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SUMMARIES 

The history of differential forms is examined from 
its origins in the work of Clairaut on the theory of 
differential equations through the end of the 19th 
century. In particular, we explore the developments 
leading to the concept of the exterior derivative, the 
Poincarg lemma and its converse, and the notion of the 
period of an exact differential. We also note that 
whereas the original motivation for the idea of the in- 
tegral of an n-form lay in the theory of complex vari- 
ables, much of its development was done by physicists. 

Wir untersuchen die Geschichte der Differential- 
formen von den Anf;ingen in der Arbeit Clairauts iiber 
die Theorie der Differentialgleichungen bis zum Ende 
des neunzehnten Jahrhunderts. Insbesondere betrachten 
wir die Entwicklungen, die zu dem Begriff der B'usseren 
Ableitung, dem Poincar&schen Lemma und seiner Vmkehrung 
und dem Begriff der Periode eines exakten Differentials 
fiihrten. Auch bemerken wir, dass, obgleich die ur- 
spriingliche Motivierung der Idee des Integrals einer 
n-Form in der Theorie der komplexen VerZnderlichen lag, 
die Physiker vie1 zur Entwicklung beitrugen. 

Cet article traite de l'histoire des formes diff& 
rentielles depuis ses origines, dans les travaux de 
Clairaut sur la theorie des equations diffgrentielles, 
jusqu'a la fin du dix-neuvieme siecle. Plus pr&cis&ment, 
nous nous concentrons sur la succession d'evsnements 
mathgmatiques aboutissant au concept de d&rivge 
ext&ieure, au letntne de PoincarQ et a sa r&iproque et 
a la notion de periode d'une diffgrentielle exacte. 
Nous faisons aussi ressortir que quoique la motivation 
premiere de l'id&e d'integrale d'une n-forme vienne 
de la thborie des fonctions de variables complexes, la 
majeure partie de son d&eloppement fut l'oeuvre de 
psysiciens. 
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INTRODUCTION 

Differential forms are defined (loosely) by Flanders [1963] 
as "things which occur under integral signs," i.e., expressions 
of the form 

w = Zf dxa dxa dx 
cicx 1 2...@k 1 y  a/ 

where the summation is taken over all k-tuples (~1, "2, . . . . uk) 
with 15 c%I < ~12 < l ** < uk 5 n, and the f’s are functions in 
n-space. It is the purpose of this article to discuss the or- 
igins of this concept and its development up to the end of the 
19th century. We will trace the development of the idea of the 
exterior derivative, the Poincark lemma and its converse, and 
the notion of the period of an exact differential, seeing that 
the motivation for the concepts of, first, integrals of one- 
forms and, later, integrals of n-forms lay in the theory of com- 
plex variables. Further, we will see that throughout much of 
the 19th century the subjects of line and surface integrals were 
not part of pure mathematics at all, but lay in the domain of 
physics. 

After considering one-forms and line integrals and, then, 
two-forms and surface integrals, we will look at generalizations 
of the ideas developed in the two special cases. 

ONE-FORMS 

The simplest differential form and the first to be considered 
(in the mid-18th century) is the one-form in two variables, i.e., 

Adx + Bdy, where A and B are functions in two-space. For the 
18th-century mathematicians, the equation Adx + Bdy = 0 was simply 
another way of writing the differential equation dy/dx = -A/B. 
They were thus interested in the conditions under which a func- 
tion f(x,y) exists such that af/ax = A and af/ay = B. If such 
a function exists, then f(x,y) = c is a solution to the equation 
Adx f  Bdy = 0. 

The first mathematician to consider this form in detail was 
Alexis Claude Clairaut. In two papers [1739, 17401 he proved 
that the necessary and sufficient condition that Adx + Bdy be 
the differential of a function is that dA/dy = dB/dx. (This is 
Clairaut's notation; our current partial derivative notation 
dates from the 1840s.) Clairaut noted that the idea had occurred 
at about the same time to Alexis Fontaine (who never seems to 
have published it) and to Leonhard Euler. 
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Clairaut proved the necessity of the condition by an explicit 
calculation. To Clairaut a function of two variables was a 
(possibly infinite) series of terms axmyn + bxpyq + cxryS + *a._ 
Hence he simply calculated the differential of axmy” to be 
maxm-lyndx + nayn-lxmdy and then noted that the derivative of 
maxm-lyn with respect to y equals that of naynS1xm with respect 
to x. The result follows by a form of induction. More inter- 
esting for its later use, however, is his sufficiency proof. 

Assuming that dA/dy = dB/dx, Clairaut asserted that the de- 
sired function was JAdx + p(y), where by the first term he meant 
any function whose derivative with respect to x is A, and by the 
second, some function of y alone. To show that this was correct 
he took its differential: Adx + dy.r(dA/dy)dx + dp. Since dA/dy 
= dB/dx and / (dB/dx) dx is B + q(y) , the differential becomes 
Adx + Bdy + dp + qdy. So if p(y) is chosen to be -jq(y)dy, the 
expression becomes Adx + Bdy, as desired. In other words, 
Clairaut reduced the original two-variable problem to an ordin- 
ary one-variable differential equation, which he assumed to be 
solvable. One may note further that since q(y) = /(dB/dx)dx - B, 
the desired function can be written as jAdx + jBdy - 
Idy[! (dB/dx)dx] . In fact, Cauchy in [1823] replaced the indefi- 
nite integrals by definite integrals taken from a fixed point 
(x0, yg) to a varying endpoint (x,y) and wrote the solution as 

f(x,y) = s x A(x,y)dx + 
s 

’ B(xo,y)dy. 
“0 Yo 

(1) 

The use of the definite integral became the standard textbook 
method for this proof. 

Clairaut, in his paper of 1740, extended his result to one- 
forms in three variables. Just as in the two-variable case, a 
solution of Mdx + Ndy + Pdz = 0 was to be a function f of three 
variables whose differential was the given form. Clairaut 
showed that this was possible if and only if dM/dy = dN/dx, 
dM/dz = dP/dx, and dN/dz = dP/dy. His proof was similar to the 
one given for the two-variable case. Indeed, the necessity 
proof required only a reduction to that case, while the suffi- 
ciency proof started with f  = IMdx and used the results and 
methods of the two-variable case to show that the differential 
of JMdx differed from Mdx + Ndy + Pdz only by a complete dif- 
ferential in y and z. 

Finally, Clairaut stated the result for any number of vari- 
ables: Mdx + Ndy + Pdz + Qdu + Rds + l ** is integrable if and 
only if any two terms form a complete differential in those two 
variables; i.e., dM/dy = dN/dx, dM/dz = dP/dx, and so forth, for 
every combination of letters and functions. 

For future reference we may note that, in modern notation, 
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Clairaut had proved that if u is a one-form in n variables, then 
dw = 0 if and only if w = df, where f  is a function. (Strictly 
speaking, of course, this result is not always true for single- 
valued functions. In fact, as Jean d'Alembert [1768] observed, 
the example (xdy - ydx)/(x2 + y2) shows that if the coefficients 
of the differential form are not continuous everywhere, the in- 
tegral may not be single-valued. It took nearly another century, 
however, for this idea to be exploited.) 

When 18th-century mathematicians considered an integral of 
the form jAdx + Bdy, they meant simply a function whose differ- 
ential was Adx + Bdy, assuming such a function existed; whereas 
today, the expression designates a line integral. Although it 
was not until the early 1850s that jAdx + Bdy took on this 
modern meaning, the ideas of the line integral and the integral 
over a curve were being developed long before that time. The 
latter concept, an integral of the type rfds, first appeared in 
the 18th century. AS early asp76C$ Lagrange noted that ds 
= (dx2 + dy2 + dz2)+ was an element of a curve in three-space. 
The curve in question represented a wire, and Lagrange was try- 
ing to determine its movement if one end is fixed and the rest 
is subject to certain forces. He was therefore led to consider 
certain integrals with respect to ds. Laplace [1799, 691 con- 
sidered similar integrals of forces acting on bodies along curves. 

In his Mhanique analytique Lagrange [18111 came somewhat 
closer to our modern usage when he considered the rectangular 
components X, Y, and Z of the forces acting on points of a wire. 
He noted that the element of wire dm is proportional to the 
element ds of the curve and then considered what he called the 
sum of the moments of all the forces relative to the total length 
of the wire, namely, the integral /(X6x + Y&y + ZGz)dm, where 
d is a differential "representing only the infinitely small 
spaces which each point may traverse in supposing that the sit- 
uation of the body varies infinitesimally little" [Lagrange 
1811, 841. 

With a modern interpretation, this expression can be made 
into a line integral, but Lagrange himself did not do this. The 
use of line integrals in physics became common only forty years 
later. Thus, despite the work of Lagrange, the chief motivation 
for the development of this notion was its use in complex inte- 
grals. 

In 1811 Gauss wrote a letter to Bessel [Gauss 18111 in which 
he discussed the integration of complex functions over curves 
in the complex plane; but he never published anything substantial 
in this area. It remained for Cauchy to develop.this idea. In 
his paper [1825], Cauchy carefully defined -c Id 

b+ib f(z)dz as a 
limit. To calculate this integral, he had to describe, analyt- 
ically, a path connecting the two points in the complex plane. 
He did so by letting x = 4(t) and y = $(t), c1 < t s B, showing 
that if z = x + iy, the desired integral, i’f(z) (dz/dt)dt may 
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be written in the form 

s B 
c1 I@’ (t) + i+’ (t)lf($(t) + i$(t))dt. 

If we write f(z) = f (x + iy) = u(x + iy) + iv(x + iy) and dz 
= dx f idy, an easy calculation shows that this integral is 
identical to the (complex) line integral /udx - vdy + i/udy + vdx. 
Although Cauchy did not carry out this calculation, he did dem- 
onstrate, by a variational idea, the "Cauchy integral theorem," 
namely, that if f(z) is bounded and analytic in a region, then 
the integral / c + id f(z)dz has the same value no matter what , 
(differentiabfef 62th is taken from a + ib to c + id. 

During the next twenty years, Cauchy published at least one 
paper [Cauchy, 18311 in which he performed the equivalent of a 
line integral around a circle in the plane, although the concept 
was not clearly articulated in either mathematical or physical 
works of the period [ll. It was not until 1846, however, that 
Cauchy wrote explicitly about integrals over curves, and then 
the curves lay in n-space. In a note in Comptes Rendus [Cauchy, 
1846a], in fact, the curves, r, over which the integrals are to 
be performed are boundaries of surfaces, S, lying in a space of 
any (finite) dimension. One of his results states that if 
Adx + Bdy + Cdz + .** is an exact differential [2], then 
j[A(dx/ds) + B(dy/ds) + ***Ids does not change when !? varies 
"by insensible degrees," so long as the functions A, B, C, . . . 
remain finite and continuous in the entire region in which the 
curve varies. 

The second major theorem of Cauchy [1846a] asserts that if 
the function k = A(dx/ds) + B(dy/ds) + l ** fails to be finite 
and continuous solely at the points P', P", . . . in S, and if 
a, 8, . . . are closed curves surrounding these points, respec- 
tively, then {kds =,&kds + kds + l **. 

Ii fi 

In particular, if there 
are no such points inside S, then kds = 0. 

Cauchy did not provide proofs of these results, stating only 
that they could be based on formula (1) and its analog with the 
variables interchanged. Presumably he meant that if there were 
no singularities of A and B within the rectangle whose opposite 
corners are (xg,yg) and (x,y), then the function f(x,y) given by 
(1) is the same as the function 

g(X,Y) = 
s 

x A(x,yg)dx. 
X0 

Since both f and g represent line integrals along opposite pairs 
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of sides of the rectangle, the last statement of the previous 
paragraph is true for integrals around rectangles. The proofs 
of the remaining statements, even for more variables, are not 
difficult to carry out, although it is not clear how Cauchy meant 
to make the transition from rectangles to arbitrary curves. 

Cauchy observed further that in the two-variable case 

[(dA/dy) - (dB/dx)]dxdy, (2) 

and therefore in the case of an exact differential the right side 
vanishes, hence also the left side. This result implies "Cauchy's 
integral theorem," of which we have spoken above. 

It is important to note that Cauchy never wrote, as we do to- 
day, an expression of the form /Adx + Bdy, where the domain of 
integration is a curve. For Cauchy such an expression could only 
have meant the sum of integrals along the x axis and y axis, re- 
spectively. To integrate over a curve, Cauchy always used the 
differential element ds. Hence line integrals in our sense, 
though implicit in his work, were not explicitly defined by 
Cauchy. 

In [1846b] Cauchy first defined what we now call periods of 
integrals. Observing that if /kds is taken around a curve which 
encloses an isolated singular point (k = A(dx/ds) + B(dy/ds), 
with Adx + Bdy exact), the integral is increased by a fixed 
amount I on each revolution, he called this value an index of 
periodicity. If there are several isolated singular points, with 
corresponding "periods" I, I', I", . . . . then /kds can be written 
as & mI + m'I' + m"I" 2 -a*, where the m's are positive integers 
indicating the number of times the path of integration goes 
around the corresponding singular point. 

It remained, however, for Bernhard Riemann to clarify and to 
prove Cauchy's results, at least in the two-dimensional case. 
As part of this process, he introduced the basic ideas of what 
we now call the topology of a Riemann surface. In other words, 
instead of concentrating on the points of discontinuity of the 
coefficient functions of the differential form, he focused his 
attention on the connectedness of the domains over which they 
were defined. In 1851, he simply sketched this idea in his 
dissertation, explaining it more fully in [Riemann 18571. 

Before discussing the contents of [Riemann 18571, it should 
be mentioned that in his dissertation, Riemann, like Cauchy be- 
fore him, wrote only integrals of functions over curves, e.g., 
/(x cos 5 + Y cos q)ds, and not explicit integrals of one-forms 
[Riemann 18511. In [Riemann 18571, however, the latter integrals 
do occur. It was the use of line integrals in physics which 
seems to have inspired this change. (See, however, the section 
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on Ostrogradskii below.) Clerk Maxwell [1855, 1911 had noted 
that if CL, 8, and y are the rectangular components of the "inten- 
sity of electric action," E, and if 1, m, and n are the corres- 
ponding direction cosines of the tangent to the curve, then 
E = lee f mB + ny, and hence I&a can be written as lcldx + Bdy 
+ ydz. A year later Charles Delaunay, in his Treatise on Rational 
Mechanics, discussed the work done by a force acting along a 
curve; namely, if F is a force and F1 its tangential component, 
then the work done along the curve is JFlds; on the other hand, 
if X, Y, and Z are the components of F parallel to the coordinate 
axes, then the latter integral can be written as /Xdx + Ydy + Zdz 
[Delaunay 1856, 167-1711. Very quickly thereafter this became 
standard notation in physics. 

Riemann was not concerned with physics in his publication 
of 1857, nor did he comment on his own change of notation. But 
his mathematical ideas were extremely significant. Here the no- 
tion of multiple connectedness was first introduced, and its rel- 
ation to the integration of one-forms was made explicit. Riemann 
began by observing that the integral of an exact differential 
Xdx + Ydy vanished when taken over the perimeter of a region [3] 
of the [Riemann] surface R which covers the x-y plane. (This 
follows from (2).) He continued: 

Hence the integral /Xdx + Ydy has the same value when 
taken between two fixed points along two different paths. 
provided the two paths together form the entire boundary 
of a region of R. Thus, if every closed curve in the 
interior of R bounds a region of R, then the integral 
always has the same value when taken from a fixed ini- 
tial point to one and the same endpoint, and is a con- 
tinuous function of the position of the endpoint which 
is independent of the path of integration. This gives 
rise to a distinction among surfaces: simply connected 
ones, in which every closed curve bounds a region of the 
surface . . . and multiply connected ones for which this 
does not happen. ([Riemann 18571; translation in Birkhoff 
1973, 52-53) 

Following this, Riemann defined multiple connectedness: 
"A surface R is said to be (n + l)-ply connected when n closed 
curves Al, AZ, . . . . An can be drawn on it which neither indi- 
vidually nor in combination bound a region of R, while if aug- 
mented by any other closed curve A,+l, the set bounds some 
region of R" [Birkhoff 1973, 531. He also noted that such a 
surface R is changed into an n-ply connected surface by any cut 
(a line going from one boundary point, through the interior, to 
another boundary point) which does not disconnect it, hence into 
a simply connected surface R' by n successive cuts which do not 
disconnect it. 
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Using the idea of cuts, Riemann described exactly what hap- 
pens when an exact differential is integrated in an (n + I)-ply 
connected region R. Since the associated region R' is simply 
connected, Z(x,y) = /Xdx + Ydy is a continuous function in R' 
(where the integration is performed along any curve, starting 
from a given point, which remains in R'). However, whenever the 
path of integration crosses a cut, the value changes by a fixed 
number depending upon the cut; in fact, there are n independent 
numbers, one for each cut. These numbers are, of course, a gen- 
eralization of Cauchy's indices of periodicity. 

The notions of multiple connectedness and of line integrals 
were immediately exploited by the physicists. In fact, for the 
next thirty years line integrals appeared mainly in the domain 
of physics. Although used occasionally in mathematics research 
papers (as we shall see), line integrals cannot be found in any 
mathematics texts until Hermann Laurent's Traite d'analyse [1888]. 
On the other hand, two of the most important physical texts of 
this period, Thomson and Tait's Treatise on Natural Philosophy 
(18671 and Maxwell's Treatise on Electricity and Magnetism [1873], 
both contain discussions of this important idea. 

The concept of multiple connectedness also took on important 
physical meaning. Hermann Helmholtz extended Riemann's definition 
to three dimensional regions: 

An n-ply connected space is one which can be cut through 
by n-l, but no more, surfaces without being separated 
into two detached portions. [Helmholtz 1858, 271. 

In other words, Helmholtz' surfaces replaced Riemann's cuts. 
Helmholtz observed that certain important theorems in potential 
theory--both in fluid dynamics and in electromagnetism--failed 
to hold in a multiply connected region precisely because integrals 
of exact differentials could not then be considered as single- 
valued functions. Helmholtz' important paper was translated into 
English in 1868, and immediately thereafter his ideas were ex- 
tended by Thomson and Maxwell. 

William Thomson [1869] fully explained what happened when 
line integrals were taken in an n-ply connected three-dimensional 
space, correctly stating the theorems mentioned above for such 
spaces. Thomson was mainly interested in fluid dynamics, and 
his aim was to investigate the motions of "a finite mass of in- 
compressible frictionless fluid completely enclosed in a rigid 
fixed boundary.... The containing vessel may be either simply or 
multiply [connected]" [Thomson 1868, 133. Thomson illustrated 
the discussion with pictures of pretzel-like regions and inter- 
connected rings. He used Helmholtz' definition of an n-ply con- 
nected space to define numbers which are similar to Riemann's 
constants and Cauchy's indices: Let Fds = udx + vdy + wdz be 
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an exact differential and 8. be one of Helmholtz' barrier sur- 
faces. Then if points P an a Q are "each infinitely near a point 
B Of Bjt but on the two sides of this surface," K. is defined to 
be IFds taken along any curve in the space joinin; P and Q with- 
out cutting any barrier 8. Thomson noted that this value is the 
same for any such curve and for any point B on Bj [Thomson 1869, 
43-441. 

Clerk Maxwell [1873] further generalized this idea. He noted 
that the line integral around a closed curve which passes only 
through the jth barrier in a given direction was Kj. Similarly, 
if a closed curve r passes through the jth barrier rn' 
the corresponding line integral will be 

, times, then 

Fds = mlKl + m2K2 + l *. + m,K,. 
r 

Meanwhile, Enrico Betti [1871] had proved a result more gen- 
eral than (3). In fact, Betti discussed the connectivity of 
spaces of n dimensions. Before considering his work we must 
look first at the notions of two-forms and surface integrals. 

TWO-FORMS 

A two-form in three-space is an object of the form Adydz 
+ Bdzdx + Cdxdy, where A, B, and C are functions of the three 
variables x, y, and z. They occur under the integral sign in 
what today are called surface integrals. 

Surface integrals first appeared early in the 19th century 
in the context of converting volume integrals to integrals over 
surfaces. Since the "volume element" is dxdydz and surfaces are 
two dimensional, it seemed natural to express the integrals over 
surfaces in terms of products of pairs of the differentials dx, 
dy, and dz. Thus it became necessary to relate such products 
to the surface element dS. The motivation for this study evi- 
dently came from physics. 

As in the case of line integrals, we must distinguish between 
the two related ideas of integrals over surfaces and surface 
integrals. The first notion was already in use, to some extent, 
in the late 18th century. In the first edition of his Mkanique 
analytique Lagrange [1788] mentioned the surface element and 
was able to write it explicitly in the case of a surface given 
by z = f(x,y); here dS = dxdy(1 + p2 + q2)+, where p = af/ax 
and q = aflay. But it was not until the second edition [Lagrange 
18111 that he introduced the notion of a general surface integral. 
Here Lagrange noted that if the tangent plane at the surface 
element dS makes an angle y with the x-y plane, then by simple 
trigonometry dxdy = cos y dS. Hence an integral of the form 
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fAdxdy is equal to one of the form /A cos y dS, the first being 
taken over a region of the plane, the second over the correspon- 
ding region of the surface. Similarly he noted that if B is the 
angle the tangent plane makes with the x-z plane and LX the angle 
it makes with the y-z plane, then dxdz = cos B dS and dydz 
= cos ci dS. Lagrange observed further that the angles a, 8, and 
y are the same as the angles which a line perpendicular to the 
surface elements makes with the x, y, and z axes, respectively. 
Lagrange had been studying the laws of equilibrium of fluids 
surrounding solids; his integrals with respect to dS represent 
the sum of moments of certain forces applied to points of the 
surface of the fluid. He used the transformations described 
above to rewrite such integrals as true surface integrals, al- 
though he did not make precise the exact domain over which the 
surface integral should be calculated. 

Gauss [1813], on the other hand, was interested in the 
gravitational attraction of an elliptical spheroid, although 
mathematically he did much the same as Lagrange. However, Gauss 
was careful to note that, for example, dxdz = tcos f3 dS, where 
the sign is positive if B is acute, negative if B is obtuse. In 
other words, since dxdz is an element of area, it is always pos- 
itive and could, of course, be also written as dzdx. It was not 
until much later that any real meaning was attributed to the 
change in order. In any event, Gauss wrote his integrals in 
the form 

I (A cos CY + B cos 6 + C cos y)dS (4) 

and used such integrals to express volumes in theorems which are 
special cases of what is now called the divergence theorem [Katz 
19791. 

Moreover, Gauss went further than Lagrange in showing how 
to calculate an integral with respect to dS. Namely, for a sur- 
face given parametrically by x = x(p,q), y = y (p,q), and z 
= Z(P,c?) , he showed, using a geometrical argument, that the area 
element dS is equal to 

[ 

a (Y,Z12 
dpdq a (p,q) 

a (z,x12 
+a0 

+ a(x,Y12 + 
a (Prq) 1 

and hence any integral with respect to dS can be reduced to an 
integral of the form jfdpdq, where f  is "either explicitly or 
implicitly a function of the two variables p, q” [Gauss 1813, 151. 

By the 1820s integrals of form (4) began to appear in the 
works of other mathematicians. In particular, Ostrogradskii [1826], 
(refered to in [Yushkevich 1965; Stolze 1978]), Green [1828], and 
Poisson [1829] all used such integrals in their statements of 
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the divergence theorem and related theorems. But again (as in 
the analogous case of line integrals and integrals over curves), 
explicit integrals of two forms did not appear, only the corres- 
ponding integrals of functions over surfaces. An integral of the 
form IfdS would be related to one of the form lgdydz, but the 
latter was always understood to be taken in the y-z plane. It 
was not until the 1850s that English physicists began to write, 
explicitly, integrals of the type /Adydz + Bdzdx + Cdxdy, where 
the domain of integration was the surface itself. Even the im- 
portant surface integral, 

JS (amy - aY/as)dyds + (ax/a2 - az/ax)dzdx 

+ (au/ax - ax/ay)dxdy, (5) 

which recuxred time and again in physical works of the period, 
first appeared as an integral with respect to dS; namely, 

II [~(az/ay - aY/as) + m(ax/as - az/ax) 

+ n(aY/ax - ax/ay)ds, (6) 

where 1, m, and n, are the appropriate direction cosines. The 
equality of (6) (taken over a surface) with 

s (Xdx/ds + Ydy/ds + Zdz/ds)ds 

(taken over the boundary curve of that surface), i.e., Stokes' 
theorem, first appeared in 1854 and was used frequently there- 
after [Katz, 19791. 

The expressions in the integrand of (6) are, of course, the 
very expressions whose vanishing implies that a one-form Xdx 
+ Ydy + Zdz is an exact differenital. Stokes and Thomson, among 
others, studied one-forms for which the expressions do not van- 
ish. Physically, such expressions represent the components of 
the rotation of, for example, a fluid whose velocity vector is 
(X,Y,Z). This fact was apparently first noticed by Cauchy [X343] 
and Stokes [1845] and was later developed in greater detail. In 
particular, Stokes [1849] considered these expressions in his 
work on diffraction. 

Since the integrand in (5) is (using modern terminology) the 
exterior derivative of the one-form, Xdx + Ydy + Zdz, we will 
first consider the mathematical aspects of its use. After 
Jacobi [1836] observed that 
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(an obvious result of the rules for partial differentiation), 
George Stokes [18491 proved what amounts to the converse, namely, 
that if A, B, and C are functions satisfying 

aA/aX + aB/ay + aC/az = 0, 

then there exist functions X, Y, and Z such that 

A = a.Z/ay - aY/az B = ax/az - az/ax c = ay/ax - axlay. 

Stokes' proof required the solution of Laplace' equation, VU = f. 
Thomson (18511 sketched a simpler proof, the details of which 
we now present. Let 

X = /(B/3)dz - /(C/3)dy, Y = I(C/3)dx - /(A/3)dz, 

z = /(A,‘3)dy - j(B,‘3)dx, 

where the integrations are all partial with respect to the given 
variable, so that in each case the "constant of integration" is 
a function of the remaining variables. To be explicit, let us 
rewrite these as 

X = f (B/3)dz + fl (x,y) - I(C/3)dy + f2 (x,z) , 

Y = /(C/3)dX + g1 (y,z) - J(A/3)dz + g2(x,y) r 

Z = j(A/3)dy + hl(x,z) - JW3)dX + hz(y,z). 

Then, 

aZ/aY - aY/az = A/3 - (1/3)/(aB/ay)dx + ahZ/ay 

- (1/3)/(aC/az)dx - agl/az + A/3 

= 2~13 + (1/3)i(aA/ax)dX + ah2/ay - agl/az 

= A + k(y,Z) + ahZ/ay - agl/aZ. 
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It is then simple to choose 91 and h2 such that agl/az - ah2/ay 
= k, thus giving the desired result. (Note that gl and h2 are 
functions of y and z only.) A similar calculation works in the 
two other cases [43. 

In modern terminology Jacobi's result and that of Stokes and 
Thomson together prove that if w is a two-form in three variables, 
then dw = 0 if and only if w = dn, where n is a one-form. In 
Clairaut's earlier [1740] proof of a simpler case of this result, 
an important idea was the reduction of the problem from two vari- 
ables to one; in Thomson's proof, the reduction from a problem in 
three variables to a problem in two variables also played a cen- 
tral role. Later this result and proof were further generalized. 

Thomson needed this result in a discussion of solenoidal and 
lamellar distributions of magnetism; the first is a distribution 
(A, B, C) where ad/ax + aB/ay + aC/az = 0, and the second is one 
where Adx + Bdy + Cdz is the differential of some function 4. 
In each case he wanted a formula for the magnetic potential V at 
a point. In the second case, he knew how to find V in terms of 
9, but in the first it turned out that he needed to find the 
functions X, Y, and 2 in order to obtain a usable expression for 
V. Mathematically, a "lamellar" distribution occurs when the 
form w = Adx + Bdy + Cdz satisfies dw = 0; while a "solenoidal" 
distribution occurs when the form q = Adydz + Bdzdx + Cdxdy 
satisfies drl = 0. Nearly fifty years were to pass before the 
unification of these two ideas under the idea of the exterior 
derivative took place. 

In any case, by the mid-19th century, the basic ideas of line 
and surface integrals were well understood and were regularly 
used in physical applications. In fact, in the preliminary sec- 
tions of [Maxwell 18731 there is a detailed discussion of most 
of the ideas we have considered. 

THE GENERALIZATIONS OF OSTROGRADSKII AND BETTI 

The work of Mikhail Ostrogradskii on this subject is some- 
thing of an anomaly. He made a number of important discoveries, 
but his work appears to have been totally ignored, at least in 
western Europe. For example, Ostrogradskii gave the first cor- 
rect proof of the change-of-variable formula for double integrals 
[18381, found the first generalization of this formula to any 
number of variables, generalized the divergence theorem to n 
variables 118361, wrote integrals of n-forms (in our sense) 
[1836, 18401, and even gave a mathematical definition of a "reg- 
ion in n-space" [1836]. The results were reproduced later by 
other mathematicians, with no credit given to Ostrogradskii. 
This lack of recognition is difficult to understand, especially 
since Ostrogradskii wrote most of his papers in French, and the 
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important work of 1836 was published in the Journal fur die 
Reine und Angewandte Mathematik, one of the most widely read 
journals of the day. 

In particular, Ostrogradskii's generalization [1836] of the 
divergence theorem, with its concomitant introduction of integrals 
of n-forms, appeared nowhere else until Enrico Betti repeated 
them thirty-five years later. Ostrogradskii's generalization 
of the divergence theorem states that 

s tap/ax + aQ/ay + aR/az + l **)dxdydz... 
V 

= 1 (paL/ax)/[ (aL/ax)21+)dyd=. . . 
(7) 

+ 1 (9aL/ay)/[(aL/ay)2i!xdz... 

f ((RaL/az)/[(aL/az)2]~dxdy... + l ... 

where L is a function of the variables x, y, z, . . . . V is the 
set of points (x,y,z,...) with L(x,y,z,...) < 0; and S is the 
set of points with L(x,y,z,...) = 0. (In modern terminology: 
if there are n coordinates, S is an (n - I)-dimensional hyper- 
surface bounding the n-dimensional volume V.) The integrand 
on the right in (7) is the first appearance of what is called 
today an (n - l)-dimensional differential form. 
(aL/ax)/[ (aiyaxj2]$, etc., 

The expressions 
are simply Ostrogradskii's way of 

designating the sign of the integrand. (The proof of (7) is 
discussed in [Katz 19791.) 

In his second statement of the theorem, Ostrogradskii once 
more generalized earlier work by expressing an element of "hyper- 
surface" dS by the equations 

dS dydz... = dxdz... = 
[(ai5/ax)2 + (aLjay) + l .-I % [ (aL/axj2]* [ (a.uay)2i+ 

dxdy... = = . ..* 
t (aL/az)2i+ 

Then the right side of (7) becomes 

I (PaL/ax + QaL/ay + RaL/az + ---) 
S ?- 

x [(aL/axj2 + (aL/ayJ2 + (aL/a2)2 + --*fzds (8) 
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Since 

[ (wax) 2 + (ajyayj2 + l --jG(aL/ax, awy, . ..) 

is a unit normal g to S, each component of this vector may be 
considered to be the cosine of the angle which z makes with the 
corresponding coordinate axis. It is then easy to see how Eq. 
(7), with the right side replaced by expression (8), is a direct 
generalization of the ordinary divergence theorem. 

In 1871, Betti repeated the work of Ostrogradskii, generaliz- 
ing it to multiply connected spaces. Moreover, he did the same 
for Stokes' theorem. Betti was strongly influenced by the work 
of Riemann; in 1859 he had translated Riemann's inaugural dis- 
sertation into Italian and over the next several years had done 
other work in the theory of complex variables. Furthermore, in 
letters written in 1863 to his colleague Tardy, Betti described 
his discussions with Riemann on multiple connectivity and stated 
that he had "formed an accurate idea of the matter." In these 
letters he also discussed several examples of these ideas [Weil 
1979, quoting Loria 19151. 

Betti [1871] was the first to publish a comprehensive defin- 
ition of connectivity for an n-dimensional space R: for each 
dimension m < n, R is said to have m-dimensional order of con- 
nectivity pm + 1, if there are pm closed m-dimensional spaces 
Al, AZ, . . . . Apm in R, which together do not form the boundary 
of a connected (m + l)-dimensional region of R, while any ad- 
ditional closed m-dimensional space together with some subset of 
the Aj'S forms such a boundary r.51. (A closed space, for Betti, 
was one without a boundary.) So, for instance, in a space whose 
m-dimensional order of connectivity is 1 (i.e., a space which is 
simply connected in the mth dimension), any closed m-dimensional 
space is the boundary of an (m + l)-dimensional region. For 
n = 2 and m = 1, Betti's definition is the same as Riemann's 
original definition. 

Again generalizing the work of Riemann, Betti showed also 
that to make a space simply connected in the mth dimension, one 
had to remove from it pm (n - m)-dimensional cross sections. 
For example, ifm=l,pl (n - l)-dimensional sections must be 
removed from R to make the remainder R' simply connected in the 
first dimension. Betti went on to compare n-fold integrals with 
(n - l)-fold integrals, using a method similar to that of 
Ostrogradskii; then generalizing the ideas of Stokes, he compared 
integrals of one-forms with those of two-forms. 

In the first case, he considered an n-dimensional region R 
bounded by closed (n - l)-dimensional spaces SI, S2, . . . . St, 
given respectively by equations F1 = 0, F2 = 0, . . . . Ft = 0. 
For simplicity, we will consider only the case t = 1, which is 
precisely the case studied by Ostrogradskii. Betti considered 
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n functions X1, X2, . . . . X, in R and aimed to express the n-fold 
integral 

tin = J(ax,/az, + ax2/az2 + ..a + aXn/azn)dzldz2-**dzn (9) 
R 

in terms of an (n - l)-fold integral. More explicitly 
than Ostrogradskii, he gave a parametric expression z' 
= zi(ulrU2r...run-1) (i = 1,2,...,n) for the hypersur ace S * 
whose equation is F = 0, and then, via a proof quite similar 
to that in the earlier work, showed (in modern notation) that 

This can, of course, be rewritten as 

/ 
C(-l)lXidZl”.d~i”‘dZn (10) 

The equality of (9) with (10)isnearly the same as Ostrogradskii's, 
equality (7). The difference in sign is due to Betti's careful 
choice of the order of the coordinates Zim 

Betti also rewrote fin in a way reminiscent of Ostrogradskii's 
form (8). Defining M to be 

[C(a(zl*.*~i**‘zn)/a(u~.*.un-l) 1 2 bz 

and u to be [C(aF/azi)21', he noted that cl.5 = Mduldu2m*adun-l and 

aF/azi = (-1) 

hence 

R, = -CXi(aF/azi) (l/u)dS 

a result identical (up to sign) to that of Ostrogradskii. (Note, 
of course, that the expression (aF/azi)(l/u) are components of 
the unit normal vector to S.) 

But Betti carried the idea further in a particular case. 
Given a function V such that Xi = aV/azi for all i, he observed 
that 
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C(XiaF/azi)(l/u) = I(aV/azi)(aP/azi) (l/V) 

is the normal derivative dV/dp of V. Hence Betti's theorem im- 
plies that iz(a2V/az$)dR = -&(dV/dp)dS. Therefore if 

c(a2v/a+) = 0 (11) 

throughout R, then (dV/dp)dS = 0. 
ii 

Hence if C is any closed 
space which forms t e boundary of a portion of R and if condition 
(11) is satisfied, then (dV/dp)dC = 0. 

6 Betti next applied hrs definition of connectivity. If R has 
connectivity p + 1 in the (II - l)st dimension, there are p closed 
(n - 1)-dimensional spaces Al, A2, . . . . Ap, such that each closed 
(n - l)-dimensional space C contained in R forms with the A's 
the boundary of a region of R. Setting jAr(dV/dp)dAr = Mr, 
Betti concluded that (dV/dp)dC = -CM,, a result similar to that 
of Thomson and Maxwel f . As a corollary he noted the following 
for a space R which is simply connected in the (n - 1)st dimen- 
sion. Since two (n - l)-dimensional spaces having the same 
boundary r together form a closed space, it follows that "the 
integral extended to any space C, contained in R, with boundary 
r will always have the same value" [Betti 1871, 1561. Of course, 
Betti did not have to require that condition (11) be satisfied 
by the function V. To derive similar results he could have used 
arbitrary functions Xi, assuming only that Z(aXi/azi) = 0. (AS 
we will see below, that is precisely what Poincarg did.) 

Betti also considered the case of one-forms in an n-dimen- 
sional space R, namely, forms of the type CXidZi. He assumed 
that the curve y, represented parametrically by Zi = zi(u), 
bounds the region C given by Zi = zi(v1,v2). Then he defined 

R1 = $CXidZi =I~Xi(dZi/dU)dU. 
Y 

Since (dZi/dU)dU = (azi/avl)dv1 + (azi/av2)dv2, we obtain 

~1 =lEXi(azi/avl)dvl + J CXi(azi/aq)dv2. 

By a direct calculation, he showed that this expression is equal 
to 

SJ [a (cxiazi/avl)/av2 - a (Cxiazi/av2)/avlldvldv2r (12) 
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where the latter integral is taken over the parametric space of 
C. After further calculation Betti concluded that 

XidZi = 
J-s 

c(axi/azj - aXj/azi)dzidzj. 
Y c 

(13) 

This is, of course, a direct generalization of Stokes' theorem 
from three- to n-dimensional space. 

Next Betti assumed that the connectivity of R in the first 
dimension was p f 1. This means that there are p (n - l)-dimen- 
sional cross sections sir szl . . . . sp, such that on removing 
these sections from R, the remainder R' will be simply connected. 
Furthermore, there are p closed curves Ll, L2, . . . . Lp, which, 
respectively, meet the sections Sir and such that any other 
closed curve y forms with these L's the boundary of a two-dimen- 
sional space C. Betti used (13) to conclude that if 

aXi/aZ j - axj/azi = 0 for all i, j, (14) 

then /CXidzi = 0; the integration is over the entire boundary 
system of C, namely, y, Ll, L2, . . . . L,. It follows that if 
Mt = JLtCXidzi, then "the integral /CXidZi, taken from 20 to Zl 
along any curve which meets certain sections s [i.e., s.1, differs 
from that taken along any curve from ZO to Zl which doei not meet 
any of the sections s by the quantities M [i.e., Mjl relative to 
the intersected sections s; these quantities are taken to be pos- 
itive or negative depending on whether they [the curves] intersect 
the section [while] progressing in one or the other direction 
[i.e., depending on the direction of the integration]." Hence, 
if R is simply connected in the first dimension, "the integral 
taken along any curve in R from ZO to Zl always has the same 
value" [Betti 1871, 1581. It is easy to see that this result 
is the same as Maxwell's (3) except, of course, that it is valid 
for an arbitrary number of dimensions. 

THE GENERALIZATIONS OF POINCA& AND VOLTERRA 

Conditions (14) ensuring that the line integral /CXidZi is 
independent of the path of integration and depends only on the 
endpoints (in a simply conected space) were called the integra- 
bility conditions by Poincard [1887]. The conditions were so 
named because they imply the existence of an "integral" for 
CXidZi, that is, a function f such that df = CXidZi. Poincare 
went on to consider similar conditions for surface integrals in 
n-dimensional space. He was very explicit about his motivations 
for considering such conditions; both in [PoincarB 1886) and in 
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the retrospective analysis of his work [Poincarg 19211, he stated 
that his aim was to generalize the work of Cauchy on functions 
of one complex variable to functions of two complex variables. 
In particular, he wanted to generalize Cauchy's integral theorem, 
the idea of a period, and the notion of a residue. 

In [Poincare 18871, a function, F(S,rl) = P(S,rl) + iQ(S,rl), 
of two complex variables, 5 = x + iy and n = z + it, was intro- 
duced. Its double integral, j/F(<,n)dcdn, taken over a region 
in complex two-dimensional space, can be expanded formally to give 

If (P + iQ)(dx + idy)(dz + idt) 

= + iQ)dxdz + (iP - Q)dxdt + (iP - Q)dydz - (P + iQ)dydt 

taken over a surface in four-space. As in the one-variable case, 
the Cauchy-Riemann conditions are satisfied by P and Q: 

aph = away, aP/ay = -aQ/ax, ap/a2 = aQ/at aP/at = -aQ/az, 

and they may be used to derive 

a(iP - Q)/ax - a(~ + iQ)/ay = 0, -a(p + iQ)/ax - a(iP - Q)/ay = 0, 

ap + iQ)/at - a(ip - Q)/az = 4 a(iP - Q)/at + alp + ia)/az = 0. 

(15) 

Poincard wanted to show that conditions (15) are precisely those 
which ensure that the given integral vanishes over a closed 
surface. (This is the analog of Cauchy's integral theorem for 
functions of two variables.) 

To do this, he returned to the real case and to surface 
integrals in n-space, namely, integrals of the form 

J = JSc(Xi,Xk)dxidXk, (16) 

where each symbol (xi,xk) denotes a function of the n variables 
~1, x2, . . . . and xn; (xi,xk) = 0 and (Xi,xk) = -(Xi,xk) for all 
values of i and k; and the summation in (16) is taken over all 
n(n - 1)/2 distinct pairs of indices. Poincarg defined this 
integral by parametrizing the surface, thereby converting J 
into an ordinary double integral in the plane. It is here that 
Poincare' was careful to remark that the order of integration of 
the parametric variables is crucial. Indeed, since 
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j-fidxdy =j-fi[a(x,yL’a (urv) ldudv, 

it is clear that interchanging either u and v or x and y will 
change the sign of the integral. We thus see the reason for 
Poincare's insistence on the skew symmetry of the functions 
(Xi rxk) - 

Poincare went on to derive the integrability conditions he 
was seeking, namely, the conditions under which the integral does 
not depend on the surface of integration, but only on the curve 
which bounds the surface. These conditions turned out to be the 
n(n - 1) (II - 2)/6 relations 

a(Xi,xk)/axh + a(Xk,xh)/axi + a(xb,xivaxk = o 

[Poincare 1887, 4521. As we noted above, the special case n = 3 
of (17) is equivalent to one of Betti's results [Betti 1871, 1561; 
but Poincarb's generalizations and proofs differed from the lat- 
ter. Betti used an argument comparing an n-dimensional integral 
to an (n - l)-dimensional integral, whereas Poincare used a cal- 
culus of variations proof, thereby considering only the two-di- 
mensional integral itself. 

Moreover, the case n = 4 gave Poincare the result he wanted 
for studying functions of two complex variables. By letting 
(X,Y) = (Z,T) = 0, (X,Z) = (T,Y) = P + iQ, and (X,T) = (Y,Z) 
= iP - Q, the four conditions described by (17) become identical 
with those of (15). 

Having obtained the result for two-dimensional integrals, 
Poincare immediately generalized it to integrals of higher order: 
given a triple integral ///c(X,,X 
symbols (X,,Xg,Xy) are analogous !o xhose in t% ~~~%~~~sional 

,X )dxadxgdx 

case, the conditrons of integrability, i.e., the conditions 
under which the integral depends only on the two-dimensional 
boundary of the three-dimensional space over which the integral 
is taken, are 

a(x,,xg,x,)/axa - a(xg,xy,xa)/ax, + a(xyrxarxd/axg 

- a(xa,xol,xp)/axy = o. 

Poincare noted that similar results would hold in any dimension, 
with the signs between the individual terms alternating in the 
odd-dimensional cases and always being positive in the even- 
dimensional cases [Poincar6 1887, 4533. 

Vito Volterra [1889c] derived the same integrability condi- 
tions, though from a slightly different point of view. Volterra 
had been developing the theory of functionals--or what he called 
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"functions of lines." Poincarg had shown that the integral of 
a function of two complex variables over a surface depends only 
on the "lines" bounding the surface. In other words, according 
to Volterra [1889a, 3651, Poincarg's double integrals could be 
considered functions of lines. In a series of papers published 
in 1889, Volterra developed this theory and its generalization 
to functions of r-dimensional surfaces, after which he noted its 
application to complex analysis. 

As part of this work, he was led to the first general state- 
ment and proof of what is today known as Poincarg's lemma and 
its converse. We quote his result, written in the language of 
systems of partial differential equations in n-space: 

The necessary and sufficient conditions that the 
system of simultaneous differential equations 

r+l 
ap . 

c 

(- d 
11 . . .pt l -*ir+l 

axit 
=pi . 

1 ""r+l 

be integrable is that 

(18) 

(19) 

Eqs. (18) are taken for every combination of r + 1 of 
the indices 1, 2, . . . . n; also the p's and the P's 
change sign by any transposition of indices. [Volterra 
1889, 4221 

Equations (19) are the same as Poincarg's conditions; the 
apparent differences in signs are due to the different orders 
in which the indices are placed. Furthermore, Volterra's solu- 
tions to the differential equations imply PoincarB's result, 
namely, that certain integrals depend only on the boundaries 
of regions. 

If conditions (19) are given, then Volterra's theorem states 
that there exist functions P satisfying (18). The generalized 
form of Stokes' theorem, which Volterra had stated in [1889b], 
implies that for functions related by (18), 
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J S 
CP . . . .i a. 

. 
r+l =1 r+l 'l""r+l 

dSr+l = s S "i r 1 
l **i 6. . ds,, 

r =l"'lr 

where S, is the r-dimensional boundary of the (r + l)-dimensional 
space Sr+lr the ~1's are the direction cosines of S,+l, and the 
B's are the direction cosines of S,. In other words, the integral 

on the left (which, as we have seen in the works of Ostrogradskii 
and Betti, can be written as the integral of an (r + l)-dimen- 
sional form) depends only on an integral over the boundary S,, 

To prove the necessity of the conditions stated in Volterra's 
theorem requires only a direct calculation using the rules for 
partial derivatives. This is, of course, a simple generalization 
of Jacobi's earlier result in three dimensions. The sufficiency 
part of the proof involves a step-by-step reduction in the number 
of variables, in essence a generalization of Clairaut's original 
proof for (in Volterra's notation) the case r = 0 and n = 2. 
Rather than sketch his proof in all generality, we will consider 
only the special case r = 1 and n = 4. This case exhibits the 
main features of the general proof. 

Six functions Pijl 1 < i < j < 4, satisfying the four 
conditions 

.apjk/axi + apik/axj - apij/aXk = 0, l<i<j<k<4, (20) 

are given, and four functions Pi, satisfying 

-aPj/axi + aPi/axj = Pijs l<i<j<4, (21) 

must be found. Volterra first chose M4 to be an arbitrary func- 
tion. Then Ml, M2, and M3 may be chosen to satisfy 

aMi/axL = pi4 + aMq/axi, i = 1, 2, 3. (22) 

Volterra showed that 

a(-Mj/axi + aMi/axj)/ax4 = apij/ax4, lli<jZ3, 

and therefore 

-aMj/axi + aMi/axj = Pij + pij, (23) 

where pij is a function solely of xl, x2, and x3. Another 
straightforward calculation using (23) and (20) yields 
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-a&/ax1 + api3/ax2 - a&/ax3 = 0. 

If functions Pi, Pi, and Pi can be found such that 

-aP,!/axi + aPj/axj = -Pij, lli<j13, 

183 

(24) 

(25) 

then by setting Pi = Mi + Pi, i = 1, 2, 3, and Pq = ML+, it is 
easy to see that the Pi satisfy (21). 

Thus, Volterrareduced the problem for r = 1 and n = 4 to 
r = 1 and n = 3 (i.e., to solve equations (25), given condition 
(24)). The latter case was precisely the one considered earlier 
by Stokes and Thomson. For Thomson, as for Volterra, the next 
reduction to the case r = 1 and n = 2 enabled him to find the 
solution immediately, since only a single equation of type (25) 
had to be solved. 

In this proof, Volterra assumed that equations of type (22) 
can always be solved, i.e., that there are always partial anti- 
derivatives. Locally this is always true; but as d'Alembert's 
example showed, there are domains to which the solution cannot 
be extended. Nevertheless, as noted above, this was the first 
proof that if w = dq, then dw = 0; and conversely, if dw = 0, 
then, at least locally, there is an n with dq = w. 

In 1887 Poincarg, like Cauchy in 1846, had considered con- 
nectivity of the domain only in the sense that for a function 
to have an integral equal to zero over a closed surface, it must 
not have any singularities either on the surface or in the domain 
bounded by that surface. In his fundamental paper, "Analysis 
Situs," however, Poincarg [1895], like Riemann in 1857, refined 
the notion of the connectivity of a domain. First, he defined 
the notions of homology and Betti number, further clarifying 
them four years later in [Poincarg 18991: a homology relation 
exists among p-dimensional subvarieties ~1, ~2, *-*, vr of an 
n-dimensional variety V, written VI + v2 + l ** + V)I" w 0, if for 
some integer k,the set consisting of k copies of each of the 
Vi constitutes the complete boundary of a (p + l)-dimensional 
subvariety W [Poincarg 1895, 207; 1899, 2911. "Negatives" of 
varieties were introduced by considering orientation. Poincare 
observed that homologies can be added, subtracted, and multiplied 
by integers. Finally, he called varieties "linearly independent" 
if there is no homology among them with integer coefficients [61. 

PoincarG went on to define the q-dimensional Betti number Pq 
of V to be one more than the maximum number of independent, 
closed, q-dimensional subvarieties. This is nearly the same 
as Betti's definition of the order of connectivity: the dif- 
ference is that Betti had failed to consider the possibility 
that a multiple of a variety was a boundary, while the variety 
itself was not. (Today, we would define the q-dimensional Betti 
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number to be the number of independent closed q-dimensional 
subvarieties.) 

Having defined the Betti numbers, Poincard was ready to 
consider integrals of the form 

I CXol ...a dxc, dxa l '-dxa , 
1912 9 

(26) 

for which he gave the appropriate definition. He repeated the 
conditions of integrability first given in [Poincarg 1887, 4531, 
i.e., the conditions under which the integral (26) vanishes over 
any closed variety. Then he generalized this result: if the 
complete boundary of an (m + l)-dimensional variety W is composed 
of k m-dimensional varieties vl, ~2, . . . . vk, then, assuming the 
integrability conditions are satisfied, the algebraic sum of the 
integral (26) over the Vi will also be zero. 

Hence, since there are Pm - 1 independent closed m-dimensional 
varieties vl, . . . . vPm _ 1 such that any closed variety U is (up 
to homology) a linear combination of these and since, therefore, 
a multiple of U together with the same multiple of this linear 
combination forms the boundary of an (m + l)-dimensional variety, 
Poincarg concluded that the integral (26) taken over U is simply 
a linear combination of the values that the integral takes over 
the Vi. Poincare called these values, which are the generaliza- 
tions of similar values appearing in the works of earlier authors, 
the periods of the integral. In particular, he noted that Betti 
had done essentially the same thing, but only for dimensions 1 
and n - 1. 

In the 19th century there was a second stream of mathematical 
investigations, related to the problem of Pfaff [7] and carried 
out by such mathematicians as Darboux and Frobenius. This stream 
was to merge with the investigations discussed here, culminating, 
at the turn of the century, with the work of Elie Cartan formal- 
izing the theory of differential forms [8]. 
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NOTES 

1. Cauchy's publication of 1831 was pointed out to me in a 
letter from Dr. F. Smithies of Cambridge University. He is cur- 
rently doing research on the origins of Cauchy's integral theorem. 

2. Throughout this paper the term exact differential will 
designate, according to 19th-century terminology, differentials 
which satisfy the Clairaut conditions. Today they would be 
called closed differentials, the term exact differential being 
reserved for the differential of a function. 

3. Riemann gave no explicit definition of region [Theill 
here, but the context shows that he considered it to be a 
subset of the surface in which his proof that jxdx + Ydy 
= //(au/ax - ax/ay)dR is valid, namely, one in which every 
closed curve can be continuously deformed into a point. 

4. In Thomson's original paper, the factor l/3 does not 
appear in the proof, thereby rendering it incorrect; but this 
factor does appear in the reprint. It is interesting that when 
Maxwell [1855] reproduced the proof he referred to Thomson [18511 
and also left out the factor l/3. 

5. This definition, of course, requires a theorem to show 
that it is consistent. Although Betti provided such a theorem, 
A. Tonelli [1873] pointed out that the proof was not rigorous. 
To correct it required some modification of the definition. 
The situation was not completely clarified until the work of 
Poincare [18991. (There is a detailed treatment of this point 
in [Pont 19741.) 

6. Poincarg gave two definitions of a variety in n-space. 
He first defined it as the solution set of a system of equations, 
Fi (X1 r---rXn) = 0, and inequalities, $j(xI,...,xn) > 0, where 
the Fi and the $j satisfy certain differentiability conditions. 
His second definition was a parametric one: a variety is the 
image of a set of n analytic functions Xi = Bi(yI,...,ym), 
where the domain in m-space is specified by certain inequalities 
$k(Ylr***rYm) ' 0. 

7. The problem of Pfaff is concerned with the conditions 
under which the number of variables in a first-order form (i.e., 
a Pfaffian) can be reduced by a change of variable. 

8. The author is preparing a sequel to this paper in which 
these investigations will be described. 
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