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Universal topological group

Let C be a class of topologicals groups.

G ∈ C is universal for C if for every H ∈ C there is an
isomorphism between H and a subgroup of G
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Ulam’s Question, 1935

Ulam

Does there exist a universal topological group with a countable
base?
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Remind

Teleman

Every topological group G has a topologically faithful
representation on a Banach space B: embedding
G −→ Iso(B)

Every topological group G has a topologically faithful
representation on a compact space X : embedding
G −→ Homeo(X ).
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Proofs of Teleman results

1st Proof

B = RUCB(G ), X = the unit ball in B? with w?-topology.

RUCB(G )=Right Uniformly Continuous Bounded functions
f : G −→ C.

2nd Proof

X = S(G ) and B = C (X )

S(G )= the maximal ideal space of the abelian unital C ?-algebra
RUCB(G ) = the Samuel compactification of (G ,UR)
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Solutions of Ulam Question

1st solution: Uspenskij, 1986

Homeo([0, 1]ℵ0) contains all groups with a countable base.

G ↪→ Homeo(X ) ↪→ Homeo(P(X )) = Homeo([0, 1]ℵ0)

2nd solution: Uspenkij, 1990

Iso(U) contains all groups with a countable base, where U is the
universal polish Urysohn space.

U = the Urysohn universal metric space = the complete separable
space, contains isometric copies of all separable spaces, and is
ultrahomogeneous =that is every isometry between two finite
metric subspace of U extends to a global isometry of U onto itself.
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Solutions of Ulam Question

Let X be a polish space

Katětov

Construct X = X0 ↪→ X1 ↪→ ..., with
w(X ) = w(X0) = w(X1) = ... and Xω =

⋃
Xn = U is the Urysohn

space.

Uspenskij

Iso(X ) = Iso(X0) ↪→ Iso(X1) ↪→ ..., whence
G ↪→ Iso(X ) ↪→ Iso(Xω) = Iso(U).
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Solutions of Ulam Question

3rd solution: Ben Yaacov, 2012

Iso(G) contains all groups with a countable base, where G is the
Gurarij space.

A Gurarij space is a Banach space G having the property that for
any ε > 0, finite-dimensional Banach space E ⊆ F and an
isometric embedding ϕ : E −→ G there is a linear map
ψ : F −→ G extending ϕ such that in addition, for all
x ∈ F , (1− ε)‖x‖ ≤ ‖ψ(x)‖ ≤ (1 + ε)‖x‖
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Solutions of Ulam Question

Ben Yaacov

Let E be a separable Banach space,

Construct E = E0 ↪→ E1 ↪→ ..., with
w(E ) = w(E0) = w(E1) = ... and Eω =

⋃
En = G is the

Gurarij space.

Iso(E ) = Iso(E0) ↪→ Iso(E1) ↪→ ..., whence
G ↪→ Iso(E ) ↪→ Iso(Eω) = Iso(G).
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Non-separable case

The question of existence of a universal topological group of a
given uncountable weight m remains open to the day. In fact, it is
open for any given cardinal m > ℵ0.
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The Urysohn-Katětov space

Let m be an infinite cardinal such that

sup {mn : n < m} = m, (1)

there exists a unique up to an isometry complete metric space Um

of weight m, such that

Um contains an isometric copy of every other metric space of
weight ≤ m

Um is < m-homogeneous, that is, an isometry between any
two metric subspaces of density < m extends to a global
self-isometry of Um.

In particular, Uℵ0 is just the classical Urysohn space U.
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The ideal candidate

The topological group Iso(Um), equipped with the topology of
simple convergence, has weight m, and was a candidate for a
universal topological group of weight m.
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SIN and FSIN groups

A topological group G is call SIN (Small Invariant
Neighbourhoods)if it admits a base at the identity consisting
of invariant neighborhoods.

A topological group G is called functionally balanced, or
sometimes FSIN (“Functionally SIN”) if every right uniformly
continuous bounded function on G is left uniformly
continuous.

Every SIN group is FSIN. The converse implication has been
established for:

locally compact groups (Itzkowitz),
metrizable groups (Protasov),
locally connected groups (Megreslishvili, Nickolas and Pestov),

among others

It remains an open problem in the general case.
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Property (OB)

A topological group G has property (OB) if whenever G acts
by isometries on a metric space (X ; d) every orbit is bounded.

Examples of such groups include, among others:

the infinite permutation group S∞ (Bergman),
the unitary group U(`2) with the strong opererator topology
(Atkin),
the isometry group of the Urysohn sphere (that is, a sphere in
the Urysohn space) (Rosendal)
Homeo([0, 1]ℵ0) (Rosendal).
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Theorem

If G is a topological subgroup of Iso(Um) of density < m, having
property (OB), then G is FSIN.

Corollary

If G is a topological subgroup of Iso(Um) of density < m having
property (OB) which is either metrizable or locally connected, then
G is a SIN group.
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Some groups with no-embeddings in Iso(Um)

1 Denote U© the unit sphere in the Urysohn metric space. The
group Iso(U©) is both metrizable and locally connected
(Melleray), has property (OB) (Rosendal ) and is not SIN.

2 The group S∞ is Polish and has the property (OB)
(Bergman).

3 The group Homeo([0, 1]ℵ0) is a non-SIN Polish group with
property (OB)(Rosendal).

4 In particular the group Iso(U) admits no embedding into
Iso(Um) as a topological subgroup.
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open questions

Let κ be an uncountable cardinal. Does there exist a universal
topological group of weight κ?

Is Homeo([0, 1]κ) such a group?
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Theorem

Every metrizable SIN group of weight ≤ m embeds into Iso(Um)

Theorem

Every Pm-groups of weight m embeds into Iso(Um).
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