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Abstract

Continuing the work begun by Philip Hall in 1935, we here give nec-
essary and sufficient conditions for the existence, in a bipartite graph,
of a set of edges satisfying specified lower and upper bounds. Here the
graph is directed bipartite; lower and upper bounds are specified by
integer-valued functions, [ and u, on the collection of all directed sets
of vertices, or perhaps on some subcollection, such as the collection of
singletons. We require these functions to be super- and sub-modular,
respectively. An (I, u)-transversalis a set t of edges that satisfies these
bounds. A second restriction, ¢ C t C r, for edge sets g and r, is also
permitted.

One might hope to give necessary and sufficient conditions for the
existence of a general (I, u)-transversal. In this paper, this is done for
the special case in which the domain of one of the functions, say u, is
restricted to singletons. Graph G contains an (I, u)-transversal ¢ such
that ¢ C t C r if and only if for each X in Dom{ and each subset N
of VG, IX < uN + [g,7](X & N). This function [g, 7], when applied
to a set Y of vertices of (G, is the number of edges of r directed away
from Y minus the number of edges of ¢ directed toward Y.

This work is motivated by the Woodall Conjecture, which states:
in any directed graph, a largest packing of transversals of directed
coboundaries is equal in size to a smallest directed cut. We observe
that the domain of this Conjecture can be reduced to directed bipar-
tite graphs. For such graphs, the partial (I, u)-theory developed here
is used to show that the edge set of any directed bipartite graph can
be partitioned into two subsets, one a transversal of directed cobound-
aries, the other a (k—1)-transversal of the vertex coboundaries. In this
application we require the supermodularity of the size of a maximum
partition of a directed coboundary into directed cuts.



1 Woodall’s Conjecture and Directed Bipar-
tite Graphs

Let G be a graph with vertex set VG and edge set eG. For any set X of
vertices in G, X denotes set VG \ X. The coboundary of a set X of vertices
in G is the set of edges that each have one end in X and one end in X. A set
d of edges is a coboundary if there is a set X of vertices such that d = §.X.
A cut is a minimal nonnull coboundary.

For directed graph G, each edge o of G leaves its positive end pa and
enters its negative end na. The constituents of a coboundary § X are 67X :=
{a € X : pa € X} and 6~ X = {a € 0X : na € X}. Vertex set X is
outdirected if 6~ X = 0, indirected if 67X = (); in either case X is directed.
For X a directed set of vertices, 0.X is a directed coboundary. A directed cut
is a cut that is a directed coboundary.

A transversal of directed cuts in G is a set t of edges that intersects (has
a nonnull intersection with) each directed cut.

Woodall’s Conjecture In directed graph G, let T* be a mazimum packing
of directed cut tranversals; let d, be a minimum directed cut: then |T*| = |d.|.

Woodall [11] described this Conjecture as the Menger dual of the

Lucchesi-Younger Theorem A minimum directed cut transversal has size
equal to that of a mazximum packing of directed cuts: |t.| = |D*|. [7, 8, 6]

A graph G is directed bipartite if its edge set eG is a directed coboundary
in G. Equivalently, G has a directed bipartition, a bipartition (V*,V~) such
that each edge a has pa in V* and na in V.

The Woodall Conjecture can be reduced, without loss of generality, to
directed bipartite graphs. Let G be any directed graph, with maximum
packing 7 and minimum directed cut d,. Let k := |d,|. For each vertex v in
G that is not a source or sink, replace v in G' by two vertices, a source v+ and
sink v~, whose incident edges are those in G with positive end v and negative
end v, respectively. Add k edges directed from v™ to v~. The sources and
sinks are left unchanged. Let G’ denote the directed bipartite graph thus
obtained. Now, each directed cut of G is a directed cut of G'. And each
directed cut of G’ that is not in G has at least k edges. Moreover, for every
packing of transversals of G, the images of these transversals in G make up
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a packing of directed cut transversals of G. So the minimax equality holds
in GG if and only if it holds in directed bipartite graph G.

2 f-Coverings and Supermodular Functions

In this section, we characterize when an f-covering in a directed graph exists
in terms of the existence of a supermodular function satisfying a certain
inequality.

For directed graph G, let f be a real-valued function defined on some
subsets of VG. An f-covering is a set t of edges of G such that for each X in
the domain Dom f of f, fX < [tNdtX|—[tNd~X|. Given two real-valued
functions f and g, we say that f < g if Dom f C Dom g and, for all X in
Dom f, fX < gX. Note that < is transitive.

Whenever the domain of f is closed under intersection and union, f is
supermodularif f(X NY )+ f(XUY) > fX+ fY for each X, Y in Dom f;
f is submodular if the reverse inequality holds, and modular if equality holds.

For ¢ and r subsets of eG, let [¢,7] = [r|* — [¢J7, where [r]TX :=
167X Nr| and [¢]”X := [~ X Ngq|, for all subsets X of VG. Let [t] ab-
breviate [t,t]. Then ¢ is an f-covering if and only if f < [t].

Proposition 1 For edge sets q, r and vertex sets X, Y of G,

g, X +lg, Y = g r](XNY) + [grl(XUY)
+ [0tXnoYnr| + [0XNndYnr|
— "X NdoYNngl — |[67XNdtYNgl.

Proof. The asserted equation follows from

PIPX Y = (X NY)

[F[F(XUY)
+ 9P XNnéYnr| |

_I_
+ |6 XndétYnr|,
and the similar relation for ¢.0

Corollary [q,r| is submodular if ¢ C r and modular if ¢ = r.O



The main result of this section is

Theorem 2 For directed graph G, let [ be a real-valued function on subsets
of the vertex set of G; let q and r be subsets of eG such that ¢ C r. There is
an f-covering t satisfying q C t C r if and only if there exists a supermodular
integer-valued function h such that f < h <q,r].

Proof. For necessity, let t be an f-covering satisfying ¢ € t C r. Then
f <1t] =1[t,t] <lg,r]. The inequality is satisfied with [t] in the role of h. By
the above Corollary, [t] is modular.

For sufficiency, let h be an integer-valued supermodular function such
that f < h < |[q,r]. We use induction on r \ ¢. If this difference is null, i.e.,
q = r, then [q,r] = [q, q] = [q], whereupon f < [q¢], i.e., ¢ is an f-covering.

Assume then that r \ ¢ is nonnull.

Lemma For each edge o in 1\ q, either h < [q,r\{a}] or h <[qU{a} 7]
Proof. Since h < [q,r], either

(a) h<lgr\{a}], or
(b) 3X C VG such that hX = [¢,7]X and a € §7X.

Likewise, either

(a) h<[qu{a},7], or
(b) 3Y C VG such that hY = [¢,7]Y and v € §7Y.

Suppose that in each case, alternative (b) holds. Then o € 6TX No~Y,
whence by Proposition 1,

(g, 7] X + [q,7]Y > [q,7]( X NY) + [¢,r]( X UY).

The left side is equal to hX + hY’; the right side is at least as large as
(X NY)+h(XUY). This contradicts the supermodularity of h. So at
least one of alternatives (a) holds. O

Under each of the alternatives of the Lemma, there is by induction hy-
pothesis an f-covering t such that ¢ C ¢ C r. The Theorem follows by
induction. O



3 (l,u)-Transversals for Directed Bipartite
Graphs

Consider a graph G with directed bipartition (V*, V7). We seek necessary
and sufficient conditions for the existence of a set of edges in G satisfying
lower and upper bounds, [ and u, on directed coboundaries.

The first such Theorem we take to be Hall’s [5]: the lower bound is 1
on each vertex in VT; the upper bound is 1 on each vertex in VG. There
exists such an (I, u)-transversal in G if and only if, for each subset X of VT,
| X | < |N|, where N is the neighbor set of X.

Hall’s Theorem has been generalized to arbitrary integer-valued functions
[ and u on the vertices of (G. As a notational device, the domains of [ and u
are extended to subsets of VG by (X = > {lv: v € X} and likewise for u.
There exists an (I, u)-transversal in G if and only if, for each X and N such
that one of X and N is a subset of V™ and the other a subset of V', the
following inequality holds:

IX < uN + [6X \ 6N]. (1)

There have been results which extend this Theorem further, so that the
domain of one of [ and u includes directed subsets of VG other than sin-
gletons. Theorems of this type have been found by McWhirter-Younger [9],
Rolle [10], Edmonds-Giles [1] and Feofiloff [2, 3]. The generalization described
here is easy to relate to special cases, even to Hall’s Theorem.

We begin with a general definition of (I, u)-transversal. Let VT and V™~ be
the collections of all outdirected and indirected subsets of VG, respectively.
Let [ be an integer-valued function on some subcollection Dom 1 of VT that
is closed under intersection and union; for X in VT NV, we take [X = 0;
finally, [ is supermodular. Let u have the same defining properties over V—,
except that u is submodular rather than supermodular. Subset ¢ of eGG is an
(1, w)-transversal if IX < |07 X Nt|foreach X in Doml, and |6~ X Nt| < uX
for each X in Domu. More compactly, set t of edges is an (I, u)-transversal
if [ < [t] and —u < [t]. Note that an (I, u)-transversal is a directed cut
transversal if [X > 1 for each X in VT \ V™.

Let the join of | and —u be a function (I,—u) whose domain is
Dom1U Domu and whose value is [X if X € Doml, and —uX if X €



Domu. Set t of edges is an (I,u)-transversal if and only if (I, —u) < [t].
Consequently, an ([, u)-transversal is an ([, —u)-covering, and conversely.

In the following Theorem, function u is restricted to singletons and
co-singletons: Domu := {{v}:v € V-}U{{v}:v € V*}. Under these re-
strictions, we adopt the following notational conventions: uv := wu{v} for
v e VT and uwv = um for v € V*. Moreover, for N a subset of VG,
ulN =Y {uv :v € N}. We also assume that u > 0.

Theorem 3 Let G be a graph with directed bipartition (V*,V 7). Let q and
r be subsets of eG such that ¢ C r. There exists an (I, u)-transversal t such
that ¢ C t Cr if and only if for each X in Doml and subset N of VG,

IX <uN +[g,r}(X & N).

Remark To see that this inequality generalizes (1), observe that

if XCVH NCV~, then 6X\0N = 6"(XUN) = §"(X@N);

if XCV-,NCVT, then 6X\oN = 6"(X\N) = 6"(X®N).
Proof of Theorem 3. To prove necessity, consider any X in Dom [ and subset
N of VG. Let Ny := NN X and Ny := N\ X. Let ¢ be an (I, u)-transversal.

By hypothesis, I < [t]; by the Corollary of Proposition 1, [t] is modular.
Thus,

IX < [X =[(X&N)+[t]N; — [t]No.

By hypothesis, [t] < u and 0 < u, whence

[(tIN; < [t]TN; < w(VTNN;) <
—[t]Ny < [t] Ny < w(V-NNy) < ul.

Using these inequalities, we conclude that

IX < ulNy+uNs+[t](X ®N)
< uN+[t](X ® N).

By hypothesis, ¢ C ¢t C r, whence [t] < [g,7]: the cited inequality holds.
To prove sufficiency, assume that the inequality stated in the Theorem
holds. Define function h : 2V¢ — Z by

RY :=max{lX —uN:Y =X®&N,X € Doml,N CVG}.
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Function h is well-defined since for every subset Y of VG, it is the case that
Y =X&Y for X =0 € Doml. We claim that this function h satisfies
(I, —u) < h <[g,r] and is supermodular. Assuming this, since h is integer-
valued, there is, by Theorem 2, an (I, —u)-covering ¢ such that ¢ C t C r.
An (I, —u)-covering is an ([, u)-transversal. So the proof is completed by
verifying this claim.

(1) (I, —u) <h <lg,r].

For X in Doml, X = X & 0, whence hX > (X —ul) = [X. For Y C VG,
Y =0&Y, whence hY > 1) — uY = —uY. Thus (I, —u) < h.

For Y a subset of VG, there exist X in Dom [ and subset N of VG, where
Y = X @ N, such that hY = [X — uN. Since [X —uN < [¢,7][(X @ N) =
[q,7]Y, there follows h < [q,7].

(i) h is supermodular.

Let Y, Y’ be subsets of VG. There exist X, X’ in Dom( and subsets
N,N'" of VG, where Y = X @& N, Y' = X'@ N, for which

Y = IX — uN
RY'" = IX'" — uN"

Let X;:= XNX', Xy := X UX'. By the supermodularity of [,
IX +1X'<IX;+1Xy.

Let Y7 := Y NY’, Yy := YUY’. There is just one pair N;, Ny of subsets
of VG such that Y} = X[ @N[,YU = XU D NU; namely, N] = X[ @D Y},
Ny = Xy @ Yy. A look at the Venn Diagrams (Figure 1) verifies that
NNN D NynNNy and NUN' D N;U Ny since u is nonnegative,

uN + uN' > uN; + ulNy.

Therefore
hY—f-hY, S lX] — UN[ —f-lXU —UNU.

The right side of this inequality is at most AY; + hYy. We conclude that h
is supermodular.O
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4 An Application of the (I,u)-Transversal
Theorem

Proposition 4 For directed bipartite graph G, let k be the size of a minimum
directed cut. There is a transversal t of directed cuts such that eG \ t is a
(k — 1)-transversal of vertex coboundaries.

A subset t of eG is a (k — 1)-transversal of vertex coboundaries if each non-
isolated vertex of G has at least k — 1 edges of ¢ incident.
Proof of Proposition j. For each set of vertices X in V', denote by uX the
cardinality of a maximum partition of . X into nonnull directed coboundaries.
Frank, Seb6 and Tardos [4] showed that function p is supermodular. Let [ be
this function p. Let u be the function on vertices which assigns each vertex
v the value |0{v}| — (k — 1) if v is nonisolated, and 0 otherwise.

Consider the conditions of the (I, u)-transversal Theorem, with ¢ := () and
r=eG. f X eVrand NCVG, let Nt := NNVt and N~ := NNnV~.
By the hypotheses on k and r, and the definition of [ and wu,

k-1X < |6X],
|ONT] < k-uNT,
ON~| < k-uN".

Every edge of 0X either has one end in N or lies in 07(X @ N), whence
6| < [oN*| +[oN~| +[5%(x @ V).
From these inequalities we conclude that
kX < k[uNt +uN~ + |07(X @ N)| /K],

whence [X < uN + [0,eG](X @ N), i.e., the conditions of Theorem 3 are
satisfied. By that Theorem, G has an ([, u)-transversal ¢. For these values of
[ and u, set t is a transversal of directed cuts and eG'\ ¢ is a (k—1)-transversal
of vertex coboundaries.O

While this result is modest, it suggests that a strengthened (I, u)-
transversal Theorem could have useful implications for the Woodall Con-
jecture.
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