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Paratopological and semitopological groups

A semitopological group is an abstract group G with topology τ
such that the left and right translations in G are continuous or,
equivalently, multiplication in G is separately continuous.

A paratopological group is a group G with topology such that
multiplication in G is jointly continuous.

‘topological’ =⇒ ‘paratopological’ =⇒ ‘semitopological’

Let (G , τ) be a paratopological group and

τ−1 = {U−1 : U ∈ τ}

be the conjugate topology of G . Then G ′ = (G , τ−1) is also a
paratopological group and the inversion in G is a homeomorphism
of (G , τ) onto (G , τ−1).

Let τ∗ = τ ∨ τ−1 be the least upper bound of τ and τ−1. Then
G ∗ = (G , τ∗) is a topological group associated to G .

For the Sorgenfrey line S, the topological group S∗ is discrete.
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Associated topological group

Theorem 1.1 (Alas–Sanchis, 2007).

Let G be a T1 paratopological group. Then the diagonal
∆ = {(x , x) : x ∈ G} is a closed subgroup of G × G ′ and, when
considered with the topology induced from G × G ′, the diagonal ∆
is a Hausdorff topological group topologically isomorphic to the
group G ∗ associated to G .

Corollary 1.2.

Let H be a T1 paratopological group. Then:
a) H is σ-compact ⇐⇒ H∗ is σ-compact.
b) H has a countable network ⇐⇒ H∗ has a countable network.
c) If H is second countable, so is H∗.
d) If H is first countable, so is H∗.

Corollary 1.3 (Reznichenko, 2005).

Every σ-compact Hausdorff (even T1) paratopological group has
countable cellularity.
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Topological group reflection

Theorem 1.4 (Banakh–Ravsky, 2004).

For every paratopological group (G , τ), there exists the finest
topological group topology τ∗ on G with τ∗ ⊆ τ .

We will call G∗ = (G , τ∗) the group reflection of G . The group G∗
can fail to be Hausdorff even if (G , τ) is Tychonoff.

A semitopological group G is said to be precompact if for every
neighborhood U of the identity in G , there exists a finite set
F ⊂ G such that FU = G = UF .

Theorem 1.5 (Banakh–Ravsky, 2008).

Every precompact paratopological group has countable cellularity.
Furthermore, every regular cardinal κ > ω is a precaliber for G .

Idea of the proof: If G is a precompact paratopological group,
then the non-empty open sets in G∗ form a π-base for G .
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Regularization of paratopological groups

Given a space X , let Xsr be the underlying set X endowed with the
topology whose base is formed by the regular open sets in X :

{IntXU : U is open in X}.

We say that Xsr is the semiregularization of X (Stone, Katetov).
The identity mapping i : X → Xsr is always continuous and is a
homeomorphism iff X is semiregular (regular open sets form a base
of X ).

Theorem 1.6 (Ravsky, 2003).

For any paratopological group G , the semiregularization Gsr of G
is a T3 paratopological group. Hence the semiregularization of a
Hausdorff paratopological group is a regular paratopological group.

The group Gsr will be called the regularization of G and denoted
by Gr .
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Regularization of paratopological groups

Definition 1.7.
A space X is called feebly compact if every locally finite family of
open sets in X is finite.

In Tych. spaces: feeble compactness ⇐⇒ pseudocompactness.

An extention of the Comfort–Ross theorem about products:

Theorem 1.8 (Ravsky, 2010).

The topological product of an arbitrary family of feebly compact
paratopological groups is feebly compact.

Idea of the proof: 1) Take the regularization of a product of
feebly compact paratopological group ∼= the product of
regularizations of the factors. 2) Apply the fact that every regular
(even T3) feebly compact paratopological group is a topological
group (Arhangel’skii–Reznichenko plus Ravsky).
3) Use the Comfort–Ross theorem.
4) Note that a space X is feebly compact iff so is Xsr .
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Discussion

Taking the associated topological group G ∗, the group reflection
G∗, and the regularization Gr of a paratopological group G are, in
fact, covariant functors in the category of paratopological groups
and their continuous homomorphisms.

Another useful functor in the category of topological groups:

G → G/{e},

where {e} is the closure of the identity e in G . The invariant
subgroup {e} is closed in G , so the group T1(G ) = G/{e} is a
T1-space (hence, Tychonoff). Let πG : G → T1(G ) be the quotient
homomorphism.
Further, if f : G → X is a continuous mapping of a topological
group G to a T1-space X , then there exists a continuous mapping
f : T1(G )→ X such that f = f ◦ πG .

Question. Is a similar construction possible in paratopological or
semitopological groups?
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Reflection of separation axioms

The first difficulty: the closure of the identity, {e}, in a
paratopological group G can fail to be a subgroup of G :

Consider the real line R with the ‘topology’ τ = {(r ,∞) : r ∈ R}.
Then (G , τ) is a T0 paratopological group, but {0} = (−∞, 0].

Definition 2.1.
Let P be a (topological) property and G a semitopological group.
A semitopological group H is called a P-reflection of G if there
exists a continuous homomorphism ϕG : G → H onto H satisfying
the following conditions:

(a) H ∈ P;

(b) Given a continuous mapping f : G → X to a space X ∈ P, one
can find a continuous mapping h : H → X with f = h ◦ ϕG .

The definition of a P-reflection in the class of paratopological
groups is the same (H must be a paratopological group).
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Reflection of separation axioms

Theorem 2.2 (Tk., 2013).

For every k = 0, 1, 2, 3, 3.5, there exists a covariant functor Tk in
the category of semitopological groups such that Tk(G ) is the
Tk -reflection of G , for an arbitrary semitopological group G.

If
k = 0, 1, 2, then the corresponding continuous homomorphism
ϕG ,k : G → Tk(G ) is open, so Tk(G ) is a quotient group of G .

‘Tk -reflection’ means the reflection in the class of spaces satisfying
the Tk separation axiom. Two more functors:

T1&T3 → Reg and T1&T3.5 → Tych

Corollary 2.3.

For every semitopological (paratopological) group G and every
k ∈ {0, 1, 2, 3,R}, there exists a continuous homomorphism
ϕG ,k : G → H onto a semitopological (paratopological) group H
satisfying the Tk separation axiom such that for every continuous
mapping f : G → X to a Tk -space X , one can find a continuous
mapping h : H → X with f = h ◦ ϕG ,k . [ R stands for regularity.]
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‘Internal’ description of the groups T0(G )

The canonical homomorphism ϕG ,k : G → Tk(G ) is continuous,
open, and surjective for k = 0, 1, 2 (Theorem 2.2). Hence Tk(G ) is
a quotient group of G in this case.

Conclusion: To describe the group Tk(G ) for k = 0, 1, 2 in
‘internal’ terms, it suffices to determine the kernel Nk of the
homomorphism ϕG ,k . Then Tk(G ) ∼= G/Nk and ϕG ,k is simply the
quotient homomorphism πk : G → G/Nk .

Let us start with k = 0.

Theorem 3.1.
Let G be an arbitrary semitopological group and N(e) the family
of open neighborhoods of the neutral element e in G . Then
N0 = P ∩ P−1, where P =

⋂
N(e). Hence T0(G ) ∼= G/N0.

Warning: The subgroup N0 of G is not necessarily closed in G .
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‘Internal’ description of the groups T1(G )

The case k = 1.

Given a semitopological group G , it is tempting to conjecture that
N1 =

⋂
N(e). Unfortunately, this candidate for N1 can easily fail

to be a subgroup!

Theorem 3.2.
Let G be an arbitrary semitopological group. Then N1 is the
smallest closed subgroup of G . Hence T1(G ) ∼= G/N1.

Clearly, the quotient group G/N1 satisfies the T1 separation axiom.
To show that T1(G ) ∼= G/N1, it suffices to prove the following:

For every continuous mapping f : G → X to a T1-space X , there
exists a continuous mapping h : G/N1 → X satisfying f = h ◦ π1,
where π1 is the quotient homomorphism of G onto G/N1.

TRY IT! (A hint follows.)
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‘Internal’ description of the groups T2(G )

Open problem. Give an internal description of the kernel N2 of
the canonical homomorphism ϕG ,2 : G → T2(G ), for an arbitrary
semitopological group G .

We solve the problem for paratopological groups:

Theorem 3.3.
Let G be a paratopological group and N(e) the family of open
neighborhoods of the neutral element e in G. Then

N2 =
⋂

U∈N(e)

U

or, equivalently,

N2 =
⋂

U∈N(e)

UU−1.

Hence T2(G ) ∼= G/N2.
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‘Internal’ description of the groups T3(G ) and Reg(G )
Again, we do not know any description of T3(G ) or Reg(G ), for a
semitopological group G .

Lemma 3.4.
For every semitopological group G, the canonical homomorphism
ϕG ,3 : G → T3(G ) is a continuous bijection. Hence the kernel N3

of ϕG ,3 is trivial.

Sometimes the functor T3 ‘collapses’ the topology of a
paratopological group G :

Example 3.5.

Let (R,+) be the additive group of reals and

Vn = {0} ∪ [n,∞).

Then {Vn : n ∈ N} is a local base at zero for a paratopological
group topology T on R and the group G = (R,T) satisfies the T1

separation axiom. Further, the group T3(G ) carries the
anti-discrete topology since every Vn is dense in G .
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T3(G ) is the regularization of G , i.e., T3(G ) ∼= Gr , for every
paratopological group G .

Thus the groups T3(G ) and G coincide algebraically, while the
regular open sets in G constitute a base for the topology of T3(G ).

Here is a two-step description of the groups Reg(G ):

Theorem 3.7.
Let G be an arbitrary paratopological group. Then Reg(G ) is the
regularization of the paratopological group T2(G ). Therefore,
Reg(G ) ∼= (G/N2)r .

Theorem 3.7 admits a more general functorial form:

Reg ∼= T3 ◦ T2.
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Properties of the functors Tk ’s

Regularity = T1 + T3. Does this imply that Reg ∼= T3 ◦ T1 or
Reg ∼= T1 ◦ T3 in the category of paratopological groups?

Theorem 4.1.
The functors Reg, T0 ◦ T3, T1 ◦ T3 and T2 ◦ T3 are naturally
equivalent in the category of semitopological groups.

Since Reg ∼= T3 ◦ T2 in the category of paratopological groups, we
obtain:

Corollary 4.2.

T2 ◦ T3
∼= T3 ◦ T2, i.e., the functors T2 and T3 ‘commute’ in the

category of paratopological groups.

Open problem. Do the functors T2 and T3 commute in the
category of semitopological groups?
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Properties of the functors Tk ’s

Which of the ‘equalities’

T1 ◦ T3
∼= T3 ◦ T1 or T0 ◦ T3

∼= T3 ◦ T0

are valid in the category of paratopological groups?

Example 4.3.

T1 ◦T3 6∼= T3 ◦T1. Indeed, let G be the group in Example 3.5. We
know that G is a T1-space with |G | = |R| = 2ω and T3(G ) is the
same group G endowed with the anti-discrete topology. Hence
T1(G ) ∼= G . Therefore,

T3(T1(G )) ∼= T3(G )

is an infinite group, while T1(T3(G )) is a trivial one-element
group. Concluding, |T3(T1(G ))| = 2ω > 1 = |T1(T3(G ))|.

Similarly, T0 ◦ T3 6∼= T3 ◦ T0.
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Products and functors

Let Π =
∏

i∈I Gi be a product of semitopological (paratopological)
groups. We wonder whether the ‘equality’

Tk(Π) ∼=
∏
i∈I

Tk(Gi )

holds for some k = 0, 1, 2, 3.

The same question stands for the
functors Reg and Tych. If the equality is valid, we say that the
corresponding functor Tk commutes with products.

Theorem 5.1.
The functors T0, T1, and T2 commute with arbitrary products of
semitopological groups.

For each of the functors T0, T1, T2, the proof of Theorem 5.1 is
‘individual’, depending on the form of Nk = kerϕG ,k for k = 0, 1, 2.
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Products and functors

The case of products of paratopological groups:

Theorem 5.2.
The functors T3 and Reg commute with arbitrary products of
paratopological groups.

Sketch of the proof. It is well-known that every product of
topological spaces satisfies

(
∏
i∈I

Xi )sr ∼=
∏
i∈I

(Xi )sr

where the subscript ‘sr ’ stands for the semiregularization. Since
T3(G ) ∼= Gr = Gsr for every paratopological group G , the
conclusion for T3 is immediate. Also, Reg(G ) ∼= T1(T3(G )), for
any paratopological group G . Since both T1 and T3 commute with
products, so does Reg .
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Applications of Tk-reflections

Extension of Reznichenko’s theorem (Every σ-compact Hausdorff
paratopological group has countable cellularity):

One can drop
Hausdorff here.

Theorem 6.1.
Every σ-compact paratopological group has countable cellularity.

Lemma 6.2.
Let G be an arbitrary paratopological group and ϕ2 : G → T2(G )
the canonical quotient homomorphism. Then U = ϕ−1

2 ϕ2(U), for
every open subset U of G . In particular, ϕ2(U) ∩ ϕ2(V ) = ∅ if
U,V are disjoint open sets in G . Hence c(G ) = c(T2(G )).

Proof of Theorem 6.1. G is σ-compact =⇒ T2(G ) is
σ-compact. Hence, by Lemma 6.2, c(G ) = c(T2(G )) ≤ ω.

In fact, the conclusion of Theorem 6.1 can be strengthened: Every
σ-compact paratopological group has the Knaster property.
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every open subset U of G . In particular, ϕ2(U) ∩ ϕ2(V ) = ∅ if
U,V are disjoint open sets in G . Hence c(G ) = c(T2(G )).

Proof of Theorem 6.1. G is σ-compact =⇒ T2(G ) is
σ-compact. Hence, by Lemma 6.2, c(G ) = c(T2(G )) ≤ ω.

In fact, the conclusion of Theorem 6.1 can be strengthened: Every
σ-compact paratopological group has the Knaster property.



Applications of Tk-reflections

A space X is Moscow if every regular closed set in X is the union
of a family of Gδ-sets in X .

Theorem 6.3 (W.W. Comfort, J. Trigos–Arrieta,
M. Sanchis ??).

The product of an arbitrary family of locally pseudocompact
topological groups is a Moscow space.

A version for paratopological groups (solving M. Sanchis’ problem):

Theorem 6.4 (Tk., 2012).

Any product of Hausdorff locally feebly compact paratopological
groups is a Moscow space.

One can drop ‘Hausdorff’ in the above theorem!
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Applications of Tk-reflections

Theorem 6.5.
Any product of locally feebly compact paratopological groups is a
Moscow space.

Proof.
Let G =

∏
i∈I Gi be a product of locally feebly compact

paratopological groups. We know that T2(G ) ∼=
∏

i∈I T2(Gi )
(Theorem 5.1). Each group T2(Gi ) is Hausdorff and locally feebly
compact (as a quotient of Gi ), hence T2(G ) is a Moscow space by
Theorem 6.4. Let ϕ2 : G → T2(G ) be the quotient
homomorphism. If U is open in G , then U = ϕ−1

2 ϕ2(U), whence

ϕ2(U) = ϕ2(U). Clearly ϕ2(U) is a GΣ,δ-set in T2(G ), and so is

U = ϕ−1
2 (ϕ2(U)) in G . Hence G is Moscow.
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On the existence of Tk-reflections

Theorem 6.6 (Pontryagin, ∼= 1935).

For every continuous real-valued function f on a compact
topological group G , one can find a continuous homomorphism
π : G → H onto a compact metrizable topological group H and a
continuous function g on H such that f = g ◦ π.

Pontryagin’s idea: Given a continuous function f on G as above,
consider the set

Nf = {x ∈ G : f (axb) = f (x) for all a, b ∈ G}.

Then Nf is a closed invariant subgroup of G and f is constant on
each coset of Nf in G .
Crucial step: Let us forget about both the compactness of G and
topological group structure of G and then apply Pontryagin’s
formula directly to a continuous mapping f : G → X defined on a
semitopological group G .
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