How does the distortion of linear embedding of $C_0(K)$ into $C_0(\Gamma, X)$ spaces depend on the height of K?

Leandro Candido Batista Joint work with Elói Medina Galego

University of São Paulo, Department of Mathematics, IME

lc@ime.usp.br

Brazilian Conference on General Topology and Set Theory, São Sebastião, August 12-16, 2013

L. Candido, E. M. Galego

How does the distortion of linear embedding of $C_0(K)$ into $C_0(\Gamma, X)$ spaces depend on the height of K?, J. Math. Anal. Appl. 402 (2013), 185–190.

L. Candido, E. M. Galego

How does the distortion of linear embedding of $C_0(K)$ into $C_0(\Gamma, X)$ spaces depend on the height of K?, J. Math. Anal. Appl. 402 (2013), 185–190.

L. Candido, E. M. Galego

How far $C_0(\Gamma, X)$ with Γ discrete from $C_0(K, X)$ spaces?, Fund. Math. 218(2012), 151–163.

Banach 1932

$$T: c \rightarrow c_0$$

$$T(x_1, x_2, x_3, ...) = (2 \lim_{n \to \infty} x_n, x_1 - \lim_{n \to \infty} x_n, x_2 - \lim_{n \to \infty} x_n, ...).$$

Banach 1932

$$T: c \rightarrow c_0$$

$$T(x_1, x_2, x_3, ...) = (2 \lim_{n \to \infty} x_n, x_1 - \lim_{n \to \infty} x_n, x_2 - \lim_{n \to \infty} x_n, ...).$$

$$||T|| ||T^{-1}|| = 3.$$

Banach 1932

$$T:c\rightarrow c_0$$

$$T(x_1, x_2, x_3, ...) = (2 \lim_{n \to \infty} x_n, x_1 - \lim_{n \to \infty} x_n, x_2 - \lim_{n \to \infty} x_n, ...).$$

$$||T|| ||T^{-1}|| = 3.$$

$$\operatorname{d}(X,Y) = \inf_{T} \left\{ \|T\| \|T^{-1}\| : T \text{ is an isomorphism of } X \text{ onto } Y \right\}.$$

Banach 1932

$$T: c \rightarrow c_0$$

$$T(x_1, x_2, x_3, ...) = (2 \lim_{n \to \infty} x_n, x_1 - \lim_{n \to \infty} x_n, x_2 - \lim_{n \to \infty} x_n, ...).$$

$$||T|| ||T^{-1}|| = 3.$$

$$\operatorname{d}(X,Y) = \inf_{T} \left\{ \|T\| \|T^{-1}\| : T \text{ is an isomorphism of } X \text{ onto } Y \right\}.$$

Cambern 1968

$$d(c, c_0) = 3.$$

$$d(C(K),c_0)=?$$

$$d(C(K), c_0) = ?$$

$$C(K) \sim c_0 \Longrightarrow K \approx [1, \omega^n k], \text{ com } 1 \leq n, k < \omega.$$

$$d(C(K), c_0) = ?$$

$$C(K) \sim c_0 \Longrightarrow K \approx [1, \omega^n k], \text{ com } 1 \leq n, k < \omega.$$

Question

$$d(C([1, \omega^n k]), c_0) = ?$$
, for $1 \le n, k < \omega$.

Definition

A Banach space $X \neq \{0\}$ is said to have *finite cotype* $2 \leq q < \infty$ if there is a constant $\kappa > 0$ such that no matter how we select finitely many vectors v_1, v_2, \ldots, v_n from X,

$$\left(\sum_{i=1}^{n} \|v_i\|^q\right)^{\frac{1}{q}} \leq \kappa \left(\int_0^1 \|\sum_{i=1}^{n} r_i(t)v_i\|^2 dt\right)^{\frac{1}{2}},$$

where $r_i:[0,1]\to\mathbb{R}$ denote the *Rademacher functions*, defined by setting

$$r_i(t) = \operatorname{sign}(\sin 2^i \pi t).$$

Recall that the derivative of a topological space K is the space $K^{(1)}$ obtained by deleting from K its isolated points. The α -th derivative $K^{(\alpha)}$ is defined recursively setting $K^{(0)} = K$ and

$$K^{(\alpha)} = \begin{cases} (K^{(\delta)})^{(1)} & \text{if } \alpha = \delta + 1, \\ \bigcap_{\beta < \alpha} K^{(\beta)} & \text{if } \alpha \text{ is a limit ordinal.} \end{cases}$$

Recall that the derivative of a topological space K is the space $K^{(1)}$ obtained by deleting from K its isolated points. The α -th derivative $K^{(\alpha)}$ is defined recursively setting $K^{(0)} = K$ and

$$\mathcal{K}^{(\alpha)} = \left\{ \begin{array}{ll} (\mathcal{K}^{(\delta)})^{(1)} & \text{if } \alpha = \delta + 1, \\ \bigcap_{\beta < \alpha} \mathcal{K}^{(\beta)} & \text{if } \alpha \text{ is a limit ordinal.} \end{array} \right.$$

Definition

A topological space K is said to be scattered if $K^{(\alpha)} = \emptyset$ for some ordinal α . In this case, the minimal α such that $K^{(\alpha)} = \emptyset$ is called the height of K (in short, ht(K)).

Theorem

Let K be a locally compact Hausdorff space, Γ an infinite set with the discrete topology and X a Banach space with finite cotype. Then for every integer $n \geq 1$ and for every linear embedding T from $C_0(K)$ into $C_0(\Gamma,X)$ we have

$$K^{(n)} \neq \varnothing \Longrightarrow ||T|| ||T^{-1}|| \ge 2n + 1.$$

ullet For a non-empty closed subset $K_1\subseteq K$ we denote

$$||f||_{K_1} = \sup_{x \in K_1} \{|f(x)|\}.$$

• For every function $f \in C_0(K,X)$ and $\epsilon > 0$ we denote

$$\mathcal{K}(f,\epsilon) = \{x \in K : ||f(x)|| \ge \epsilon\}.$$

• For n+1 functions g_0, g_1, \ldots, g_n in $C_0(K)$ satisfying

$$0 \leq g_0(x) \leq g_1(x) \leq \ldots \leq g_n(x) \leq 1, \forall x \in K,$$

we denote by $\mathcal{F}_{g_0,\ldots,g_n}$ the set of all $(f_1,\ldots,f_n)\in C_0(K)^n$ such that

$$0 \leq g_0(x) \leq f_1(x) \leq g_1(x) \leq \ldots \leq f_n(x) \leq g_n(x), \forall x \in K.$$

Proposition

Let J and K be locally compact Hausdorff spaces, X a Banach space with finite cotype and suppose that T is a linear embedding of $C_0(K)$ into $C_0(J,X)$ with $\|T^{-1}\|=1$ and $\|T\|<2n+1$ for some integer $n\geq 1$. Take $\delta>0$ and $\theta<1$ such that $\|T\|+2\delta\leq (2n+1)\theta$, and g_0,g_1,\ldots,g_n in $C_0(K)$ satisfying $0\leq g_0(x)\leq g_1(x)\leq\ldots\leq g_n(x)\leq 1, \forall x\in K$. Assume that for each $1\leq i< j\leq n$

$$\mathcal{K}(Tg_i, \frac{\delta}{2n}) \cap \mathcal{K}(Tg_j, \frac{\delta}{2n}) = \varnothing.$$

Then

$$\|g_0\|_{_{\mathcal{K}^{(1)}}} > \theta \Longrightarrow \bigcap_{\mathcal{F}_{g_0,...,g_n}} \mathcal{K}(\mathcal{T}(\sum_{i=1}^n f_i), \delta) \cap J^{(1)} \neq \varnothing.$$

Theorem

Let K be a locally compact Hausdorff space, Γ an infinite set with the discrete topology and X a Banach space with finite cotype. Suppose that there exists a linear embedding T from from $C_0(K)$ into $C_0(\Gamma, X)$. Then K has finite height and

$$||T|| ||T^{-1}|| \ge 2 ht(K) - 1.$$

$$C([0,1]) \hookrightarrow C_0(\mathbb{N}, C([0,1])).$$

$$C([0,1]) \hookrightarrow C_0(\mathbb{N}, C([0,1])).$$

$$[0,1]^{(\omega)} = [0,1].$$

Corollary

Let X a Banach space with finite cotype and $1 \le n, k < \omega$. Then

$$d(C([1,\omega^n k],X),C_0(\mathbb{N},X))\geq 2n+1.$$

Recall that every ordinal number $1 \le \xi < \omega^{\omega}$ has an unique representation in the *Cantor normal form*,

$$\xi = \omega^{n_k} m_k + \ldots + \omega^{n_2} m_2 + \omega^{n_1} m_1$$

where $0 \le n_1 < n_2 < \ldots < n_k < \omega$ and $1 \le m_1 < \omega$, $1 \le m_2 < \omega, \ldots, 1 \le m_k < \omega$ and $1 \le k < \omega$.

Recall that every ordinal number $1 \le \xi < \omega^{\omega}$ has an unique representation in the *Cantor normal form*,

$$\xi = \omega^{n_k} m_k + \ldots + \omega^{n_2} m_2 + \omega^{n_1} m_1$$

where $0 \le n_1 < n_2 < \ldots < n_k < \omega$ and $1 \le m_1 < \omega$, $1 \le m_2 < \omega, \ldots, 1 \le m_k < \omega$ and $1 \le k < \omega$.

Definition

For an ordinal number $1 \le \xi < \omega^{\omega}$, represented in the Cantor normal form as above, we set $\xi^{[0]} = \xi$ and by induction

$$\xi^{[r]} = \begin{cases} \omega^{n_k} m_k + \ldots + \omega^{n_2} m_2 + \omega^{n_1 + 1} & \text{if } r = 1, \\ \left(\xi^{[r-1]}\right)^{[1]} & \text{if } 1 \le r < \omega. \end{cases}$$

Let Γ_n be the ordinal space $[1, \omega^n]$ provided with the discrete topology and replace the space $C_0(\mathbb{N}, X)$ by $C_0(\Gamma_n, X)$.

Let Γ_n be the ordinal space $[1, \omega^n]$ provided with the discrete topology and replace the space $C_0(\mathbb{N}, X)$ by $C_0(\Gamma_n, X)$.

For each function $f \in C([1,\omega^n],X)$ set $T(f):\Gamma_n \to X$ by

$$T(f)(\xi) = \begin{cases} 2f(\omega^n) & \text{if } \xi = \omega^n, \\ f(\xi) - f(\xi^{[1]}) & \text{if } 1 \le \xi < \omega^n. \end{cases}$$

Let Γ_n be the ordinal space $[1, \omega^n]$ provided with the discrete topology and replace the space $C_0(\mathbb{N}, X)$ by $C_0(\Gamma_n, X)$.

For each function $f \in C([1, \omega^n], X)$ set $T(f) : \Gamma_n \to X$ by

$$T(f)(\xi) = \begin{cases} 2f(\omega^n) & \text{if } \xi = \omega^n, \\ f(\xi) - f(\xi^{[1]}) & \text{if } 1 \le \xi < \omega^n. \end{cases}$$

T defines a bounded linear operator from $C([1,\omega^n],X)$ to $C_0(\Gamma_n,X)$ with

$$||T|| = 2.$$

Remark

By using the Cantor normal form we an check that each ordinal number $1 \le \xi < \omega^n$ admits an unique representation in the form

$$\xi = \omega^{n-1} i_1 + \omega^{n-2} i_2 + \omega^{n-3} i_3 + \ldots + \omega^{n-j} i_j$$
 (1)

where $1 \le j \le n$, $0 \le i_k < \omega$ for $1 \le k \le j-1$ and $1 \le i_j < \omega$.

Remark

By using the Cantor normal form we an check that each ordinal number $1 \leq \xi < \omega^n$ admits an unique representation in the form

$$\xi = \omega^{n-1} i_1 + \omega^{n-2} i_2 + \omega^{n-3} i_3 + \ldots + \omega^{n-j} i_j$$
 (1)

where $1 \le j \le n$, $0 \le i_k < \omega$ for $1 \le k \le j-1$ and $1 \le i_j < \omega$.

$$\xi^{[1]} = \omega^{n-1} i_1 + \omega^{n-2} i_2 + \dots + \omega^{n-j+1} (i_{j-1} + 1)$$

$$\xi^{[2]} = \omega^{n-1} i_1 + \omega^{n-2} i_2 + \dots + \omega^{n-j+2} (i_{j-2} + 1)$$

$$\vdots$$

$$\xi^{[j-1]} = \omega^{n-1} (i_1 + 1)$$

$$\xi^{[j]} = \omega^n$$

Next, for each function $g \in C_0(\Gamma_n, X)$, set $S(g) : [1, \omega^n] \to X$ by

$$S(g)(\xi) = \begin{cases} \frac{1}{2}g(\omega^n) & \text{if } \xi = \omega^n, \\ \sum_{r=0}^{j-1}g(\xi^{[r]}) + \frac{1}{2}g(\omega^n) & \text{if } 1 \leq \xi < \omega^n \text{ as in (1)}. \end{cases}$$

Next, for each function $g \in C_0(\Gamma_n, X)$, set $S(g) : [1, \omega^n] \to X$ by

$$S(g)(\xi) = \begin{cases} \frac{1}{2}g(\omega^n) & \text{if } \xi = \omega^n, \\ \sum_{r=0}^{j-1} g(\xi^{[r]}) + \frac{1}{2}g(\omega^n) & \text{if } 1 \leq \xi < \omega^n \text{ as in (1)}. \end{cases}$$

S defines a bounded linear operator from $C([1,\omega^n],X)$ to $C_0(\Gamma_n,X)$ with

$$||S|| = \frac{2n+1}{2}$$

Moreover

$$T \circ S = I_{C_0(\Gamma_n,X)}$$
 and $S \circ T = I_{C([1,\omega^n],X)}$.

Moreover

$$T \circ S = I_{C_0(\Gamma_n,X)}$$
 and $S \circ T = I_{C([1,\omega^n],X)}$.

$$C([1,\omega^n k],X) = \underbrace{C([1,\omega^n],X) \oplus \ldots \oplus C([1,\omega^n],X)}_{k},$$

$$C_0(\mathbb{N},X) = \underbrace{C_0(\mathbb{N},X) \oplus \ldots \oplus C_0(\mathbb{N},X)}_{k}.$$

Corollary

Let X a Banach space with finite cotype and $1 \le n, k < \omega$. Then

$$d(C([1, \omega^n k], X), C_0(\mathbb{N}, X)) = 2n + 1.$$

Thank you for your attention!

- [1] S. Banach, *Théorie des opérations linéaires*. Monografie Matematyczne, Warsaw, 1932.
- [2] C. Bessaga, A. Pełczyński, *Spaces of continuous functions IV*, Studia Math. 19 (1960), 53-62.
- [3] M. Cambern, *On mappings of sequence spaces*. Studia Math. 30 (1968), 73–77.
- [4] L. Candido, E. M. Galego, How does the distortion of linear embedding of $C_0(K)$ into $C_0(\Gamma, X)$ spaces depend on the height of K?, J. Math. Anal. Appl. 402 (2013), 185–190.
- [5] L. Candido, E. M. Galego, How far is $C_0(\Gamma, X)$ with Γ discrete from the $C_0(K, X)$ spaces?, Fund. Math. 218 (2012), 151–163.
- [6] J. Diestel, H. Jarchow, A. Tonge, Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, 43. Cambridge University Press, Cambridge, 1995.

- [7] R. Engelking, General Topology, Sigma Ser. Pure Math. 6, Heldermann, Berlin, 1989.
- [8] Y. Gordon, On the distance coefficient between isomorphic function spaces, Israel J. Math. 8 (1970), 391–397.
- [9] W. B. Johnson, J. Lindenstrauss, Basics concepts in the geometry of Banach spaces, in: Handbook of the geometry of Banach spaces, Vol. 1, North-Holland, Amsterdam, 2001, 1–84.
- [10] W. Marciszewski, On Banach spaces C(K) isomorphic to $c_0(\Gamma)$, Studia Math. 156 (2002), 295–302.
- [11] S. Mazurkiewicz, W. Sierpiński, *Contribution à la topologie des ensembles dénombrables*. Fund. Math. 1 (1920), 17–27.
- [12] Z. Semadeni, Banach Spaces of Continuous Functions Vol. I. Monografie Matematyczne, Tom 55. Warsaw, PWN-Polish Scientinfic Publishers, Warsaw, 1971.