Resolvability properties of certain topological spaces

Istvan Juhasz

Alfréd Rényi Institute of Mathematics

Sao Paulo, Brasil, August 2013

Istvan Juhasz (Rényi Institute) Resolvability Sao Paulo 2013 1/18



resolvability

Istvan Juhasz (Rényi Institute) Resolvability Sao Paulo 2013 2/18



resolvability

DEFINITION. (Hewitt, 1943, Pearson, 1963)

Istvan Juhasz (Rényi Institute) Resolvability Sao Paulo 2013 2/18



resolvability

DEFINITION. (Hewitt, 1943, Pearson, 1963)

— A topological space X is x-resolvable iff it has « disjoint dense
subsets.

Istvan Juhasz (Rényi Institute) Resolvability Sao Paulo 2013 2/18



resolvability

DEFINITION. (Hewitt, 1943, Pearson, 1963)

— A topological space X is x-resolvable iff it has « disjoint dense
subsets. (resolvable = 2-resolvable)

Istvan Juhasz (Rényi Institute) Resolvability Sao Paulo 2013 2/18



resolvability

DEFINITION. (Hewitt, 1943, Pearson, 1963)

— A topological space X is x-resolvable iff it has « disjoint dense
subsets. (resolvable = 2-resolvable)

— X is maximally resolvable iff it is A(X)-resolvable,

Istvan Juhasz (Rényi Institute) Resolvability Sao Paulo 2013 2/18



resolvability

DEFINITION. (Hewitt, 1943, Pearson, 1963)

— A topological space X is x-resolvable iff it has « disjoint dense
subsets. (resolvable = 2-resolvable)

— X is maximally resolvable iff it is A(X)-resolvable, where

A(X) =min{|G| : G # 0 openin X}.

Istvan Juhasz (Rényi Institute) Resolvability Sao Paulo 2013 2/18



resolvability

DEFINITION. (Hewitt, 1943, Pearson, 1963)

— A topological space X is x-resolvable iff it has « disjoint dense
subsets. (resolvable = 2-resolvable)

— X is maximally resolvable iff it is A(X)-resolvable, where

A(X) =min{|G| : G # 0 openin X}.

EXAMPLES:

Istvan Juhasz (Rényi Institute) Resolvability Sao Paulo 2013 2/18



resolvability

DEFINITION. (Hewitt, 1943, Pearson, 1963)

— A topological space X is x-resolvable iff it has « disjoint dense
subsets. (resolvable = 2-resolvable)

— X is maximally resolvable iff it is A(X)-resolvable, where

A(X) =min{|G| : G # 0 openin X}.

EXAMPLES:

— R is maximally resolvable.

Istvan Juhasz (Rényi Institute) Resolvability Sao Paulo 2013 2/18



resolvability

DEFINITION. (Hewitt, 1943, Pearson, 1963)

— A topological space X is x-resolvable iff it has « disjoint dense
subsets. (resolvable = 2-resolvable)

— X is maximally resolvable iff it is A(X)-resolvable, where

A(X) =min{|G| : G # 0 openin X}.

EXAMPLES:
— R is maximally resolvable.

— Compact Hausdorff,

Istvan Juhasz (Rényi Institute) Resolvability Sao Paulo 2013 2/18



resolvability

DEFINITION. (Hewitt, 1943, Pearson, 1963)

— A topological space X is x-resolvable iff it has « disjoint dense
subsets. (resolvable = 2-resolvable)

— X is maximally resolvable iff it is A(X)-resolvable, where

A(X) =min{|G| : G # 0 openin X}.

EXAMPLES:
— R is maximally resolvable.

— Compact Hausdorff, metric,

Istvan Juhasz (Rényi Institute) Resolvability Sao Paulo 2013 2/18



resolvability

DEFINITION. (Hewitt, 1943, Pearson, 1963)

— A topological space X is x-resolvable iff it has « disjoint dense
subsets. (resolvable = 2-resolvable)

— X is maximally resolvable iff it is A(X)-resolvable, where

A(X) =min{|G| : G # 0 openin X}.

EXAMPLES:
— R is maximally resolvable.

— Compact Hausdorff, metric, and linearly ordered spaces are
maximally resolvable.

Istvan Juhasz (Rényi Institute) Resolvability Sao Paulo 2013 2/18



resolvability

DEFINITION. (Hewitt, 1943, Pearson, 1963)

— A topological space X is x-resolvable iff it has « disjoint dense
subsets. (resolvable = 2-resolvable)

— X is maximally resolvable iff it is A(X)-resolvable, where

A(X) =min{|G| : G # 0 openin X}.

EXAMPLES:
— R is maximally resolvable.

— Compact Hausdorff, metric, and linearly ordered spaces are
maximally resolvable.

QUESTION. What happens if these properties are relaxed?
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(ii) X is an SD space if every non-isolated point x € X is an SD limit.

THEOREM. (Sharma and Sharma, 1988)
Every T; crowded SD space is w-resolvable.

THEOREM. (DTTW, 2002)
MN spaces are SD, hence crowded MN spaces are w-resolvable.

PROBLEM. (Ceder and Pearson, 1967)
Are w-resolvable spaces maximally resolvable?
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Clearly, MN spaces are DSD.

Main results of [J-S-Sz]

— If k is measurable then there is a MN space X with A(X) =«
that is wy-irrresolvable.

—If X'is DSD with | X| < R, then X is maximally resolvable.

— From a supercompact cardinal, it is consistent to have a
MN space X with |[X| = A(X) = R,, that is wo-irresolvable.

This left a number of questions open.
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FACTS.
— Any "measure" is countably complete, hence w-indecomposable.

— [Donder, 1988] If there is a not maximally decomposable ultrafilter
then there is a measurable cardinal in some inner model.

— [Kunen - Prikry, 1971] Every ultrafilter 7 with A(F) <X, is
maximally decomposable.
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— Every MN space (of cardinality < ) is maximally resolvable.

— Every ultrafilter F (with A(F) < k) is maximally decomposable.

(2) TFAEC

— There is a measurable cardinal.

— There is a MN space that is not maximally resolvable.

— There is a MN space X with | X| = A(X) = R, thatis
w1 -irresolvable.
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—The topology 7ron T: ForGC T, G e 7f iff
te G= GNS(t) € F(1),

— X(F) = (T, 7F) is called a filtration space.

FACT. [J-S-Sz] Every filtration space X(F) is MN.

Moreover, filtration spaces determine the resolvability behavior
of all MN (or DSD) spaces.
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If Fis an ultrafiliration and p > w is a regular cardinal s.t. F(t) is
p-descendingly complete for all t € T = dom(F), then X(F) is
hereditarily ;. -irresolvable.

COROLLARY. [J-S-Sz]

If 7 € un(k) is @ measure and F(t) = F for all t € dom(F) = x<“ then
X(F) is hereditarily wy-irresolvable.
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DEFINITION. [J-M] F is a A-filtration if
— T =dom(F) C \=¥,

—foreacht € T thereis w < i < A s.t.

S(t)={t"a:a < pu}rand F(t) € un(pu),

—moreover, forany uy < Aand t e T:
{orppo > p} € F(1).
NOTE. If F is a Afiltration then | X(F)| = A(X(F)) = A.
— The Xfiltration F is full if dom(F) = A<“, i.e. s = A for all t € A<¥.

Full A-filtrations were considered in [J-S-Sz].
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THEOREM [J-S-SZ]

For x < A =cf(\), TFAEV
— Every DSD space X with | X| = A(X) = X\ is k-resolvable.
— Every MN space X with | X| = A(X) = X is k-resolvable.

— For every full A-filtration F, the space X(F) is x-resolvable.

THEOREM [J-M]

For X singular and cf(\)" < x < A, TFAEV
— Every DSD space X with | X| = A(X) = A is k-resolvable.
— Every MN space X with | X| = A(X) = X is k-resolvable.

— For every Mfiltration F, the space X(F) is x-resolvable.

NOTE. For maximal resolvability, the cases ~ = )\ are of interest.
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the two steps of reduction

If \is regular, X is DSD with | X| = A(X) = A, and there are
"dense many" points in X that are not CAPs of any SD set of size A,
then X is \-resolvable.

For any \ > w, if X is any space s.t. every point in X is the CAP of
some SD set of size ), then there is a full \-filiration F and a one-one
continuous map

g: X(F)— X.

This takes care of the case when \ is regular.

The singular case (proved in [J-M]) is similar but more complicated.
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A-resolvability of \-filtration spaces

THEOREM [J-M]
If « < Xand F is a \filtration s.t.

(i) for every t € T =dom(F), if u; > x then F(t) is k-decomposable,
(ii) for every t € T = dom(F) and p < &,

{a < pt : F(t"a) is u-decomposable} € F(t),

then X(F) is x-resolvable.

COROLLARY [J-M]

If every F € un(u) is maximally decomposable whenever w < p < A,
then X(F) is A-resolvable for any A-filtration F.
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