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On minimal non-Pfaffian graphs
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Based on work with Marcelo Carvalho and Cláudio Lucchesi

Lovász and Plummer’s book “Matching Theory” is the basic reference for this subject.

Pfaffian Orientations

1. Sign of a perfect matching: If M := {u1v1, u2v2, . . . , ukvk} is a perfect matching of a
digraph G, then sgn(M) is the sign of the permutation π(M) := (u1, v1, u2, v2, . . . , uk, vk).
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π(M) sgn(M)
(2, 1, 3, 4) −
(1, 3, 4, 2) +
(1, 4, 2, 3) +

2. Pfaffian of the adjacency matrix: Pf(A) =
∑

M∈M

sgn(M) 1,

where M is the set of all perfect matchings.

3. Classical Identity: det(A) = (Pf(A))2.

4 Alternating cycle: A even cycle in which the edges belong alternately to two different
perfect matchings.

5. Oddly-oriented cycle: A even cycle in which there are an odd number of edges whose
directions agree with any chosen sense of traversal.

6. Pfaffian orientation: An orientation D of G is Pfaffian if all alternating cycles are oddly-
oriented. A graph G is Pfaffian if it admits a Pfaffian orientation.

7. Theorem 8.3.2, (Lovász and Plummer): An orientation D of G is Pfaffian iff all perfect
matchings of G have the same sign in D.

8. Corollary: If D is a Pfaffian orientation of G, then the determinant of the adjacency
matrix of D is the square of number of perfect matchings of G.

9. Two Problems: POP: Given a graph G, decide if G is Pfaffian. PREP: Given an
orientation D of G, decide if D is Pfaffian. (Vazirani and Yannakakis (1989): The two
problems are polynomially-equivalent.)



Tutte (1947) was the first to use Pfaffians in matching theory. (A delightful account of
how Tutte was led to Pfaffians is given in his mathematical autobiography: Graph Theory

As I Have Known It.)

11. Kasteleyn (1963) showed that every planar graph has a Pfaffian orientation.

He showed an orientation of a plane graph in which each cycle bounding a finite face (odd or
even) has an odd number of edges directed in the clockwise direction is a Pfaffian orientation
of the graph. (An account of Kasteleyn work can be found in Lovász-Plummer.)

12. Similar orientations: Two orientations D and D′ of a graph G are similar if one can be
obtained from the other by reversing the orientations of edges in a cut.

13. Any two Pfaffian orientations of a Pfaffian bipartite matching covered graph are similar.

14. K3,3 is not Pfaffian.

Matching Covered Graphs
(1-extendable graphs in Lovász-Plummer)

1. A matching covered graph is a nontrivial connected graph in which each edge is in some
perfect matching.

Using Tutte’s theorem it can be shown that every 2-connected cubic graph is matching
covered.

2. Cuts: For a subset X of the vertex set V of a graph G, the set ∂(X) of all edges with
exactly one end in X is called a cut of G with X and X = V \ X as shores. (For graph
theoretical notation, we follow Bondy and Murty’s book Graph Theory.)

3. Cut-contractions: If C := ∂(X) is a cut of G, the two graphs G/X and G/X (obtained from
G by shrinking, respectively, X and X to single vertices) are called the two C-contractions
of G.

4. Separating cuts: A cut C of a matching covered graph G is separating if both C-contractions
are also matching covered.

5. Tight cuts: A cut C is tight if |C ∩ M | = 1, for each perfect matching M of G.

Every tight cut is also a separating cut, but the converse is not true. (Both the cuts shown
in the figure below are separating cuts, but only the second cut is tight.)

6. Tight cut decomposition: If G has a nontrivial tight cut C = ∂(X), then G/X and G/X
are smaller matching covered graphs than G.
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If either G/X or G/X has a nontrivial tight cut, that graph may be decomposed into even
smaller matching covered graphs.

In this manner any matching covered graph may be decomposed into graphs free of nontrivial
tight cuts.

W5

K4 K3,3

7. Bricks and Braces: Of the graphs resulting from a tight cut decomposition of a
graph G, those which are non-bipartite are called bricks and those which are bipartite are
called braces.

8. Bricks are 3-connected and bi-critical (G − {u, v} has a perfect matching for any two
distinct vertices u and v).

9. Theorem (Lovász, 1987): Any two tight cut decompositions of a matching covered graph
yield the same list of bricks and braces (up to multiple edges).

In particular, the number of bricks of a graph is an invariant of the graph. (The dimension
of the linear space generated by the incidence vectors of perfect matchings of m.c. a graph
is |E| − |V | + 2 − b(G), where b(G) is the number of bricks of G.)

10. Solid Graphs. A brick does not have any nontrivial tight cuts, but it may have
nontrivial separating cuts. (For example, the Petersen graph, which is a brick, has six
nontrivial separating cuts.)

A graph G is solid if every separating cut is tight.

All bipartite graphs are solid.

11. Solid bricks: A brick G is solid iff it is free of nontrivial separating cuts.

Read-Wakabayashi, CLM (2004): A brick G is solid iff, for any two disjoint odd cycles C1

and C2, the graph G − (V (C1) ∪ V (C2)) has no perfect matching.

CLM (2004): A brick is solid if and only if its perfect matching polytope is defined by the
following set of inequalities:

xe ≥ 0, ∀ e ∈ E∑
e∈∂(v) xe = 1 ∀ v ∈ V.
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(Edmonds’ description of the perfect matching polytope of a graph includes the so called odd

set constraints:
∑

e∈∂(S) xe ≥ 1, for each odd subset S ⊂ V . What we have shown is that we

do not need to consider all odd subsets; we only need to consider subsets S for which ∂(S)
is a separating cut. For example, to describe the perfect matching polytope of the Petersen
graph, we only need six odd set constraints.)

12. Examples of Solid Bricks: A brick G is odd-intercyclic if any two odd cycles of G have at
least one vertex in common.

Odd wheels and Möbius ladders are examples of odd-intercyclic bricks—(The Möbius ladder
M4n is obtained from a cycle of length 4n by joining each vertex to its antipodal vertex.)

Odd-intercyclic bricks are solid by the Reed-Wakabayashi theorem. Not every solid brick is
odd inter-cyclic. (First graph on page six is an example.)

We showed that odd wheels are the only simple planar solid bricks.

SOBREP is the problem of deciding if a given brick is solid. We do not know if this problem
is in NP . (It is in co-NP by the Reed-Wakabayashi theorem.)

Cuts and Orientations

Theorem: Let C := ∂(X) be a separating cut of G. If G is Pfaffian, then both G/X and
G/X are also Pfaffian.

The converse is false in general. (Let G be the Petersen graph, and let X be the vertex set
of a pentagon. Then, both G/X and G/X, being planar, are Pfaffian. But G itself is not
Pfaffian.)

Little and Rendl (1991): The converse is true if C is tight.

A matching covered graph is Pfaffian iff each of its bricks and braces is Pfaffian.

Removable edges and doubletons

An edge e of a matching covered graph G is removable if G − e is also matching covered.

The brick shown in the following figure has just one removable edge, namely e.

e

A pair {e, f} of edges of a matching covered graph G is called a removable doubleton if
neither e, nor f , is individually removable, but G − {e, f} is matching covered.

(Möbius ladders M4n have many pairs of removable doubletons.)
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Ear Decompositions (Will not be mentioned in the talk.)

A matching covered graph G may not have removable edges or doubletons. For example,
this is the case if |V (G)| ≥ 4, and every edge of G is incident with a vertex of degree two.
In such cases, one needs to speak about ‘ears’ rather than edges. An ear in a graph G is
a path of odd length all of whose internal vertices have degree two. If P is an ear in G,
then G − P denotes the graph obtained from G by deleting all edges and internal vertices
of P . An ear P in a matching covered graph G is removable if G − P is also matching
covered; in this case G is said to be obtained from G−P by adding the ear P . Any bipartite
matching covered graph G may be obtained from K2 by a sequence of ear additions. More
precisely, there exists a sequence (G1, G2, . . . , Gr) of matching covered subgraphs of G such
that (i) G1 = K2, (ii) Gr = G, and (iii) for 1 ≤ i ≤ r − 1, the graph Gi+1 is obtained from
Gi by adding an ear. Such a sequence is called an ear decomposition of G.

A removable double ear in a matching covered graph G is a pair {P1, P2} of two vertex-
disjoint ears such that neither P1 nor P2 is individually removable, but G − P1 − P2 is
matching covered; in this case G is said to be obtained from G − P by adding the double
ear {P1, P2}.

A well-known theorem of Lovász and Plummer states that, given any matching covered
graph G, there exists a sequence (G1, G2, . . . , Gr) of matching covered subgraphs of G such
that (i) G1 = K2, (ii) Gr = G, and (iii) for 1 ≤ i ≤ r − 1, the graph Gi+1 is obtained from
Gi by adding a single or a double ear.

An ear decomposition of a non-bipartite matching covered graph requires at least one double
edge addition. But some graphs require the addition of more than one double ear. For
example, every ear decomposition of the Petersen graph requires two double ear additions.

A non-bipartite matching covered graph G is near-bipartite if it has an ear decomposition
(G1, G2, . . . , Gr) in which the first r−1 graphs are bipartite. (Equivalently, all ear additions,
except the last one, are single ear additions.)

S-Minors

A matching covered graph H is a separation deletion minor or an S-minor of a matching
covered graph G if H can be obtained from G by a sequence of deletions of removable edges
or doubletons, and contractions of shores of separating cuts.

Minimal non-Pfaffian Graphs

Theorem: If G is Pfaffian, then every S-minor of G is also Pfaffian.

Definition: A non-Pfaffian matching covered graph G is minimal if every proper S-minor
of G is Pfaffian.

We seek to characterize minimal non-Pfaffian graphs à la Kuratowski-Wagner.
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K3,3

Previous work—bipartite graphs

Little (1973): Every bipartite non-Pfaffian graph has K3,3 as an S-minor.

Robertson, Seymour, and Thomas (1999), McCuaig (2004): Polynomial-time algorithm.

The Pfaffian Orientation Problem (POP) turns out to be equivalent to many seemingly
unrelated problems.

For example, a digraph D has an even directed cycle if and only if a related bipartite digraph
is not Pfaffian.

Previous work—near-bipartite graphs

Fischer and Little (2001): Every near-bipartite non-Pfaffian graph has either K3,3, or Γ1,
or Γ2 as an S-minor. (In each of Γ1 and Γ2, the pair {e, f} is a removable doubleton, and
the deletion of {e, f} results in a bipartite graph.)

ee
f f

Lucchesi-Miranda (2008): Polynomial-time algorithm.

Norine and Thomas (2008): ‘Generalizing’ the above graphs constructed an infinite
family of minimal non-Pfaffian bricks.

Our work

Theorem 1.: No minimal non-Pfaffian brick G is solid, therefore:

Every minimal non-Pfaffian brick must contain two disjoint odd cycles C1 and C2 such that
G − (V (C1) ∪ V (C2)) has a perfect matching.

Theorem 2: Every non-Pfaffian solid graph must contain K3,3 as an S-minor.
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A key ingredient in our proof

If G is a Pfaffian bipartite matching covered graph, and e is any removable edge of G, then
any Pfaffian orientation of G − e may be extended to a Pfaffian orientation of G.

The analogous property does not, in general, hold in case of non-bipartite graphs.

e
?

b-Invariant edges: A removable edge of a brick G is b-invariant if G − e has exactly one
brick.

K4 and the triangular prism have no removable edges at all.

The deletion of any edge from the Petersen graph results in a graph with two bricks!

Some years ago we showed:

Theorem (CLM, 2000): Any brick different from K4, the triangular prism, and the Petersen
graph has a b-invariant edge.

The relevance of b-invariant edges to Pfaffian orientations is the following:

Theorem: If G is a Pfaffian brick, and e is any b-invariant edge of G, then any Pfaffian
orientation of G − e may be extended to a Pfaffian orientation of G.

In a solid brick, every removable edge is also b-invariant.

A second key ingredient

Let G be a minimal non-Pfafian bipartite graph, and let e be a removable edge of G. Then,
it is easy to see that there is an orientation D of G such that:

• D − e is a Pfaffian orientation of G − e;
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• there are two perfect matchings M1 and M2 of G, both containing e, which have
different signs.

We observed the following:

Theorem: Every removable edge of G − e lies in M1 ∪ M2.

Ananlogous statement, with removable replaced by b-invariant holds for non-bipartite graphs.

Solid bricks have “too many” b-invariant edges which makes it very “inconvenient” for them
to be minimal non-Pfaffian graphs.

Some References

I have already mentioned the book Matching Theory by Lovász and Plummer.

Tight cut decomposition, and its uniqueness were established by Lovász in a paper entitled
Matching Structure and the Matching Lattice which appeared in JCT-B in 1987. This paper
has been the single most important source of inspiration for our work.

Our results on the existence of b-invariant edges appeared in JCT-B in 2002.

Our results relating solid bricks to the perfect matching polytope appeared in JCT-B in 2004.

This talk is based our paper A Generalization of Little’s Theorem on Pfaffian Orientations

which has been accepted for publication in JCT-B.

The paper by Norine and Thomas on minimal non-Pfaffian graphs appeared in JCT-B
in 2008.

They do not restrict themselves to matching covered graphs. So, the operations they use
look more complicated. We came up with our notion of minimality independently; the first
draft of our paper was written in 2004. When restricted to matching covered graphs, their
notion of minimality and ours are the same.

They present an infinite family of minimal non-Pfaffian bricks, and conjecture that every
minimal non-Pfaffian graph is either K3,3, or the Petersen graph, or is a member of the
infinite family they define.
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