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Cambern 1968

d(c, ) = 3.
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d(C(K), co) =? )

C(K) ~ co = K ~ [1,w"k], com 1 < n, k < w. )

d(C([1,w"k]), c0) =7, for 1 < n, k < w.
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A Banach space X # {0} is said to have finite cotype 2 < g < co
if there is a constant x > 0 such that no matter how we select

finitely many vectors vy, v» ..., v, from X,

1
2

S uillo) (/Wi ()i )
vil|9)e < Kk | ri(t)vi||cdt ,
=1 0 =

where r; : [0,1] — R denote the Rademacher functions, defined by
setting

ri(t) = sign(sin 2'7t).
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Recall that the derivative of a topological space K is the space
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derivative K(®) is defined recursively setting K(®) = K and

Kle) _ (K@) ifa=6+1,
1l Npea KW if ais a limit ordinal.



Embeddings of Co(K) into Co(I', X) spaces

Recall that the derivative of a topological space K is the space
K@) obtained by deleting from K its isolated points. The a-th
derivative K(®) is defined recursively setting K(®) = K and

Kle) _ (K@) ifa=6+1,
1l Npea KW if ais a limit ordinal.

Definition
A topological space K is said to be scattered if K(®) = & for some
ordinal . In this case, the minimal « such that K(®) = & is called

the height of K (in short, ht(K)).
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Let K be a locally compact Hausdorff space, I" an infinite set with
the discrete topology and X a Banach space with finite cotype.
Then for every integer n > 1 and for every linear embedding T
from Co(K) into Co(I, X) we have

KM £ g — ||T|| |T7Y > 2n+ 1.
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e For a non-empty closed subset K; C K we denote

1l = sup {IF(x)[}-
K

XEK7

e For every function f € Co(K, X) and € > 0 we denote
K(f,e) = {x e K: [f(x)|| = €}.
e For n+ 1 functions go, g1,...,8n in Co(K) satisfying
0<go(x) <gilx) <...<gnlx) <1,Vx €K,
we denote by Fg . .. theset of all (fi,...,f;) € Co(K)" such that

0 < go(x) < fA(x) < gi1(x) < ... < fr(x) < ga(x),Vx € K.
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Let J and K be locally compact Hausdorff spaces, X a Banach space
with finite cotype and suppose that T is a linear embedding of Co(K)
into Co(J, X) with || T7Y|| =1 and || T|| < 2n+ 1 for some integer n > 1.
Take 0 > 0 and 6 < 1 such that || T||+26 < (2n+1)0, and go, g1, ---,&n
in Co(K) satisfying 0 < go(x) < g1(x) < ... < gn(x) < 1,¥x € K.
Assume that foreach 1 < i< j<n

)

)

Teo;
2n)ﬂ/€( gJ7

Then

.....
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Let K be a locally compact Hausdorff space, I" an infinite set with
the discrete topology and X a Banach space with finite cotype.
Suppose that there exists a linear embedding T from from Co(K)
into Co(I', X). Then K has finite height and

ITIITH) > 2 he(K) — 1.
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Let X a Banach space with finite cotype and 1 < n, k < w. Then

d(C([1,w"k], X), Go(N, X)) > 2n + 1.
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Recall that every ordinal number 1 < ¢ < w® has an unique
representation in the Cantor normal form,

f: w”"mk 4+ ... +w"2m2 +w”1m1

where 0 < m <m<...<n<wand1l<m <w,
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Recall that every ordinal number 1 < ¢ < w® has an unique
representation in the Cantor normal form,

52 w”"mk 4+ ... +w"2m2 +w”1m1

where 0<m<m<...<nmn<wandl<m <w,
1<m<w,....,1<my<wandl1<k<uw.

Definition

| A

For an ordinal number 1 < ¢ < w®, represented in the Cantor
normal form as above, we set £[% = ¢ and by induction

fl = Wrhmg 4+ ...+ w2my +wntt ifr=1,
1 (rmH if1<r<w.

v
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By using the Cantor normal form we an check that each ordinal number
1 < ¢ < w" admits an unique representation in the form

E=w" i+ w2 w4 W (1)

where1<j<n 0<ik<wforl<k<j—land1l<jj<w.

5[1] =w" 4w .+ oJnijJrl("j—l +1)
A = Wl w2+ 0" (j o + 1)

f[j_ll _ wn—l(il + 1)
el = r
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Next, for each function g € Co(I7, X), set S(g) : [1,w"] = X by

_ [ 38" &=,
S(g)(€) = { er;é g(f[r]) 4 %g(w") if 1 <& <wmasin (1).




Embeddings of Co(K) into Co(I', X) spaces

Next, for each function g € Co(I7, X), set S(g) : [1,w"] = X by

_ [ 380 75 ="
S(g)) = { S i ig(El) +1g(wn) fl<e<wasin (1)

S defines a bounded linear operator from C([1,w"], X) to
Co(I'n, X) with
2n+1

2

1511 =



Embeddings of Co(K) into Co(I', X) spaces

Moreover

T o S = ICO(FH,X) and S oT = IC([l,w"],X)'
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Moreover

ToS= ICO(FH,X) and SoT = IC([l,w"],X)'

C([1,w"k], X) = C([1,w"], X) & ... & C([1,w"], X),

v/

k
CQ(N,X) = Co(N,X) b...0 CO(N,XZ.

-~

k
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Let X a Banach space with finite cotype and 1 < n, k < w. Then

d(C([1,w"k], X), Go(N, X)) = 2n + 1.
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Thank you for your attention!
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