Taylor's Formula G. B. Folland

There's a lot more to be said about Taylor's formula than the brief discussion on pp.113–4 of Apostol. Let me begin with a few definitions.

Definitions. A function f defined on an interval I is called k times differentiable on I if the derivatives $f', f'', \ldots, f^{(k)}$ exist and are finite on I, and f is said to be of class C^k on I if these derivatives are all continuous on I. (Note that if f is k times differentiable, the derivatives $f', \ldots, f^{(k-1)}$ are necessarily continuous, by Theorem 5.3; the only question is the continuity of $f^{(k)}$.) If f is (at least) k times differentiable on an open interval I and $c \in I$, its kth order Taylor polynomial about c is the polynomial

$$P_{k,c}(x) = \sum_{j=0}^{k} \frac{f^{(j)}(c)}{j!} (x-c)^{j}$$

(where, of course, the "zeroth derivative" $f^{(0)}$ is f itself), and its kth order Taylor remainder is the difference

$$R_{k,c}(x) = f(x) - P_{k,c}(x).$$

Remark 1. The kth order Taylor polynomial $P_{k,c}(x)$ is a polynomial of degree at most k, but its degree may be less than k because $f^{(k)}(c)$ might be zero.

Remark 2. We have $P_{k,c}(c) = f(c)$, and by differentiating the formula for $P_{k,c}(x)$ repeatedly and then setting x = c we see that $P_{k,c}^{(j)}(c) = f^{(j)}(c)$ for $j \leq k$. That is, $P_{k,c}$ is the polynomial of degree $\leq k$ whose whose derivatives of order $\leq k$ at c agree with those of f.

For future reference, here are a few frequently used examples of Taylor polynomials:

$$f(x) = e^{x}; \qquad P_{k,0}(x) = \sum_{0 \le j \le k} \frac{x^{j}}{j!}$$

$$f(x) = \cos x; \qquad P_{k,0}(x) = \sum_{0 \le j \le k/2} \frac{(-1)^{j} x^{2j}}{(2j)!}$$

$$f(x) = \sin x; \qquad P_{k,0}(x) = \sum_{0 \le j < k/2} \frac{(-1)^{j} x^{2j+1}}{(2j+1)!}$$

$$f(x) = \log x; \qquad P_{k,1}(x) = \sum_{1 \le j \le k} \frac{(-1)^{j-1} (x-1)^{j}}{j}$$

Note that (for example) $1 - \frac{1}{2}x^2$ is both the 2nd order and the 3rd order Taylor polynomial of $\cos x$, because the cubic term in its Taylor expansion vanishes. (Also note that in higher mathematics the natural logarithm function is almost always called log rather than ln.)

For k = 1 we have $P_{1,c}(x) = f(c) + f'(c)(x - c)$; this is the linear function whose graph is the tangent line to the graph of f at x = c. Just as this tangent line is the straight line that best approximates the graph of f near x = c, we shall see that $P_{k,c}(x)$ is the polynomial of degree $\leq k$ that best approximates f(x) near x = c. To justify this assertion we need to see that the remainder $R_{k,c}(x)$ is suitably small near x = c, and there are several ways of making this precise. The first one is simply this: the remainder $R_{k,c}(x)$ tends to zero as $x \to c$ faster than any nonzero term in the polynomial $P_{k,c}(x)$, that is, faster than $(x - c)^k$. Here is the result:

Theorem 1. Suppose f is k times differentiable in an open interval I containing the point c. Then

$$\lim_{x \to c} \frac{R_{k,c}(x)}{(x-c)^k} = \lim_{x \to c} \frac{f(x) - P_{k,c}(x)}{(x-c)^k} = 0.$$

Proof. Since f and its derivatives up to order k agree with $P_{k,c}$ and its derivatives up to order k at x = c, the difference $R_{k,c}$ and its derivatives up to order k vanish at x = c. Moreover, $(x-c)^k$ and its derivatives up to order k-1 also vanish at x = c, so we can apply l'Hôpital's rule k times to obtain

$$\lim_{x \to c} \frac{R_{k,c}(x)}{(x-c)^k} = \lim_{x \to c} \frac{R_{k,c}^{(k)}(x)}{k(k-1)\cdots 1(x-c)^0} = \frac{0}{k!} = 0.$$

There is a convenient notation to describe the situation in Theorem 1: we say that

$$R_{k,c}(x) = o((x-c)^k)$$
 as $x \to c$,

meaning that $R_{k,c}(x)$ is of smaller order than $(x - c)^k$ as $x \to c$. More generally, if gand h are two functions, we say that h(x) = o(g(x)) as $x \to c$ (where c might be $\pm \infty$) if $h(x)/g(x) \to 0$ as $x \to c$. The symbol o(g(x)) is pronounced "little oh of g of x"; it does not denote any particular function, but rather is a shorthand way of describing any function that is of smaller order than g(x) as $x \to c$. For example, Corollary 1 of l'Hôpital's rule (see the notes on l'Hôpital's rule) says that for any a > 0, $x^a = o(e^x)$ and $\log x = o(x^a)$ as $x \to \infty$, and $\log x = o(x^{-a})$ as $x \to 0+$. Another example: saying that h(x) = o(1) as $x \to c$ simply means that $\lim_{x\to c} h(x) = 0$.

In order to simplify notation, in the following discussion we shall assume that c = 0 and write P_k instead of $P_{k,c}$. (The Taylor polynomial $P_k = P_{k,0}$ is often called the *k*th order *Maclaurin polynomial* of f.) There is no loss of generality in doing this, as one can always reduce to the case c = 0 by making the change of variable $\tilde{x} = x - c$ and regarding all functions in question as functions of \tilde{x} rather than x.

The conclusion of Theorem 1, that $f(x) - P_k(x) = o(x^k)$, actually characterizes the Taylor polynomial $P_{k,c}$ completely:

Theorem 2. Suppose f is k times differentiable on an open interval I containing 0. If Q is a polynomial of degree $\leq k$ such that $f(x) - Q(x) = o(x^k)$ as $x \to 0$, then $Q = P_k$.

Proof. Since f - Q and $f - P_k$ are both of smaller order than x^k , so is their difference $P_k - Q$. Let $P_k(x) = \sum_{j=0}^{k} a_j x^j$ (of course $a_j = f^{(j)}(0)/j!$) and $Q(x) = \sum_{j=0}^{k} b_j x^j$. Then

$$(a_0 - b_0) + (a_1 - b_1)x + \dots + (a_k - b_k)x^k = P_k(x) - Q(x) = o(x^k)$$

Letting $x \to 0$, we see that $a_0 - b_0 = 0$. This being the case, we have

$$(a_1 - b_1) + (a_2 - b_2)x + \dots + (a_k - b_k)x^{k-1} = \frac{P_k(x) - Q(x)}{x} = o(x^{k-1}).$$

Letting $x \to 0$ here, we see that $a_1 - b_1 = 0$. But then

$$(a_2 - b_2) + (a_3 - b_3)x + \dots + (a_k - b_k)x^{k-2} = \frac{P_k(x) - Q(x)}{x^2} = o(x^{k-2})$$

which likewise gives $a_2 - b_2 = 0$. Proceeding inductively, we find that $a_j = b_j$ for all j and hence $P_k = Q$.

Theorem 2 is very useful for calculating Taylor polynomials. It shows that using the formula $a_k = f^{(k)}(0)/k!$ is not the only way to calculate P_k ; rather, if by any means we can find a polynomial Q of degree $\leq k$ such that $f(x) = Q(x) + o(x^k)$, then Q must be P_k . Here are two important applications of this fact.

Taylor Polynomials of Products. Let P_k^f and P_k^g be the kth order Taylor polynomials of f and g, respectively. Then

$$f(x)g(x) = \left[P_k^f(x) + o(x^k)\right] \left[P_k^g(x) + o(x^k)\right]$$

= [terms of degree $\leq k$ in $P_k^f(x)P_k^g(x)$] + $o(x^k)$.

Thus, to find the kth order Taylor polynomial of fg, simply multiply the kth Taylor polynomials of f and g together, discarding all terms of degree > k.

EXAMPLE 1. What is the 6th order Taylor polynomial of $x^3 e^x$? Solution:

$$x^{3}e^{x} = x^{3}\left[1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + o(x^{3})\right] = x^{3} + x^{4} + \frac{x^{5}}{2} + \frac{x^{6}}{6} + o(x^{6}),$$

so the answer is $x^3 + x^4 + \frac{1}{2}x^5 + \frac{1}{6}x^6$.

EXAMPLE 2 What is the 5th order Taylor polynomial of $e^x \sin 2x$? Solution:

$$e^{x}\sin 2x = \left[1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + \frac{x^{4}}{24} + \frac{x^{5}}{120} + o(x^{5})\right] \left[2x - \frac{(2x)^{3}}{6} + \frac{(2x)^{5}}{120} + o(x^{5})\right]$$
$$= 2x + 2x^{2} + x^{3} \left[\frac{2}{2} - \frac{8}{6}\right] + x^{4} \left[\frac{2}{6} - \frac{8}{6}\right] + x^{5} \left[\frac{2}{24} - \frac{8}{12} + \frac{32}{120}\right] + o(x^{5}),$$

so the answer is $2x + 2x^2 - \frac{1}{3}x^3 - x^4 - \frac{19}{60}x^5$.

Taylor Polynomials of Compositions. If f and g have derivatives up to order k, and g(0) = 0, we can find the kth Taylor polynomial of $f \circ g$ by substituting the Taylor expansion of g into the Taylor expansion of f, retaining only the terms of degree $\leq k$. That is, suppose

$$f(x) = a_0 + a_1 x + \dots + a_k x^k + o(x^k).$$

Since g(0) = 0 and g is differentiable, we have $g(x) \approx g'(0)x$ for x near 0, so anything that is $o(g(x)^k)$ is also $o(x^k)$ as $x \to 0$. Hence,

$$f(g(x)) = a_0 + a_1 g(x) + \dots + a_k g(x)^k + o(x^k).$$

Now plug in the Taylor expansion of g on the right and multiply it out, discarding terms of degree > k.

EXAMPLE 3. What is the 16th order Taylor polynomial of e^{x^6} ? Solution:

$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3) \implies e^{x^6} = 1 + x^6 + \frac{x^{12}}{2} + \frac{x^{18}}{6} + o(x^{18}).$$

The last two terms are both $o(x^{16})$, so the answer is $1 + x^6 + \frac{1}{2}x^{12}$.

EXAMPLE 4. What is the 4th order Taylor polynomial of $e^{\sin x}$? Solution:

$$e^{\sin x} = 1 + \sin x + \frac{\sin^2 x}{2} + \frac{\sin^3 x}{6} + \frac{\sin^4 x}{24} + o(x^4)$$

since $|\sin x| \leq |x|$. Now substitute $x - \frac{1}{6}x^3 + o(x^4)$ for $\sin x$ on the right (yes, the error term is $o(x^4)$ because the 4th degree term in the Taylor expansion of $\sin x$ vanishes) and multiply out, throwing all terms of degree > 4 into the " $o(x^4)$ " trash can:

$$e^{\sin x} = 1 + \left[x - \frac{x^3}{6}\right] + \frac{1}{2}\left[x^2 - \frac{x^4}{3}\right] + \frac{x^3}{6} + \frac{x^4}{24} + o(x^4),$$

so the answer is $1+x+\frac{1}{2}x^2-\frac{1}{8}x^4$. (To appreciate how easy this is, try finding this polynomial by computing the first four derivatives of $e^{\sin x}$.)

Taylor Polynomials and l'Hôpital's Rule. Taylor polynomials can often be used effectively in computing limits of the form 0/0. Indeed, suppose f, g, and their first k-1 derivatives vanish at x = 0, but their kth derivatives do not both vanish. The Taylor expansions of fand g then look like

$$f(x) = \frac{f^{(k)}(0)}{k!}x^k + o(x^k), \qquad g(x) = \frac{g^{(k)}(0)}{k!}x^k + o(x^k).$$

Taking the quotient and cancelling out $x^k/k!$, we get

$$\frac{f(x)}{g(x)} = \frac{f^{(k)}(0) + o(1)}{g^{(k)}(0) + o(1)} \to \frac{f^{(k)}(0)}{g^{(k)}(0)} \text{ as } x \to 0.$$

This is in accordance with l'Hôpital's rule, but the devices discussed above for computing Taylor polynomials may lead to the answer more quickly than a direct application of l'Hôpital. EXAMPLE 5. What is $\lim_{x\to 0} (x^2 - \sin^2 x)/x^2 \sin^2 x$? Solution:

$$\sin^2 x = \left[x - \frac{x^3}{6} + o(x^4)\right]^2 = x^2 - \frac{x^4}{3} + o(x^4),$$

so $x^2 \sin^2 x = x^4 + o(x^4)$, and

$$\frac{x^2 - \sin^2 x}{x^2 \sin^2 x} = \frac{\frac{1}{3}x^4 + o(x^4)}{x^4 + o(x^4)} = \frac{\frac{1}{3} + o(1)}{1 + o(1)} \to \frac{1}{3}.$$

(Again, to appreciate how easy this is, try doing it by l'Hôpital's rule.)

EXAMPLE 6. Evaluate

$$\lim_{x \to 1} \left[\frac{1}{\log x} + \frac{x}{x-1} \right].$$

Solution: Here we need to expand in powers of x - 1. First of all,

$$\frac{1}{\log x} - \frac{x}{x-1} = \frac{x-1-x\log x}{(x-1)\log x} = \frac{(x-1)-(x-1)\log x - \log x}{(x-1)\log x}$$

Next, $\log x = (x-1) - \frac{1}{2}(x-1)^2 + o((x-1)^2)$, and plugging this into the numerator and denominator gives

$$\frac{(x-1) - (x-1)^2 - \left[(x-1) - \frac{1}{2}(x-1)^2\right] + o((x-1)^2)}{(x-1)^2 + o((x-1)^2)} = \frac{-\frac{1}{2} + o(1)}{1 + o(1)} \to -\frac{1}{2}.$$

Theorem 1 tells us a lot about the remainder $R_{k,c}(x) = f(x) - P_{k,c}(x)$ for small x, but sometimes one wants a more precise quantitative estimate of it. The most common ways of obtaining such an estimate involve slightly stronger conditions on f; namely, instead of just being k times differentiable we assume that it is k + 1 times differentiable, or perhaps of class C^{k+1} , and the estimates we obtain involve bounds on the derivative $f^{(k+1)}$. There are several formulas for $R_{k,c}(x)$ that lead to such estimates; we shall present the two that are most often encountered. The first one is the one presented in Apostol. (It's Theorem 5.19, with the change of variable k = n - 1. Apostol states the hypotheses in a slightly more general, but also more complicated, form; the version below usually suffices.)

Theorem 3 (Lagrange's Form of the Remainder). Suppose f is k + 1 times differentiable on an open interval I and $c \in I$. For each $x \in I$ there is a point x_1 between c and x such that

$$R_{k,c}(x) = \frac{f^{(k+1)}(x_1)}{(k+1)!} (x-c)^{k+1}.$$
(1)

For the proof of Theorem 3 we refer to Apostol. The other popular form of the remainder requires a slightly stronger hypothesis, that $f^{(k+1)}$ not only exists but is continuous. (Actually, it's enough for it to be Riemann integrable, but these minor variations in the assumptions are usually of little importance.) I suspect the reason that Apostol doesn't mention it is that it involves an integral, and he doesn't want to discuss integrals until later. **Theorem 4** (Integral Form of the Remainder). Suppose f is of class C^{k+1} on an open interval I and $c \in I$. If $x \in I$, then

$$R_{k,c}(x) = \frac{1}{(k+1)!} \int_{c}^{x} (x-t)^{k} f^{(k+1)}(t) dt.$$
(2)

Proof. Recalling the definition of $R_{k,c}$, we can restate (2) as

$$f(x) = \sum_{j=0}^{k} \frac{f^{(j)}(c)}{j!} (x-c)^{j} + \frac{1}{(k+1)!} \int_{c}^{x} (x-t)^{k} f^{(k+1)}(t) dt.$$
(3)

For k = 0, this simply says that

$$f(x) = f(c) + \int_{c}^{x} f'(t) dt,$$
(4)

which is true by the fundamental theorem of calculus. Next, we integrate (4) by parts, taking

$$u = f'(t), \quad du = f''(t) dt; \qquad dv = dt, \quad v = t - x$$

Notice the twist: normally if dv = dt we would simply take v = t, but we are free to add a constant of integration, and we take that constant to be -x. (The number x, like c, is fixed in this discussion; the variable of integration is t.) The result is

$$f(x) = f(c) + (t - x)f'(t)\Big|_{c}^{x} - \int_{c}^{x} (t - x)f''(t) dt$$

= $f(c) + (x - c)f'(c) + \int_{c}^{x} (x - t)f''(t) dt$,

which is (3) with k = 1. Another integration by parts, with

$$u = f''(t), \quad du = f'''(t) dt; \qquad dv = (x - t) dt, \quad v = -\frac{1}{2}(x - t)^2,$$

(again, instead of taking $v = xt - \frac{1}{2}t^2$ we take $v = -\frac{1}{2}(x-t)^2 = -\frac{1}{2}x^2 + xt - \frac{1}{2}t^2$) gives

$$f(x) = f(c) + (x - c)f'(c) - \frac{1}{2}(x - t)^2 f''(t)\Big|_c^x + \int_c^x \frac{1}{2}(x - t)^2 f'''(t) dt$$

= $f(c) + (x - c)f'(c) + \frac{(x - c)^2}{2!}f''(c) + \frac{1}{2!}\int_c^x (x - t)^2 f'''(t) dt$,

which is (3) with k = 2. The pattern should now be clear: a k-fold integration by parts starting from (4) yields (3). The formal inductive proof is left to the reader.

Let's be clear about the significance of Theorems 3 and 4. They are almost never used to find the exact value of the remainder term (which amounts to knowing the exact value of the original f(x)); one doesn't know just where the point x_1 in (1) is, and the integral in (2) is usually hard to evaluate. Instead, the philosophy is that Taylor polynomials $P_{k,c}$ are used as (simpler) approximations to (complicated) functions f near c, and the remainders $R_{k,c}$ are regarded as junk to be disregarded. For this to work one needs some assurance that $R_{k,c}(x)$ is small enough that one can safely neglect it or an estimate of the magnitude of the error one makes in doing so. The main purpose of Theorems 3 and 4 is to provide such information via the following result.

Corollary 1. Suppose f is k+1 times differentiable on an interval I and that $|f^{(k+1)}(x)| \leq C$ for $x \in I$. Then for any $x, c \in I$ we have

$$|R_{k,c}(x)| \le C \frac{|x-c|^{k+1}}{(k+1)!}.$$
(5)

Proof. The estimate (5) is clearly an immediate consequence of (1). It also follows easily from (2): if x > c,

$$|R_{k,c}(x)| \le \frac{C}{k!} \int_c^x (x-t)^k dt = -\frac{C}{k!} \frac{(x-t)^{k+1}}{k+1} \Big|_c^x = C \frac{(x-c)^{k+1}}{(k+1)!},$$

and if x < c,

$$|R_{k,c}(x)| \le \frac{C}{k!} \left| \int_c^x (x-t)^k \, dt \right| = \frac{C}{k!} \int_x^c (t-x)^k \, dt = \frac{C}{k!} \frac{(c-x)^{k+1}}{k+1} = C \frac{|x-c|^{k+1}}{(k+1)!}.$$

Observe that Corollary 1 is a more precise and quantitative version of Theorem 1 (under slightly stronger hypotheses on f): Theorem 1 says that $R_{k,c}(x)$ vanishes faster than $(x-c)^k$ as $x \to c$; Corollary 1 says that it vanishes at least at a rate proportional to $(x-c)^{k+1}$ and gives a good estimate for the proportionality constant. The best estimate is obtained by taking C to be the *least* upper bound for $|f^{(k+1)}|$ on I, but it is usually not crucial to compute this optimal value for C. What *is* crucial, however, and what some people find easy to forget, is the use of absolute values. It's the size of $R_{k,c}(x)$ that matters.

A typical use of Taylor polynomials is to evaluate integrals of functions that don't have an elementary antiderivative. Here's an example.

EXAMPLE 7. The function $f(x) = e^{-x^2}$ has no elementary antiderivative. However, we can do a Taylor approximation of e^{-x^2} and integrate the resulting polynomial. The efficient way to proceed is to consider the Taylor approximations of e^{-y} (easier to compute with!) and then set $y = x^2$. Since $|(d/dy)^j e^{-y}| = |(-1)^j e^{-y}| \le 1$ for $y \ge 0$, the estimate (5) shows that

$$e^{-y} = 1 - y + \frac{y^2}{2} - \dots + (-1)^k \frac{y^k}{k!} + R_{k,0}(y), \text{ where } |R_{k,0}(y)| \le \frac{y^{k+1}}{(k+1)!} \text{ for } y \ge 0.$$

Setting $y = x^2$ yields

$$e^{-x^2} = 1 - x^2 + \frac{x^4}{2!} - \dots + (-1)^k \frac{x^{2k}}{k!} + R_{k,0}(x^2), \text{ where } |R_{k,0}(x^2)| \le \frac{x^{2k+2}}{(k+1)!}$$

Therefore,

$$\int_0^x e^{-t^2} dt = x - \frac{x^3}{3} + \frac{x^5}{5 \cdot 2!} - \dots + (-1)^k \frac{x^{2k+1}}{(2k+1) \cdot k!} + \text{ error},$$

where

$$|\text{error}| \le \left| \int_0^x \frac{t^{2k+2}}{(k+1)!} dt \right| = \frac{|x|^{2k+3}}{(2k+3) \cdot (k+1)!}.$$

For instance, if x = 1, we can take k = 4 and obtain

$$\int_0^1 e^{-t^2} dt = 1 - \frac{1}{3} + \frac{1}{5 \cdot 2} - \frac{1}{7 \cdot 3!} + \frac{1}{9 \cdot 4!} = 0.7382$$
 with error less than 0.0008.

A Few Concluding Remarks. Although Theorems 3 and 4 are most commonly used through Corollary 1, there are other things that can be done with them. There's a nice application of Theorem 3 on p.376 of Apostol, which we'll discuss toward the end of the quarter. For an extra twist on Theorem 4 that yields more estimates, as well as a sharper form of Theorem 1, see my paper "Remainder estimates in Taylor's theorem," American Mathematical Monthly **97** (1990), 233–235 (available online through the UW Libraries site).