dm = 0, 0.0 def main():
for i in [L1 E TO = [[150000,214002],[150000,214001],[150000,214000]]
d=0.0 T1 = [[20000, 20000],[20000, 20001],[20001, 20002]]
for j in [L2 E LN = [T0, T1]
13 \ LA = [[[0,0], 28000], [[150000,150000], 20000]]
‘L4 ‘ i,d = nave_percorreu_maior_distancia(LN)
print("nave %d percorreu a maior distancia de %.2f km."%(i,d))
L5 ..
‘ for i in range(len(LN)):
return im,dm for j in ’LlO ‘:

dm =[L11

def distancia(P, A): 5 :] .
‘ print("Distancia (nave %d,astro %d): %.2f km."%(i,j,dm))

return ‘L6

main()
def glstamlzla_mlnlma(T, A): Exemplo de execugao do programa completo:
m= -
for i in ‘L? ‘; nave 1 percorreu a maior distédncia de 2.41 km.
‘L8 ‘ Distancia (nave 0,astro 0): 233335.03 km.
P ‘LQ ‘ Disténcia (nave O,astro 1): 44000.00 km.
. r— ' Distancia (nave 1,astro 0): 284.27 km.
Distancia (nave 1,astro 1): 163845.64 km.
return dm

Para cada um dos 11 itens a seguir, correspondendo as lacunas no cédigo acima, assinale a unica resposta correta.
L1: |:| range(1,len(LN)) |:| range(len(LN)) |:| range (LN) |:| len(LN) |:| range(len(LN),0,-1)
L2: I:l range(1,len(LN[i])) D range (len(LN[i])) I:l range(LN[i],1,-1) D len(LN[i]) D range(1,LN[i]-1)

La, [] »,pa = LN[i1057,LN04] [j+1] [] p.pa=ri,j1,0i,j-1] [] »,pa = LN[i1057,LN04] [j-1]
' P,Pa = LN[i],LN[j] [] ».pa = LN[jI04],LNC§]Ci+1]
[] a+= ((P-Paysx2)*x1/2 [[] d+= ((PLOI-Pal1])**2 + (P[0]-Pali])*x2)%#0.5
Ld: [] d += ((PLOI-P[11)#%2 + (Pa[0]-Pal[1])*x2)%x0.5 [[] d+= ((PL0O1-Pal0])#%2 + (P[1]1-Pa[1])*%2)%0.5

d += (P[0]-Pa[0]) - (P[1]-Palil)

L5:|:|ifd<dm: Difd**0.5<d.m: Difd>dm: Difd>d.m: l:’ifd>dm:

im,dm = i,d dm = d**0.5 im = i return i,d im,dm = i,d
[] «(Pr01-AT01[01)#2+ (P[1]-A[1][01)%2)%#0.5 - A[1] [] ((PLOI-ALO][01)*%2+ (P[1]-A[0] [1])#%2)%%0.5
L6: [] ((PrOI-A[OI[O1)*%2+ (P[1]1-A[0] [1])#%2)%%0.5 - A[1] [] ((PrOT-A[OT)**2+ (P[1]-A[1])%%2)-A[1]
((PL0]-A[0O] [01)**2+ (P[1]1-A[1][0])**2)**1/2 - A[2]

L7: |:| range(T) |:| range(1,len(T)+1) |:| range(len(T)) |:| range(len(T)-1) |:| range(len(T),1,-1)
Ls, [] 4= aistancia(T[il, &) [] 4= distancia(T[il1[01, &) [] 4= distancia(TCil, ALOD)

. d = distancia(T[i+1], A[11) D d = distancia(T, A[i])
L9: |:| dm == -1 or d > dm |:| not(dm == -1 and d < dm) |:| dm == -1 and d < dm

' dm == -1 or d < dm [] amt=-10rdam>o0

L10: D range(1,len(LA)) |:| range(LA) D range(len(LA)-1,0,-1) D range(len(LA))D range(len(LA)-1)

[] aistancia_minima(LN[il, LA[§1[01) [] aistancia(LN[ilC1, LAL31T0D)

L11:
|:| distancia_minima(LN[i], LA[j]) |:| distancia_minima(LN[j], LA[i]) |:| distancia(LN[i], LA[j])

+1/4/57+

Q4 [2,5 pontos] Uma matriz M é dita Matriz de Hadamard se (1) M é quadrada; (2) todas as suas células contém 1 ou
-1; e (3) todas as suas linhas sdo ortogonais entre si, ou seja, que o produto escalar de quaisquer duas linhas é 0. Lembre-
se que o produto escalar de dois vetores (a1, ..., a,) e (b1,...,b,) € 0 somatorio Y .| a;*b; = ai-bi+ag-ba+---+a,-by.
Queremos fazer uma fungdo (matriz_hadamard) que decide se uma dada matriz é uma Matriz de Hadamard. Para
isso, vamos fazer uma fungio auxiliar (ortogonais) que decide se duas linhas sdo ortogonais.

def ortogonais(linhal, linha2):
produto_escalar = 0

for i in range(len(linhal)):

produto_escalar += linhall[i] *‘Ll

return ‘L2 ‘

def matriz_hadamard (M) :
n,m = len(M),|L3 ‘

if n !'= m:
return ’L4 ‘

L5 |
for i in range(n):
for j in ‘LG ‘:

if [L7 E
L8 |

if i != j and [L9
é_hadamard = False

return ‘LlO ‘
Preencha as lacunas no codigo acima (L1 até L10), de forma a obter as fun¢oes descritas.
OBS: Para cada lacuna, assinale no maximo uma resposta.

L1: [] 1inha2rjl [] 2 [] 1inna2ri]] 4 [] 1en(linnan)

I:l (produto_escalar != 0) I:l (produto_escalar == 0) l:’ produto_escalar I:l True

False

L2:

L3:] » [] 1enturon (] wrortod [] 1encn L] wro

L4: I:I m l:, True |:| False |:| n'=m |:| n

L5: D i,j =0,0 D n=m D é_hadamard = False D i=0 D é_hadamard = True

L6: |:| range (i+1) |:| M[i] |:| range(n) |:| range(n+1) |:| range (2*i)

[] MO0 = -1 or M[1[j] == 1 [] MOi1C§0 t= 1 or MIiI[4] '= -1
L7: [] MLi10§] == 1 and M[i1[j] == -1 [] MLi10§] == 1 or M[iI[j] == -
M[i1[j]1 '= 1 and M[il([j] != -1
L8: |:| é_hadamard = False I:I j+=1 |:| i+=1 l:, é_hadamard = True
' l:, é_hadamard = not é&_hadamard
L9: D not ortogonais(M[i],M[i]) I:l ortogonais(M[j],M[i]) D not ortogonais(M[j],M[j]1)
' ortogonais(M[i],M[j]1) not ortogonais(M[i],M[j])

L10: |:| é_hadamard D True |:| not é_hadamard l:, False l:, é_hadamard == False

HEEEENEEEEN
HEE B ______EEn +1/5/56+

Q5 [1 ponto] Linguagens de programacado permitem a definicdo de fungoes, o que ajuda na organizacdo (modulari-
zagdo) do codigo. Algumas das principais vantagens do uso de fungoes sdo:

D (1) permitem resolver alguns problemas que seriam impossiveis de resolver computacionalmente sem funcoes; (2)
permitem reaproveitar codigo existente minimizando a duplicagio de c6digo e (3) permitem esconder detalhes de
implementagao dentro de um trecho de cédigo, permitindo uma visao de mais alto nivel, viabilizando programas
mais complexos.

D (1) permitem quebrar tarefas grandes em menores facilitando o entendimento e manutencdo do codigo; (2)
permitem reaproveitar c6digo existente minimizando a duplicagio de cédigo e (3) permitem o uso de depuradores
(debuggers), que facilitam a corregio de erros.

[] (1) permitem quebrar tarefas grandes em menores facilitando o entendimento e manutencio do codigo; (2)
permitem implementar solu¢oes mais eficientes, que chegam na solugio mais rapidamente e (3) permitem esconder
detalhes de implementacao dentro de um trecho de cédigo, permitindo uma visao de mais alto nivel, viabilizando
programas mais complexos.

[] (1) permitem quebrar tarefas grandes em menores facilitando o entendimento e manutencio do codigo; (2)
permitem reaproveitar codigo existente minimizando a duplicacdo de c6digo e (3) permitem que o coédigo fique
mais extenso, aproveitando melhor a memoéria disponivel.

[] (1) permitem quebrar tarefas grandes em menores facilitando o entendimento e manutencio do codigo; (2)
permitem reaproveitar codigo existente minimizando a duplicagao de c6digo e (3) permitem esconder detalhes de
implementagao dentro de um trecho de cédigo, permitindo uma visao de mais alto nivel, viabilizando programas
mais complexos.

Com base nas alternativas acima, assinale a tnica alternativa correta.

