Taylor's Formula

G. B. Folland

There's a lot more to be said about Taylor's formula than the brief discussion on pp.113-4 of Apostol. Let me begin with a few definitions.

Definitions. A function f defined on an interval I is called k times differentiable on I if the derivatives $f^{\prime}, f^{\prime \prime}, \ldots, f^{(k)}$ exist and are finite on I, and f is said to be of class C^{k} on I if these derivatives are all continuous on I. (Note that if f is k times differentiable, the derivatives $f^{\prime}, \ldots, f^{(k-1)}$ are necessarily continuous, by Theorem 5.3 ; the only question is the continuity of $f^{(k)}$.) If f is (at least) k times differentiable on an open interval I and $c \in I$, its k th order Taylor polynomial about c is the polynomial

$$
P_{k, c}(x)=\sum_{j=0}^{k} \frac{f^{(j)}(c)}{j!}(x-c)^{j}
$$

(where, of course, the "zeroth derivative" $f^{(0)}$ is f itself), and its k th order Taylor remainder is the difference

$$
R_{k, c}(x)=f(x)-P_{k, c}(x)
$$

Remark 1. The k th order Taylor polynomial $P_{k, c}(x)$ is a polynomial of degree at most k, but its degree may be less than k because $f^{(k)}(c)$ might be zero.

Remark 2. We have $P_{k, c}(c)=f(c)$, and by differentiating the formula for $P_{k, c}(x)$ repeatedly and then setting $x=c$ we see that $P_{k, c}^{(j)}(c)=f^{(j)}(c)$ for $j \leq k$. That is, $P_{k, c}$ is the polynomial of degree $\leq k$ whose whose derivatives of order $\leq k$ at c agree with those of f.

For future reference, here are a few frequently used examples of Taylor polynomials:

$$
\begin{aligned}
f(x)=e^{x} ; & P_{k, 0}(x)=\sum_{0 \leq j \leq k} \frac{x^{j}}{j!} \\
f(x)=\cos x ; & P_{k, 0}(x)=\sum_{0 \leq j \leq k / 2} \frac{(-1)^{j} x^{2 j}}{(2 j)!} \\
f(x)=\sin x ; & P_{k, 0}(x)=\sum_{0 \leq j<k / 2} \frac{(-1)^{j} x^{2 j+1}}{(2 j+1)!} \\
f(x)=\log x ; & P_{k, 1}(x)=\sum_{1 \leq j \leq k} \frac{(-1)^{j-1}(x-1)^{j}}{j}
\end{aligned}
$$

Note that (for example) $1-\frac{1}{2} x^{2}$ is both the 2 nd order and the 3 rd order Taylor polynomial of $\cos x$, because the cubic term in its Taylor expansion vanishes. (Also note that in higher mathematics the natural logarithm function is almost always called \log rather than \ln.)

For $k=1$ we have $P_{1, c}(x)=f(c)+f^{\prime}(c)(x-c)$; this is the linear function whose graph is the tangent line to the graph of f at $x=c$. Just as this tangent line is the straight line
that best approximates the graph of f near $x=c$, we shall see that $P_{k, c}(x)$ is the polynomial of degree $\leq k$ that best approximates $f(x)$ near $x=c$. To justify this assertion we need to see that the remainder $R_{k, c}(x)$ is suitably small near $x=c$, and there are several ways of making this precise. The first one is simply this: the remainder $R_{k, c}(x)$ tends to zero as $x \rightarrow c$ faster than any nonzero term in the polynomial $P_{k, c}(x)$, that is, faster than $(x-c)^{k}$. Here is the result:

Theorem 1. Suppose f is k times differentiable in an open interval I containing the point c. Then

$$
\lim _{x \rightarrow c} \frac{R_{k, c}(x)}{(x-c)^{k}}=\lim _{x \rightarrow c} \frac{f(x)-P_{k, c}(x)}{(x-c)^{k}}=0
$$

Proof. Since f and its derivatives up to order k agree with $P_{k, c}$ and its derivatives up to order k at $x=c$, the difference $R_{k, c}$ and its derivatives up to order k vanish at $x=c$. Moreover, $(x-c)^{k}$ and its derivatives up to order $k-1$ also vanish at $x=c$, so we can apply l'Hôpital's rule k times to obtain

$$
\lim _{x \rightarrow c} \frac{R_{k, c}(x)}{(x-c)^{k}}=\lim _{x \rightarrow c} \frac{R_{k, c}^{(k)}(x)}{k(k-1) \cdots 1(x-c)^{0}}=\frac{0}{k!}=0 .
$$

There is a convenient notation to describe the situation in Theorem 1: we say that

$$
R_{k, c}(x)=o\left((x-c)^{k}\right) \text { as } x \rightarrow c,
$$

meaning that $R_{k, c}(x)$ is of smaller order than $(x-c)^{k}$ as $x \rightarrow c$. More generally, if g and h are two functions, we say that $h(x)=o(g(x))$ as $x \rightarrow c$ (where c might be $\pm \infty$) if $h(x) / g(x) \rightarrow 0$ as $x \rightarrow c$. The symbol $o(g(x))$ is pronounced "little oh of g of x "; it does not denote any particular function, but rather is a shorthand way of describing any function that is of smaller order than $g(x)$ as $x \rightarrow c$. For example, Corollary 1 of l'Hôpital's rule (see the notes on l'Hôpital's rule) says that for any $a>0, x^{a}=o\left(e^{x}\right)$ and $\log x=o\left(x^{a}\right)$ as $x \rightarrow \infty$, and $\log x=o\left(x^{-a}\right)$ as $x \rightarrow 0+$. Another example: saying that $h(x)=o(1)$ as $x \rightarrow c$ simply means that $\lim _{x \rightarrow c} h(x)=0$.

In order to simplify notation, in the following discussion we shall assume that $c=0$ and write P_{k} instead of $P_{k, c}$. (The Taylor polynomial $P_{k}=P_{k, 0}$ is often called the k th order Maclaurin polynomial of f.) There is no loss of generality in doing this, as one can always reduce to the case $c=0$ by making the change of variable $\widetilde{x}=x-c$ and regarding all functions in question as functions of \widetilde{x} rather than x.

The conclusion of Theorem 1 , that $f(x)-P_{k}(x)=o\left(x^{k}\right)$, actually characterizes the Taylor polynomial $P_{k, c}$ completely:

Theorem 2. Suppose f is k times differentiable on an open interval I containing 0. If Q is a polynomial of degree $\leq k$ such that $f(x)-Q(x)=o\left(x^{k}\right)$ as $x \rightarrow 0$, then $Q=P_{k}$.

Proof. Since $f-Q$ and $f-P_{k}$ are both of smaller order than x^{k}, so is their difference $P_{k}-Q$. Let $P_{k}(x)=\sum_{0}^{k} a_{j} x^{j}$ (of course $a_{j}=f^{(j)}(0) / j!$) and $Q(x)=\sum_{0}^{k} b_{j} x^{j}$. Then

$$
\left(a_{0}-b_{0}\right)+\left(a_{1}-b_{1}\right) x+\cdots+\left(a_{k}-b_{k}\right) x^{k}=P_{k}(x)-Q(x)=o\left(x^{k}\right)
$$

Letting $x \rightarrow 0$, we see that $a_{0}-b_{0}=0$. This being the case, we have

$$
\left(a_{1}-b_{1}\right)+\left(a_{2}-b_{2}\right) x+\cdots+\left(a_{k}-b_{k}\right) x^{k-1}=\frac{P_{k}(x)-Q(x)}{x}=o\left(x^{k-1}\right)
$$

Letting $x \rightarrow 0$ here, we see that $a_{1}-b_{1}=0$. But then

$$
\left(a_{2}-b_{2}\right)+\left(a_{3}-b_{3}\right) x+\cdots+\left(a_{k}-b_{k}\right) x^{k-2}=\frac{P_{k}(x)-Q(x)}{x^{2}}=o\left(x^{k-2}\right)
$$

which likewise gives $a_{2}-b_{2}=0$. Proceeding inductively, we find that $a_{j}=b_{j}$ for all j and hence $P_{k}=Q$.

Theorem 2 is very useful for calculating Taylor polynomials. It shows that using the formula $a_{k}=f^{(k)}(0) / k$! is not the only way to calculate P_{k}; rather, if by any means we can find a polynomial Q of degree $\leq k$ such that $f(x)=Q(x)+o\left(x^{k}\right)$, then Q must be P_{k}. Here are two important applications of this fact.

Taylor Polynomials of Products. Let P_{k}^{f} and P_{k}^{g} be the k th order Taylor polynomials of f and g, respectively. Then

$$
\begin{aligned}
f(x) g(x) & =\left[P_{k}^{f}(x)+o\left(x^{k}\right)\right]\left[P_{k}^{g}(x)+o\left(x^{k}\right)\right] \\
& =\left[\text { terms of degree } \leq k \text { in } P_{k}^{f}(x) P_{k}^{g}(x)\right]+o\left(x^{k}\right) .
\end{aligned}
$$

Thus, to find the k th order Taylor polynomial of $f g$, simply multiply the k th Taylor polynomials of f and g together, discarding all terms of degree $>k$.

Example 1. What is the 6 th order Taylor polynomial of $x^{3} e^{x}$? Solution:

$$
x^{3} e^{x}=x^{3}\left[1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+o\left(x^{3}\right)\right]=x^{3}+x^{4}+\frac{x^{5}}{2}+\frac{x^{6}}{6}+o\left(x^{6}\right)
$$

so the answer is $x^{3}+x^{4}+\frac{1}{2} x^{5}+\frac{1}{6} x^{6}$.
Example 2 What is the 5 th order Taylor polynomial of $e^{x} \sin 2 x$? Solution:

$$
\begin{aligned}
e^{x} \sin 2 x & =\left[1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+o\left(x^{5}\right)\right]\left[2 x-\frac{(2 x)^{3}}{6}+\frac{(2 x)^{5}}{120}+o\left(x^{5}\right)\right] \\
& =2 x+2 x^{2}+x^{3}\left[\frac{2}{2}-\frac{8}{6}\right]+x^{4}\left[\frac{2}{6}-\frac{8}{6}\right]+x^{5}\left[\frac{2}{24}-\frac{8}{12}+\frac{32}{120}\right]+o\left(x^{5}\right),
\end{aligned}
$$

so the answer is $2 x+2 x^{2}-\frac{1}{3} x^{3}-x^{4}-\frac{19}{60} x^{5}$.

Taylor Polynomials of Compositions. If f and g have derivatives up to order k, and $g(0)=0$, we can find the k th Taylor polynomial of $f \circ g$ by substituting the Taylor expansion of g into the Taylor expansion of f, retaining only the terms of degree $\leq k$. That is, suppose

$$
f(x)=a_{0}+a_{1} x+\cdots+a_{k} x^{k}+o\left(x^{k}\right)
$$

Since $g(0)=0$ and g is differentiable, we have $g(x) \approx g^{\prime}(0) x$ for x near 0 , so anything that is $o\left(g(x)^{k}\right)$ is also $o\left(x^{k}\right)$ as $x \rightarrow 0$. Hence,

$$
f(g(x))=a_{0}+a_{1} g(x)+\cdots+a_{k} g(x)^{k}+o\left(x^{k}\right)
$$

Now plug in the Taylor expansion of g on the right and multiply it out, discarding terms of degree $>k$.

Example 3. What is the 16 th order Taylor polynomial of $e^{x^{6}}$? Solution:

$$
e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+o\left(x^{3}\right) \quad \Longrightarrow \quad e^{x^{6}}=1+x^{6}+\frac{x^{12}}{2}+\frac{x^{18}}{6}+o\left(x^{18}\right)
$$

The last two terms are both $o\left(x^{16}\right)$, so the answer is $1+x^{6}+\frac{1}{2} x^{12}$.
Example 4. What is the 4th order Taylor polynomial of $e^{\sin x}$? Solution:

$$
e^{\sin x}=1+\sin x+\frac{\sin ^{2} x}{2}+\frac{\sin ^{3} x}{6}+\frac{\sin ^{4} x}{24}+o\left(x^{4}\right)
$$

since $|\sin x| \leq|x|$. Now substitute $x-\frac{1}{6} x^{3}+o\left(x^{4}\right)$ for $\sin x$ on the right (yes, the error term is $o\left(x^{4}\right)$ because the 4th degree term in the Taylor expansion of $\sin x$ vanishes) and multiply out, throwing all terms of degree >4 into the " $o\left(x^{4}\right)$ " trash can:

$$
e^{\sin x}=1+\left[x-\frac{x^{3}}{6}\right]+\frac{1}{2}\left[x^{2}-\frac{x^{4}}{3}\right]+\frac{x^{3}}{6}+\frac{x^{4}}{24}+o\left(x^{4}\right)
$$

so the answer is $1+x+\frac{1}{2} x^{2}-\frac{1}{8} x^{4}$. (To appreciate how easy this is, try finding this polynomial by computing the first four derivatives of $e^{\sin x}$.)

Taylor Polynomials and l'Hôpital's Rule. Taylor polynomials can often be used effectively in computing limits of the form $0 / 0$. Indeed, suppose f, g, and their first $k-1$ derivatives vanish at $x=0$, but their k th derivatives do not both vanish. The Taylor expansions of f and g then look like

$$
f(x)=\frac{f^{(k)}(0)}{k!} x^{k}+o\left(x^{k}\right), \quad g(x)=\frac{g^{(k)}(0)}{k!} x^{k}+o\left(x^{k}\right) .
$$

Taking the quotient and cancelling out $x^{k} / k!$, we get

$$
\frac{f(x)}{g(x)}=\frac{f^{(k)}(0)+o(1)}{g^{(k)}(0)+o(1)} \rightarrow \frac{f^{(k)}(0)}{g^{(k)}(0)} \text { as } x \rightarrow 0
$$

This is in accordance with l'Hôpital's rule, but the devices discussed above for computing Taylor polynomials may lead to the answer more quickly than a direct application of l'Hôpital.

Example 5. What is $\lim _{x \rightarrow 0}\left(x^{2}-\sin ^{2} x\right) / x^{2} \sin ^{2} x$? Solution:

$$
\sin ^{2} x=\left[x-\frac{x^{3}}{6}+o\left(x^{4}\right)\right]^{2}=x^{2}-\frac{x^{4}}{3}+o\left(x^{4}\right)
$$

so $x^{2} \sin ^{2} x=x^{4}+o\left(x^{4}\right)$, and

$$
\frac{x^{2}-\sin ^{2} x}{x^{2} \sin ^{2} x}=\frac{\frac{1}{3} x^{4}+o\left(x^{4}\right)}{x^{4}+o\left(x^{4}\right)}=\frac{\frac{1}{3}+o(1)}{1+o(1))} \rightarrow \frac{1}{3} .
$$

(Again, to appreciate how easy this is, try doing it by l'Hôpital's rule.)
Example 6. Evaluate

$$
\lim _{x \rightarrow 1}\left[\frac{1}{\log x}+\frac{x}{x-1}\right]
$$

Solution: Here we need to expand in powers of $x-1$. First of all,

$$
\frac{1}{\log x}-\frac{x}{x-1}=\frac{x-1-x \log x}{(x-1) \log x}=\frac{(x-1)-(x-1) \log x-\log x}{(x-1) \log x} .
$$

Next, $\log x=(x-1)-\frac{1}{2}(x-1)^{2}+o\left((x-1)^{2}\right)$, and plugging this into the numerator and denominator gives

$$
\frac{(x-1)-(x-1)^{2}-\left[(x-1)-\frac{1}{2}(x-1)^{2}\right]+o\left((x-1)^{2}\right)}{(x-1)^{2}+o\left((x-1)^{2}\right)}=\frac{-\frac{1}{2}+o(1)}{1+o(1)} \rightarrow-\frac{1}{2} .
$$

Theorem 1 tells us a lot about the remainder $R_{k, c}(x)=f(x)-P_{k, c}(x)$ for small x, but sometimes one wants a more precise quantitative estimate of it. The most common ways of obtaining such an estimate involve slightly stronger conditions on f; namely, instead of just being k times differentiable we assume that it is $k+1$ times differentiable, or perhaps of class C^{k+1}, and the estimates we obtain involve bounds on the derivative $f^{(k+1)}$. There are several formulas for $R_{k, c}(x)$ that lead to such estimates; we shall present the two that are most often encountered. The first one is the one presented in Apostol. (It's Theorem 5.19 , with the change of variable $k=n-1$. Apostol states the hypotheses in a slightly more general, but also more complicated, form; the version below usually suffices.)

Theorem 3 (Lagrange's Form of the Remainder). Suppose f is $k+1$ times differentiable on an open interval I and $c \in I$. For each $x \in I$ there is a point x_{1} between c and x such that

$$
\begin{equation*}
R_{k, c}(x)=\frac{f^{(k+1)}\left(x_{1}\right)}{(k+1)!}(x-c)^{k+1} \tag{1}
\end{equation*}
$$

For the proof of Theorem 3 we refer to Apostol. The other popular form of the remainder requires a slightly stronger hypothesis, that $f^{(k+1)}$ not only exists but is continuous. (Actually, it's enough for it to be Riemann integrable, but these minor variations in the assumptions are usually of little importance.) I suspect the reason that Apostol doesn't mention it is that it involves an integral, and he doesn't want to discuss integrals until later.

Theorem 4 (Integral Form of the Remainder). Suppose f is of class C^{k+1} on an open interval I and $c \in I$. If $x \in I$, then

$$
\begin{equation*}
R_{k, c}(x)=\frac{1}{(k+1)!} \int_{c}^{x}(x-t)^{k} f^{(k+1)}(t) d t \tag{2}
\end{equation*}
$$

Proof. Recalling the definition of $R_{k, c}$, we can restate (2) as

$$
\begin{equation*}
f(x)=\sum_{j=0}^{k} \frac{f^{(j)}(c)}{j!}(x-c)^{j}+\frac{1}{(k+1)!} \int_{c}^{x}(x-t)^{k} f^{(k+1)}(t) d t \tag{3}
\end{equation*}
$$

For $k=0$, this simply says that

$$
\begin{equation*}
f(x)=f(c)+\int_{c}^{x} f^{\prime}(t) d t \tag{4}
\end{equation*}
$$

which is true by the fundamental theorem of calculus. Next, we integrate (4) by parts, taking

$$
u=f^{\prime}(t), \quad d u=f^{\prime \prime}(t) d t ; \quad d v=d t, \quad v=t-x
$$

Notice the twist: normally if $d v=d t$ we would simply take $v=t$, but we are free to add a constant of integration, and we take that constant to be $-x$. (The number x, like c, is fixed in this discussion; the variable of integration is t.) The result is

$$
\begin{aligned}
f(x) & =f(c)+\left.(t-x) f^{\prime}(t)\right|_{c} ^{x}-\int_{c}^{x}(t-x) f^{\prime \prime}(t) d t \\
& =f(c)+(x-c) f^{\prime}(c)+\int_{c}^{x}(x-t) f^{\prime \prime}(t) d t
\end{aligned}
$$

which is (3) with $k=1$. Another integration by parts, with

$$
u=f^{\prime \prime}(t), \quad d u=f^{\prime \prime \prime}(t) d t ; \quad d v=(x-t) d t, \quad v=-\frac{1}{2}(x-t)^{2}
$$

(again, instead of taking $v=x t-\frac{1}{2} t^{2}$ we take $v=-\frac{1}{2}(x-t)^{2}=-\frac{1}{2} x^{2}+x t-\frac{1}{2} t^{2}$) gives

$$
\begin{aligned}
f(x) & =f(c)+(x-c) f^{\prime}(c)-\left.\frac{1}{2}(x-t)^{2} f^{\prime \prime}(t)\right|_{c} ^{x}+\int_{c}^{x} \frac{1}{2}(x-t)^{2} f^{\prime \prime \prime}(t) d t \\
& =f(c)+(x-c) f^{\prime}(c)+\frac{(x-c)^{2}}{2!} f^{\prime \prime}(c)+\frac{1}{2!} \int_{c}^{x}(x-t)^{2} f^{\prime \prime \prime}(t) d t
\end{aligned}
$$

which is (3) with $k=2$. The pattern should now be clear: a k-fold integration by parts starting from (4) yields (3). The formal inductive proof is left to the reader.

Let's be clear about the significance of Theorems 3 and 4. They are almost never used to find the exact value of the remainder term (which amounts to knowing the exact value of the original $f(x)$); one doesn't know just where the point x_{1} in (1) is, and the integral in
(2) is usually hard to evaluate. Instead, the philosophy is that Taylor polynomials $P_{k, c}$ are used as (simpler) approximations to (complicated) functions f near c, and the remainders $R_{k, c}$ are regarded as junk to be disregarded. For this to work one needs some assurance that $R_{k, c}(x)$ is small enough that one can safely neglect it or an estimate of the magnitude of the error one makes in doing so. The main purpose of Theorems 3 and 4 is to provide such information via the following result.
Corollary 1. Suppose f is $k+1$ times differentiable on an interval I and that $\left|f^{(k+1)}(x)\right| \leq C$ for $x \in I$. Then for any $x, c \in I$ we have

$$
\begin{equation*}
\left|R_{k, c}(x)\right| \leq C \frac{|x-c|^{k+1}}{(k+1)!} \tag{5}
\end{equation*}
$$

Proof. The estimate (5) is clearly an immediate consequence of (1). It also follows easily from (2): if $x>c$,

$$
\left|R_{k, c}(x)\right| \leq \frac{C}{k!} \int_{c}^{x}(x-t)^{k} d t=-\left.\frac{C}{k!} \frac{(x-t)^{k+1}}{k+1}\right|_{c} ^{x}=C \frac{(x-c)^{k+1}}{(k+1)!}
$$

and if $x<c$,

$$
\left|R_{k, c}(x)\right| \leq \frac{C}{k!}\left|\int_{c}^{x}(x-t)^{k} d t\right|=\frac{C}{k!} \int_{x}^{c}(t-x)^{k} d t=\frac{C}{k!} \frac{(c-x)^{k+1}}{k+1}=C \frac{|x-c|^{k+1}}{(k+1)!} .
$$

Observe that Corollary 1 is a more precise and quantitative version of Theorem 1 (under slightly stronger hypotheses on f): Theorem 1 says that $R_{k, c}(x)$ vanishes faster than $(x-c)^{k}$ as $x \rightarrow c$; Corollary 1 says that it vanishes at least at a rate proportional to $(x-c)^{k+1}$ and gives a good estimate for the proportionality constant. The best estimate is obtained by taking C to be the least upper bound for $\left|f^{(k+1)}\right|$ on I, but it is usually not crucial to compute this optimal value for C. What is crucial, however, and what some people find easy to forget, is the use of absolute values. It's the size of $R_{k, c}(x)$ that matters.

A typical use of Taylor polynomials is to evaluate integrals of functions that don't have an elementary antiderivative. Here's an example.

Example 7. The function $f(x)=e^{-x^{2}}$ has no elementary antiderivative. However, we can do a Taylor approximation of $e^{-x^{2}}$ and integrate the resulting polynomial. The efficient way to proceed is to consider the Taylor approximations of e^{-y} (easier to compute with!) and then set $y=x^{2}$. Since $\left|(d / d y)^{j} e^{-y}\right|=\left|(-1)^{j} e^{-y}\right| \leq 1$ for $y \geq 0$, the estimate (5) shows that

$$
e^{-y}=1-y+\frac{y^{2}}{2}-\cdots+(-1)^{k} \frac{y^{k}}{k!}+R_{k, 0}(y), \text { where }\left|R_{k, 0}(y)\right| \leq \frac{y^{k+1}}{(k+1)!} \text { for } y \geq 0
$$

Setting $y=x^{2}$ yields

$$
e^{-x^{2}}=1-x^{2}+\frac{x^{4}}{2!}-\cdots+(-1)^{k} \frac{x^{2 k}}{k!}+R_{k, 0}\left(x^{2}\right), \text { where }\left|R_{k, 0}\left(x^{2}\right)\right| \leq \frac{x^{2 k+2}}{(k+1)!}
$$

Therefore,

$$
\int_{0}^{x} e^{-t^{2}} d t=x-\frac{x^{3}}{3}+\frac{x^{5}}{5 \cdot 2!}-\cdots+(-1)^{k} \frac{x^{2 k+1}}{(2 k+1) \cdot k!}+\text { error }
$$

where

$$
\mid \text { error }\left|\leq\left|\int_{0}^{x} \frac{t^{2 k+2}}{(k+1)!} d t\right|=\frac{|x|^{2 k+3}}{(2 k+3) \cdot(k+1)!}\right.
$$

For instance, if $x=1$, we can take $k=4$ and obtain

$$
\int_{0}^{1} e^{-t^{2}} d t=1-\frac{1}{3}+\frac{1}{5 \cdot 2}-\frac{1}{7 \cdot 3!}+\frac{1}{9 \cdot 4!}=0.7382 \text { with error less than } 0.0008
$$

A Few Concluding Remarks. Although Theorems 3 and 4 are most commonly used through Corollary 1, there are other things that can be done with them. There's a nice application of Theorem 3 on p. 376 of Apostol, which we'll discuss toward the end of the quarter. For an extra twist on Theorem 4 that yields more estimates, as well as a sharper form of Theorem 1, see my paper "Remainder estimates in Taylor's theorem," American Mathematical Monthly 97 (1990), 233-235 (available online through the UW Libraries site).

