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resolvability

DEFINITION. (Hewitt, 1943, Pearson, 1963)

– A topological space X is κ-resolvable iff it has κ disjoint dense
subsets. (resolvable ≡ 2-resolvable)

– X is maximally resolvable iff it is ∆(X )-resolvable, where

∆(X ) = min{|G| : G 6= ∅ open in X} .

EXAMPLES:

– R is maximally resolvable.

– Compact Hausdorff, metric, and linearly ordered spaces are
maximally resolvable.

QUESTION. What happens if these properties are relaxed?

István Juhász (Rényi Institute) Resolvability Sao Paulo 2013 2 / 18



resolvability

DEFINITION. (Hewitt, 1943, Pearson, 1963)

– A topological space X is κ-resolvable iff it has κ disjoint dense
subsets. (resolvable ≡ 2-resolvable)

– X is maximally resolvable iff it is ∆(X )-resolvable, where

∆(X ) = min{|G| : G 6= ∅ open in X} .

EXAMPLES:

– R is maximally resolvable.

– Compact Hausdorff, metric, and linearly ordered spaces are
maximally resolvable.

QUESTION. What happens if these properties are relaxed?

István Juhász (Rényi Institute) Resolvability Sao Paulo 2013 2 / 18



resolvability

DEFINITION. (Hewitt, 1943, Pearson, 1963)

– A topological space X is κ-resolvable iff it has κ disjoint dense
subsets.

(resolvable ≡ 2-resolvable)

– X is maximally resolvable iff it is ∆(X )-resolvable, where

∆(X ) = min{|G| : G 6= ∅ open in X} .

EXAMPLES:

– R is maximally resolvable.

– Compact Hausdorff, metric, and linearly ordered spaces are
maximally resolvable.

QUESTION. What happens if these properties are relaxed?

István Juhász (Rényi Institute) Resolvability Sao Paulo 2013 2 / 18



resolvability

DEFINITION. (Hewitt, 1943, Pearson, 1963)

– A topological space X is κ-resolvable iff it has κ disjoint dense
subsets. (resolvable ≡ 2-resolvable)

– X is maximally resolvable iff it is ∆(X )-resolvable, where

∆(X ) = min{|G| : G 6= ∅ open in X} .

EXAMPLES:

– R is maximally resolvable.

– Compact Hausdorff, metric, and linearly ordered spaces are
maximally resolvable.

QUESTION. What happens if these properties are relaxed?

István Juhász (Rényi Institute) Resolvability Sao Paulo 2013 2 / 18



resolvability

DEFINITION. (Hewitt, 1943, Pearson, 1963)

– A topological space X is κ-resolvable iff it has κ disjoint dense
subsets. (resolvable ≡ 2-resolvable)

– X is maximally resolvable iff it is ∆(X )-resolvable,

where

∆(X ) = min{|G| : G 6= ∅ open in X} .

EXAMPLES:

– R is maximally resolvable.

– Compact Hausdorff, metric, and linearly ordered spaces are
maximally resolvable.

QUESTION. What happens if these properties are relaxed?

István Juhász (Rényi Institute) Resolvability Sao Paulo 2013 2 / 18



resolvability

DEFINITION. (Hewitt, 1943, Pearson, 1963)

– A topological space X is κ-resolvable iff it has κ disjoint dense
subsets. (resolvable ≡ 2-resolvable)

– X is maximally resolvable iff it is ∆(X )-resolvable, where

∆(X ) = min{|G| : G 6= ∅ open in X} .

EXAMPLES:

– R is maximally resolvable.

– Compact Hausdorff, metric, and linearly ordered spaces are
maximally resolvable.

QUESTION. What happens if these properties are relaxed?

István Juhász (Rényi Institute) Resolvability Sao Paulo 2013 2 / 18



resolvability

DEFINITION. (Hewitt, 1943, Pearson, 1963)

– A topological space X is κ-resolvable iff it has κ disjoint dense
subsets. (resolvable ≡ 2-resolvable)

– X is maximally resolvable iff it is ∆(X )-resolvable, where

∆(X ) = min{|G| : G 6= ∅ open in X} .

EXAMPLES:

– R is maximally resolvable.

– Compact Hausdorff, metric, and linearly ordered spaces are
maximally resolvable.

QUESTION. What happens if these properties are relaxed?

István Juhász (Rényi Institute) Resolvability Sao Paulo 2013 2 / 18



resolvability

DEFINITION. (Hewitt, 1943, Pearson, 1963)

– A topological space X is κ-resolvable iff it has κ disjoint dense
subsets. (resolvable ≡ 2-resolvable)

– X is maximally resolvable iff it is ∆(X )-resolvable, where

∆(X ) = min{|G| : G 6= ∅ open in X} .

EXAMPLES:

– R is maximally resolvable.

– Compact Hausdorff, metric, and linearly ordered spaces are
maximally resolvable.

QUESTION. What happens if these properties are relaxed?

István Juhász (Rényi Institute) Resolvability Sao Paulo 2013 2 / 18



resolvability

DEFINITION. (Hewitt, 1943, Pearson, 1963)

– A topological space X is κ-resolvable iff it has κ disjoint dense
subsets. (resolvable ≡ 2-resolvable)

– X is maximally resolvable iff it is ∆(X )-resolvable, where

∆(X ) = min{|G| : G 6= ∅ open in X} .

EXAMPLES:

– R is maximally resolvable.

– Compact Hausdorff,

metric, and linearly ordered spaces are
maximally resolvable.

QUESTION. What happens if these properties are relaxed?

István Juhász (Rényi Institute) Resolvability Sao Paulo 2013 2 / 18



resolvability

DEFINITION. (Hewitt, 1943, Pearson, 1963)

– A topological space X is κ-resolvable iff it has κ disjoint dense
subsets. (resolvable ≡ 2-resolvable)

– X is maximally resolvable iff it is ∆(X )-resolvable, where

∆(X ) = min{|G| : G 6= ∅ open in X} .

EXAMPLES:

– R is maximally resolvable.

– Compact Hausdorff, metric,

and linearly ordered spaces are
maximally resolvable.

QUESTION. What happens if these properties are relaxed?

István Juhász (Rényi Institute) Resolvability Sao Paulo 2013 2 / 18



resolvability

DEFINITION. (Hewitt, 1943, Pearson, 1963)

– A topological space X is κ-resolvable iff it has κ disjoint dense
subsets. (resolvable ≡ 2-resolvable)

– X is maximally resolvable iff it is ∆(X )-resolvable, where

∆(X ) = min{|G| : G 6= ∅ open in X} .

EXAMPLES:

– R is maximally resolvable.

– Compact Hausdorff, metric, and linearly ordered spaces are
maximally resolvable.

QUESTION. What happens if these properties are relaxed?

István Juhász (Rényi Institute) Resolvability Sao Paulo 2013 2 / 18



resolvability

DEFINITION. (Hewitt, 1943, Pearson, 1963)

– A topological space X is κ-resolvable iff it has κ disjoint dense
subsets. (resolvable ≡ 2-resolvable)

– X is maximally resolvable iff it is ∆(X )-resolvable, where

∆(X ) = min{|G| : G 6= ∅ open in X} .

EXAMPLES:

– R is maximally resolvable.

– Compact Hausdorff, metric, and linearly ordered spaces are
maximally resolvable.

QUESTION. What happens if these properties are relaxed?

István Juhász (Rényi Institute) Resolvability Sao Paulo 2013 2 / 18



countably compact spaces

THEOREM. (Pytkeev, 2006)
Every crowded countably compact T3 space X is ω1-resolvable.

NOTE. This fails for T2!

PROOF.(Not Pytkeev’s) Tkachenko (1979): If Y is countably compact
T3 with ls(Y ) ≤ ω then Y is scattered. But every open G ⊂ X includes
a regular closed Y , hence ls(G) ≥ ls(Y ) ≥ ω1. So, any
maximal disjoint family of dense left separated subsets of X
must be uncountable.

PROBLEM.
Is every crowded countably compact T3 space X c-resolvable?

NOTE: ∆(X ) ≥ c.
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Malychin’s problem

EXAMPLE. (Hewitt, ’43) There is a countable T3 space X that is
– crowded (i.e. ∆(X ) = |X | = ℵ0) and
– irresolvable( ≡ not 2-resolvable).

PROBLEM. (Malychin, 1995)
Is a Lindelöf T3 space X with ∆(X ) > ω resolvable?

NOTE. Malychin constructed Lindelöf irresolvable Hausdorff (= T2)
spaces, and Pavlov Lindelöf irresolvable Uryson (= T2.5) spaces.

THEOREM. (Filatova, 2004)
YES, every Lindelöf T3 space X with ∆(X ) > ω is 2-resolvable.

This is the main result of her PhD thesis. It didn’t work for 3 !
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Pavlov’s theorems

s(X ) = sup{|D| : D ⊂ X is discrete}
e(X ) = sup{|D| : D ⊂ X is closed discrete}

THEOREM. (Pavlov, 2002)
(i) Any T2 space X with ∆(X ) > s(X )+ is maximally resolvable.
(ii) Any T3 space X with ∆(X ) > e(X )+ is ω-resolvable.

THEOREM. (J-S-Sz, 2007)
Any space X with ∆(X ) > s(X ) is maximally resolvable.

THEOREM. (J-S-Sz, 2012)
Any T3 space X with ∆(X ) > e(X ) is ω-resolvable. In particular,
every Lindelöf T3 space X with ∆(X ) > ω is ω-resolvable.
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J-S-Sz

THEOREM. (J-S-Sz, 2007)
If ∆(X ) ≥ κ = cf(κ) > ω and X has no discrete subset of size κ
then X is κ-resolvable.

THEOREM. (J-S-Sz, 2012)
If X is T3, ∆(X ) ≥ κ = cf(κ) > ω and X has no closed discrete subset
of size κ then X is ω-resolvable.

NOTE. For ∆(X ) > ω regular these suffice. If ∆(X ) = λ is singular,
we need something extra.

For ∆(X ) = λ > s(X ) we automatically get that X is < λ-resolvable.

But now ∆(X ) = λ > s(X )+, so we may use Pavlov’s Thm (i).

For ∆(X ) = λ > e(X )+ we may use Pavlov’s Thm (ii).
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< λ-resolvable

THEOREM. (J-S-Sz, 2006)

For any κ ≥ λ = cf(λ) > ω there is a dense X ⊂ D(2)2κ
with ∆(X ) = κ

that is < λ-resolvable but not λ-resolvable.

NOTE. This solved a problem of Ceder and Pearson from 1967. We
used the general method of constructing D-forced spaces.

THEOREM. (Illanes, Baskara Rao)
If cf(λ) = ω then every < λ-resolvable space is λ-resolvable.

PROBLEM.
Is this true for each singular λ? How about λ = ℵω1?
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monotone normality

DEFINITION.

The space X is monotonically normal ( MN ) iff it is T1 (i.e. all
singletons are closed) and it has a monotone normality operator H
that "halves" neighbourhoods :

H assigns to every 〈x ,U〉, with x ∈ U open, an open set H(x ,U) s. t.

(i) x ∈ H(x ,U) ⊂ U ,

and

(ii) if H(x ,U) ∩ H(y ,V ) 6= ∅ then x ∈ V or y ∈ U .

FACT. Metric spaces and linearly ordered spaces are MN.

QUESTION. Are MN spaces maximally resolvable?
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SD spaces

DEFINITION.
(i) D ⊂ X is strongly discrete if there are pairwise disjoint

open sets {Ux : x ∈ D} with x ∈ Ux for x ∈ D.
EXAMPLE: Countable discrete sets in T3 spaces are SD.

(ii) X is an SD space if every non-isolated point x ∈ X is an SD limit.

THEOREM. (Sharma and Sharma, 1988)
Every T1 crowded SD space is ω-resolvable.

THEOREM. (DTTW, 2002)
MN spaces are SD, hence crowded MN spaces are ω-resolvable.

PROBLEM. (Ceder and Pearson, 1967)
Are ω-resolvable spaces maximally resolvable?
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[J-S-Sz]

[J-S-Sz] ≡ I. JUHÁSZ, L. SOUKUP AND Z. SZENTMIKLÓSSY,
Resolvability and monotone normality, Israel J. Math., 166 (2008),
no. 1, pp. 1–16.

DEFINITION. X is a DSD space if every dense subspace of X is SD.
Clearly, MN spaces are DSD.

Main results of [J-S-Sz]

– If κ is measurable then there is a MN space X with ∆(X ) = κ
that is ω1-irrresolvable.

– If X is DSD with |X | < ℵω then X is maximally resolvable.

– From a supercompact cardinal, it is consistent to have a
MN space X with |X | = ∆(X ) = ℵω that is ω2-irresolvable.

This left a number of questions open.
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decomposability of ultrafilters

DEFINITION.
– An ultrafilter F is µ-descendingly complete iff for any descending
µ-sequence {Aα : α < µ} ⊂ F we have

⋂
{Aα : α < µ} ∈ F .

µ-descendingly incomplete is (now) called µ-decomposable.

– ∆(F) = min{|A| : A ∈ F}.

– F is maximally decomposable iff it is µ-decomposable
for all (infinite) µ ≤ ∆(F).

FACTS.
– Any "measure" is countably complete, hence ω-indecomposable.

– [Donder, 1988] If there is a not maximally decomposable ultrafilter
then there is a measurable cardinal in some inner model.

– [Kunen - Prikry, 1971] Every ultrafilter F with ∆(F) < ℵω is
maximally decomposable.
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[J-M]

[J-M] ≡ I. JUHÁSZ AND M. MAGIDOR, On the maximal resolvability of
monotonically normal spaces, Israel J. Math, 192 (2012), 637-666.

Main results of [J-M]
(1) TFAEV
– Every DSD space (of cardinality < κ) is maximally resolvable.
– Every MN space (of cardinality < κ) is maximally resolvable.
– Every ultrafilter F (with ∆(F) < κ) is maximally decomposable.

(2) TFAEC
– There is a measurable cardinal.
– There is a MN space that is not maximally resolvable.
– There is a MN space X with |X | = ∆(X ) = ℵω that is

ω1-irresolvable.
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filtration spaces

DEFINITION.

– F is a filtration if dom(F ) = T is an infinitely branching tree
(of height ω) and, for each t ∈ T , F (t) is a filter on S(t) that contains
all co-finite subsets of S(t).

– The topology τF on T : For G ⊂ T , G ∈ τF iff

t ∈ G⇒ G ∩ S(t) ∈ F (t) ,

– X (F ) = 〈T , τF 〉 is called a filtration space.

FACT. [J-S-Sz] Every filtration space X (F ) is MN.

Moreover, filtration spaces determine the resolvability behavior
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irresolvability of filtration spaces

THEOREM. [J-S-Sz]
If F is an ultrafiltration and µ ≥ ω is a regular cardinal s.t. F (t) is
µ-descendingly complete for all t ∈ T = dom(F ), then X (F ) is
hereditarily µ+-irresolvable.

COROLLARY. [J-S-Sz]
If F ∈ un(κ) is a measure and F (t) = F for all t ∈ dom(F ) = κ<ω then
X (F ) is hereditarily ω1-irresolvable.
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λ-filtrations

DEFINITION. [J-M] F is a λ-filtration if

– T = dom(F ) ⊂ λ<ω,

– for each t ∈ T there is ω ≤ µt ≤ λ s.t.

S(t) = {taα : α < µt} and F (t) ∈ un(µt ) ,

– moreover, for any µ < λ and t ∈ T :

{α : µtaα > µ} ∈ F (t) .

NOTE. If F is a λ-filtration then |X (F )| = ∆(X (F )) = λ.

– The λ-filtration F is full if dom(F ) = λ<ω, i.e. µt = λ for all t ∈ λ<ω.

Full λ-filtrations were considered in [J-S-Sz].
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reduction results

THEOREM [J-S-Sz]
For κ ≤ λ = cf(λ), TFAEV

– Every DSD space X with |X | = ∆(X ) = λ is κ-resolvable.

– Every MN space X with |X | = ∆(X ) = λ is κ-resolvable.

– For every full λ-filtration F , the space X (F ) is κ-resolvable.

THEOREM [J-M]
For λ singular and cf(λ)+ < κ ≤ λ, TFAEV

– Every DSD space X with |X | = ∆(X ) = λ is κ-resolvable.

– Every MN space X with |X | = ∆(X ) = λ is κ-resolvable.

– For every λ-filtration F , the space X (F ) is κ-resolvable.

NOTE. For maximal resolvability, the cases κ = λ are of interest.
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the two steps of reduction

Lemma 1. [J-S-Sz]
If λ is regular, X is DSD with |X | = ∆(X ) = λ, and there are
"dense many" points in X that are not CAPs of any SD set of size λ,
then X is λ-resolvable.

Lemma 2. [J-S-Sz]
For any λ ≥ ω, if X is any space s.t. every point in X is the CAP of
some SD set of size λ, then there is a full λ-filtration F and a one-one
continuous map

g : X (F )→ X .

This takes care of the case when λ is regular.

The singular case (proved in [J-M]) is similar but more complicated.
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λ-resolvability of λ-filtration spaces

THEOREM [J-M]
If κ ≤ λ and F is a λ-filtration s.t.

(i) for every t ∈ T = dom(F ), if µt ≥ κ then F (t) is κ-decomposable,

(ii) for every t ∈ T = dom(F ) and µ ≤ κ,

{α < µt : F (taα) is µ-decomposable} ∈ F (t) ,

then X (F ) is κ-resolvable.

COROLLARY [J-M]
If every F ∈ un(µ) is maximally decomposable whenever ω ≤ µ ≤ λ,
then X (F ) is λ-resolvable for any λ-filtration F .
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