
y +1/1/60+ y
MAC2166 - Introdução a Computação - 2024S1 Avaliação P2

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

Utilize caneta azul ou preta e preencha completamente a quadrícula.
Exemplo: �. Não use �.

Turma: (somente um número; consulte a pessoa responsável se não souber)

4 5 6 7 8 9 10 11 12 13 14 20

←− Marque as quadrículas ao lado para formar o seu número USP e escreva seu
nome completo em letra legível na linha pontilhada abaixo. Se seu número
possui menos que 8 dígitos complete com zeros à esquerda.

Nome:

. .

Esta prova tem duração de 120 minutos. Não desmonte a prova.

Q1 [1,5 pontos] Simule o código abaixo e selecione as opções correspondentes à saída impressa do programa.

def f(L, x):

L.append(x)

i = len(L)-2

while x < L[i]:

L[i+1] = L[i]

i -= 1

L[i+1] = x

def g(P):

s = 0

for i in range(1,len(P)):

if P[i] > P[i-1]:

s += 1

return s

def main():

L = [28, 34, 72, 10, 82, 56, 63]

P = [1, 3, 2, 4, 0, 5]

P.append(len(P))

print(L[g(P)])

temp = P[2]

P[2] = P[5]

P[5] = temp

for i in range(len(P)-5):

print(L[P[i*2]])

f(L, 42)

A = L[2:5]

print(A[1])

print(A[2])

main()

Rascunho

Selecione o primeiro número impresso:

42 34 56 72 63 82 10 28

Selecione o segundo número impresso:

34 82 63 42 28 72 56 10

Selecione o terceiro número impresso:

56 34 72 42 10 63 28 82

Selecione o quarto número impresso:

72 34 42 10 82 28 63 56

Selecione o quinto número impresso:

10 63 72 28 56 34 42 82

y y

y +1/2/59+ y
Q2 [2,5 pontos]

Implemente uma função chamada frequencia_relativa(L) que recebe como parâmetro uma lista L e devolve
duas listas indicando a frequência relativa dos elementos de L. Por exemplo, para a lista L = [3, 4, 5, 4, 5, 2, 7, 4, 4,
2], a função frequencia_relativa deve devolver as seguintes listas:

[3, 4, 5, 2, 7], [0.1, 0.4, 0.2, 0.2, 0.1]
indicando que o número 3 representa 10% dos elementos, o número 4 representa 40% dos elementos e assim por diante.

Para facilitar a implementação da função frequencia_relativa, primeiro implemente a função pertence(elemento,
lista) que veri�ca se um inteiro elemento ocorre na dada lista. Se ele ocorre, a função devolve a posição da primeira
ocorrência, caso contrário devolve -1.

def pertence(elemento, lista):

for i in range(L1):

if lista[i] == L2 :

return L3
return -1

def frequencia_relativa(L):

elementos_distintos = []

L4
for elemento in L:

L5
if indice == -1:

elementos_distintos.append(elemento)

L6
else:

frequencia[indice] += 1

for i in range(len(frequencia)):

L7

return L8

Preencha as lacunas no código acima (L1 até L8), assinalando as respostas correspondentes abaixo.

Consideração: Para cada lacuna, assinale no máximo uma resposta.

L1: len(lista) lista len(i) elemento lista[i]

L2: lista[elemento] elemento 0 lista[i] len(lista)

L3: lista[i] +1 elemento lista i

L4:
frequencia = [] elementos_distintos.append(frequencia) frequencia = [[]]

elementos_distintos.append(L) frequencia = 0

L5:

indice = frequencia_relativa(L) indice = frequencia_relativa(elemento, elementos_distintos)

elemento = pertence(elementos_distintos, indice) indice = pertence(elementos_distintos, elemento)

indice = pertence(elemento, elementos_distintos)

L6:
frequencia.append(-1) frequencia.append(1) elemento.next()

frequencia[indice] = 1 frequencia.append(0)

L7:
frequencia[i] /= 1/len(L) frequencia[i] +=1 frequencia[i] *= len(L)

frequencia[i] /= L frequencia[i] /= len(L)

L8:
elemento, elementos_distintos L, frequencia frequencia, elementos_distintos

frequencia, elemento elementos_distintos, frequencia

y y

y +1/3/58+ y
Q3 [2,5 pontos] A trajetória de uma nave pode ser descrita por uma lista de t pontos T = [P0, P1, ..., Pt-1],
com as posições Pi = [xi,yi], 0 ≤ i < t, amostradas da nave em intervalos �xos de tempo.

Dadas as trajetórias de um conjunto de n naves, na forma de uma lista LN = [T0, T1, ..., Tn-1], faça uma
função nave_percorreu_maior_distancia em Python que calcula qual nave percorreu a maior distância total. A
função deve devolver o índice da nave que percorreu a maior distância e o valor desta distância.

Faça uma função distancia que calcula a distância de uma nave na posição P = [x,y] até a superfície de um
astro (corpo celeste) A = [[xc,yc],R], onde xc e yc são a posição do seu centro e R o valor do seu raio. Considere
que a nave possui dimensões desprezíveis em relação ao tamanho do astro e que não há colisão.

Dada a trajetória de uma nave T = [P0, P1, ..., Pt-1] e um astro A = [[xc,yc],R], faça uma função
distancia_minima que devolve qual foi a menor distância que a nave esteve do astro ao longo da sua trajetória.

Dadas as trajetórias de n naves, numeradas de 0 a n-1, na forma de uma lista LN = [T0, T1, ..., Tn-1], e uma
lista de m astros LA = [A0, ..., Am-1], faça um programa que diz qual nave percorreu a maior distância e quais
foram as distâncias mínimas que cada nave assumiu ao longo de sua trajetória em relação a cada um dos astros.
def nave_percorreu_maior_distancia(LN):

im, dm = 0, 0.0

for i in L1 :

d = 0.0

for j in L2 :

L3

L4

L5

return im,dm

def distancia(P, A):

return L6

def distancia_minima(T, A):

dm = -1

for i in L7 :

L8

if L9 :

dm = d

return dm

def main():
T0 = [[150000,214002],[150000,214001],[150000,214000]]
T1 = [[20000, 20000],[20000, 20001],[20001, 20002]]
LN = [T0, T1]
LA = [[[0,0], 28000], [[150000,150000], 20000]]
i,d = nave_percorreu_maior_distancia(LN)
print("nave %d percorreu a maior distância de %.2f km."%(i,d))
for i in range(len(LN)):

for j in L10 :

dm = L11
print("Distância (nave %d,astro %d): %.2f km."%(i,j,dm))

main()

Exemplo de execução do programa completo:

nave 1 percorreu a maior distância de 2.41 km.

Distância (nave 0,astro 0): 233335.03 km.

Distância (nave 0,astro 1): 44000.00 km.

Distância (nave 1,astro 0): 284.27 km.

Distância (nave 1,astro 1): 163845.64 km.

Para cada um dos 11 itens a seguir, correspondendo às lacunas no código acima, assinale a única resposta correta.

L1: range(1,len(LN)) range(len(LN)) range(LN) len(LN) range(len(LN),0,-1)

L2: range(1,len(LN[i])) range(len(LN[i])) range(LN[i],1,-1) len(LN[i]) range(1,LN[i]-1)

L3:
P,Pa = LN[i][j],LN[i][j+1] P,Pa = [i,j],[i,j-1] P,Pa = LN[i][j],LN[i][j-1]

P,Pa = LN[i],LN[j] P,Pa = LN[j][i],LN[j][i+1]

L4:

d += ((P-Pa)**2)**1/2 d += ((P[0]-Pa[1])**2 + (P[0]-Pa[1])**2)**0.5

d += ((P[0]-P[1])**2 + (Pa[0]-Pa[1])**2)**0.5 d += ((P[0]-Pa[0])**2 + (P[1]-Pa[1])**2)**0.5

d += (P[0]-Pa[0]) - (P[1]-Pa[1])

L5:
if d < dm:

im,dm = i,d

if d**0.5 < dm:

dm = d**0.5

if d > dm:

im = i

if d > dm:

return i,d

if d > dm:

im,dm = i,d

L6:

((P[0]-A[0][0])*2 + (P[1]-A[1][0])*2)**0.5 - A[1] ((P[0]-A[0][0])**2 + (P[1]-A[0][1])**2)**0.5

((P[0]-A[0][0])**2 + (P[1]-A[0][1])**2)**0.5 - A[1] ((P[0]-A[0])**2 + (P[1]-A[1])**2)-A[1]

((P[0]-A[0][0])**2 + (P[1]-A[1][0])**2)**1/2 - A[2]

L7: range(T) range(1,len(T)+1) range(len(T)) range(len(T)-1) range(len(T),1,-1)

L8:
d = distancia(T[i], A) d = distancia(T[i][0], A) d = distancia(T[i], A[0])

d = distancia(T[i+1], A[1]) d = distancia(T, A[i])

L9:
dm == -1 or d > dm not(dm == -1 and d < dm) dm == -1 and d < dm

dm == -1 or d < dm dm != -1 or d-dm > 0

L10: range(1,len(LA)) range(LA) range(len(LA)-1,0,-1) range(len(LA)) range(len(LA)-1)

L11:
distancia_minima(LN[i], LA[j][0]) distancia(LN[i][j], LA[j][0])

distancia_minima(LN[i], LA[j]) distancia_minima(LN[j], LA[i]) distancia(LN[i], LA[j])

y y

y +1/4/57+ y
Q4 [2,5 pontos] Uma matrizM é dita Matriz de Hadamard se (1)M é quadrada; (2) todas as suas células contém 1 ou
-1; e (3) todas as suas linhas são ortogonais entre si, ou seja, que o produto escalar de quaisquer duas linhas é 0. Lembre-
se que o produto escalar de dois vetores (a1, . . . , an) e (b1, . . . , bn) é o somatório

∑n
i=1 ai∗bi = a1 ·b1+a2 ·b2+· · ·+an ·bn.

Queremos fazer uma função (matriz_hadamard) que decide se uma dada matriz é uma Matriz de Hadamard. Para
isso, vamos fazer uma função auxiliar (ortogonais) que decide se duas linhas são ortogonais.

def ortogonais(linha1, linha2):

produto_escalar = 0

for i in range(len(linha1)):

produto_escalar += linha1[i]* L1

return L2

def matriz_hadamard(M):

n,m = len(M), L3

if n != m:

return L4

L5
for i in range(n):

for j in L6 :

if L7 :

L8

if i != j and L9 :

é_hadamard = False

return L10

Preencha as lacunas no código acima (L1 até L10), de forma a obter as funções descritas.
OBS: Para cada lacuna, assinale no máximo uma resposta.

L1: linha2[j] 2 linha2[i] i len(linha1)

L2:
(produto_escalar != 0) (produto_escalar == 0) produto_escalar True

False

L3: n len(M[0]) M[0][0] len(M) M[0]

L4: m True False n != m n

L5: i,j = 0,0 n = m é_hadamard = False i = 0 é_hadamard = True

L6: range(i+1) M[i] range(n) range(n+1) range(2*i)

L7:

M[i][j] == -1 or M[i][j] == 1 M[i][j] != 1 or M[i][j] != -1

M[i][j] == 1 and M[i][j] == -1 M[i][j] == 1 or M[i][j] == -1

M[i][j] != 1 and M[i][j] != -1

L8:
é_hadamard = False j += 1 i += 1 é_hadamard = True

é_hadamard = not é_hadamard

L9:
not ortogonais(M[i],M[i]) ortogonais(M[j],M[i]) not ortogonais(M[j],M[j])

ortogonais(M[i],M[j]) not ortogonais(M[i],M[j])

L10: é_hadamard True not é_hadamard False é_hadamard == False

y y

y +1/5/56+ y
Q5 [1 ponto] Linguagens de programação permitem a de�nição de funções, o que ajuda na organização (modulari-
zação) do código. Algumas das principais vantagens do uso de funções são:

(1) permitem resolver alguns problemas que seriam impossíveis de resolver computacionalmente sem funções; (2)
permitem reaproveitar código existente minimizando a duplicação de código e (3) permitem esconder detalhes de
implementação dentro de um trecho de código, permitindo uma visão de mais alto nível, viabilizando programas
mais complexos.

(1) permitem quebrar tarefas grandes em menores facilitando o entendimento e manutenção do código; (2)
permitem reaproveitar código existente minimizando a duplicação de código e (3) permitem o uso de depuradores
(debuggers), que facilitam a correção de erros.

(1) permitem quebrar tarefas grandes em menores facilitando o entendimento e manutenção do código; (2)
permitem implementar soluções mais e�cientes, que chegam na solução mais rapidamente e (3) permitem esconder
detalhes de implementação dentro de um trecho de código, permitindo uma visão de mais alto nível, viabilizando
programas mais complexos.

(1) permitem quebrar tarefas grandes em menores facilitando o entendimento e manutenção do código; (2)
permitem reaproveitar código existente minimizando a duplicação de código e (3) permitem que o código �que
mais extenso, aproveitando melhor a memória disponível.

(1) permitem quebrar tarefas grandes em menores facilitando o entendimento e manutenção do código; (2)
permitem reaproveitar código existente minimizando a duplicação de código e (3) permitem esconder detalhes de
implementação dentro de um trecho de código, permitindo uma visão de mais alto nível, viabilizando programas
mais complexos.

Com base nas alternativas acima, assinale a única alternativa correta.

y y

