
Taylor’s Formula
G. B. Folland

There’s a lot more to be said about Taylor’s formula than the brief discussion on pp.113–4
of Apostol. Let me begin with a few definitions.

Definitions. A function f defined on an interval I is called k times differentiable on I if
the derivatives f ′, f ′′, . . . , f (k) exist and are finite on I, and f is said to be of class Ck on
I if these derivatives are all continuous on I. (Note that if f is k times differentiable, the
derivatives f ′, . . . , f (k−1) are necessarily continuous, by Theorem 5.3; the only question is the
continuity of f (k).) If f is (at least) k times differentiable on an open interval I and c ∈ I,
its kth order Taylor polynomial about c is the polynomial

Pk,c(x) =
k∑

j=0

f (j)(c)

j!
(x− c)j

(where, of course, the “zeroth derivative” f (0) is f itself), and its kth order Taylor remainder
is the difference

Rk,c(x) = f(x)− Pk,c(x).

Remark 1. The kth order Taylor polynomial Pk,c(x) is a polynomial of degree at most k,
but its degree may be less than k because f (k)(c) might be zero.

Remark 2. We have Pk,c(c) = f(c), and by differentiating the formula for Pk,c(x) repeat-

edly and then setting x = c we see that P
(j)
k,c (c) = f (j)(c) for j ≤ k. That is, Pk,c is the

polynomial of degree ≤ k whose whose derivatives of order ≤ k at c agree with those of f .

For future reference, here are a few frequently used examples of Taylor polynomials:

f(x) = ex; Pk,0(x) =
∑

0≤j≤k

xj

j!

f(x) = cos x; Pk,0(x) =
∑

0≤j≤k/2

(−1)jx2j

(2j)!

f(x) = sin x; Pk,0(x) =
∑

0≤j<k/2

(−1)jx2j+1

(2j + 1)!

f(x) = log x; Pk,1(x) =
∑

1≤j≤k

(−1)j−1(x− 1)j

j

Note that (for example) 1− 1
2
x2 is both the 2nd order and the 3rd order Taylor polynomial

of cos x, because the cubic term in its Taylor expansion vanishes. (Also note that in higher
mathematics the natural logarithm function is almost always called log rather than ln.)

For k = 1 we have P1,c(x) = f(c) + f ′(c)(x − c); this is the linear function whose graph
is the tangent line to the graph of f at x = c. Just as this tangent line is the straight line
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that best approximates the graph of f near x = c, we shall see that Pk,c(x) is the polynomial
of degree ≤ k that best approximates f(x) near x = c. To justify this assertion we need
to see that the remainder Rk,c(x) is suitably small near x = c, and there are several ways
of making this precise. The first one is simply this: the remainder Rk,c(x) tends to zero as
x→ c faster than any nonzero term in the polynomial Pk,c(x), that is, faster than (x− c)k.
Here is the result:

Theorem 1. Suppose f is k times differentiable in an open interval I containing the point
c. Then

lim
x→c

Rk,c(x)

(x− c)k
= lim

x→c

f(x)− Pk,c(x)

(x− c)k
= 0.

Proof. Since f and its derivatives up to order k agree with Pk,c and its derivatives up to order
k at x = c, the difference Rk,c and its derivatives up to order k vanish at x = c. Moreover,
(x− c)k and its derivatives up to order k−1 also vanish at x = c, so we can apply l’Hôpital’s
rule k times to obtain

lim
x→c

Rk,c(x)

(x− c)k
= lim

x→c

R
(k)
k,c(x)

k(k − 1) · · · 1(x− c)0
=

0

k!
= 0.

There is a convenient notation to describe the situation in Theorem 1: we say that

Rk,c(x) = o((x− c)k) as x→ c,

meaning that Rk,c(x) is of smaller order than (x − c)k as x → c. More generally, if g
and h are two functions, we say that h(x) = o(g(x)) as x → c (where c might be ±∞) if
h(x)/g(x) → 0 as x → c. The symbol o(g(x)) is pronounced “little oh of g of x”; it does
not denote any particular function, but rather is a shorthand way of describing any function
that is of smaller order than g(x) as x → c. For example, Corollary 1 of l’Hôpital’s rule
(see the notes on l’Hôpital’s rule) says that for any a > 0, xa = o(ex) and log x = o(xa) as
x→∞, and log x = o(x−a) as x→ 0+. Another example: saying that h(x) = o(1) as x→ c
simply means that limx→c h(x) = 0.

In order to simplify notation, in the following discussion we shall assume that c = 0 and
write Pk instead of Pk,c. (The Taylor polynomial Pk = Pk,0 is often called the kth order
Maclaurin polynomial of f .) There is no loss of generality in doing this, as one can always
reduce to the case c = 0 by making the change of variable x̃ = x − c and regarding all
functions in question as functions of x̃ rather than x.

The conclusion of Theorem 1, that f(x)−Pk(x) = o(xk), actually characterizes the Taylor
polynomial Pk,c completely:

Theorem 2. Suppose f is k times differentiable on an open interval I containing 0. If Q
is a polynomial of degree ≤ k such that f(x)−Q(x) = o(xk) as x→ 0, then Q = Pk.
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Proof. Since f−Q and f−Pk are both of smaller order than xk, so is their difference Pk−Q.
Let Pk(x) =

∑k
0 ajx

j (of course aj = f (j)(0)/j!) and Q(x) =
∑k

0 bjx
j. Then

(a0 − b0) + (a1 − b1)x + · · ·+ (ak − bk)xk = Pk(x)−Q(x) = o(xk).

Letting x→ 0, we see that a0 − b0 = 0. This being the case, we have

(a1 − b1) + (a2 − b2)x + · · ·+ (ak − bk)xk−1 =
Pk(x)−Q(x)

x
= o(xk−1).

Letting x→ 0 here, we see that a1 − b1 = 0. But then

(a2 − b2) + (a3 − b3)x + · · ·+ (ak − bk)xk−2 =
Pk(x)−Q(x)

x2
= o(xk−2),

which likewise gives a2 − b2 = 0. Proceeding inductively, we find that aj = bj for all j and
hence Pk = Q.

Theorem 2 is very useful for calculating Taylor polynomials. It shows that using the
formula ak = f (k)(0)/k! is not the only way to calculate Pk; rather, if by any means we can
find a polynomial Q of degree ≤ k such that f(x) = Q(x) + o(xk), then Q must be Pk. Here
are two important applications of this fact.

Taylor Polynomials of Products. Let P f
k and P g

k be the kth order Taylor polynomials of
f and g, respectively. Then

f(x)g(x) =
[
P f

k (x) + o(xk)
][

P g
k (x) + o(xk)

]
=
[
terms of degree ≤ k in P f

k (x)P g
k (x)

]
+ o(xk).

Thus, to find the kth order Taylor polynomial of fg, simply multiply the kth Taylor poly-
nomials of f and g together, discarding all terms of degree > k.

Example 1. What is the 6th order Taylor polynomial of x3ex? Solution:

x3ex = x3

[
1 + x +

x2

2
+

x3

6
+ o(x3)

]
= x3 + x4 +

x5

2
+

x6

6
+ o(x6),

so the answer is x3 + x4 + 1
2
x5 + 1

6
x6.

Example 2 What is the 5th order Taylor polynomial of ex sin 2x? Solution:

ex sin 2x =

[
1 + x +

x2

2
+

x3

6
+

x4

24
+

x5

120
+ o(x5)

] [
2x− (2x)3

6
+

(2x)5

120
+ o(x5)

]
= 2x + 2x2 + x3

[
2

2
− 8

6

]
+ x4

[
2

6
− 8

6

]
+ x5

[
2

24
− 8

12
+

32

120

]
+ o(x5),

so the answer is 2x + 2x2 − 1
3
x3 − x4 − 19

60
x5.

3



Taylor Polynomials of Compositions. If f and g have derivatives up to order k, and
g(0) = 0, we can find the kth Taylor polynomial of f ◦g by substituting the Taylor expansion
of g into the Taylor expansion of f , retaining only the terms of degree ≤ k. That is, suppose

f(x) = a0 + a1x + · · ·+ akx
k + o(xk).

Since g(0) = 0 and g is differentiable, we have g(x) ≈ g′(0)x for x near 0, so anything that
is o(g(x)k) is also o(xk) as x→ 0. Hence,

f(g(x)) = a0 + a1g(x) + · · ·+ akg(x)k + o(xk).

Now plug in the Taylor expansion of g on the right and multiply it out, discarding terms of
degree > k.

Example 3. What is the 16th order Taylor polynomial of ex6
? Solution:

ex = 1 + x +
x2

2
+

x3

6
+ o(x3) =⇒ ex6

= 1 + x6 +
x12

2
+

x18

6
+ o(x18).

The last two terms are both o(x16), so the answer is 1 + x6 + 1
2
x12.

Example 4. What is the 4th order Taylor polynomial of esin x? Solution:

esin x = 1 + sin x +
sin2 x

2
+

sin3 x

6
+

sin4 x

24
+ o(x4)

since | sin x| ≤ |x|. Now substitute x− 1
6
x3 + o(x4) for sin x on the right (yes, the error term

is o(x4) because the 4th degree term in the Taylor expansion of sin x vanishes) and multiply
out, throwing all terms of degree > 4 into the “o(x4)” trash can:

esin x = 1 +

[
x− x3

6

]
+

1

2

[
x2 − x4

3

]
+

x3

6
+

x4

24
+ o(x4),

so the answer is 1+x+ 1
2
x2− 1

8
x4. (To appreciate how easy this is, try finding this polynomial

by computing the first four derivatives of esin x.)

Taylor Polynomials and l’Hôpital’s Rule. Taylor polynomials can often be used effectively
in computing limits of the form 0/0. Indeed, suppose f , g, and their first k − 1 derivatives
vanish at x = 0, but their kth derivatives do not both vanish. The Taylor expansions of f
and g then look like

f(x) =
f (k)(0)

k!
xk + o(xk), g(x) =

g(k)(0)

k!
xk + o(xk).

Taking the quotient and cancelling out xk/k!, we get

f(x)

g(x)
=

f (k)(0) + o(1)

g(k)(0) + o(1)
→ f (k)(0)

g(k)(0)
as x→ 0.

This is in accordance with l’Hôpital’s rule, but the devices discussed above for comput-
ing Taylor polynomials may lead to the answer more quickly than a direct application of
l’Hôpital.
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Example 5. What is limx→0(x
2 − sin2 x)/x2 sin2 x? Solution:

sin2 x =

[
x− x3

6
+ o(x4)

]2

= x2 − x4

3
+ o(x4),

so x2 sin2 x = x4 + o(x4), and

x2 − sin2 x

x2 sin2 x
=

1
3
x4 + o(x4)

x4 + o(x4)
=

1
3

+ o(1)

1 + o(1))
→ 1

3
.

(Again, to appreciate how easy this is, try doing it by l’Hôpital’s rule.)

Example 6. Evaluate

lim
x→1

[
1

log x
+

x

x− 1

]
.

Solution: Here we need to expand in powers of x− 1. First of all,

1

log x
− x

x− 1
=

x− 1− x log x

(x− 1) log x
=

(x− 1)− (x− 1) log x− log x

(x− 1) log x
.

Next, log x = (x − 1) − 1
2
(x − 1)2 + o((x − 1)2), and plugging this into the numerator and

denominator gives

(x− 1)− (x− 1)2 −
[
(x− 1)− 1

2
(x− 1)2

]
+ o((x− 1)2)

(x− 1)2 + o((x− 1)2)
=
−1

2
+ o(1)

1 + o(1)
→ −1

2
.

Theorem 1 tells us a lot about the remainder Rk,c(x) = f(x) − Pk,c(x) for small x, but
sometimes one wants a more precise quantitative estimate of it. The most common ways
of obtaining such an estimate involve slightly stronger conditions on f ; namely, instead of
just being k times differentiable we assume that it is k + 1 times differentiable, or perhaps
of class Ck+1, and the estimates we obtain involve bounds on the derivative f (k+1). There
are several formulas for Rk,c(x) that lead to such estimates; we shall present the two that
are most often encountered. The first one is the one presented in Apostol. (It’s Theorem
5.19, with the change of variable k = n− 1. Apostol states the hypotheses in a slightly more
general, but also more complicated, form; the version below usually suffices.)

Theorem 3 (Lagrange’s Form of the Remainder). Suppose f is k + 1 times differentiable
on an open interval I and c ∈ I. For each x ∈ I there is a point x1 between c and x such
that

Rk,c(x) =
f (k+1)(x1)

(k + 1)!
(x− c)k+1. (1)

For the proof of Theorem 3 we refer to Apostol. The other popular form of the remain-
der requires a slightly stronger hypothesis, that f (k+1) not only exists but is continuous.
(Actually, it’s enough for it to be Riemann integrable, but these minor variations in the
assumptions are usually of little importance.) I suspect the reason that Apostol doesn’t
mention it is that it involves an integral, and he doesn’t want to discuss integrals until later.
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Theorem 4 (Integral Form of the Remainder). Suppose f is of class Ck+1 on an open
interval I and c ∈ I. If x ∈ I, then

Rk,c(x) =
1

(k + 1)!

∫ x

c

(x− t)kf (k+1)(t) dt. (2)

Proof. Recalling the definition of Rk,c, we can restate (2) as

f(x) =
k∑

j=0

f (j)(c)

j!
(x− c)j +

1

(k + 1)!

∫ x

c

(x− t)kf (k+1)(t) dt. (3)

For k = 0, this simply says that

f(x) = f(c) +

∫ x

c

f ′(t) dt, (4)

which is true by the fundamental theorem of calculus. Next, we integrate (4) by parts, taking

u = f ′(t), du = f ′′(t) dt; dv = dt, v = t− x.

Notice the twist: normally if dv = dt we would simply take v = t, but we are free to add a
constant of integration, and we take that constant to be −x. (The number x, like c, is fixed
in this discussion; the variable of integration is t.) The result is

f(x) = f(c) + (t− x)f ′(t)
∣∣x
c
−
∫ x

c

(t− x)f ′′(t) dt

= f(c) + (x− c)f ′(c) +

∫ x

c

(x− t)f ′′(t) dt,

which is (3) with k = 1. Another integration by parts, with

u = f ′′(t), du = f ′′′(t) dt; dv = (x− t) dt, v = −1
2
(x− t)2,

(again, instead of taking v = xt− 1
2
t2 we take v = −1

2
(x− t)2 = −1

2
x2 + xt− 1

2
t2) gives

f(x) = f(c) + (x− c)f ′(c)− 1
2
(x− t)2f ′′(t)

∣∣x
c

+

∫ x

c

1
2
(x− t)2f ′′′(t) dt

= f(c) + (x− c)f ′(c) +
(x− c)2

2!
f ′′(c) +

1

2!

∫ x

c

(x− t)2f ′′′(t) dt,

which is (3) with k = 2. The pattern should now be clear: a k-fold integration by parts
starting from (4) yields (3). The formal inductive proof is left to the reader.

Let’s be clear about the significance of Theorems 3 and 4. They are almost never used
to find the exact value of the remainder term (which amounts to knowing the exact value
of the original f(x)); one doesn’t know just where the point x1 in (1) is, and the integral in
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(2) is usually hard to evaluate. Instead, the philosophy is that Taylor polynomials Pk,c are
used as (simpler) approximations to (complicated) functions f near c, and the remainders
Rk,c are regarded as junk to be disregarded. For this to work one needs some assurance that
Rk,c(x) is small enough that one can safely neglect it or an estimate of the magnitude of
the error one makes in doing so. The main purpose of Theorems 3 and 4 is to provide such
information via the following result.

Corollary 1. Suppose f is k+1 times differentiable on an interval I and that |f (k+1)(x)| ≤ C
for x ∈ I. Then for any x, c ∈ I we have

|Rk,c(x)| ≤ C
|x− c|k+1

(k + 1)!
. (5)

Proof. The estimate (5) is clearly an immediate consequence of (1). It also follows easily
from (2): if x > c,

|Rk,c(x)| ≤ C

k!

∫ x

c

(x− t)k dt = −C

k!

(x− t)k+1

k + 1

∣∣∣∣x
c

= C
(x− c)k+1

(k + 1)!
,

and if x < c,

|Rk,c(x)| ≤ C

k!

∣∣∣∣ ∫ x

c

(x− t)k dt

∣∣∣∣ =
C

k!

∫ c

x

(t− x)k dt =
C

k!

(c− x)k+1

k + 1
= C
|x− c|k+1

(k + 1)!
.

Observe that Corollary 1 is a more precise and quantitative version of Theorem 1 (under
slightly stronger hypotheses on f): Theorem 1 says that Rk,c(x) vanishes faster than (x−c)k

as x → c; Corollary 1 says that it vanishes at least at a rate proportional to (x − c)k+1

and gives a good estimate for the proportionality constant. The best estimate is obtained
by taking C to be the least upper bound for |f (k+1)| on I, but it is usually not crucial to
compute this optimal value for C. What is crucial, however, and what some people find
easy to forget, is the use of absolute values. It’s the size of Rk,c(x) that matters.

A typical use of Taylor polynomials is to evaluate integrals of functions that don’t have
an elementary antiderivative. Here’s an example.

Example 7. The function f(x) = e−x2
has no elementary antiderivative. However, we

can do a Taylor approximation of e−x2
and integrate the resulting polynomial. The efficient

way to proceed is to consider the Taylor approximations of e−y (easier to compute with!)
and then set y = x2. Since |(d/dy)je−y| = |(−1)je−y| ≤ 1 for y ≥ 0, the estimate (5) shows
that

e−y = 1− y +
y2

2
− · · ·+ (−1)k yk

k!
+ Rk,0(y), where |Rk,0(y)| ≤ yk+1

(k + 1)!
for y ≥ 0.

Setting y = x2 yields

e−x2

= 1− x2 +
x4

2!
− · · ·+ (−1)k x2k

k!
+ Rk,0(x

2), where |Rk,0(x
2)| ≤ x2k+2

(k + 1)!
.
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Therefore, ∫ x

0

e−t2 dt = x− x3

3
+

x5

5 · 2!
− · · ·+ (−1)k x2k+1

(2k + 1) · k!
+ error,

where

|error| ≤
∣∣∣∣∫ x

0

t2k+2

(k + 1)!
dt

∣∣∣∣ =
|x|2k+3

(2k + 3) · (k + 1)!
.

For instance, if x = 1, we can take k = 4 and obtain∫ 1

0

e−t2 dt = 1− 1

3
+

1

5 · 2
− 1

7 · 3!
+

1

9 · 4!
= 0.7382 with error less than 0.0008.

A Few Concluding Remarks. Although Theorems 3 and 4 are most commonly used
through Corollary 1, there are other things that can be done with them. There’s a nice
application of Theorem 3 on p.376 of Apostol, which we’ll discuss toward the end of the
quarter. For an extra twist on Theorem 4 that yields more estimates, as well as a sharper
form of Theorem 1, see my paper “Remainder estimates in Taylor’s theorem,” American
Mathematical Monthly 97 (1990), 233–235 (available online through the UW Libraries site).

8


