Functorial constructions in paratopological groups reflecting separation axioms

Mikhail Tkachenko
Universidad Autónoma Metropolitana, Mexico City
mich@xanum.uam.mx

Brazilian Conference on General Topology and Set Theory
São Sebastião, Brazil, 2013
In honor of Ofelia T. Alas
Contents:

1. Three known functorial constructions

2. Each axiom of separation has its functorial reflection

3. ‘Internal’ description of the groups $T_k(G)$

4. Properties of the functors T_k’s

5. Products and functors

6. Some applications
Paratopological and semitopological groups

A semitopological group is an abstract group G with topology τ such that the left and right translations in G are continuous or, equivalently, multiplication in G is separately continuous.

$G^\prime = (G, \tau^{-1})$ is also a paratopological group and the inversion in G is a homeomorphism of (G, τ) onto (G, τ^{-1}).

Let $\tau^\ast = \tau \lor \tau^{-1}$ be the least upper bound of τ and τ^{-1}. Then $G^\ast = (G, \tau^\ast)$ is a topological group associated to G.

For the Sorgenfrey line S, the topological group S^\ast is discrete.
Paratopological and semitopological groups

A semitopological group is an abstract group G with topology τ such that the left and right translations in G are continuous or, equivalently, multiplication in G is separately continuous.

A paratopological group is a group G with topology such that multiplication in G is jointly continuous.
Paratopological and semitopological groups

A semitopological group is an abstract group G with topology τ such that the left and right translations in G are continuous or, equivalently, multiplication in G is separately continuous.

A paratopological group is a group G with topology such that multiplication in G is jointly continuous.

‘topological’ \implies ‘paratopological’ \implies ‘semitopological’
Paratopological and semitopological groups

A semitopological group is an abstract group G with topology τ such that the left and right translations in G are continuous or, equivalently, multiplication in G is separately continuous.

A paratopological group is a group G with topology such that multiplication in G is jointly continuous.

Let (G, τ) be a paratopological group and $\tau^{-1} = \{U^{-1} : U \in \tau\}$ be the conjugate topology of G. Then $G' = (G, \tau^{-1})$ is also a paratopological group and the inversion in G is a homeomorphism of (G, τ) onto (G, τ^{-1}).

For the Sorgenfrey line S, the topological group S^* is discrete.
A semitopological group is an abstract group \(G \) with topology \(\tau \) such that the left and right translations in \(G \) are continuous or, equivalently, multiplication in \(G \) is separately continuous.

A paratopological group is a group \(G \) with topology such that multiplication in \(G \) is \textit{jointly} continuous.

Let \((G, \tau)\) be a paratopological group and \(\tau^{-1} = \{U^{-1} : U \in \tau\} \) be the conjugate topology of \(G \). Then \(G' = (G, \tau^{-1}) \) is also a paratopological group and the inversion in \(G \) is a homeomorphism of \((G, \tau)\) onto \((G, \tau^{-1})\).

Let \(\tau^* = \tau \lor \tau^{-1} \) be the least upper bound of \(\tau \) and \(\tau^{-1} \). Then \(G^* = (G, \tau^*) \) is a topological group \textit{associated} to \(G \).
Paratopological and semitopological groups

A **semitopological** group is an abstract group G with topology τ such that the left and right translations in G are continuous or, equivalently, multiplication in G is **separately** continuous.

A **paratopological** group is a group G with topology such that multiplication in G is **jointly** continuous.

‘topological’ \implies ‘paratopological’ \implies ‘semitopological’

Let (G, τ) be a paratopological group and

$$\tau^{-1} = \{ U^{-1} : U \in \tau \}$$

be the **conjugate** topology of G. Then $G' = (G, \tau^{-1})$ is also a paratopological group and the inversion in G is a homeomorphism of (G, τ) onto (G, τ^{-1}).

Let $\tau^* = \tau \vee \tau^{-1}$ be the least upper bound of τ and τ^{-1}. Then $G^* = (G, \tau^*)$ is a topological group **associated** to G.

For the Sorgenfrey line \mathbb{S}, the topological group \mathbb{S}^* is discrete.
Theorem 1.1 (Alas–Sanchis, 2007).

Let G be a T_1 paratopological group. Then the diagonal $\Delta = \{(x, x) : x \in G\}$ is a closed subgroup of $G \times G'$ and, when considered with the topology induced from $G \times G'$, the diagonal Δ is a Hausdorff topological group topologically isomorphic to the group G^* associated to G.

Corollary 1.2.

Let H be a T_1 paratopological group. Then:

a) H is σ-compact \iff H^* is σ-compact.

b) H has a countable network \iff H^* has a countable network.

c) If H is second countable, so is H^*.

d) If H is first countable, so is H^*.

Corollary 1.3 (Reznichenko, 2005).

Every σ-compact Hausdorff (even T_1) paratopological group has countable cellularity.
Associated topological group

Theorem 1.1 (Alas–Sanchis, 2007).

Let G be a T_1 paratopological group. Then the diagonal
$\Delta = \{(x, x) : x \in G\}$ is a closed subgroup of $G \times G'$ and, when
considered with the topology induced from $G \times G'$, the diagonal Δ
is a Hausdorff topological group topologically isomorphic to the
group G^* associated to G.

Corollary 1.2.

Let H be a T_1 paratopological group. Then:

a) H is σ-compact $\iff H^*$ is σ-compact.

b) H has a countable network $\iff H^*$ has a countable network.

c) If H is second countable, so is H^*.

d) If H is first countable, so is H^*.

Corollary 1.3 (Reznichenko, 2005).

Every σ-compact Hausdorff (even T_1) paratopological group has
countable cellularity.
Associated topological group

Theorem 1.1 (Alas–Sanchis, 2007).

Let G be a T_1 paratopological group. Then the diagonal $\Delta = \{(x, x) : x \in G\}$ is a closed subgroup of $G \times G'$ and, when considered with the topology induced from $G \times G'$, the diagonal Δ is a Hausdorff topological group topologically isomorphic to the group G^* associated to G.

Corollary 1.2.

Let H be a T_1 paratopological group. Then:

a) H is σ-compact \iff H^* is σ-compact.
Theorem 1.1 (Alas–Sanchis, 2007).

Let G be a T_1 paratopological group. Then the diagonal
$\Delta = \{(x,x) : x \in G\}$ is a closed subgroup of $G \times G'$ and, when
considered with the topology induced from $G \times G'$, the diagonal Δ
is a Hausdorff topological group topologically isomorphic to the
group G^* associated to G.

Corollary 1.2.

Let H be a T_1 paratopological group. Then:
a) H is σ-compact \iff H^* is σ-compact.
b) H has a countable network \iff H^* has a countable network.
Associated topological group

Theorem 1.1 (Alas–Sanchis, 2007).

Let G be a T_1 paratopological group. Then the diagonal $\Delta = \{(x, x) : x \in G\}$ is a closed subgroup of $G \times G'$ and, when considered with the topology induced from $G \times G'$, the diagonal Δ is a Hausdorff topological group topologically isomorphic to the group G^* associated to G.

Corollary 1.2.

Let H be a T_1 paratopological group. Then:

a) H is σ-compact $\iff H^*$ is σ-compact.

b) H has a countable network $\iff H^*$ has a countable network.

c) If H is second countable, so is H^*.
Theorem 1.1 (Alas–Sanchis, 2007).

Let G be a T_1 paratopological group. Then the diagonal $\Delta = \{(x, x) : x \in G\}$ is a closed subgroup of $G \times G'$ and, when considered with the topology induced from $G \times G'$, the diagonal Δ is a Hausdorff topological group topologically isomorphic to the group G^* associated to G.

Corollary 1.2.

Let H be a T_1 paratopological group. Then:

a) H is σ-compact \iff H^* is σ-compact.

b) H has a countable network \iff H^* has a countable network.

c) If H is second countable, so is H^*.

d) If H is first countable, so is H^*.
Associated topological group

Theorem 1.1 (Alas–Sanchis, 2007).
Let G be a T_1 paratopological group. Then the diagonal $\Delta = \{(x, x) : x \in G\}$ is a closed subgroup of $G \times G'$ and, when considered with the topology induced from $G \times G'$, the diagonal Δ is a Hausdorff topological group topologically isomorphic to the group G^* associated to G.

Corollary 1.2.
Let H be a T_1 paratopological group. Then:

a) H is σ-compact \iff H^* is σ-compact.

b) H has a countable network \iff H^* has a countable network.

c) If H is second countable, so is H^*.

d) If H is first countable, so is H^*.

Corollary 1.3 (Reznichenko, 2005).
Every σ-compact Hausdorff (even T_1) paratopological group has countable cellularity.
Theorem 1.4 (Banakh–Ravsky, 2004).

For every paratopological group (G, τ), there exists the finest topological group topology τ_* on G with $\tau_* \subseteq \tau$.
Theorem 1.4 (Banakh–Ravsky, 2004).

For every paratopological group \((G, \tau)\), there exists the finest topological group topology \(\tau_*\) on \(G\) with \(\tau_* \subseteq \tau\).

We will call \(G_* = (G, \tau_*)\) the group reflection of \(G\). The group \(G_*\) can fail to be Hausdorff even if \((G, \tau)\) is Tychonoff.
Topological group reflection

Theorem 1.4 (Banakh–Ravsky, 2004).

For every paratopological group \((G, \tau)\), there exists the finest topological group topology \(\tau_\) on \(G\) with \(\tau_* \subseteq \tau\).*

We will call \(G_* = (G, \tau_*)\) the group reflection of \(G\). The group \(G_*\) can fail to be Hausdorff even if \((G, \tau)\) is Tychonoff.

A semitopological group \(G\) is said to be **precompact** if for every neighborhood \(U\) of the identity in \(G\), there exists a finite set \(F \subset G\) such that \(FU = G = UF\).
Topological group reflection

Theorem 1.4 (Banakh–Ravsky, 2004).
For every paratopological group \((G, \tau)\), there exists the finest topological group topology \(\tau_*\) on \(G\) with \(\tau_* \subseteq \tau\).

We will call \(G_* = (G, \tau_*)\) the group reflection of \(G\). The group \(G_*\) can fail to be Hausdorff even if \((G, \tau)\) is Tychonoff.

A semitopological group \(G\) is said to be precompact if for every neighborhood \(U\) of the identity in \(G\), there exists a finite set \(F \subset G\) such that \(FU = G = UF\).

Theorem 1.5 (Banakh–Ravsky, 2008).
Every precompact paratopological group has countable cellularity. Furthermore, every regular cardinal \(\kappa > \omega\) is a precaliber for \(G\).
Theorem 1.4 (Banakh–Ravsky, 2004).
For every paratopological group \((G, \tau)\), there exists the finest topological group topology \(\tau_*\) on \(G\) with \(\tau_* \subseteq \tau\).

We will call \(G_* = (G, \tau_*)\) the group reflection of \(G\). The group \(G_*\) can fail to be Hausdorff even if \((G, \tau)\) is Tychonoff.

A semitopological group \(G\) is said to be precompact if for every neighborhood \(U\) of the identity in \(G\), there exists a finite set \(F \subset G\) such that \(FU = G = UF\).

Theorem 1.5 (Banakh–Ravsky, 2008).
Every precompact paratopological group has countable cellularity. Furthermore, every regular cardinal \(\kappa > \omega\) is a precaliber for \(G\).

Idea of the proof: If \(G\) is a precompact paratopological group, then the non-empty open sets in \(G_*\) form a \(\pi\)-base for \(G\).
Regularization of paratopological groups

Given a space X, let X_{sr} be the underlying set X endowed with the topology whose base is formed by the regular open sets in X:

$$\{ \text{Int}_X \overline{U} : U \text{ is open in } X \}.$$
Regularization of paratopological groups

Given a space X, let X_{sr} be the underlying set X endowed with the topology whose base is formed by the regular open sets in X:

$$\{\text{Int}_X \overline{U} : U \text{ is open in } X\}.$$

We say that X_{sr} is the semiregularization of X (Stone, Katetov).
Regularization of paratopological groups

Given a space X, let X_{sr} be the underlying set X endowed with the topology whose base is formed by the regular open sets in X:

$$\{ \text{Int}_X \overline{U} : U \text{ is open in } X \}.$$

We say that X_{sr} is the semiregularization of X (Stone, Katetov). The identity mapping $i : X \rightarrow X_{sr}$ is always continuous and is a homeomorphism iff X is semiregular (regular open sets form a base of X).
Regularization of paratopological groups

Given a space X, let X_{sr} be the underlying set X endowed with the topology whose base is formed by the regular open sets in X:

$$\{\text{Int}_X \overline{U} : U \text{ is open in } X\}.$$

We say that X_{sr} is the semiregularization of X (Stone, Katetov). The identity mapping $i : X \rightarrow X_{sr}$ is always continuous and is a homeomorphism iff X is semiregular (regular open sets form a base of X).

Theorem 1.6 (Ravsky, 2003).

For any paratopological group G, the semiregularization G_{sr} of G is a T_3 paratopological group. Hence the semiregularization of a Hausdorff paratopological group is a regular paratopological group.
Regularization of paratopological groups

Given a space X, let X_{sr} be the underlying set X endowed with the topology whose base is formed by the regular open sets in X:

$$\{\text{Int}_X \overline{U} : U \text{ is open in } X\}.$$

We say that X_{sr} is the semiregularization of X (Stone, Katetov). The identity mapping $i : X \rightarrow X_{sr}$ is always continuous and is a homeomorphism iff X is semiregular (regular open sets form a base of X).

Theorem 1.6 (Ravsky, 2003).

For any paratopological group G, the semiregularization G_{sr} of G is a T_3 paratopological group. Hence the semiregularization of a Hausdorff paratopological group is a regular paratopological group.

The group G_{sr} will be called the regularization of G and denoted by G_r.
Regularization of paratopological groups

Definition 1.7.

A space X is called **feeably compact** if every locally finite family of open sets in X is finite.
Regularization of paratopological groups

Definition 1.7.
A space X is called *feeably compact* if every locally finite family of open sets in X is finite.

In Tych. spaces: feeble compactness \iff pseudocompactness.
Definition 1.7. A space X is called feebly compact if every locally finite family of open sets in X is finite.

In Tych. spaces: feeble compactness \iff pseudocompactness.

An extention of the Comfort–Ross theorem about products:
Regularization of paratopological groups

Definition 1.7.
A space X is called **feeble compact** if every locally finite family of open sets in X is finite.

In Tych. spaces: feeble compactness \iff pseudocompactness.

An extension of the Comfort–Ross theorem about products:

Theorem 1.8 (Ravsky, 2010).
The topological product of an arbitrary family of feeble compact paratopological groups is feeble compact.
Definition 1.7.
A space X is called feebly compact if every locally finite family of open sets in X is finite.

In Tych. spaces: feeble compactness \iff pseudocompactness.

An extension of the Comfort–Ross theorem about products:

Theorem 1.8 (Ravsky, 2010).

The topological product of an arbitrary family of feebly compact paratopological groups is feebly compact.

Idea of the proof: 1) Take the regularization of a product of feebly compact paratopological group \cong the product of regularizations of the factors.
Definition 1.7.
A space X is called **feeble compact** if every locally finite family of open sets in X is finite.

In Tych. spaces: feeble compactness \iff pseudocompactness.

An extension of the Comfort–Ross theorem about products:

Theorem 1.8 (Ravsky, 2010).

The topological product of an arbitrary family of feeble compact paratopological groups is feeble compact.

Idea of the proof: 1) Take the regularization of a product of feeble compact paratopological group \cong the product of regularizations of the factors. 2) Apply the fact that every regular (even T_3) feeble compact paratopological group is a topological group (Arhangel’skii–Reznichenko plus Ravsky).
Regularization of paratopological groups

Definition 1.7.
A space X is called *feebly compact* if every locally finite family of open sets in X is finite.

In Tych. spaces: feeble compactness \iff pseudocompactness.

An extension of the Comfort–Ross theorem about products:

Theorem 1.8 (Ravsky, 2010).
The topological product of an arbitrary family of feebly compact paratopological groups is feebly compact.

Idea of the proof: 1) Take the regularization of a product of feebly compact paratopological group \cong the product of regularizations of the factors. 2) Apply the fact that every regular (even T_3) feebly compact paratopological group is a topological group (Arhangel’skii–Reznichenko plus Ravsky). 3) Use the Comfort–Ross theorem.
Definition 1.7.
A space X is called feebly compact if every locally finite family of open sets in X is finite.

In Tych. spaces: feeble compactness \iff pseudocompactness.

An extension of the Comfort–Ross theorem about products:

Theorem 1.8 (Ravsky, 2010).

The topological product of an arbitrary family of feebly compact paratopological groups is feebly compact.

Idea of the proof: 1) Take the regularization of a product of feebly compact paratopological group \cong the product of regularizations of the factors. 2) Apply the fact that every regular (even T_3) feebly compact paratopological group is a topological group (Arhangel’skii–Reznichenko plus Ravsky). 3) Use the Comfort–Ross theorem. 4) Note that a space X is feebly compact iff so is X_{sr}.
Discussion

Taking the associated topological group G^*, the group reflection G_*, and the regularization G_r of a paratopological group G are, in fact, covariant functors in the category of paratopological groups and their continuous homomorphisms.
Discussion

Taking the associated topological group G^*, the group reflection G_*, and the regularization G_r of a paratopological group G are, in fact, covariant functors in the category of paratopological groups and their continuous homomorphisms.

Another useful functor in the category of topological groups:

$$G \to G/\overline{\{e\}},$$

where $\overline{\{e\}}$ is the closure of the identity e in G.
Discussion

Taking the associated topological group G^*, the group reflection G_*, and the regularization G_r of a paratopological group G are, in fact, covariant functors in the category of paratopological groups and their continuous homomorphisms.

Another useful functor in the category of topological groups:

$$G \rightarrow G/\{e\},$$

where $\{e\}$ is the closure of the identity e in G. The invariant subgroup $\{e\}$ is closed in G, so the group $T_1(G) = G/\{e\}$ is a T_1-space (hence, Tychonoff).
Discussion

Taking the associated topological group G^*, the group reflection G_*, and the regularization G_r of a paratopological group G are, in fact, covariant functors in the category of paratopological groups and their continuous homomorphisms.

Another useful functor in the category of topological groups:

$$G \rightarrow G/\{e\},$$

where $\{e\}$ is the closure of the identity e in G. The invariant subgroup $\{e\}$ is closed in G, so the group $T_1(G) = G/\{e\}$ is a T_1-space (hence, Tychonoff). Let $\pi_G : G \rightarrow T_1(G)$ be the quotient homomorphism.

Question. Is a similar construction possible in paratopological or semitopological groups?
Discussion

Taking the associated topological group G^*, the group reflection G_*, and the regularization G_r of a paratopological group G are, in fact, **covariant functors** in the category of paratopological groups and their continuous homomorphisms.

Another useful functor in the category of **topological groups**:

$$G \rightarrow G/\{e\},$$

where $\{e\}$ is the closure of the identity e in G. The invariant subgroup $\{e\}$ is closed in G, so the group $T_1(G) = G/\{e\}$ is a T_1-space (hence, Tychonoff). Let $\pi_G : G \rightarrow T_1(G)$ be the quotient homomorphism.

Further, **if $f : G \rightarrow X$ is a continuous mapping of a topological group G to a T_1-space X, then there exists a continuous mapping $\bar{f} : T_1(G) \rightarrow X$ such that $f = \bar{f} \circ \pi_G$.**
Discussion

Taking the associated topological group G^*, the group reflection G_*, and the regularization G_r of a paratopological group G are, in fact, covariant functors in the category of paratopological groups and their continuous homomorphisms.

Another useful functor in the category of topological groups:

$$G \rightarrow G/\{e\},$$

where $\{e\}$ is the closure of the identity e in G. The invariant subgroup $\{e\}$ is closed in G, so the group $T_1(G) = G/\{e\}$ is a T_1-space (hence, Tychonoff). Let $\pi_G : G \rightarrow T_1(G)$ be the quotient homomorphism.

Further, if $f : G \rightarrow X$ is a continuous mapping of a topological group G to a T_1-space X, then there exists a continuous mapping $\bar{f} : T_1(G) \rightarrow X$ such that $f = \bar{f} \circ \pi_G$.

Question. Is a similar construction possible in paratopological or semitopological groups?
Reflection of separation axioms

The first difficulty: the closure of the identity, \(\{e\} \), in a paratopological group \(G \) can fail to be a subgroup of \(G \):
Reflection of separation axioms

The first difficulty: **the closure of the identity, \{e\}, in a paratopological group G can fail to be a subgroup of G:**

Consider the real line \(\mathbb{R} \) with the ‘topology’ \(\tau = \{(r, \infty) : r \in \mathbb{R} \} \). Then \((G, \tau)\) is a \(T_0 \) paratopological group, but \(\{0\} = (-\infty, 0] \).
Reflection of separation axioms

The first difficulty: the closure of the identity, \(\{e\} \), in a paratopological group \(G \) can fail to be a subgroup of \(G \):

Consider the real line \(\mathbb{R} \) with the ‘topology’ \(\tau = \{(r, \infty) : r \in \mathbb{R}\} \). Then \((G, \tau)\) is a \(T_0 \) paratopological group, but \(\{0\} = (-\infty, 0] \).

Definition 2.1.

Let \(\mathcal{P} \) be a (topological) property and \(G \) a semitopological group. A semitopological group \(H \) is called a \(\mathcal{P} \)-reflection of \(G \) if there exists a continuous homomorphism \(\varphi_G : G \to H \) onto \(H \) satisfying the following conditions:
Reflection of separation axioms

The first difficulty: the closure of the identity, \(\{e\} \), in a paratopological group \(G \) can fail to be a subgroup of \(G \): Consider the real line \(\mathbb{R} \) with the ‘topology’ \(\tau = \{(r, \infty) : r \in \mathbb{R}\} \). Then \((G, \tau)\) is a \(T_0 \) paratopological group, but \(\{0\} = (−\infty, 0] \).

Definition 2.1.

Let \(\mathcal{P} \) be a (topological) property and \(G \) a semitopological group. A semitopological group \(H \) is called a \(\mathcal{P} \)-reflection of \(G \) if there exists a continuous homomorphism \(\varphi_G : G \to H \) onto \(H \) satisfying the following conditions:

(a) \(H \in \mathcal{P} \);
Reflection of separation axioms

The first difficulty: \textbf{the closure of the identity,} \(\overline{\{e\}} \), \textbf{in a paratopological group} \(G \) can fail to be a subgroup of \(G \):

Consider the real line \(\mathbb{R} \) with the ‘topology’ \(\tau = \{(r, \infty) : r \in \mathbb{R}\} \). Then \((G, \tau) \) is a \(T_0 \) paratopological group, but \(\{0\} = (\infty, 0] \).

\textbf{Definition 2.1.}

Let \(\mathcal{P} \) be a (topological) property and \(G \) a semitopological group. A semitopological group \(H \) is called a \(\mathcal{P} \)-reflection of \(G \) if there exists a continuous homomorphism \(\varphi_G : G \to H \) \textbf{onto} \(H \) satisfying the following conditions:

(a) \(H \in \mathcal{P} \);

(b) Given a continuous mapping \(f : G \to X \) to a space \(X \in \mathcal{P} \), one can find a continuous mapping \(h : H \to X \) with \(f = h \circ \varphi_G \).
Reflection of separation axioms

The first difficulty: the closure of the identity, \(\{e\} \), in a paratopological group \(G \) can fail to be a subgroup of \(G \):

Consider the real line \(\mathbb{R} \) with the ‘topology’ \(\tau = \{(r, \infty) : r \in \mathbb{R}\} \).

Then \((G, \tau)\) is a \(T_0 \) paratopological group, but \(\{0\} = (\infty, 0] \).

Definition 2.1.

Let \(\mathcal{P} \) be a (topological) property and \(G \) a semitopological group. A semitopological group \(H \) is called a \(\mathcal{P} \)-reflection of \(G \) if there exists a continuous homomorphism \(\varphi_G : G \to H \) onto \(H \) satisfying the following conditions:

(a) \(H \in \mathcal{P} \);

(b) Given a continuous mapping \(f : G \to X \) to a space \(X \in \mathcal{P} \), one can find a continuous mapping \(h : H \to X \) with \(f = h \circ \varphi_G \).

The definition of a \(\mathcal{P} \)-reflection in the class of paratopological groups is the same (\(H \) must be a paratopological group).
Reflection of separation axioms

Theorem 2.2 (Tk., 2013).

For every $k = 0, 1, 2, 3, 3.5$, there exists a covariant functor T_k in the category of semitopological groups such that $T_k(G)$ is the T_k-reflection of G, for an arbitrary semitopological group G.

If $k = 0, 1, 2$, then the corresponding continuous homomorphism $\phi_{G,k} : G \to T_k(G)$ is open, so $T_k(G)$ is a quotient group of G.

'Top-reflection' means the reflection in the class of spaces satisfying the T_k separation axiom.

Two more functors: $T_1 \to \text{Reg}$ and $T_1 \to \text{Tych}$.

Corollary 2.3.

For every semitopological (paratopological) group G and every $k \in \{0, 1, 2, 3, 3.5\}$, there exists a continuous homomorphism $\phi_{G,k} : G \to H$ onto a semitopological (paratopological) group H satisfying the T_k separation axiom such that for every continuous mapping $f : G \to X$ to a T_k-space X, one can find a continuous mapping $h : H \to X$ with $f = h \circ \phi_{G,k}$. [R stands for regularity.]
Reflection of separation axioms

Theorem 2.2 (Tk., 2013).

For every $k = 0, 1, 2, 3, 3.5$, there exists a covariant functor T_k in the category of semitopological groups such that $T_k(G)$ is the T_k-reflection of G, for an arbitrary semitopological group G. If $k = 0, 1, 2$, then the corresponding continuous homomorphism $\varphi_{G,k} : G \to T_k(G)$ is open, so $T_k(G)$ is a quotient group of G.

Corollary 2.3.

For every semitopological (paratopological) group G and every $k \in \{0, 1, 2, 3, R\}$, there exists a continuous homomorphism $\varphi_{G,k} : G \to H$ onto a semitopological (paratopological) group H satisfying the T_k-separation axiom such that for every continuous mapping $f : G \to X$ to a T_k-space X, one can find a continuous mapping $h : H \to X$ with $f = h \circ \varphi_{G,k}$. [R stands for regularity.]
Reflection of separation axioms

Theorem 2.2 (Tk., 2013).
For every \(k = 0, 1, 2, 3, 3.5 \), there exists a covariant functor \(T_k \) in the category of semitopological groups such that \(T_k(G) \) is the \(T_k \)-reflection of \(G \), for an arbitrary semitopological group \(G \). If \(k = 0, 1, 2 \), then the corresponding continuous homomorphism \(\varphi_{G,k} : G \rightarrow T_k(G) \) is open, so \(T_k(G) \) is a quotient group of \(G \).
‘\(T_k \)-reflection’ means the reflection in the class of spaces satisfying the \(T_k \) separation axiom.
Reflection of separation axioms

Theorem 2.2 (Tk., 2013).

For every \(k = 0, 1, 2, 3, 3.5 \), there exists a covariant functor \(T_k \) in the category of semitopological groups such that \(T_k(G) \) is the \(T_k \)-reflection of \(G \), for an arbitrary semitopological group \(G \). If \(k = 0, 1, 2 \), then the corresponding continuous homomorphism \(\varphi_{G,k} : G \to T_k(G) \) is open, so \(T_k(G) \) is a quotient group of \(G \).

‘\(T_k \)-reflection’ means the reflection in the class of spaces satisfying the \(T_k \) separation axiom. Two more functors:

\[
T_1 & T_3 \to \text{Reg} \quad \text{and} \quad T_1 & T_{3.5} \to \text{Tych}
\]
Reflection of separation axioms

Theorem 2.2 (Tk., 2013).

For every $k = 0, 1, 2, 3, 3.5$, there exists a covariant functor T_k in the category of semitopological groups such that $T_k(G)$ is the T_k-reflection of G, for an arbitrary semitopological group G. If $k = 0, 1, 2$, then the corresponding continuous homomorphism $\varphi_{G,k} : G \rightarrow T_k(G)$ is open, so $T_k(G)$ is a quotient group of G.

‘T_k-reflection’ means the reflection in the class of spaces satisfying the T_k separation axiom. Two more functors:

$T_1 \& T_3 \rightarrow \text{Reg}$ and $T_1 \& T_{3.5} \rightarrow \text{Tych}$

Corollary 2.3.

For every semitopological (paratopological) group G and every $k \in \{0, 1, 2, 3, R\}$, there exists a continuous homomorphism $\varphi_{G,k} : G \rightarrow H$ onto a semitopological (paratopological) group H satisfying the T_k separation axiom such that for every continuous mapping $f : G \rightarrow X$ to a T_k-space X, one can find a continuous mapping $h : H \rightarrow X$ with $f = h \circ \varphi_{G,k}$. [R stands for regularity.]
‘Internal’ description of the groups $T_0(G)$

The canonical homomorphism $\varphi_{G,k} : G \to T_k(G)$ is continuous, open, and surjective for $k = 0, 1, 2$ (Theorem 2.2). Hence $T_k(G)$ is a quotient group of G in this case.
‘Internal’ description of the groups $T_0(G)$

The canonical homomorphism $\varphi_{G,k} : G \to T_k(G)$ is continuous, open, and surjective for $k = 0, 1, 2$ (Theorem 2.2). Hence $T_k(G)$ is a quotient group of G in this case.

Conclusion: To describe the group $T_k(G)$ for $k = 0, 1, 2$ in ‘internal’ terms, it suffices to determine the kernel N_k of the homomorphism $\varphi_{G,k}$. Then $T_k(G) \cong G/N_k$ and $\varphi_{G,k}$ is simply the quotient homomorphism $\pi_k : G \to G/N_k$.

Let us start with $k = 0$.

Theorem 3.1. Let G be an arbitrary semitopological group and $N(e)$ the family of open neighborhoods of the neutral element e in G. Then $N_0 = \bigcap_{x \in G} N(e)$, where $P = \bigcap_{x \in G} N(e)$. Hence $T_0(G) \cong G/N_0$.

Warning: The subgroup N_0 of G is not necessarily closed in G.
‘Internal’ description of the groups $T_0(G)$

The canonical homomorphism $\varphi_{G,k} : G \to T_k(G)$ is continuous, open, and surjective for $k = 0, 1, 2$ (Theorem 2.2). Hence $T_k(G)$ is a quotient group of G in this case.

Conclusion: To describe the group $T_k(G)$ for $k = 0, 1, 2$ in ‘internal’ terms, it suffices to determine the kernel N_k of the homomorphism $\varphi_{G,k}$. Then $T_k(G) \cong G/N_k$ and $\varphi_{G,k}$ is simply the quotient homomorphism $\pi_k : G \to G/N_k$.

Let us start with $k = 0$.

Theorem 3.1.

Let G be an arbitrary semitopological group and $\mathcal{N}(e)$ the family of open neighborhoods of the neutral element e in G. Then $N_0 = P \cap P^{-1}$, where $P = \bigcap \mathcal{N}(e)$. Hence $T_0(G) \cong G/N_0$.

Warning: The subgroup N_0 of G is not necessarily closed in G.

‘Internal’ description of the groups $T_0(G)$

The canonical homomorphism $\varphi_{G,k} : G \rightarrow T_k(G)$ is continuous, open, and surjective for $k = 0, 1, 2$ (Theorem 2.2). Hence $T_k(G)$ is a quotient group of G in this case.

Conclusion: To describe the group $T_k(G)$ for $k = 0, 1, 2$ in ‘internal’ terms, it suffices to determine the kernel N_k of the homomorphism $\varphi_{G,k}$. Then $T_k(G) \cong G/N_k$ and $\varphi_{G,k}$ is simply the quotient homomorphism $\pi_k : G \rightarrow G/N_k$.

Let us start with $k = 0$.

Theorem 3.1.

Let G be an arbitrary semitopological group and $\mathcal{N}(e)$ the family of open neighborhoods of the neutral element e in G. Then $N_0 = P \cap P^{-1}$, where $P = \bigcap \mathcal{N}(e)$. Hence $T_0(G) \cong G/N_0$.

Warning: The subgroup N_0 of G is not necessarily closed in G.
The case $k = 1$.
‘Internal’ description of the groups \(T_1(G) \)

The case \(k = 1 \).

Given a semitopological group \(G \), it is tempting to conjecture that \(N_1 = \bigcap \mathcal{N}(e) \). Unfortunately, this candidate for \(N_1 \) can easily fail to be a subgroup!
‘Internal’ description of the groups $T_1(G)$

The case $k = 1$.

Given a semitopological group G, it is tempting to conjecture that $N_1 = \bigcap N(e)$. Unfortunately, this candidate for N_1 can easily fail to be a subgroup!

Theorem 3.2.

*Let G be an arbitrary semitopological group. Then N_1 is the smallest closed subgroup of G. Hence $T_1(G) \cong G/N_1$.***
The case $k = 1$.

Given a semitopological group G, it is tempting to conjecture that $N_1 = \bigcap N(e)$. Unfortunately, this candidate for N_1 can easily fail to be a subgroup!

Theorem 3.2.

*Let G be an arbitrary semitopological group. Then N_1 is the smallest closed subgroup of G. Hence $T_1(G) \cong G/N_1$.***

Clearly, the quotient group G/N_1 satisfies the T_1 separation axiom. To show that $T_1(G) \cong G/N_1$, it suffices to prove the following:
The case $k = 1$.

Given a semitopological group G, it is tempting to conjecture that $N_1 = \cap N(e)$. Unfortunately, this candidate for N_1 can easily fail to be a subgroup!

Theorem 3.2.

Let G be an arbitrary semitopological group. Then N_1 is the smallest closed subgroup of G. Hence $T_1(G) \cong G/N_1$.

Clearly, the quotient group G/N_1 satisfies the T_1 separation axiom. To show that $T_1(G) \cong G/N_1$, it suffices to prove the following:

For every continuous mapping $f : G \rightarrow X$ to a T_1-space X, there exists a continuous mapping $h : G/N_1 \rightarrow X$ satisfying $f = h \circ \pi_1$, where π_1 is the quotient homomorphism of G onto G/N_1.

"Internal’ description of the groups $T_1(G)$"
The case $k = 1$.

Given a semitopological group G, it is tempting to conjecture that $N_1 = \bigcap \mathcal{N}(e)$. Unfortunately, this candidate for N_1 can easily fail to be a subgroup!

Theorem 3.2.

Let G be an arbitrary semitopological group. Then N_1 is the smallest closed subgroup of G. Hence $T_1(G) \cong G/N_1$.

Clearly, the quotient group G/N_1 satisfies the T_1 separation axiom. To show that $T_1(G) \cong G/N_1$, it suffices to prove the following:

For every continuous mapping $f : G \to X$ to a T_1-space X, there exists a continuous mapping $h : G/N_1 \to X$ satisfying $f = h \circ \pi_1$, where π_1 is the quotient homomorphism of G onto G/N_1.

TRY IT! (A hint follows.)
‘Internal’ description of the groups $T_2(G)$
‘Internal’ description of the groups $T_2(G)$

Open problem. Give an internal description of the kernel N_2 of the canonical homomorphism $\varphi_{G,2} : G \to T_2(G)$, for an arbitrary semitopological group G.
‘Internal’ description of the groups $T_2(G)$

Open problem. Give an internal description of the kernel N_2 of the canonical homomorphism $\varphi_{G,2} : G \to T_2(G)$, for an arbitrary semitopological group G.

We solve the problem for paratopological groups:

Theorem 3.3.

Let G be a paratopological group and $\mathcal{N}(e)$ the family of open neighborhoods of the neutral element e in G. Then

\[
N_2 = \bigcap_{U \in \mathcal{N}(e)} \overline{U}
\]

or, equivalently,

\[
N_2 = \bigcap_{U \in \mathcal{N}(e)} UU^{-1}.
\]

*Hence $T_2(G) \cong G/N_2$.**
‘Internal’ description of the groups $T_3(G)$ and $\text{Reg}(G)$

Again, we do not know any description of $T_3(G)$ or $\text{Reg}(G)$, for a semitopological group G.
‘Internal’ description of the groups $T_3(G)$ and $\text{Reg}(G)$

Again, we do not know any description of $T_3(G)$ or $\text{Reg}(G)$, for a semitopological group G.

Lemma 3.4.

For every semitopological group G, the canonical homomorphism $\varphi_{G,3} : G \to T_3(G)$ is a continuous bijection. Hence the kernel N_3 of $\varphi_{G,3}$ is trivial.
‘Internal’ description of the groups $T_3(G)$ and $\text{Reg}(G)$

Again, we do not know any description of $T_3(G)$ or $\text{Reg}(G)$, for a semitopological group G.

Lemma 3.4.

For every semitopological group G, the canonical homomorphism $\varphi_{G,3}: G \rightarrow T_3(G)$ is a continuous bijection. Hence the kernel N_3 of $\varphi_{G,3}$ is trivial.

Sometimes the functor T_3 ‘collapses’ the topology of a paratopological group G:
‘Internal’ description of the groups $T_3(G)$ and $\text{Reg}(G)$

Again, we do not know any description of $T_3(G)$ or $\text{Reg}(G)$, for a semitopological group G.

Lemma 3.4.

For every semitopological group G, the canonical homomorphism $\varphi_{G,3}: G \rightarrow T_3(G)$ is a continuous bijection. Hence the kernel N_3 of $\varphi_{G,3}$ is trivial.

Sometimes the functor T_3 ‘collapses’ the topology of a paratopological group G:

Example 3.5.

Let $(\mathbb{R}, +)$ be the additive group of reals and

$$V_n = \{0\} \cup [n, \infty).$$
‘Internal’ description of the groups $T_3(G)$ and $\text{Reg}(G)$

Again, we do not know any description of $T_3(G)$ or $\text{Reg}(G)$, for a semitopological group G.

Lemma 3.4.

For every semitopological group G, the canonical homomorphism $\varphi_{G,3}: G \rightarrow T_3(G)$ is a continuous bijection. Hence the kernel N_3 of $\varphi_{G,3}$ is trivial.

Sometimes the functor T_3 ‘collapses’ the topology of a paratopological group G:

Example 3.5.

Let $(\mathbb{R}, +)$ be the additive group of reals and

$$V_n = \{0\} \cup [n, \infty).$$

Then $\{V_n : n \in \mathbb{N}\}$ is a local base at zero for a paratopological group topology \mathcal{T} on \mathbb{R} and the group $G = (\mathbb{R}, \mathcal{T})$ satisfies the T_1 separation axiom.
‘Internal’ description of the groups $T_3(G)$ and $\text{Reg}(G)$

Again, we do not know any description of $T_3(G)$ or $\text{Reg}(G)$, for a semitopological group G.

Lemma 3.4.

For every semitopological group G, the canonical homomorphism $\varphi_{G,3} : G \rightarrow T_3(G)$ is a continuous bijection. Hence the kernel N_3 of $\varphi_{G,3}$ is trivial.

Sometimes the functor T_3 ‘collapses’ the topology of a paratopological group G:

Example 3.5.

Let $(\mathbb{R}, +)$ be the additive group of reals and

$$V_n = \{0\} \cup [n, \infty).$$

Then $\{V_n : n \in \mathbb{N}\}$ is a local base at zero for a paratopological group topology \mathcal{T} on \mathbb{R} and the group $G = (\mathbb{R}, \mathcal{T})$ satisfies the T_1 separation axiom. Further, the group $T_3(G)$ carries the anti-discrete topology since every V_n is dense in G.
Theorem 3.6.

$T_3(G)$ is the regularization of G, i.e., $T_3(G) \cong G_r$, for every paratopological group G.

Theorem 3.6.

$T_3(G)$ is the regularization of G, i.e., $T_3(G) \cong G_r$, for every paratopological group G.

Thus the groups $T_3(G)$ and G coincide algebraically, while the regular open sets in G constitute a base for the topology of $T_3(G)$.

Theorem 3.7 admits a more general functorial form:

$\text{Reg} \cong T_3 \circ T_2$.

‘Internal’ description of the groups $T_3(G)$ and $\text{Reg}(G)$

Theorem 3.6.

$T_3(G)$ is the regularization of G, i.e., $T_3(G) \cong G_r$, for every paratopological group G.

Thus the groups $T_3(G)$ and G coincide algebraically, while the regular open sets in G constitute a base for the topology of $T_3(G)$.

Here is a two-step description of the groups $\text{Reg}(G)$:

Theorem 3.7.

Let G be an arbitrary paratopological group. Then $\text{Reg}(G)$ is the regularization of the paratopological group $T_2(G)$. Therefore, $\text{Reg}(G) \cong (G/N_2)_r$.
Theorem 3.6.
*T*₃(*G*) is the regularization of *G*, i.e., *T*₃(*G*) ∼ *G*ᵣ, for every paratopological group *G*.

Thus the groups *T*₃(*G*) and *G* coincide algebraically, while the regular open sets in *G* constitute a base for the topology of *T*₃(*G*).

Here is a two-step description of the groups Reg(*G*):

Theorem 3.7.
Let *G* be an arbitrary paratopological group. Then Reg(*G*) is the regularization of the paratopological group *T*₂(*G*). Therefore, Reg(*G*) ∼ (*G*/*N*₂)ᵣ.

Theorem 3.7 admits a more general functorial form:

Reg ∼ *T*₃ ∘ *T*₂.
Properties of the functors T_k’s

Regularity = $T_1 + T_3$. Does this imply that $\text{Reg} \simeq T_3 \circ T_1$ or $\text{Reg} \simeq T_1 \circ T_3$ in the category of paratopological groups?
Properties of the functors T_k's

Regularity $= T_1 + T_3$. Does this imply that $\text{Reg} \cong T_3 \circ T_1$ or $\text{Reg} \cong T_1 \circ T_3$ in the category of paratopological groups?

Theorem 4.1.

The functors Reg, $T_0 \circ T_3$, $T_1 \circ T_3$ and $T_2 \circ T_3$ are naturally equivalent in the category of semitopological groups.
Properties of the functors T_k’s

Regularity = $T_1 + T_3$. Does this imply that $\text{Reg} \cong T_3 \circ T_1$ or $\text{Reg} \cong T_1 \circ T_3$ in the category of paratopological groups?

Theorem 4.1.

The functors Reg, $T_0 \circ T_3$, $T_1 \circ T_3$ and $T_2 \circ T_3$ are naturally equivalent in the category of semitopological groups.

Since $\text{Reg} \cong T_3 \circ T_2$ in the category of paratopological groups, we obtain:
Properties of the functors T_k's

Regularity = $T_1 + T_3$. Does this imply that $\text{Reg} \cong T_3 \circ T_1$ or $\text{Reg} \cong T_1 \circ T_3$ in the category of paratopological groups?

Theorem 4.1.

The functors Reg, $T_0 \circ T_3$, $T_1 \circ T_3$ and $T_2 \circ T_3$ are naturally equivalent in the category of semitopological groups.

Since $\text{Reg} \cong T_3 \circ T_2$ in the category of paratopological groups, we obtain:

Corollary 4.2.

$T_2 \circ T_3 \cong T_3 \circ T_2$, i.e., the functors T_2 and T_3 'commute' in the category of paratopological groups.
Properties of the functors T_k’s

Regularity $= T_1 + T_3$. Does this imply that $\text{Reg} \cong T_3 \circ T_1$ or $\text{Reg} \cong T_1 \circ T_3$ in the category of paratopological groups?

Theorem 4.1.

The functors Reg, $T_0 \circ T_3$, $T_1 \circ T_3$ and $T_2 \circ T_3$ are naturally equivalent in the category of semitopological groups.

Since $\text{Reg} \cong T_3 \circ T_2$ in the category of paratopological groups, we obtain:

Corollary 4.2.

$T_2 \circ T_3 \cong T_3 \circ T_2$, i.e., the functors T_2 and T_3 ‘commute’ in the category of paratopological groups.

Open problem. Do the functors T_2 and T_3 commute in the category of semitopological groups?
Properties of the functors T_k’s

Which of the ‘equalities’

$$T_1 \circ T_3 \cong T_3 \circ T_1 \text{ or } T_0 \circ T_3 \cong T_3 \circ T_0$$

are valid in the category of paratopological groups?
Properties of the functors T_k’s

Which of the ‘equalities’

$$T_1 \circ T_3 \cong T_3 \circ T_1 \text{ or } T_0 \circ T_3 \cong T_3 \circ T_0$$

are valid in the category of paratopological groups?

Example 4.3.

$T_1 \circ T_3 \not\cong T_3 \circ T_1$.
Properties of the functors T_k’s

Which of the ‘equalities’

$$T_1 \circ T_3 \cong T_3 \circ T_1 \text{ or } T_0 \circ T_3 \cong T_3 \circ T_0$$

are valid in the category of paratopological groups?

Example 4.3.

$T_1 \circ T_3 \not\cong T_3 \circ T_1$. Indeed, let G be the group in Example 3.5. We know that G is a T_1-space with $|G| = |\mathbb{R}| = 2^\omega$ and $T_3(G)$ is the same group G endowed with the anti-discrete topology.
Properties of the functors T_k’s

Which of the ‘equalities’

$$T_1 \circ T_3 \cong T_3 \circ T_1 \text{ or } T_0 \circ T_3 \cong T_3 \circ T_0$$

are valid in the category of paratopological groups?

Example 4.3.

$T_1 \circ T_3 \not\cong T_3 \circ T_1$. Indeed, let G be the group in Example 3.5. We know that G is a T_1-space with $|G| = |\mathbb{R}| = 2^\omega$ and $T_3(G)$ is the same group G endowed with the anti-discrete topology. Hence $T_1(G) \cong G$.
Properties of the functors T_k’s

Which of the ‘equalities’

$$T_1 \circ T_3 \cong T_3 \circ T_1 \text{ or } T_0 \circ T_3 \cong T_3 \circ T_0$$

are valid in the category of paratopological groups?

Example 4.3.

$T_1 \circ T_3 \not\cong T_3 \circ T_1$. Indeed, let G be the group in Example 3.5. We know that G is a T_1-space with $|G| = |\mathbb{R}| = 2^\omega$ and $T_3(G)$ is the same group G endowed with the anti-discrete topology. Hence $T_1(G) \cong G$. Therefore,

$$T_3(T_1(G)) \cong T_3(G)$$

is an infinite group, while $T_1(T_3(G))$ is a trivial one-element group.
Properties of the functors T_k’s

Which of the ‘equalities’

$$T_1 \circ T_3 \cong T_3 \circ T_1 \text{ or } T_0 \circ T_3 \cong T_3 \circ T_0$$

are valid in the category of paratopological groups?

Example 4.3.

$T_1 \circ T_3 \not\cong T_3 \circ T_1$. Indeed, let G be the group in Example 3.5. We know that G is a T_1-space with $|G| = |\mathbb{R}| = 2^\omega$ and $T_3(G)$ is the same group G endowed with the anti-discrete topology. Hence $T_1(G) \cong G$. Therefore,

$$T_3(T_1(G)) \cong T_3(G)$$

is an infinite group, while $T_1(T_3(G))$ is a trivial one-element group. Concluding, $|T_3(T_1(G))| = 2^\omega > 1 = |T_1(T_3(G))|$.
Properties of the functors T_k’s

Which of the ‘equalities’

$$T_1 \circ T_3 \cong T_3 \circ T_1 \text{ or } T_0 \circ T_3 \cong T_3 \circ T_0$$

are valid in the category of paratopological groups?

Example 4.3.

$T_1 \circ T_3 \not\cong T_3 \circ T_1$. Indeed, let G be the group in Example 3.5. We know that G is a T_1-space with $|G| = |\mathbb{R}| = 2^\omega$ and $T_3(G)$ is the same group G endowed with the anti-discrete topology. Hence $T_1(G) \cong G$. Therefore,

$$T_3(T_1(G)) \cong T_3(G)$$

is an infinite group, while $T_1(T_3(G))$ is a trivial one-element group. Concluding, $|T_3(T_1(G))| = 2^\omega > 1 = |T_1(T_3(G))|$. Similarly, $T_0 \circ T_3 \not\cong T_3 \circ T_0$.
Products and functors

Let $\Pi = \prod_{i \in I} G_i$ be a product of semitopological (paratopological) groups. We wonder whether the ‘equality’

$$T_k(\Pi) \cong \prod_{i \in I} T_k(G_i)$$

holds for some $k = 0, 1, 2, 3$.
Let $\Pi = \prod_{i \in I} G_i$ be a product of semitopological (paratopological) groups. We wonder whether the ‘equality’

$$T_k(\Pi) \cong \prod_{i \in I} T_k(G_i)$$

holds for some $k = 0, 1, 2, 3$. The same question stands for the functors Reg and $Tych$. If the equality is valid, we say that the corresponding functor T_k *commutes* with products.
Products and functors

Let $\prod = \prod_{i \in I} G_i$ be a product of semitopological (paratopological) groups. We wonder whether the ‘equality’

$$T_k(\prod) \cong \prod_{i \in I} T_k(G_i)$$

holds for some $k = 0, 1, 2, 3$. The same question stands for the functors Reg and Tych. If the equality is valid, we say that the corresponding functor T_k commutes with products.

Theorem 5.1.
The functors T_0, T_1, and T_2 commute with arbitrary products of semitopological groups.
Products and functors

Let $\Pi = \prod_{i \in I} G_i$ be a product of semitopological (paratopological) groups. We wonder whether the ‘equality’

$$T_k(\Pi) \cong \prod_{i \in I} T_k(G_i)$$

holds for some $k = 0, 1, 2, 3$. The same question stands for the functors Reg and Tych. If the equality is valid, we say that the corresponding functor T_k commutes with products.

Theorem 5.1.

The functors T_0, T_1, and T_2 commute with arbitrary products of semitopological groups.

For each of the functors T_0, T_1, T_2, the proof of Theorem 5.1 is ‘individual’, depending on the form of $N_k = \ker \varphi_{G,k}$ for $k = 0, 1, 2$.

Products and functors

The case of products of paratopological groups:

Theorem 5.2.

The functors T_3 and Reg commute with arbitrary products of paratopological groups.
Products and functors

The case of products of paratopological groups:

Theorem 5.2.
The functors T_3 and Reg commute with arbitrary products of paratopological groups.

Sketch of the proof. It is well-known that every product of topological spaces satisfies

$$\left(\prod_{i \in I} X_i\right)_{sr} \cong \prod_{i \in I} (X_i)_{sr}$$

where the subscript ‘sr’ stands for the semiregularization.
Products and functors

The case of products of paratopological groups:

Theorem 5.2.
The functors T_3 and Reg commute with arbitrary products of paratopological groups.

Sketch of the proof. It is well-known that every product of topological spaces satisfies

\[(\prod_{i \in I} X_i)_{sr} \cong \prod_{i \in I} (X_i)_{sr}\]

where the subscript ‘sr’ stands for the semiregularization. Since $T_3(G) \cong G_r = G_{sr}$ for every paratopological group G, the conclusion for T_3 is immediate.
The case of products of paratopological groups:

Theorem 5.2.
The functors T_3 and Reg commute with arbitrary products of paratopological groups.

Sketch of the proof. It is well-known that every product of topological spaces satisfies

$$
(\prod_{i \in I} X_i)_{sr} \cong \prod_{i \in I} (X_i)_{sr}
$$

where the subscript ‘sr’ stands for the semiregularization. Since $T_3(G) \cong G_r = G_{sr}$ for every paratopological group G, the conclusion for T_3 is immediate. Also, $\text{Reg}(G) \cong T_1(T_3(G))$, for any paratopological group G.
Products and functors

The case of products of paratopological groups:

Theorem 5.2.
The functors T_3 and Reg commute with arbitrary products of paratopological groups.

Sketch of the proof. It is well-known that every product of topological spaces satisfies

$$(\prod_{i \in I} X_i)_{sr} \cong \prod_{i \in I} (X_i)_{sr}$$

where the subscript ‘sr’ stands for the semiregularization. Since $T_3(G) \cong G_r = G_{sr}$ for every paratopological group G, the conclusion for T_3 is immediate. Also, $\text{Reg}(G) \cong T_1(T_3(G))$, for any paratopological group G. Since both T_1 and T_3 commute with products, so does Reg. ☐
Applications of T_k-reflections

Extension of Reznichenko’s theorem (Every σ-compact Hausdorff paratopological group has countable cellularity):
Applications of T_k-reflections

Extension of Reznichenko’s theorem (Every σ-compact Hausdorff paratopological group has countable cellularity): One can drop Hausdorff here.
Applications of T_k-reflections

Extension of Reznichenko’s theorem (Every σ-compact Hausdorff paratopological group has countable cellularity): One can drop Hausdorff here.

Theorem 6.1.
Every σ-compact paratopological group has countable cellularity.
Applications of T_k-reflections

Extension of Reznichenko’s theorem (Every σ-compact Hausdorff paratopological group has countable cellularity): One can drop Hausdorff here.

Theorem 6.1.
Every σ-compact paratopological group has countable cellularity.

Lemma 6.2.
Let G be an arbitrary paratopological group and $\varphi_2: G \to T_2(G)$ the canonical quotient homomorphism.
Applications of T_k-reflections

Extension of Reznichenko’s theorem (Every σ-compact Hausdorff paratopological group has countable cellularity): **One can drop Hausdorff here.**

Theorem 6.1.
Every σ-compact paratopological group has countable cellularity.

Lemma 6.2.
Let G be an arbitrary paratopological group and $\varphi_2: G \rightarrow T_2(G)$ the canonical quotient homomorphism. Then $\overline{U} = \varphi_2^{-1}(\varphi_2(U))$, for every open subset U of G.
Applications of T_k-reflections

Extension of Reznichenko’s theorem (Every σ-compact Hausdorff paratopological group has countable cellularity): One can drop Hausdorff here.

Theorem 6.1.
Every σ-compact paratopological group has countable cellularity.

Lemma 6.2.
Let G be an arbitrary paratopological group and $\varphi_2: G \rightarrow T_2(G)$ the canonical quotient homomorphism. Then $\overline{U} = \varphi_2^{-1}\varphi_2(\overline{U})$, for every open subset U of G. In particular, $\varphi_2(U) \cap \varphi_2(V) = \emptyset$ if U, V are disjoint open sets in G.
Applications of T_k-reflections

Extension of Reznichenko’s theorem (*Every σ-compact Hausdorff paratopological group has countable cellularity*): One can drop Hausdorff here.

Theorem 6.1.
Every σ-compact paratopological group has countable cellularity.

Lemma 6.2.
*Let G be an arbitrary paratopological group and $\varphi_2 : G \to T_2(G)$ the canonical quotient homomorphism. Then $\overline{U} = \varphi_2^{-1}\varphi_2(\overline{U})$, for every open subset U of G. In particular, $\varphi_2(U) \cap \varphi_2(V) = \emptyset$ if U, V are disjoint open sets in G. Hence $c(G) = c(T_2(G))$.***
Applications of T_k-reflections

Extension of Reznichenko’s theorem (Every σ-compact Hausdorff paratopological group has countable cellularity): **One can drop Hausdorff here.**

Theorem 6.1.
Every σ-compact paratopological group has countable cellularity.

Lemma 6.2.
Let G be an arbitrary paratopological group and $\varphi_2: G \rightarrow T_2(G)$ the canonical quotient homomorphism. Then $\overline{U} = \varphi_2^{-1}\varphi_2(\overline{U})$, for every open subset U of G. In particular, $\varphi_2(U) \cap \varphi_2(V) = \emptyset$ if U, V are disjoint open sets in G. Hence $c(G) = c(T_2(G))$.

Proof of Theorem 6.1. G is σ-compact $\implies T_2(G)$ is σ-compact. Hence, by Lemma 6.2, $c(G) = c(T_2(G)) \leq \omega$. \qed
Applications of T_k-reflections

Extension of Reznichenko’s theorem (*Every σ-compact Hausdorff paratopological group has countable cellularity*): One can drop Hausdorff here.

Theorem 6.1.
Every σ-compact paratopological group has countable cellularity.

Lemma 6.2.
Let G be an arbitrary paratopological group and $\varphi_2: G \to T_2(G)$ the canonical quotient homomorphism. Then $\overline{U} = \varphi_2^{-1}\varphi_2(\overline{U})$, for every open subset U of G. In particular, $\varphi_2(U) \cap \varphi_2(V) = \emptyset$ if U, V are disjoint open sets in G. Hence $c(G) = c(T_2(G))$.

Proof of Theorem 6.1. G is σ-compact $\implies T_2(G)$ is σ-compact. Hence, by Lemma 6.2, $c(G) = c(T_2(G)) \leq \omega$. □

In fact, the conclusion of Theorem 6.1 can be strengthened: *Every σ-compact paratopological group has the Knaster property.*
Applications of T_k-reflections

A space X is **Moscow** if every regular closed set in X is the union of a family of G_δ-sets in X.
Applications of T_k-reflections

A space X is **Moscow** if every regular closed set in X is the union of a family of G_δ-sets in X.

Theorem 6.3 (W.W. Comfort, J. Trigos–Arrieta, M. Sanchis ??).

The product of an arbitrary family of locally pseudocompact topological groups is a Moscow space.
Applications of T_k-reflections

A space X is **Moscow** if every regular closed set in X is the union of a family of G_δ-sets in X.

Theorem 6.3 (W.W. Comfort, J. Trigos–Arrieta, M. Sanchis ??).

The product of an arbitrary family of locally pseudocompact topological groups is a Moscow space.

A version for paratopological groups (solving M. Sanchis’ problem):
Applications of T_k-reflections

A space X is **Moscow** if every regular closed set in X is the union of a family of $G_δ$-sets in X.

Theorem 6.3 (W.W. Comfort, J. Trigos–Arrieta, M. Sanchis ??).

The product of an arbitrary family of locally pseudocompact topological groups is a Moscow space.

A version for paratopological groups (solving M. Sanchis’ problem):

Theorem 6.4 (Tk., 2012).

Any product of **Hausdorff** locally feebly compact paratopological groups is a Moscow space.
Applications of T_k-reflections

A space X is **Moscow** if every regular closed set in X is the union of a family of G_δ-sets in X.

Theorem 6.3 (W.W. Comfort, J. Trigos–Arrieta, M. Sanchis ??).

The product of an arbitrary family of locally pseudocompact topological groups is a Moscow space.

A version for paratopological groups (solving M. Sanchis’ problem):

Theorem 6.4 (Tk., 2012).

*Any product of *Hausdorff* locally feebly compact paratopological groups is a Moscow space.*

One can drop ‘**Hausdorff**’ in the above theorem!
Applications of T_k-reflections

Theorem 6.5.

Any product of locally feebly compact paratopological groups is a Moscow space.
Applications of T_k-reflections

Theorem 6.5.
Any product of locally feebly compact paratopological groups is a Moscow space.

Proof.
Let $G = \prod_{i \in I} G_i$ be a product of locally feebly compact paratopological groups.
Applications of T_k-reflections

Theorem 6.5.

Any product of locally feebly compact paratopological groups is a Moscow space.

Proof.

Let $G = \prod_{i \in I} G_i$ be a product of locally feebly compact paratopological groups. We know that $T_2(G) \cong \prod_{i \in I} T_2(G_i)$ (Theorem 5.1).
Applications of T_k-reflections

Theorem 6.5.
Any product of locally feebly compact paratopological groups is a Moscow space.

Proof.
Let $G = \prod_{i\in I} G_i$ be a product of locally feebly compact paratopological groups. We know that $T_2(G) \cong \prod_{i\in I} T_2(G_i)$ (Theorem 5.1). Each group $T_2(G_i)$ is Hausdorff and locally feebly compact (as a quotient of G_i), hence $T_2(G)$ is a Moscow space by Theorem 6.4.
Applications of T_k-reflections

Theorem 6.5.

Any product of locally feebly compact paratopological groups is a Moscow space.

Proof.

Let $G = \prod_{i \in I} G_i$ be a product of locally feebly compact paratopological groups. We know that $T_2(G) \cong \prod_{i \in I} T_2(G_i)$ (Theorem 5.1). Each group $T_2(G_i)$ is Hausdorff and locally feebly compact (as a quotient of G_i), hence $T_2(G)$ is a Moscow space by Theorem 6.4. Let $\varphi_2: G \to T_2(G)$ be the quotient homomorphism.
Applications of T_k-reflections

Theorem 6.5.

Any product of locally feebly compact paratopological groups is a Moscow space.

Proof.

Let $G = \prod_{i \in I} G_i$ be a product of locally feebly compact paratopological groups. We know that $T_2(G) \cong \prod_{i \in I} T_2(G_i)$ (Theorem 5.1). Each group $T_2(G_i)$ is Hausdorff and locally feebly compact (as a quotient of G_i), hence $T_2(G)$ is a Moscow space by Theorem 6.4. Let $\varphi_2 : G \to T_2(G)$ be the quotient homomorphism. If U is open in G, then $\bar{U} = \varphi_2^{-1}\varphi_2(\bar{U})$, whence $\varphi_2(\bar{U}) = \varphi_2(U)$.

\[\]
Applications of \(T_k \)-reflections

Theorem 6.5.
Any product of locally feebly compact paratopological groups is a Moscow space.

Proof.
Let \(G = \prod_{i \in I} G_i \) be a product of locally feebly compact paratopological groups. We know that \(T_2(G) \cong \prod_{i \in I} T_2(G_i) \) (Theorem 5.1). Each group \(T_2(G_i) \) is Hausdorff and locally feebly compact (as a quotient of \(G_i \)), hence \(T_2(G) \) is a Moscow space by Theorem 6.4. Let \(\varphi_2 : G \to T_2(G) \) be the quotient homomorphism. If \(U \) is open in \(G \), then \(\overline{U} = \varphi_2^{-1}\varphi_2(U) \), whence \(\varphi_2(U) = \varphi_2(U) \). Clearly \(\varphi_2(U) \) is a \(G_{\Sigma,\delta} \)-set in \(T_2(G) \), and so is \(\overline{U} = \varphi_2^{-1}(\varphi_2(U)) \) in \(G \).
Applications of T_k-reflections

Theorem 6.5.

Any product of locally feebly compact paratopological groups is a Moscow space.

Proof.

Let $G = \prod_{i \in I} G_i$ be a product of locally feebly compact paratopological groups. We know that $T_2(G) \cong \prod_{i \in I} T_2(G_i)$ (Theorem 5.1). Each group $T_2(G_i)$ is Hausdorff and locally feebly compact (as a quotient of G_i), hence $T_2(G)$ is a Moscow space by Theorem 6.4. Let $\varphi_2 : G \to T_2(G)$ be the quotient homomorphism. If U is open in G, then $\overline{U} = \varphi_2^{-1}\varphi_2(\overline{U})$, whence $\varphi_2(\overline{U}) = \overline{\varphi_2(U)}$. Clearly $\overline{\varphi_2(U)}$ is a $G_{\Sigma,\delta}$-set in $T_2(G)$, and so is $\overline{U} = \varphi_2^{-1}(\varphi_2(U))$ in G. Hence G is Moscow. \qed
On the existence of T_k-reflections

Theorem 6.6 (Pontryagin, \simeq 1935).

For every continuous real-valued function f on a compact topological group G, one can find a continuous homomorphism $\pi : G \to H$ onto a compact metrizable topological group H and a continuous function g on H such that $f = g \circ \pi$.

Pontryagin's idea: Given a continuous function f on G as above, consider the set $N_f = \{ x \in G : f(AXB) = f(x) \text{ for all } a, b \in G \}$.

Then N_f is a closed invariant subgroup of G and f is constant on each coset of N_f in G.

Crucial step: Let us forget about both the compactness of G and topological group structure of G and then apply Pontryagin’s formula directly to a continuous mapping $f : G \to X$ defined on a semitopological group G.

On the existence of T_k-reflections

Theorem 6.6 (Pontryagin, \cong 1935).

For every continuous real-valued function f on a compact topological group G, one can find a continuous homomorphism $\pi : G \to H$ onto a compact metrizable topological group H and a continuous function g on H such that $f = g \circ \pi$.

Pontryagin’s idea: Given a continuous function f on G as above, consider the set

$$N_f = \{ x \in G : f(axb) = f(x) \text{ for all } a, b \in G \}.$$
On the existence of T_k-reflections

Theorem 6.6 (Pontryagin, ≃ 1935).

*For every continuous real-valued function f on a compact topological group G, one can find a continuous homomorphism $\pi : G \to H$ onto a compact metrizable topological group H and a continuous function g on H such that $f = g \circ \pi$.***

Pontryagin’s idea: Given a continuous function f on G as above, consider the set

$$N_f = \{ x \in G : f(axb) = f(x) \text{ for all } a, b \in G \}.$$

Then N_f is a closed invariant subgroup of G and f is constant on each coset of N_f in G.
On the existence of T_k-reflections

Theorem 6.6 (Pontryagin, $\cong 1935$).

*For every continuous real-valued function f on a compact topological group G, one can find a continuous homomorphism $\pi : G \to H$ onto a compact metrizable topological group H and a continuous function g on H such that $f = g \circ \pi$.**

Pontryagin’s idea: Given a continuous function f on G as above, consider the set

$$N_f = \{x \in G : f(axb) = f(x) \text{ for all } a, b \in G\}.$$

Then N_f is a closed invariant subgroup of G and f is constant on each coset of N_f in G.

Crucial step: Let us forget about both the compactness of G and topological group structure of G and then apply Pontryagin’s formula directly to a continuous mapping $f : G \to X$ defined on a semitopological group G.
DEAR OFELIA:

THANK YOU FOR YOUR MATHEMATICS AND FOR JOINING US AT THIS WONDERFUL PLACE!
DEAR OFELIA:

THANK YOU FOR YOUR MATHEMATICS AND FOR JOINING US AT THIS WONDERFUL PLACE!

NEW AMAZING RESULTS TO YOU!!