Resolvability properties of certain topological spaces

István Juhász

Alfréd Rényi Institute of Mathematics

Sao Paulo, Brasil, August 2013
DEFINITION. (Hewitt, 1943; Pearson, 1963)
– A topological space X is \(\kappa \)-resolvable iff it has \(\kappa \) disjoint dense subsets. (resolvable \equiv 2-resolvable)
– X is maximally resolvable iff it is $\Delta(X)$-resolvable, where $\Delta(X) = \min\{|G| : G \neq \emptyset \text{ open in } X\}$.

EXAMPLES:
– \mathbb{R} is maximally resolvable.
– Compact Hausdorff, metric, and linearly ordered spaces are maximally resolvable.

QUESTION. What happens if these properties are relaxed?

István Juhász (Rényi Institute)

Sao Paulo 2013 2 / 18
DEFINITION. (Hewitt, 1943, Pearson, 1963)

A topological space X is κ-resolvable iff it has κ disjoint dense subsets.

X is maximally resolvable iff it is $\Delta(X)$-resolvable, where $\Delta(X) = \min\{|G|: G \neq \emptyset \text{ open in } X\}$.

EXAMPLES:

- \mathbb{R} is maximally resolvable.
- Compact Hausdorff, metric, and linearly ordered spaces are maximally resolvable.

QUESTION. What happens if these properties are relaxed?
DEFINITION. (Hewitt, 1943, Pearson, 1963)

– A topological space X is κ-resolvable iff it has κ disjoint dense subsets.

– X is maximally resolvable iff it is $\Delta(X)$-resolvable, where $\Delta(X) = \min\{|G|: G \neq \emptyset \text{ open in } X\}$.

EXAMPLES:

– \mathbb{R} is maximally resolvable.

– Compact Hausdorff, metric, and linearly ordered spaces are maximally resolvable.

QUESTION. What happens if these properties are relaxed?
DEFINITION. (Hewitt, 1943, Pearson, 1963)

– A topological space X is κ-resolvable iff it has κ disjoint dense subsets. \((\text{resolvable} \equiv 2\text{-resolvable})\)
DEFINITION. (Hewitt, 1943, Pearson, 1963)

– A topological space X is κ-resolvable iff it has κ disjoint dense subsets. \((\text{resolvable} \equiv 2\text{-resolvable})\)

– X is maximally resolvable iff it is $\Delta(X)$-resolvable,
DEFINITION. (Hewitt, 1943, Pearson, 1963)

– A topological space X is κ-resolvable iff it has κ disjoint dense subsets. (resolvable \equiv 2-resolvable)

– X is maximally resolvable iff it is $\Delta(X)$-resolvable, where

$$\Delta(X) = \min\{|G| : G \neq \emptyset \text{ open in } X\}.$$
DEFINITION. (Hewitt, 1943, Pearson, 1963)

- A topological space X is κ-resolvable iff it has κ disjoint dense subsets. (resolvable \equiv 2-resolvable)

- X is maximally resolvable iff it is $\Delta(X)$-resolvable, where

$$
\Delta(X) = \min\{|G| : G \neq \emptyset \text{ open in } X\}.
$$

EXAMPLES:
DEFINITION. (Hewitt, 1943, Pearson, 1963)
- A topological space \(X \) is \(\kappa \)-resolvable iff it has \(\kappa \) disjoint dense subsets. (resolvable \(\equiv \) 2-resolvable)
- \(X \) is maximally resolvable iff it is \(\Delta(X) \)-resolvable, where

\[
\Delta(X) = \min\{|G| : G \neq \emptyset \text{ open in } X\}.
\]

EXAMPLES:
- \(\mathbb{R} \) is maximally resolvable.
DEFINITION. (Hewitt, 1943, Pearson, 1963)

– A topological space X is κ-resolvable iff it has κ disjoint dense subsets. (resolvable \equiv 2-resolvable)

– X is maximally resolvable iff it is $\Delta(X)$-resolvable, where

$$\Delta(X) = \min\{|G| : G \neq \emptyset \text{ open in } X\}.$$

EXAMPLES:

– \mathbb{R} is maximally resolvable.

– Compact Hausdorff,
DEFINITION. (Hewitt, 1943, Pearson, 1963)
– A topological space X is κ-resolvable iff it has κ disjoint dense subsets. (resolvable \equiv 2-resolvable)

– X is maximally resolvable iff it is $\Delta(X)$-resolvable, where

$$\Delta(X) = \min\{|G| : G \neq \emptyset \text{ open in } X\}.$$

EXAMPLES:
– \mathbb{R} is maximally resolvable.

– Compact Hausdorff, metric,
DEFINITION. (Hewitt, 1943, Pearson, 1963)

– A topological space X is κ-resolvable iff it has κ disjoint dense subsets. (resolvable \equiv 2-resolvable)

– X is maximally resolvable iff it is $\Delta(X)$-resolvable, where

$$\Delta(X) = \min\{|G| : G \neq \emptyset \text{ open in } X\}.$$

EXAMPLES:

– \mathbb{R} is maximally resolvable.

– Compact Hausdorff, metric, and linearly ordered spaces are maximally resolvable.
DEFINITION. (Hewitt, 1943, Pearson, 1963)

– A topological space \(X \) is \(\kappa \)-resolvable iff it has \(\kappa \) disjoint dense subsets. (resolvable \(\equiv \) 2-resolvable)

– \(X \) is maximally resolvable iff it is \(\Delta(X) \)-resolvable, where

\[
\Delta(X) = \min\{|G| : G \neq \emptyset \text{ open in } X\}.
\]

EXAMPLES:

– \(\mathbb{R} \) is maximally resolvable.

– Compact Hausdorff, metric, and linearly ordered spaces are maximally resolvable.

QUESTION. What happens if these properties are relaxed?
THEOREM. (Pytkeev, 2006)
Every crowded countably compact T_3 space X is ω_1-resolvable.

NOTE. This fails for T_2!

PROOF. (Not Pytkeev's)
Tkachenko (1979): If Y is countably compact T_3 with $\text{ls}(Y) \leq \omega$ then Y is scattered.
But every open $G \subset X$ includes a regular closed Y, hence $\text{ls}(G) \geq \text{ls}(Y) \geq \omega_1$.
So, any maximal disjoint family of dense left separated subsets of X must be uncountable.

PROBLEM. Is every crowded countably compact T_3 space X c-resolvable?

NOTE: $\Delta(X) \geq c$.

István Juhász (Rényi Institute)
Resolvability
Sao Paulo 2013
THEOREM. (Pytkeev, 2006)

Every crowded countably compact T_3 space X is ω_1-resolvable.

NOTE. This fails for T_2!

PROOF. (Not Pytkeev's)
Tkachenko (1979): If Y is countably compact T_3 with $\text{ls}(Y) \leq \omega_1$ then Y is scattered.

But every open $G \subset X$ includes a regular closed Y, hence $\text{ls}(G) \geq \text{ls}(Y) \geq \omega_1$.

So, any maximal disjoint family of dense left separated subsets of X must be uncountable.

PROBLEM.

Is every crowded countably compact T_3 space X c-resolvable?

NOTE:

$\Delta(X) \geq c$.
THEOREM. (Pytkeev, 2006)

Every crowded countably compact T_3 space X is ω_1-resolvable.

NOTE. This fails for T_2!
THEOREM. (Pytkeev, 2006)

Every crowded countably compact \(T_3 \) space \(X \) is \(\omega_1 \)-resolvable.

NOTE. This fails for \(T_2 \)!

PROOF. (Not Pytkeev’s)
THEOREM. (Pytkeev, 2006)

Every crowded countably compact T_3 space X is ω_1-resolvable.

NOTE. This fails for T_2!

PROOF. (Not Pytkeev’s) Tkachenko (1979): If Y is countably compact T_3 with $ls(Y) \leq \omega$ then Y is scattered.
THEOREM. (Pytkeev, 2006)

Every crowded countably compact T_3 space X is ω_1-resolvable.

NOTE. This fails for T_2!

PROOF. (Not Pytkeev’s) Tkachenko (1979): If Y is countably compact T_3 with $ls(Y) \leq \omega$ then Y is scattered. But every open $G \subset X$ includes a regular closed Y, hence $ls(G) \geq ls(Y) \geq \omega_1$.

István Juhász (Rényi Institute) Resolvability Sao Paulo 2013

3 / 18
THEOREM. (Pytkeev, 2006)

Every crowded countably compact T_3 space X is ω_1-resolvable.

NOTE. This fails for T_2!

PROOF. (Not Pytkeev’s) Tkachenko (1979): If Y is countably compact T_3 with $ls(Y) \leq \omega$ then Y is scattered. But every open $G \subset X$ includes a regular closed Y, hence $ls(G) \geq ls(Y) \geq \omega_1$. So, any maximal disjoint family of dense left separated subsets of X must be uncountable.
THEOREM. (Pytkeev, 2006)
Every crowded countably compact T_3 space X is ω_1-resolvable.

NOTE. This fails for T_2!

PROOF. (Not Pytkeev’s) Tkachenko (1979): If Y is countably compact T_3 with $\text{ls}(Y) \leq \omega$ then Y is scattered. But every open $G \subset X$ includes a regular closed Y, hence $\text{ls}(G) \geq \text{ls}(Y) \geq \omega_1$. So, any maximal disjoint family of dense left separated subsets of X must be uncountable.

PROBLEM.
Is every crowded countably compact T_3 space X c-resolvable?
countably compact spaces

THEOREM. (Pytkeev, 2006)

Every crowded countably compact T_3 space X is ω_1-resolvable.

NOTE. This fails for T_2!

PROOF. (Not Pytkeev’s) Tkachenko (1979): If Y is countably compact T_3 with $ls(Y) \leq \omega$ then Y is scattered. But every open $G \subset X$ includes a regular closed Y, hence $ls(G) \geq ls(Y) \geq \omega_1$. So, any maximal disjoint family of dense left separated subsets of X must be uncountable.

PROBLEM.

Is every crowded countably compact T_3 space X c-resolvable?

NOTE: $\Delta(X) \geq c$.
THEOREM. (Pytkeev, 2006)

Every crowded countably compact T_3 space X is ω_1-resolvable.

NOTE. This fails for T_2!

PROOF. (Not Pytkeev’s) Tkachenko (1979): If Y is countably compact T_3 with $ls(Y) \leq \omega$ then Y is scattered. But every open $G \subset X$ includes a regular closed Y, hence $ls(G) \geq ls(Y) \geq \omega_1$. So, any maximal disjoint family of dense left separated subsets of X must be uncountable.

PROBLEM.

Is every crowded countably compact T_3 space X c-resolvable?

NOTE: $\Delta(X) \geq c$.
EXAMPLE. (Hewitt, '43) There is a countable T_3 space X that is – crowded (i.e. $\Delta(X) = |X| = \aleph_0$) and – irresolvable($\equiv$ not 2-resolvable).

PROBLEM. (Malychin, 1995) Is a Lindelöf T_3 space X with $\Delta(X) > \omega$ resolvable?

NOTE. Malychin constructed Lindelöf irresolvable Hausdorff (T_2) spaces, and Pavlov Lindelöf irresolvable Uryson ($T_{2.5}$).}

THEOREM. (Filatova, 2004) YES, every Lindelöf T_3 space X with $\Delta(X) > \omega$ is 2-resolvable. This is the main result of her PhD thesis.

It didn’t work for 3 !
EXAMPLE. (Hewitt, ’43) There is a countable T_3 space X that is – crowded (i.e. $\Delta(X) = |X| = \aleph_0$) and
Malychin’s problem

EXAMPLE. (Hewitt, ’43) There is a countable T_3 space X that is
- crowded (i.e. $\Delta(X) = |X| = \aleph_0$) and
- irresolvable (\equiv not 2-resolvable).
Malychin’s problem

EXAMPLE. (Hewitt, ’43) There is a countable T_3 space X that is
– crowded (i.e. $\Delta(X) = |X| = \aleph_0$) and
– irresolvable (≡ not 2-resolvable).

PROBLEM. (Malychin, 1995)
Is a Lindelöf T_3 space X with $\Delta(X) > \omega$ resolvable?
Malychin’s problem

EXAMPLE. (Hewitt, ’43) There is a countable T_3 space X that is
– crowded (i.e. $\Delta(X) = |X| = \aleph_0$) and
– irresolvable(\equiv not 2-resolvable).

PROBLEM. (Malychin, 1995)

Is a Lindelöf T_3 space X with $\Delta(X) > \omega$ resolvable?

NOTE. Malychin constructed Lindelöf irresolvable Hausdorff ($= T_2$) spaces,
EXAMPLE. (Hewitt, ’43) There is a countable T_3 space X that is

- crowded (i.e. $\Delta(X) = |X| = \aleph_0$) and
- irresolvable (\equiv not 2-resolvable).

PROBLEM. (Malychin, 1995)

Is a Lindelöf T_3 space X with $\Delta(X) > \omega$ resolvable?

NOTE. Malychin constructed Lindelöf irresolvable Hausdorff ($= T_2$) spaces, and Pavlov Lindelöf irresolvable Uryson ($= T_{2.5}$) spaces.
Malychin’s problem

EXAMPLE. (Hewitt, ’43) There is a countable T_3 space X that is
– crowded (i.e. $\Delta(X) = |X| = \aleph_0$) and
– irresolvable (≡ not 2-resolvable).

PROBLEM. (Malychin, 1995)

Is a Lindelöf T_3 space X with $\Delta(X) > \omega$ resolvable?

NOTE. Malychin constructed Lindelöf irresolvable Hausdorff (= T_2) spaces, and Pavlov Lindelöf irresolvable Uryson (= $T_{2.5}$) spaces.

THEOREM. (Filatova, 2004)

YES, every Lindelöf T_3 space X with $\Delta(X) > \omega$ is 2-resolvable.
Malychin’s problem

EXAMPLE. (Hewitt, ’43) There is a countable T_3 space X that is
– crowded (i.e. $\Delta(X) = |X| = \aleph_0$) and
– irresolvable (≡ not 2-resolvable).

PROBLEM. (Malychin, 1995)

Is a Lindelöf T_3 space X with $\Delta(X) > \omega$ resolvable?

NOTE. Malychin constructed Lindelöf irresolvable Hausdorff ($= T_2$)
spaces, and Pavlov Lindelöf irresolvable Uryson ($= T_{2.5}$) spaces.

THEOREM. (Filatova, 2004)

YES, every Lindelöf T_3 space X with $\Delta(X) > \omega$ is 2-resolvable.

This is the main result of her PhD thesis.
EXAMPLE. (Hewitt, ’43) There is a countable T_3 space X that is
– crowded (i.e. $\Delta(X) = |X| = \aleph_0$) and
– irresolvable (\equiv not 2-resolvable).

PROBLEM. (Malychin, 1995)

Is a Lindelöf T_3 space X with $\Delta(X) > \omega$ resolvable?

NOTE. Malychin constructed Lindelöf irresolvable Hausdorff ($= T_2$) spaces, and Pavlov Lindelöf irresolvable Uryson ($= T_{2.5}$) spaces.

THEOREM. (Filatova, 2004)

YES, every Lindelöf T_3 space X with $\Delta(X) > \omega$ is 2-resolvable.

This is the main result of her PhD thesis. It didn’t work for 3!
THEOREM. (Pavlov, 2002)
(i) Any T_2 space X with $\Delta(X) > s(X)$ is maximally resolvable.
(ii) Any T_3 space X with $\Delta(X) > e(X)$ is ω-resolvable.

THEOREM. (J-S-Sz, 2007)
Any space X with $\Delta(X) > s(X)$ is maximally resolvable.

THEOREM. (J-S-Sz, 2012)
Any T_3 space X with $\Delta(X) > e(X)$ is ω-resolvable.

In particular, every Lindelöf T_3 space X with $\Delta(X) > \omega$ is ω-resolvable.
Pavlov’s theorems

\[s(X) = \sup\{|D| : D \subset X \text{ is discrete}\} \]
Pavlov’s theorems

\[s(X) = \sup\{|D| : D \subset X \text{ is discrete}\} \]

\[e(X) = \sup\{|D| : D \subset X \text{ is closed discrete}\} \]

Theorem. (Pavlov, 2002)

(i) Any \(T_2\) space \(X\) with \(\Delta(X) > s(X)\) is maximally resolvable.

(ii) Any \(T_3\) space \(X\) with \(\Delta(X) > e(X)\) is \(\omega\)-resolvable.

Theorem. (J-S-Sz, 2007)

Any space \(X\) with \(\Delta(X) > s(X)\) is maximally resolvable.

Theorem. (J-S-Sz, 2012)

Any \(T_3\) space \(X\) with \(\Delta(X) > e(X)\) is \(\omega\)-resolvable.

In particular, every Lindelöf \(T_3\) space \(X\) with \(\Delta(X) > \omega\) is \(\omega\)-resolvable.
Pavlov’s theorems

\[s(X) = \sup\{|D| : D \subset X \text{ is discrete}\} \]
\[e(X) = \sup\{|D| : D \subset X \text{ is closed discrete}\} \]

THEOREM. (Pavlov, 2002)

(i) Any \(T_2 \) space \(X \) with \(\Delta(X) > s(X) \) is maximally resolvable.

(ii) Any \(T_3 \) space \(X \) with \(\Delta(X) > e(X) \) is \(\omega \)-resolvable.
Pavlov’s theorems

\[s(X) = \sup\{|D| : D \subset X \text{ is discrete}\} \]
\[e(X) = \sup\{|D| : D \subset X \text{ is closed discrete}\} \]

THEOREM. (Pavlov, 2002)

(i) Any \(T_2 \) space \(X \) with \(\Delta(X) > s(X)^+ \) is maximally resolvable.

In particular, every Lindelöf \(T_3 \) space \(X \) with \(\Delta(X) > \omega \) is \(\omega \)-resolvable.
Pavlov’s theorems

\[s(X) = \sup\{|D| : D \subset X \text{ is discrete}\} \]
\[e(X) = \sup\{|D| : D \subset X \text{ is closed discrete}\} \]

THEOREM. (Pavlov, 2002)

(i) Any \(T_2 \) space \(X \) with \(\Delta(X) > s(X)^+ \) is maximally resolvable.
(ii) Any \(T_3 \) space \(X \) with \(\Delta(X) > e(X)^+ \) is \(\omega \)-resolvable.

In particular, every Lindelöf \(T_3 \) space \(X \) with \(\Delta(X) > \omega \) is \(\omega \)-resolvable.
Pavlov’s theorems

\[s(X) = \sup\{|D| : D \subset X \text{ is discrete}\} \]
\[e(X) = \sup\{|D| : D \subset X \text{ is closed discrete}\} \]

THEOREM. (Pavlov, 2002)

(i) Any \(T_2 \) space \(X \) with \(\Delta(X) > s(X)^+ \) is maximally resolvable.
(ii) Any \(T_3 \) space \(X \) with \(\Delta(X) > e(X)^+ \) is \(\omega \)-resolvable.

THEOREM. (J-S-Sz, 2007)

Any space \(X \) with \(\Delta(X) > s(X) \) is maximally resolvable.
Pavlov’s theorems

\[s(X) = \sup\{|D| : D \subset X \text{ is discrete}\} \]
\[e(X) = \sup\{|D| : D \subset X \text{ is closed discrete}\} \]

THEOREM. (Pavlov, 2002)

(i) Any T_2 space X with $\Delta(X) > s(X)^+$ is maximally resolvable.
(ii) Any T_3 space X with $\Delta(X) > e(X)^+$ is ω-resolvable.

THEOREM. (J-S-Sz, 2007)

Any space X with $\Delta(X) > s(X)$ is maximally resolvable.

THEOREM. (J-S-Sz, 2012)

Any T_3 space X with $\Delta(X) > e(X)$ is ω-resolvable.

In particular, every Lindelöf T_3 space X with $\Delta(X) > \omega$ is ω-resolvable.
Pavlov’s theorems

\[
s(X) = \sup\{|D| : D \subset X \text{ is discrete}\}
\]
\[
e(X) = \sup\{|D| : D \subset X \text{ is closed discrete}\}
\]

THEOREM. (Pavlov, 2002)

(i) Any \(T_2\) space \(X\) with \(\Delta(X) > s(X)^+\) is maximally resolvable.

(ii) Any \(T_3\) space \(X\) with \(\Delta(X) > e(X)^+\) is \(\omega\)-resolvable.

THEOREM. (J-S-Sz, 2007)

Any space \(X\) with \(\Delta(X) > s(X)\) is maximally resolvable.

THEOREM. (J-S-Sz, 2012)

Any \(T_3\) space \(X\) with \(\Delta(X) > e(X)\) is \(\omega\)-resolvable. In particular, every Lindelöf \(T_3\) space \(X\) with \(\Delta(X) > \omega\) is \(\omega\)-resolvable.
Pavlov’s theorems

\[s(X) = \sup\{|D| : D \subset X \text{ is discrete}\} \]
\[e(X) = \sup\{|D| : D \subset X \text{ is closed discrete}\} \]

THEOREM. (Pavlov, 2002)

(i) Any \(T_2 \) space \(X \) with \(\Delta(X) > s(X)^+ \) is maximally resolvable.

(ii) Any \(T_3 \) space \(X \) with \(\Delta(X) > e(X)^+ \) is \(\omega \)-resolvable.

THEOREM. (J-S-Sz, 2007)

Any space \(X \) with \(\Delta(X) > s(X) \) is maximally resolvable.

THEOREM. (J-S-Sz, 2012)

Any \(T_3 \) space \(X \) with \(\Delta(X) > e(X) \) is \(\omega \)-resolvable. In particular, every Lindelöf \(T_3 \) space \(X \) with \(\Delta(X) > \omega \) is \(\omega \)-resolvable.
THEOREM. (J-S-Sz, 2007) If $\Delta(X) \geq \kappa = \text{cf}(\kappa) > \omega$ and X has no discrete subset of size κ then X is κ-resolvable.

THEOREM. (J-S-Sz, 2012) If X is T_3, $\Delta(X) \geq \kappa = \text{cf}(\kappa) > \omega$ and X has no closed discrete subset of size κ then X is ω-resolvable.

NOTE. For $\Delta(X) > \omega$ regular these suffice. If $\Delta(X) = \lambda$ is singular, we need something extra. For $\Delta(X) = \lambda > \alpha(X)$ we automatically get that X is $<\lambda$-resolvable. But now $\Delta(X) = \lambda > \text{s}(X) +$, so we may use Pavlov's Thm (i). For $\Delta(X) = \lambda > \text{e}(X) +$ we may use Pavlov's Thm (ii).
THEOREM. (J-S-Sz, 2007)

If $\Delta(X) \geq \kappa = \text{cf}(\kappa) > \omega$ and X has no discrete subset of size κ then X is κ-resolvable.

THEOREM. (J-S-Sz, 2012)

If X is T_3, $\Delta(X) \geq \kappa = \text{cf}(\kappa) > \omega$ and X has no closed discrete subset of size κ then X is ω-resolvable.

NOTE. For $\Delta(X) > \omega$ regular these suffice. If $\Delta(X) = \lambda$ is singular, we need something extra. For $\Delta(X) = \lambda > s(X)$ we automatically get that X is $<\lambda$-resolvable. But now $\Delta(X) = \lambda > e(X) +$, so we may use Pavlov's Thm (i). For $\Delta(X) = \lambda > e(X) +$ we may use Pavlov's Thm (ii).
THEOREM. (J-S-Sz, 2007)
If $\Delta(X) \geq \kappa = \text{cf}(\kappa) > \omega$ and X has no discrete subset of size κ then X is κ-resolvable.

THEOREM. (J-S-Sz, 2012)
If X is T_3, $\Delta(X) \geq \kappa = \text{cf}(\kappa) > \omega$ and X has no closed discrete subset of size κ then X is ω-resolvable.
THEOREM. (J-S-Sz, 2007)
If $\Delta(X) \geq \kappa = \text{cf}(\kappa) > \omega$ and X has no discrete subset of size κ then X is κ-resolvable.

THEOREM. (J-S-Sz, 2012)
If X is T_3, $\Delta(X) \geq \kappa = \text{cf}(\kappa) > \omega$ and X has no closed discrete subset of size κ then X is ω-resolvable.

NOTE. For $\Delta(X) > \omega$ regular these suffice.
THEOREM. (J-S-Sz, 2007)

If $\Delta(X) \geq \kappa = \text{cf}(\kappa) > \omega$ and X has no discrete subset of size κ then X is κ-resolvable.

THEOREM. (J-S-Sz, 2012)

If X is T_3, $\Delta(X) \geq \kappa = \text{cf}(\kappa) > \omega$ and X has no closed discrete subset of size κ then X is ω-resolvable.

NOTE. For $\Delta(X) > \omega$ regular these suffice. If $\Delta(X) = \lambda$ is singular, we need something extra.
THEOREM. (J-S-Sz, 2007)
If \(\Delta(X) \geq \kappa = \text{cf}(\kappa) > \omega \) and \(X \) has no discrete subset of size \(\kappa \) then \(X \) is \(\kappa \)-resolvable.

THEOREM. (J-S-Sz, 2012)
If \(X \) is \(T_3 \), \(\Delta(X) \geq \kappa = \text{cf}(\kappa) > \omega \) and \(X \) has no closed discrete subset of size \(\kappa \) then \(X \) is \(\omega \)-resolvable.

NOTE. For \(\Delta(X) > \omega \) regular these suffice. If \(\Delta(X) = \lambda \) is singular, we need something extra.

For \(\Delta(X) = \lambda > s(X) \) we automatically get that \(X \) is \(< \lambda \)-resolvable.
THEOREM. (J-S-Sz, 2007)
If \(\Delta(X) \geq \kappa = \text{cf}(\kappa) > \omega \) and \(X \) has no discrete subset of size \(\kappa \) then \(X \) is \(\kappa \)-resolvable.

THEOREM. (J-S-Sz, 2012)
If \(X \) is \(T_3 \), \(\Delta(X) \geq \kappa = \text{cf}(\kappa) > \omega \) and \(X \) has no closed discrete subset of size \(\kappa \) then \(X \) is \(\omega \)-resolvable.

NOTE. For \(\Delta(X) > \omega \) regular these suffice. If \(\Delta(X) = \lambda \) is singular, we need something extra.

For \(\Delta(X) = \lambda > s(X) \) we automatically get that \(X \) is \(< \lambda \)-resolvable.

But now \(\Delta(X) = \lambda > s(X)^+ \), so we may use Pavlov’s Thm (i).
THEOREM. (J-S-Sz, 2007)
If $\Delta(X) \geq \kappa = \text{cf}(\kappa) > \omega$ and X has no discrete subset of size κ then X is κ-resolvable.

THEOREM. (J-S-Sz, 2012)
If X is T_3, $\Delta(X) \geq \kappa = \text{cf}(\kappa) > \omega$ and X has no closed discrete subset of size κ then X is ω-resolvable.

NOTE. For $\Delta(X) > \omega$ regular these suffice. If $\Delta(X) = \lambda$ is singular, we need something extra.

For $\Delta(X) = \lambda > s(X)$ we automatically get that X is $< \lambda$-resolvable.

But now $\Delta(X) = \lambda > s(X)^+$, so we may use Pavlov’s Thm (i).

For $\Delta(X) = \lambda > e(X)^+$ we may use Pavlov’s Thm (ii).
THEOREM. (J-S-Sz, 2006)
For any $\kappa \geq \lambda = \text{cf}(\lambda) > \omega$ there is a dense $X \subset D(\mathcal{2})^{\kappa}$ with $\Delta(X) = \kappa$ that is $<\lambda$-resolvable but not λ-resolvable.

NOTE. This solved a problem of Ceder and Pearson from 1967.

We used the general method of constructing D-forced spaces.

THEOREM. (Illanes, Baskara Rao)
If $\text{cf}(\lambda) = \omega$ then every $<\lambda$-resolvable space is λ-resolvable.

PROBLEM.
Is this true for each singular λ?
How about $\lambda = \aleph_{\omega_1}$?
THEOREM. (J-S-Sz, 2006)

For any $\kappa \geq \lambda = \text{cf}(\lambda) > \omega$ there is a dense $X \subset D(2)^{2\kappa}$ with $\Delta(X) = \kappa$ that is $< \lambda$-resolvable but not λ-resolvable.

NOTE. This solved a problem of Ceder and Pearson from 1967.

We used the general method of constructing D-forced spaces.

THEOREM. (Illanes, Baskara Rao)

If $\text{cf}(\lambda) = \omega$ then every $< \lambda$-resolvable space is λ-resolvable.

PROBLEM. Is this true for each singular λ?

How about $\lambda = \aleph_{\omega_1}$?
< λ-resolvable

THEOREM. (J-S-Sz, 2006)

For any $\kappa \geq \lambda = \text{cf}(\lambda) > \omega$ there is a dense $X \subset D(2)^{2\kappa}$ with $\Delta(X) = \kappa$ that is $< \lambda$-resolvable but not λ-resolvable.

NOTE. This solved a problem of Ceder and Pearson from 1967.
THEOREM. (J-S-Sz, 2006)

For any $\kappa \geq \lambda = \text{cf}(\lambda) > \omega$ there is a dense $X \subset D(2)^{2^\kappa}$ with $\Delta(X) = \kappa$

that is $<\lambda$-resolvable but not λ-resolvable.

NOTE. This solved a problem of Ceder and Pearson from 1967. We used the general method of constructing \mathcal{D}-forced spaces.
THEOREM. (J-S-Sz, 2006)
For any $\kappa \geq \lambda = \text{cf}(\lambda) > \omega$ there is a dense $X \subset D(2)^{2\kappa}$ with $\Delta(X) = \kappa$ that is $< \lambda$-resolvable but not λ-resolvable.

NOTE. This solved a problem of Ceder and Pearson from 1967. We used the general method of constructing D-forced spaces.

THEOREM. (Illanes, Baskara Rao)
If $\text{cf}(\lambda) = \omega$ then every $< \lambda$-resolvable space is λ-resolvable.
\(< \lambda\)-resolvable

THEOREM. (J-S-Sz, 2006)

For any \(\kappa \geq \lambda = \text{cf}(\lambda) > \omega \) there is a dense \(X \subset D(2)^{2\kappa} \) with \(\Delta(X) = \kappa \) that is \(< \lambda\)-resolvable but not \(\lambda\)-resolvable.

NOTE. This solved a problem of Ceder and Pearson from 1967. We used the general method of constructing \(D\)-forced spaces.

THEOREM. (Illanes, Baskara Rao)

If \(\text{cf}(\lambda) = \omega \) then every \(< \lambda\)-resolvable space is \(\lambda\)-resolvable.

PROBLEM.

Is this true for each singular \(\lambda \)?
THEOREM. (J-S-Sz, 2006)
For any $\kappa \geq \lambda = \text{cf}(\lambda) > \omega$ there is a dense $X \subset D(2)^{2^\kappa}$ with $\Delta(X) = \kappa$ that is $< \lambda$-resolvable but not λ-resolvable.

NOTE. This solved a problem of Ceder and Pearson from 1967. We used the general method of constructing D-forced spaces.

THEOREM. (Illanes, Baskara Rao)
If $\text{cf}(\lambda) = \omega$ then every $< \lambda$-resolvable space is λ-resolvable.

PROBLEM.
Is this true for each singular λ? How about $\lambda = \aleph_{\omega_1}$?
THEOREM. (J-S-Sz, 2006)

For any $\kappa \geq \lambda = \text{cf}(\lambda) > \omega$ there is a dense $X \subset D(2)^{2\kappa}$ with $\Delta(X) = \kappa$ that is $<\lambda$-resolvable but not λ-resolvable.

NOTE. This solved a problem of Ceder and Pearson from 1967. We used the general method of constructing D-forced spaces.

THEOREM. (Illanes, Baskara Rao)

If $\text{cf}(\lambda) = \omega$ then every $<\lambda$-resolvable space is λ-resolvable.

PROBLEM.

Is this true for each singular λ? How about $\lambda = \aleph_{\omega_1}$?
DEFINITION. The space X is monotonically normal (MN) iff it is T_1 (i.e. all singletons are closed) and it has a monotone normality operator H that "halves" neighbourhoods: H assigns to every $\langle x, U \rangle$, with $x \in U$ open, an open set $H(x, U)$ such that (i) $x \in H(x, U) \subset U$, and (ii) if $H(x, U) \cap H(y, V) \not= \emptyset$ then $x \in V$ or $y \in U$.

FACT. Metric spaces and linearly ordered spaces are MN.

QUESTION. Are MN spaces maximally resolvable?
DEFINITION.

The space X is monotonically normal (MN) iff it is T_1 (i.e., all singletons are closed) and it has a monotone normality operator H that "halves" neighbourhoods: H assigns to every $\langle x, U \rangle$, with $x \in U$ open, an open set $H(x, U)$ such that

(i) $x \in H(x, U) \subset U$, and

(ii) if $H(x, U) \cap H(y, V) \neq \emptyset$ then $x \in V$ or $y \in U$.

FACT. Metric spaces and linearly ordered spaces are MN.

QUESTION. Are MN spaces maximally resolvable?
DEFINITION.

The space X is **monotonically normal (MN)** iff it is T_1 (i.e. all singletons are closed)
DEFINITION.

The space X is monotonically normal (MN) iff it is T_1 (i.e. all singletons are closed) and it has a monotone normality operator H that "halves" neighbourhoods:
DEFINITION.

The space X is monotonically normal (MN) iff it is T_1 (i.e. all singletons are closed) and it has a monotone normality operator H that "halves" neighbourhoods:

H assigns to every $\langle x, U \rangle$, with $x \in U$ open, an open set $H(x, U)$ s. t.

1. $x \in H(x, U) \subset U$,
2. if $H(x, U) \cap H(y, V) \neq \emptyset$ then $x \in V$ or $y \in U$.
DEFINITION.

The space X is monotonically normal (MN) iff it is T_1 (i.e. all singletons are closed) and it has a monotone normality operator H that "halves" neighbourhoods:

H assigns to every $\langle x, U \rangle$, with $x \in U$ open, an open set $H(x, U)$ s.t.

(i) $x \in H(x, U) \subset U$,
DEFINITION.

The space X is monotonically normal (MN) iff it is T_1 (i.e. all singletons are closed) and it has a monotone normality operator H that "halves" neighbourhoods:

H assigns to every $\langle x, U \rangle$, with $x \in U$ open, an open set $H(x, U)$ s. t.

(i) $x \in H(x, U) \subset U$,

and

(ii) if $H(x, U) \cap H(y, V) \neq \emptyset$ then $x \in V$ or $y \in U$.
DEFINITION.

The space X is monotonically normal (MN) iff it is T_1 (i.e. all singletons are closed) and it has a monotone normality operator H that "halves" neighbourhoods:

H assigns to every $\langle x, U \rangle$, with $x \in U$ open, an open set $H(x, U)$ s.t.

(i) $x \in H(x, U) \subset U$,

and

(ii) if $H(x, U) \cap H(y, V) \neq \emptyset$ then $x \in V$ or $y \in U$.

FACT. Metric spaces
DEFINITION.

The space X is monotonically normal (MN) iff it is T_1 (i.e. all singletons are closed) and it has a monotone normality operator H that "halves" neighbourhoods:

H assigns to every $\langle x, U \rangle$, with $x \in U$ open, an open set $H(x, U)$ s. t.

(i) $x \in H(x, U) \subset U$, and

(ii) if $H(x, U) \cap H(y, V) \neq \emptyset$ then $x \in V$ or $y \in U$.

FACT. Metric spaces and linearly ordered spaces are MN.
DEFINITION.

The space X is monotonically normal (MN) iff it is T_1 (i.e. all singletons are closed) and it has a monotone normality operator H that "halves" neighbourhoods:

H assigns to every $\langle x, U \rangle$, with $x \in U$ open, an open set $H(x, U)$ s.t.

(i) $x \in H(x, U) \subset U$,

and

(ii) if $H(x, U) \cap H(y, V) \neq \emptyset$ then $x \in V$ or $y \in U$.

FACT. Metric spaces and linearly ordered spaces are MN.

QUESTION. Are MN spaces maximally resolvable?
DEFINITION.
(i) \(D \subset X \) is strongly discrete if there are pairwise disjoint open sets \(\{ U_x : x \in D \} \) with \(x \in U_x \) for \(x \in D \).

EXAMPLE: Countable discrete sets in \(T_3 \) spaces are SD.

(ii) \(X \) is an SD space if every non-isolated point \(x \in X \) is an SD limit.

THEOREM. (Sharma and Sharma, 1988) Every \(T_1 \) crowded SD space is \(\omega \)-resolvable.

THEOREM. (DTTW, 2002) MN spaces are SD, hence crowded MN spaces are \(\omega \)-resolvable.

PROBLEM. (Ceder and Pearson, 1967) Are \(\omega \)-resolvable spaces maximally resolvable?

István Juhász (Rényi Institute)
DEFINITION.

(i) \(D \subset X \) is strongly discrete if there are pairwise disjoint open sets \(\{ U_x : x \in D \} \) with \(x \in U_x \) for \(x \in D \).

EXAMPLE: Countable discrete sets in \(T_3 \) spaces are SD.

(ii) \(X \) is an SD space if every non-isolated point \(x \in X \) is an SD limit.

THEOREM. (Sharma and Sharma, 1988) Every \(T_1 \) crowded SD space is \(\omega \)-resolvable.

THEOREM. (DTTW, 2002) MN spaces are SD, hence crowded MN spaces are \(\omega \)-resolvable.

PROBLEM. (Ceder and Pearson, 1967) Are \(\omega \)-resolvable spaces maximally resolvable?
DEFINITION.

(i) $D \subset X$ is strongly discrete if there are pairwise disjoint open sets $\{U_x : x \in D\}$ with $x \in U_x$ for $x \in D$.

EXAMPLE: Countable discrete sets in T_3 spaces are SD.

(ii) X is an SD space if every non-isolated point $x \in X$ is an SD limit.

THEOREM. (Sharma and Sharma, 1988) Every T_1 crowded SD space is ω-resolvable.

THEOREM. (DTTW, 2002) MN spaces are SD, hence crowded MN spaces are ω-resolvable.

PROBLEM. (Ceder and Pearson, 1967) Are ω-resolvable spaces maximally resolvable?
SD spaces

DEFINITION.

(i) $D \subset X$ is strongly discrete if there are pairwise disjoint open sets \{${U}_x : x \in D$\} with $x \in {U}_x$ for $x \in D$.

EXAMPLE: Countable discrete sets in T_3 spaces are SD.
DEFINITION.

(i) $D \subset X$ is strongly discrete if there are pairwise disjoint open sets $\{U_x : x \in D\}$ with $x \in U_x$ for $x \in D$.

EXAMPLE: Countable discrete sets in T_3 spaces are SD.

(ii) X is an SD space if every non-isolated point $x \in X$ is an SD limit.
SD spaces

DEFINITION.

(i) $D \subset X$ is strongly discrete if there are pairwise disjoint open sets $\{U_x : x \in D\}$ with $x \in U_x$ for $x \in D$.

EXAMPLE: Countable discrete sets in T_3 spaces are SD.

(ii) X is an SD space if every non-isolated point $x \in X$ is an SD limit.

THEOREM. (Sharma and Sharma, 1988)

Every T_1 crowded SD space is ω-resolvable.
DEFINITION.

(i) $D \subset X$ is **strongly discrete** if there are pairwise disjoint open sets $\{U_x : x \in D\}$ with $x \in U_x$ for $x \in D$.

EXAMPLE: Countable discrete sets in T_3 spaces are SD.

(ii) X is an **SD space** if every non-isolated point $x \in X$ is an SD limit.

THEOREM. (Sharma and Sharma, 1988)

Every T_1 crowded SD space is ω-resolvable.

THEOREM. (DTTW, 2002)

MN spaces are SD, hence crowded MN spaces are ω-resolvable.
SD spaces

DEFINITION.

(i) $D \subset X$ is strongly discrete if there are pairwise disjoint open sets \{${U}_x : x \in D$\} with $x \in {U}_x$ for $x \in D$.

EXAMPLE: Countable discrete sets in T_3 spaces are SD.

(ii) X is an SD space if every non-isolated point $x \in X$ is an SD limit.

THEOREM. (Sharma and Sharma, 1988)

Every T_1 crowded SD space is ω-resolvable.

THEOREM. (DTTW, 2002)

MN spaces are SD, hence crowded MN spaces are ω-resolvable.

PROBLEM. (Ceder and Pearson, 1967)

Are ω-resolvable spaces maximally resolvable?
DEFINITION. X is a DSD space if every dense subspace of X is SD.

Clearly, MN spaces are DSD.

Main results of [J-S-Sz] –

1. If κ is measurable then there is a MN space X with $\Delta(X) = \kappa$ that is ω_1-irresolvable.

2. If X is DSD with $|X| < \aleph_\omega$ then X is maximally resolvable.

3. From a supercompact cardinal, it is consistent to have a MN space X with $|X| = \Delta(X) = \aleph_\omega$ that is ω_2-irresolvable.

This left a number of questions open.
DEFINITION. X is a DSD space if every dense subspace of X is SD. Clearly, MN spaces are DSD.

Main results of [J-S-Sz] – If κ is measurable then there is a MN space X with $\Delta(X) = \kappa$ that is ω_1-irresolvable.

– If X is DSD with $|X| < \aleph_\omega$ then X is maximally resolvable.

– From a supercompact cardinal, it is consistent to have a MN space X with $|X| = \Delta(X) = \aleph_\omega$ that is ω_2-irresolvable.

This left a number of questions open.
[J-S-Sz]

DEFINITION. X is a DSD space if every dense subspace of X is SD. Clearly, MN spaces are DSD.

Main results of [J-S-Sz]
- If κ is measurable then there is a MN space X with $\Delta(X) = \kappa$ that is ω_1-irresolvable.
- If X is DSD with $|\mathcal{G}|_X < \aleph_\omega$ then X is maximally resolvable.
- From a supercompact cardinal, it is consistent to have a MN space X with $|\mathcal{G}|_X = \Delta(X) = \aleph_\omega$ that is ω_2-irresolvable.

This left a number of questions open.

DEFINITION. X is a **DSD space** if every dense subspace of X is SD. Clearly, **MN spaces** are DSD.
Definiton. X is a DSD space if every dense subspace of X is SD. Clearly, MN spaces are DSD.

Main results of [J-S-Sz]

- If κ is measurable then there is a MN space X with $\Delta(X) = \kappa$ that is ω_1-irresolvable.
- If X is DSD with $|X| < \aleph_\omega$ then X is maximally resolvable.
- From a supercompact cardinal, it is consistent to have a MN space X with $|X| = \Delta(X) = \aleph_\omega$ that is ω_2-irresolvable.

This left a number of questions open.
DEFINITION. X is a DSD space if every dense subspace of X is SD. Clearly, MN spaces are DSD.

Main results of [J-S-Sz]

– If κ is measurable then there is a MN space X with $\Delta(X) = \kappa$ that is ω_1-irresolvable.
DEFINITION. X is a DSD space if every dense subspace of X is SD. Clearly, MN spaces are DSD.

Main results of [J-S-Sz]

- If κ is measurable then there is a MN space X with $\Delta(X) = \kappa$ that is ω_1-irresolvable.
- If X is DSD with $|X| < \aleph_\omega$ then X is maximally resolvable.
DEFINITION. X is a DSD space if every dense subspace of X is SD. Clearly, MN spaces are DSD.

Main results of [J-S-Sz]

– If κ is measurable then there is a MN space X with $\Delta(X) = \kappa$ that is ω_1-irresolvable.

– If X is DSD with $|X| < \aleph_{\omega}$ then X is maximally resolvable.

– From a supercompact cardinal, it is consistent to have a MN space X with $|X| = \Delta(X) = \aleph_{\omega}$ that is ω_2-irresolvable.
DEFINITION. X is a DSD space if every dense subspace of X is SD. Clearly, MN spaces are DSD.

Main results of [J-S-Sz]

- If κ is measurable then there is a MN space X with $\Delta(X) = \kappa$ that is ω_1-irresolvable.
- If X is DSD with $|X| < \aleph_\omega$ then X is maximally resolvable.
- From a supercompact cardinal, it is consistent to have a MN space X with $|X| = \Delta(X) = \aleph_\omega$ that is ω_2-irresolvable.

This left a number of questions open.
DEFINITION.
– An ultrafilter F is μ-descendingly complete iff for any descending μ-sequence $\{A_\alpha : \alpha < \mu\} \subset F$ we have $\bigcap \{A_\alpha : \alpha < \mu\} \in F$.

μ-descendingly incomplete is (now) called μ-decomposable.

– $\Delta(F) = \min\{|A| : A \in F\}$.

– F is maximally decomposable iff it is μ-decomposable for all (infinite) $\mu \leq \Delta(F)$.

FACTS.
– Any "measure" is countably complete, hence ω-indecomposable.
– [Donder, 1988] If there is a not maximally decomposable ultrafilter then there is a measurable cardinal in some inner model.
– [Kunen - Prikry, 1971] Every ultrafilter F with $\Delta(F) < \aleph_\omega$ is maximally decomposable.
DEFINITION.

- An ultrafilter F is μ-descendingly complete iff for any descending μ-sequence $\{A_\alpha : \alpha < \mu\} \subset F$ we have $\bigcap \{A_\alpha : \alpha < \mu\} \in F$.

- μ-descendingly incomplete is (now) called μ-decomposable.

- $\Delta(F) = \min \{|A| : A \in F\}$.

- F is maximally decomposable iff it is μ-decomposable for all (infinite) $\mu \leq \Delta(F)$.

FACTS.

- Any "measure" is countably complete, hence ω-indecomposable.

- [Donder, 1988] If there is a not maximally decomposable ultrafilter then there is a measurable cardinal in some inner model.

- [Kunen - Prikry, 1971] Every ultrafilter F with $\Delta(F) < \aleph_\omega$ is maximally decomposable.
DEFINITION.
– An ultrafilter \mathcal{F} is μ-descendingly complete iff for any descending μ-sequence $\{A_\alpha : \alpha < \mu\} \subset \mathcal{F}$ we have $\bigcap\{A_\alpha : \alpha < \mu\} \in \mathcal{F}$.

$\Delta(\mathcal{F}) = \min\{|A| : A \in \mathcal{F}\}$.
– \mathcal{F} is maximally decomposable iff it is μ-decomposable for all (infinite) $\mu \leq \Delta(\mathcal{F})$.

FACTS.
– Any “measure” is countably complete, hence ω-indecomposable.
– [Donder, 1988] If there is a not maximally decomposable ultrafilter then there is a measurable cardinal in some inner model.
– [Kunen - Prikry, 1971] Every ultrafilter \mathcal{F} with $\Delta(\mathcal{F}) < \aleph_\omega$ is maximally decomposable.
DEFINITION.
– An ultrafilter \mathcal{F} is μ-descendingly complete iff for any descending μ-sequence $\{A_\alpha : \alpha < \mu\} \subset \mathcal{F}$ we have $\bigcap \{A_\alpha : \alpha < \mu\} \in \mathcal{F}$.

μ-descendingly incomplete is (now) called μ-decomposable.
decomposability of ultrafilters

DEFINITION.
– An ultrafilter \mathcal{F} is μ-descendingly complete iff for any descending μ-sequence $\{A_\alpha : \alpha < \mu\} \subset \mathcal{F}$ we have $\bigcap\{A_\alpha : \alpha < \mu\} \in \mathcal{F}$.

μ-descendingly incomplete is (now) called μ-decomposable.

– $\Delta(\mathcal{F}) = \min\{|A| : A \in \mathcal{F}\}$.

– Any "measure" is countably complete, hence ω-indecomposable.

– [Donder, 1988] If there is a not maximally decomposable ultrafilter then there is a measurable cardinal in some inner model.

– [Kunen - Prikry, 1971] Every ultrafilter \mathcal{F} with $\Delta(\mathcal{F}) < \aleph_\omega$ is maximally decomposable.
decomposability of ultrafilters

DEFINITION.
– An ultrafilter \mathcal{F} is μ-descendingly complete iff for any descending μ-sequence $\{A_\alpha : \alpha < \mu\} \subset \mathcal{F}$ we have $\bigcap \{A_\alpha : \alpha < \mu\} \in \mathcal{F}$.

μ-descendingly incomplete is (now) called μ-decomposable.

– $\Delta(\mathcal{F}) = \min\{|A| : A \in \mathcal{F}\}$.

– \mathcal{F} is maximally decomposable iff it is μ-decomposable for all (infinite) $\mu \leq \Delta(\mathcal{F})$.
decomposability of ultrafilters

DEFINITION.
– An ultrafilter \mathcal{F} is μ-descendingly complete iff for any descending μ-sequence $\{A_\alpha : \alpha < \mu\} \subset \mathcal{F}$ we have $\bigcap\{A_\alpha : \alpha < \mu\} \in \mathcal{F}$.

μ-descendingly incomplete is (now) called μ-decomposable.

– $\Delta(\mathcal{F}) = \min\{|A| : A \in \mathcal{F}\}$.

– \mathcal{F} is maximally decomposable iff it is μ-decomposable for all (infinite) $\mu \leq \Delta(\mathcal{F})$.

FACTS.

– Any “measure” is countably complete, hence ω-indecomposable.

– [Donder, 1988] If there is a not maximally decomposable ultrafilter then there is a measurable cardinal in some inner model.

– [Kunen - Prikry, 1971] Every ultrafilter \mathcal{F} with $\Delta(\mathcal{F}) < \aleph_\omega$ is maximally decomposable.
decomposability of ultrafilters

DEFINITION.
– An ultrafilter \(\mathcal{F} \) is \(\mu \)-descendingly complete iff for any descending \(\mu \)-sequence \(\{ A_\alpha : \alpha < \mu \} \subset \mathcal{F} \) we have \(\bigcap \{ A_\alpha : \alpha < \mu \} \in \mathcal{F} \).

\(\mu \)-descendingly incomplete is (now) called \(\mu \)-decomposable.
– \(\Delta(\mathcal{F}) = \min \{|A| : A \in \mathcal{F}| \right\} \).
– \(\mathcal{F} \) is maximally decomposable iff it is \(\mu \)-decomposable for all (infinite) \(\mu \leq \Delta(\mathcal{F}) \).

FACTS.
– Any "measure" is countably complete, hence \(\omega \)-indecomposable.
decomposability of ultrafilters

DEFINITION.
– An ultrafilter \(\mathcal{F} \) is \(\mu \)-descendingly complete iff for any descending \(\mu \)-sequence \(\{ A_\alpha : \alpha < \mu \} \subset \mathcal{F} \) we have \(\bigcap \{ A_\alpha : \alpha < \mu \} \in \mathcal{F} \).

\(\mu \)-descendingly incomplete is (now) called \(\mu \)-decomposable.

– \(\Delta(\mathcal{F}) = \min \{|A| : A \in \mathcal{F}\} \).

– \(\mathcal{F} \) is maximally decomposable iff it is \(\mu \)-decomposable for all (infinite) \(\mu \leq \Delta(\mathcal{F}) \).

FACTS.
– Any "measure" is countably complete, hence \(\omega \)-indecomposable.

– [Donder, 1988] If there is a not maximally decomposable ultrafilter then there is a measurable cardinal in some inner model.
decomposability of ultrafilters

DEFINITION.
– An ultrafilter \mathcal{F} is μ-descendingly complete iff for any descending μ-sequence $\{A_\alpha : \alpha < \mu\} \subset \mathcal{F}$ we have $\bigcap\{A_\alpha : \alpha < \mu\} \in \mathcal{F}$.

μ-descendingly incomplete is (now) called μ-decomposable.

– $\Delta(\mathcal{F}) = \min\{|A| : A \in \mathcal{F}\}$.

– \mathcal{F} is maximally decomposable iff it is μ-decomposable for all (infinite) $\mu \leq \Delta(\mathcal{F})$.

FACTS.
– Any "measure" is countably complete, hence ω-indecomposable.

– [Donder, 1988] If there is a not maximally decomposable ultrafilter then there is a measurable cardinal in some inner model.

– [Kunen - Prikry, 1971] Every ultrafilter \mathcal{F} with $\Delta(\mathcal{F}) < \aleph_\omega$ is maximally decomposable.

Main results of [J-M]

1) TFAEV
- Every DSD space (of cardinality $<\kappa$) is maximally resolvable.
- Every MN space (of cardinality $<\kappa$) is maximally resolvable.
- Every ultrafilter F (with $\Delta(F) < \kappa$) is maximally decomposable.

2) TFAEC
- There is a measurable cardinal.
- There is a MN space that is not maximally resolvable.
- There is a MN space X with $|X| = \Delta(X) = \aleph_\omega$ that is ω_1-irresolvable.
Main results of [J-M]

1. TFAEV
 - Every DSD space (of cardinality $<\kappa$) is maximally resolvable.
 - Every MN space (of cardinality $<\kappa$) is maximally resolvable.
 - Every ultrafilter F (with $\Delta(F) < \kappa$) is maximally decomposable.

2. TFAEC
 - There is a measurable cardinal.
 - There is a MN space that is not maximally resolvable.
 - There is a MN space X with $|X| = \Delta(X) = \aleph_\omega$ that is ω_1-irresolvable.

Main results of [J-M]

(1) TFAEV

- Every DSD space (of cardinality $< \kappa$) is maximally resolvable.
- Every MN space (of cardinality $< \kappa$) is maximally resolvable.
- Every ultrafilter F (with $\Delta(F) < \kappa$) is maximally decomposable.

(2) TFAEC

- There is a measurable cardinal.
- There is a MN space that is not maximally resolvable.
- There is a MN space X with $|X| = \Delta(X) = \aleph_\omega$ that is ω_1-irresolvable.

Main results of [J-M]

(1) TFAEV

- Every DSD space (of cardinality $< \kappa$) is maximally resolvable.

(2) TFAEC

- There is a measurable cardinal.
- There is a MN space that is not maximally resolvable.
- There is a MN space X with $|X| = \Delta(X) = \aleph_\omega$ that is ω_1-irresolvable.
Main results of [J-M]

(1) TFAEV

– Every DSD space (of cardinality $< \kappa$) is maximally resolvable.
– Every MN space (of cardinality $< \kappa$) is maximally resolvable.
Main results of [J-M]

(1) TFAEV
- Every DSD space (of cardinality $< \kappa$) is maximally resolvable.
- Every MN space (of cardinality $< \kappa$) is maximally resolvable.
- Every ultrafilter \mathcal{F} (with $\Delta(\mathcal{F}) < \kappa$) is maximally decomposable.

Main results of [J-M]

1. **TFAEV**
 - Every DSD space (of cardinality $< \kappa$) is maximally resolvable.
 - Every MN space (of cardinality $< \kappa$) is maximally resolvable.
 - Every ultrafilter \mathcal{F} (with $\Delta(\mathcal{F}) < \kappa$) is maximally decomposable.

2. **TFAEC**
 - There is a measurable cardinal.
 - There is a MN space that is not maximally resolvable.
 - There is a MN space X with $|X| = \Delta(X) = \aleph_\omega$ that is ω_1-irresolvable.
Main results of [J-M]

(1) TFAEV
- Every DSD space (of cardinality $< \kappa$) is maximally resolvable.
- Every MN space (of cardinality $< \kappa$) is maximally resolvable.
- Every ultrafilter \mathcal{F} (with $\Delta(\mathcal{F}) < \kappa$) is maximally decomposable.

(2) TFAEC
- There is a measurable cardinal.
Main results of [J-M]

(1) TFAEV

– Every DSD space (of cardinality $< \kappa$) is maximally resolvable.
– Every MN space (of cardinality $< \kappa$) is maximally resolvable.
– Every ultrafilter \mathcal{F} (with $\Delta(\mathcal{F}) < \kappa$) is maximally decomposable.

(2) TFAEC

– There is a measurable cardinal.
– There is a MN space that is not maximally resolvable.
Main results of [J-M]

(1) TFAEV
- Every DSD space (of cardinality $< \kappa$) is maximally resolvable.
- Every MN space (of cardinality $< \kappa$) is maximally resolvable.
- Every ultrafilter \mathcal{F} (with $\Delta(\mathcal{F}) < \kappa$) is maximally decomposable.

(2) TFAEC
- There is a measurable cardinal.
- There is a MN space that is not maximally resolvable.
- There is a MN space X with $|X| = \Delta(X) = \aleph_\omega$ that is ω_1-irresolvable.
Filtration spaces

DEFINITION. – A filtration F is a filtration if $\text{dom}(F) = T$ is an infinitely branching tree (of height ω) and, for each $t \in T$, $F(t)$ is a filter on $S(t)$ that contains all co-finite subsets of $S(t)$.

– The topology τ_F on T: For $G \subset T$, $G \in \tau_F$ iff $t \in G \Rightarrow G \cap S(t) \in F(t)$.

– $X(F) = \langle T, \tau_F \rangle$ is called a filtration space.

FACT. [J-S-Sz] Every filtration space $X(F)$ is MN. Moreover, filtration spaces determine the resolvability behavior of all MN (or DSD) spaces.
Filtration spaces

DEFINITION.

- A filtration F is if $\text{dom}(F) = T$ is an infinitely branching tree (of height ω) and, for each $t \in T$, $F(t)$ is a filter on $S(t)$ that contains all co-finite subsets of $S(t)$.

- The topology τ_F on T: For $G \subset T$, $G \in \tau_F$ iff $t \in G \Rightarrow G \cap S(t) \in F(t)$.

- $X(F) = \langle T, \tau_F \rangle$ is called a filtration space.

FACT. [J-S-Sz] Every filtration space $X(F)$ is MN. Moreover, filtration spaces determine the resolvability behavior of all MN (or DSD) spaces.
DEFINITION.

– F is a filtration if $\text{dom}(F) = T$ is an infinitely branching tree

– The topology τ_F on T: For $G \subset T$, $G \in \tau_F$ iff $t \in G$ \Rightarrow $G \cap S(t) \in F(t)$.

– $X(F) = \langle T, \tau_F \rangle$ is called a filtration space.

FACT. [J-S-Sz] Every filtration space $X(F)$ is MN. Moreover, filtration spaces determine the resolvability behavior of all MN (or DSD) spaces.
DEFINITION.
– F is a filtration if $\text{dom}(F) = T$ is an infinitely branching tree (of height ω)
DEFINITION.

– F is a filtration if $\text{dom}(F) = T$ is an infinitely branching tree (of height ω) and, for each $t \in T$, $F(t)$ is a filter on $S(t)$ that contains all co-finite subsets of $S(t)$.
DEFINITION.

– F is a filtration if $\text{dom}(F) = T$ is an infinitely branching tree (of height ω) and, for each $t \in T$, $F(t)$ is a filter on $S(t)$ that contains all co-finite subsets of $S(t)$.

– The topology τ_F on T: For $G \subset T$, $G \in \tau_F$ iff

$$ t \in G \Rightarrow G \cap S(t) \in F(t), $$
DEFINITION.

– F is a filtration if \(\text{dom}(F) = T \) is an infinitely branching tree (of height \(\omega \)) and, for each \(t \in T \), \(F(t) \) is a filter on \(S(t) \) that contains all co-finite subsets of \(S(t) \).

– The topology \(\tau_F \) on \(T \): For \(G \subset T \), \(G \in \tau_F \) iff

\[
t \in G \Rightarrow G \cap S(t) \in F(t),
\]

– \(X(F) = \langle T, \tau_F \rangle \) is called a filtration space.
DEFINITION.

– F is a filtration if $\text{dom}(F) = T$ is an infinitely branching tree (of height ω) and, for each $t \in T$, $F(t)$ is a filter on $S(t)$ that contains all co-finite subsets of $S(t)$.

– The topology τ_F on T: For $G \subset T$, $G \in \tau_F$ iff

$$ t \in G \Rightarrow G \cap S(t) \in F(t), $$

– $X(F) = \langle T, \tau_F \rangle$ is called a filtration space.

FACT. [J-S-Sz] Every filtration space $X(F)$ is MN.
DEFINITION.
– F is a filtration if $\text{dom}(F) = T$ is an infinitely branching tree (of height ω) and, for each $t \in T$, $F(t)$ is a filter on $S(t)$ that contains all co-finite subsets of $S(t)$.

– The topology τ_F on T: For $G \subset T$, $G \in \tau_F$ iff

$$t \in G \Rightarrow G \cap S(t) \in F(t),$$

– $X(F) = \langle T, \tau_F \rangle$ is called a filtration space.

FACT. [J-S-Sz] Every filtration space $X(F)$ is MN.

Moreover, filtration spaces determine the resolvability behavior of all MN (or DSD) spaces.
THEOREM. [J-S-Sz]
If F is an ultrafiltration and $\mu \geq \omega$ is a regular cardinal s.t.
$F(t)$ is μ-descendingly complete for all $t \in T = \text{dom}(F)$,
then $X(F)$ is hereditarily μ^+-irresolvable.

COROLLARY. [J-S-Sz]
If $F \in \text{un}(\kappa)$ is a measure and $F(t) = F$ for all $t \in \text{dom}(F) = \kappa < \omega$,
then $X(F)$ is hereditarily ω_1-irresolvable.
THEOREM. [J-S-Sz]

If F is an ultrafiltration and $\mu \geq \omega$ is a regular cardinal s.t. $F(t)$ is μ-descendingly complete for all $t \in T = \text{dom}(F)$,

COROLLARY. [J-S-Sz]

If $F \in \text{un}(\kappa)$ is a measure and $F(t) = F$ for all $t \in \text{dom}(F) = \kappa < \omega$ then $X(F)$ is hereditarily ω_1-irresolvable.
THEOREM. [J-S-Sz]

If F is an ultrafiltration and $\mu \geq \omega$ is a regular cardinal s.t. $F(t)$ is μ-descendingly complete for all $t \in T = \text{dom}(F)$, then $X(F)$ is hereditarily μ^+-irresolvable.
THEOREM. [J-S-Sz]
If F is an ultrafiltration and $\mu \geq \omega$ is a regular cardinal s.t. $F(t)$ is μ-descendingly complete for all $t \in T = \text{dom}(F)$, then $X(F)$ is hereditarily μ^+-irresolvable.

COROLLARY. [J-S-Sz]
If $\mathcal{F} \in \text{un}(\kappa)$ is a measure and $F(t) = \mathcal{F}$ for all $t \in \text{dom}(F) = \kappa^{<\omega}$, then $X(F)$ is hereditarily ω_1-irresolvable.
DEFINITION. \([J-M]\)

\(F\) is a \(\lambda\)-filtration if

1. \(\text{dom}(F) \subset \lambda < \omega\),
2. for each \(t \in T\) there is \(\omega \leq \mu_t \leq \lambda\) s.t. \(S(t) = \{\alpha : \alpha_\lambda \alpha_\mu < \mu_t\}\) and \(F(t) \in \text{un}(\mu_t)\),
3. moreover, for any \(\mu < \lambda\) and \(t \in T\): \(\{\alpha : \mu < \alpha_\mu < \mu_t\} \in F(t)\).

NOTE. If \(F\) is a \(\lambda\)-filtration then
\(|X(F)| = \Delta(X(F)) = \lambda\).

- The \(\lambda\)-filtration \(F\) is full if \(\text{dom}(F) = \lambda < \omega\), i.e. \(\mu_t = \lambda\) for all \(t \in \lambda < \omega\).

Full \(\lambda\)-filtrations were considered in \([J-S-Sz]\).
DEFINITION. [J-M]

F is a λ-filtration if

- $\mathrm{dom}(F) \subset \lambda^\omega$,
- for each $t \in T$ there is $\omega \leq \mu_t \leq \lambda$ s.t. $S(t) = \{ \alpha : \alpha < \mu_t \}$ and $F(t) \in \mathrm{un}(\mu_t)$,
- moreover, for any $\mu < \lambda$ and $t \in \lambda^\omega$:
 $\{ \alpha : \mu_t \downarrow \alpha > \mu \} \in F(t)$.

NOTE. If F is a λ-filtration then $|X(F)| = \Delta(X(F)) = \lambda$.

The λ-filtration F is full if $\mathrm{dom}(F) = \lambda^\omega$, i.e. $\mu_t = \lambda$ for all $t \in \lambda^\omega$.

Full λ-filtrations were considered in [J-S-Sz].
DEFINITION. [J-M] \(F \) is a \(\lambda \)-filtration if

- For each \(t \in T \) there is \(\omega \leq \mu_t \leq \lambda \) s.t. \(S(t) = \{ t \upharpoonright \alpha : \alpha < \mu_t \} \) and \(F(t) \in \text{un}(\mu_t) \).
- Moreover, for any \(\mu < \lambda \) and \(t \in T \):
 \[\{ \alpha : \mu_t \upharpoonright \alpha > \mu \} \in F(t). \]

NOTE. If \(F \) is a \(\lambda \)-filtration then \(|X(F)| = \Delta(X(F)) = \lambda \).

- The \(\lambda \)-filtration \(F \) is full if \(\text{dom}(F) = \lambda < \omega \), i.e. \(\mu_t = \lambda \) for all \(t \in \lambda < \omega \).

Full \(\lambda \)-filtrations were considered in [J-S-Sz].
DEFINITION. [J-M] F is a λ-filtration if

- $T = \text{dom}(F) \subset \lambda^{<\omega},$

NOTE. If F is a λ-filtration then $|\text{Res}(F)| = \Delta(\text{Res}(F)) = \lambda.$

- The λ-filtration F is full if $\text{dom}(F) = \lambda^{<\omega},$ i.e. $\mu_t = \lambda$ for all $t \in \lambda^{<\omega}.$

Full λ-filtrations were considered in [J-S-Sz].
DEFINITION. [J-M] F is a λ-filtration if

– $T = \text{dom}(F) \subset \lambda^{<\omega}$,

– for each $t \in T$ there is $\omega \leq \mu_t \leq \lambda$ s.t.

$$S(t) = \{ t^\alpha : \alpha < \mu_t \} \text{ and } F(t) \in \text{un}(\mu_t),$$
DEFINITION. [J-M] F is a λ-filtration if

– $T = \text{dom}(F) \subseteq \lambda^{<\omega}$,

– for each $t \in T$ there is $\omega \leq \mu_t \leq \lambda$ s.t.

\[S(t) = \{ t^\alpha : \alpha < \mu_t \} \text{ and } F(t) \in \text{un}(\mu_t), \]

– moreover, for any $\mu < \lambda$ and $t \in T$:

\[\{ \alpha : \mu_t^\alpha > \mu \} \in F(t). \]
λ-filtrations

DEFINITION. [J-M] F is a λ-filtration if

- $T = \text{dom}(F) \subset \lambda^{<\omega}$,

- for each $t \in T$ there is $\omega \leq \mu_t \leq \lambda$ s.t.

 $$S(t) = \{ t^\alpha : \alpha < \mu_t \} \text{ and } F(t) \in \text{un}(\mu_t),$$

- moreover, for any $\mu < \lambda$ and $t \in T$:

 $$\{ \alpha : \mu_t^\alpha > \mu \} \in F(t).$$

NOTE. If F is a λ-filtration then $|X(F)| = \Delta(X(F)) = \lambda$.
DEFINITION. [J-M] F is a λ-filtration if

- $T = \text{dom}(F) \subset \lambda^{<\omega}$,
- for each $t \in T$ there is $\omega \leq \mu_t \leq \lambda$ s.t.
 $$S(t) = \{ t^\alpha : \alpha < \mu_t \} \text{ and } F(t) \in \text{un}(\mu_t),$$
- moreover, for any $\mu < \lambda$ and $t \in T$:
 $$\{ \alpha : \mu_t^{\alpha} > \mu \} \in F(t).$$

NOTE. If F is a λ-filtration then $|X(F)| = \Delta(X(F)) = \lambda$.

- The λ-filtration F is **full** if $\text{dom}(F) = \lambda^{<\omega}$, i.e. $\mu_t = \lambda$ for all $t \in \lambda^{<\omega}$.

DEFINITION. [J-M] F is a λ-filtration if

- $T = \text{dom}(F) \subset \lambda^{<\omega}$,
- for each $t \in T$ there is $\omega \leq \mu_t \leq \lambda$ s.t.
 \[S(t) = \{ t^\alpha : \alpha < \mu_t \} \text{ and } F(t) \in \text{un}(\mu_t), \]
- moreover, for any $\mu < \lambda$ and $t \in T$:
 \[\{ \alpha : \mu_t^\alpha > \mu \} \in F(t). \]

NOTE. If F is a λ-filtration then $|X(F)| = \Delta(X(F)) = \lambda$.

- The λ-filtration F is **full** if $\text{dom}(F) = \lambda^{<\omega}$, i.e. $\mu_t = \lambda$ for all $t \in \lambda^{<\omega}$.

Full λ-filtrations were considered in [J-S-Sz].
reduction results

THEOREM [J-S-Sz]
For $\kappa \leq \lambda = \text{cf}(\lambda)$, TFAEV
– Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
– Every MN space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
– For every full λ-filtration F, the space $X(F)$ is κ-resolvable.

THEOREM [J-M]
For λ singular and $\text{cf}(\lambda) + < \kappa \leq \lambda$, TFAEV
– Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
– Every MN space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
– For every λ-filtration F, the space $X(F)$ is κ-resolvable.

NOTE. For maximal resolvability, the cases $\kappa = \lambda$ are of interest.
THEOREM [J-S-Sz]

For $\kappa \leq \lambda = \text{cf}(\lambda)$, TFAEV
– Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
– Every MN space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
– For every full λ-filtration F, the space $X(F)$ is κ-resolvable.

THEOREM [J-M]
For λ singular and $\text{cf}(\lambda) + < \kappa \leq \lambda$, TFAEV
– Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
– Every MN space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
– For every λ-filtration F, the space $X(F)$ is κ-resolvable.

NOTE. For maximal resolvability, the cases $\kappa = \lambda$ are of interest.
THEOREM [J-S-Sz]

For $\kappa \leq \lambda = \text{cf}(\lambda)$, TFAEV
THEOREM [J-S-Sz]

For $\kappa \leq \lambda = \text{cf}(\lambda)$, TFAEV

– Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
THEOREM [J-S-Sz]

For $\kappa \leq \lambda = \text{cf}(\lambda)$, TFAEV

- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
- Every MN space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.

NOTE. For maximal resolvability, the cases $\kappa = \lambda$ are of interest.
THEOREM [J-S-Sz]

For $\kappa \leq \lambda = \text{cf}(\lambda)$, TFAEV

- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
- Every MN space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
- For every full λ-filtration F, the space $X(F)$ is κ-resolvable.

NOTE. For maximal resolvability, the cases $\kappa = \lambda$ are of interest.
THEOREM [J-S-Sz]

For $\kappa \leq \lambda = \text{cf}(\lambda)$, TFAEV

– Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
– Every MN space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
– For every full λ-filtration F, the space $X(F)$ is κ-resolvable.

THEOREM [J-M]

[Additional content not visible in the image]
THEOREM [J-S-Sz]

For $\kappa \leq \lambda = \text{cf}(\lambda)$, TFAEV

- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
- Every MN space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
- For every full λ-filtration F, the space $X(F)$ is κ-resolvable.

THEOREM [J-M]

For λ singular and $\text{cf}(\lambda)^+ < \kappa \leq \lambda$, TFAEV
THEOREM [J-S-Sz]
For $\kappa \leq \lambda = \text{cf}(\lambda)$, TFAEV

– Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
– Every MN space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
– For every full λ-filtration F, the space $X(F)$ is κ-resolvable.

THEOREM [J-M]
For λ singular and $\text{cf}(\lambda)^+ < \kappa \leq \lambda$, TFAEV

– Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
THEOREM [J-S-Sz]

For $\kappa \leq \lambda = \text{cf}(\lambda)$, TFAEV

– Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
– Every MN space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
– For every full λ-filtration F, the space $X(F)$ is κ-resolvable.

THEOREM [J-M]

For λ singular and $\text{cf}(\lambda)^+ < \kappa \leq \lambda$, TFAEV

– Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
– Every MN space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
THEOREM [J-S-Sz]
For $\kappa \leq \lambda = \text{cf}(\lambda)$, TFAEV

- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
- Every MN space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
- For every full λ-filtration F, the space $X(F)$ is κ-resolvable.

THEOREM [J-M]
For λ singular and $\text{cf}(\lambda)^+ < \kappa \leq \lambda$, TFAEV

- Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
- Every MN space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
- For every λ-filtration F, the space $X(F)$ is κ-resolvable.
reduction results

THEOREM [J-S-Sz]
For $\kappa \leq \lambda = \text{cf}(\lambda)$, TFAEV

– Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
– Every MN space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
– For every full λ-filtration F, the space $X(F)$ is κ-resolvable.

THEOREM [J-M]
For λ singular and $\text{cf}(\lambda)^+ < \kappa \leq \lambda$, TFAEV

– Every DSD space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
– Every MN space X with $|X| = \Delta(X) = \lambda$ is κ-resolvable.
– For every λ-filtration F, the space $X(F)$ is κ-resolvable.

NOTE. For maximal resolvability, the cases $\kappa = \lambda$ are of interest.
the two steps of reduction

Lemma 1. [J-S-Sz]
If \(\lambda \) is regular, \(X \) is DSD with \(|X| = \Delta(X) = \lambda \), and there are "dense many" points in \(X \) that are not CAPs of any SD set of size \(\lambda \), then \(X \) is \(\lambda \)-resolvable.

Lemma 2. [J-S-Sz]
For any \(\lambda \geq \omega \), if \(X \) is any space s.t. every point in \(X \) is the CAP of some SD set of size \(\lambda \), then there is a full \(\lambda \)-filtration \(F \) and a one-one continuous map \(g : X(F) \rightarrow X \).

This takes care of the case when \(\lambda \) is regular. The singular case (proved in [J-M]) is similar but more complicated.
Lemma 1. [J-S-Sz]

If λ is regular, X is DSD with $|X| = \Delta(X) = \lambda$, and there are "dense many" points in X that are not CAPs of any SD set of size λ, then X is λ-resolvable.
the two steps of reduction

Lemma 1. [J-S-Sz]
If λ is regular, X is DSD with $|X| = \Delta(X) = \lambda$, and there are "dense many" points in X that are not CAPs of any SD set of size λ, then X is λ-resolvable.

Lemma 2. [J-S-Sz]
For any $\lambda \geq \omega$, if X is any space s.t. every point in X is the CAP of some SD set of size λ, then there is a full λ-filtration F and a one-one continuous map

$$g : X(F) \to X.$$
the two steps of reduction

Lemma 1. [J-S-Sz]
If λ is regular, X is DSD with $|X| = \Delta(X) = \lambda$, and there are "dense many" points in X that are not CAPs of any SD set of size λ, then X is λ-resolvable.

Lemma 2. [J-S-Sz]
For any $\lambda \geq \omega$, if X is any space s.t. every point in X is the CAP of some SD set of size λ, then there is a full λ-filtration F and a one-one continuous map

$$g : X(F) \rightarrow X.$$

This takes care of the case when λ is regular.
the two steps of reduction

Lemma 1. [J-S-Sz]
If λ is regular, X is DSD with $|X| = \Delta(X) = \lambda$, and there are "dense many" points in X that are not CAPs of any SD set of size λ, then X is λ-resolvable.

Lemma 2. [J-S-Sz]
For any $\lambda \geq \omega$, if X is any space s.t. every point in X is the CAP of some SD set of size λ, then there is a full λ-filtration F and a one-one continuous map $g : X(F) \rightarrow X$.

This takes care of the case when λ is regular.

The singular case (proved in [J-M]) is similar but more complicated.
THEOREM [J-M]

If $\kappa \leq \lambda$ and F is a λ-filtration s.t.

(i) for every $t \in T = \text{dom}(F)$, if $\mu_t \geq \kappa$ then $F(t)$ is κ-decomposable,

(ii) for every $t \in T = \text{dom}(F)$ and $\mu \leq \kappa$, \{ $\alpha < \mu$: $F(t \uparrow \alpha)$ is μ-decomposable \} $\in F(t)$,

then $X(F)$ is κ-resolvable.

COROLLARY [J-M]

If every $F \in \text{un}(\mu)$ is maximally decomposable whenever $\omega \leq \mu \leq \lambda$,

then $X(F)$ is λ-resolvable for any λ-filtration F.
THEOREM [J-M]

If $\kappa \leq \lambda$ and F is a λ-filtration s.t.
(i) for every $t \in T = \text{dom}(F)$, if $\mu_t \geq \kappa$ then $F(t)$ is κ-decomposable,
(ii) for every $t \in T = \text{dom}(F)$ and $\mu \leq \kappa$,
\{ $\alpha < \mu : F(t \uparrow \alpha)$ is μ-decomposable \} $\in F(t)$,
then $X(F)$ is κ-resolvable.

COROLLARY [J-M]

If every $F \in \text{un}(\mu)$ is maximally decomposable whenever $\omega \leq \mu \leq \lambda$,
then $X(F)$ is λ-resolvable for any λ-filtration F.

István Juhász (Rényi Institute)
Resolvability
Sao Paulo 2013
THEOREM [J-M]

If $\kappa \leq \lambda$ and F is a λ-filtration s.t.

1. For every $t \in T = \text{dom}(F)$, if $\mu \geq \kappa$ then $F(t)$ is κ-decomposable,
2. For every $t \in T = \text{dom}(F)$ and $\mu \leq \kappa$, \(\{\alpha < \mu \mid F(t \upharpoonright \alpha) \text{ is } \mu\text{-decomposable}\} \in F(t)\),

then $X(F)$ is κ-resolvable.

COROLLARY [J-M]

If every $F \in \text{un}(\mu)$ is maximally decomposable whenever $\omega \leq \mu \leq \lambda$, then $X(F)$ is λ-resolvable for any λ-filtration F.
THEOREM [J-M]

If $\kappa \leq \lambda$ and F is a λ-filtration s.t.

(i) for every $t \in T = \text{dom}(F)$, if $\mu_t \geq \kappa$ then $F(t)$ is κ-decomposable,
THEOREM [J-M]

If \(\kappa \leq \lambda \) and \(F \) is a \(\lambda \)-filtration s.t.

(i) for every \(t \in T = \text{dom}(F) \), if \(\mu_t \geq \kappa \) then \(F(t) \) is \(\kappa \)-decomposable,

(ii) for every \(t \in T = \text{dom}(F) \) and \(\mu \leq \kappa \),

\[
\{ \alpha < \mu_t : F(t \cap \alpha) \text{ is } \mu \text{-decomposable} \} \in F(t),
\]
\(\lambda \)-resolvability of \(\lambda \)-filtration spaces

THEOREM [J-M]

If \(\kappa \leq \lambda \) and \(F \) is a \(\lambda \)-filtration s.t.

(i) for every \(t \in T = \text{dom}(F) \), if \(\mu_t \geq \kappa \) then \(F(t) \) is \(\kappa \)-decomposable,

(ii) for every \(t \in T = \text{dom}(F) \) and \(\mu \leq \kappa \),

\[
\{ \alpha < \mu_t : F(t \cap \alpha) \text{ is } \mu \text{-decomposable} \} \in F(t),
\]

then \(X(F) \) is \(\kappa \)-resolvable.
\(\lambda\)-resolvability of \(\lambda\)-filtration spaces

THEOREM [J-M]

If \(\kappa \leq \lambda\) and \(F\) is a \(\lambda\)-filtration s.t.

(i) for every \(t \in T = \text{dom}(F)\), if \(\mu_t \geq \kappa\) then \(F(t)\) is \(\kappa\)-decomposable,

(ii) for every \(t \in T = \text{dom}(F)\) and \(\mu \leq \kappa\),

\[\{\alpha < \mu_t : F(t \cap \alpha) \text{ is } \mu\text{-decomposable}\} \in F(t),\]

then \(X(F)\) is \(\kappa\)-resolvable.

COROLLARY [J-M]

If every \(F \in \text{un}(\mu)\) is maximally decomposable whenever \(\omega \leq \mu \leq \lambda\), then \(X(F)\) is \(\lambda\)-resolvable for any \(\lambda\)-filtration \(F\).
THEOREM [J-M]

If $\kappa \leq \lambda$ and F is a λ-filtration s.t.

(i) for every $t \in T = \text{dom}(F)$, if $\mu_t \geq \kappa$ then $F(t)$ is κ-decomposable,

(ii) for every $t \in T = \text{dom}(F)$ and $\mu \leq \kappa$,

$$\{ \alpha < \mu_t : F(t \cap \alpha) \text{ is } \mu\text{-decomposable} \} \in F(t),$$

then $X(F)$ is κ-resolvable.

COROLLARY [J-M]

If every $F \in \text{un}(\mu)$ is maximally decomposable whenever $\omega \leq \mu \leq \lambda$, then $X(F)$ is λ-resolvable for any λ-filtration F.