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Abstract

Continuing the work begun by Philip Hall in 1935, we here give nec-
essary and sufficient conditions for the existence, in a bipartite graph,
of a set of edges satisfying specified lower and upper bounds. Here the
graph is directed bipartite; lower and upper bounds are specified by
integer-valued functions, l and u, on the collection of all directed sets
of vertices, or perhaps on some subcollection, such as the collection of
singletons. We require these functions to be super- and sub-modular,
respectively. An (l, u)-transversal is a set t of edges that satisfies these
bounds. A second restriction, q ⊆ t ⊆ r, for edge sets q and r, is also
permitted.

One might hope to give necessary and sufficient conditions for the
existence of a general (l, u)-transversal. In this paper, this is done for
the special case in which the domain of one of the functions, say u, is
restricted to singletons. Graph G contains an (l, u)-transversal t such
that q ⊆ t ⊆ r if and only if for each X in Dom l and each subset N
of V G, lX ≤ uN + [q, r](X ⊕ N). This function [q, r], when applied
to a set Y of vertices of G, is the number of edges of r directed away
from Y minus the number of edges of q directed toward Y .

This work is motivated by the Woodall Conjecture, which states:
in any directed graph, a largest packing of transversals of directed
coboundaries is equal in size to a smallest directed cut. We observe
that the domain of this Conjecture can be reduced to directed bipar-
tite graphs. For such graphs, the partial (l, u)-theory developed here
is used to show that the edge set of any directed bipartite graph can
be partitioned into two subsets, one a transversal of directed cobound-
aries, the other a (k−1)-transversal of the vertex coboundaries. In this
application we require the supermodularity of the size of a maximum
partition of a directed coboundary into directed cuts.
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1 Woodall’s Conjecture and Directed Bipar-

tite Graphs

Let G be a graph with vertex set V G and edge set eG. For any set X of
vertices in G, X denotes set V G \X. The coboundary of a set X of vertices
in G is the set of edges that each have one end in X and one end in X. A set
d of edges is a coboundary if there is a set X of vertices such that d = δX.
A cut is a minimal nonnull coboundary.

For directed graph G, each edge α of G leaves its positive end pα and
enters its negative end nα. The constituents of a coboundary δX are δ+X :=
{α ∈ δX : pα ∈ X} and δ−X := {α ∈ δX : nα ∈ X}. Vertex set X is
outdirected if δ−X = ∅, indirected if δ+X = ∅; in either case X is directed.
For X a directed set of vertices, δX is a directed coboundary. A directed cut

is a cut that is a directed coboundary.
A transversal of directed cuts in G is a set t of edges that intersects (has

a nonnull intersection with) each directed cut.

Woodall’s Conjecture In directed graph G, let T ∗ be a maximum packing

of directed cut tranversals; let d∗ be a minimum directed cut: then |T ∗| = |d∗|.

Woodall [11] described this Conjecture as the Menger dual of the

Lucchesi-Younger Theorem A minimum directed cut transversal has size

equal to that of a maximum packing of directed cuts: |t∗| = |D∗|. [7, 8, 6]

A graph G is directed bipartite if its edge set eG is a directed coboundary
in G. Equivalently, G has a directed bipartition, a bipartition (V +, V −) such
that each edge α has pα in V + and nα in V −.

The Woodall Conjecture can be reduced, without loss of generality, to
directed bipartite graphs. Let G be any directed graph, with maximum
packing T ∗ and minimum directed cut d∗. Let k := |d∗|. For each vertex v in
G that is not a source or sink, replace v in G by two vertices, a source v+ and
sink v−, whose incident edges are those in G with positive end v and negative
end v, respectively. Add k edges directed from v+ to v−. The sources and
sinks are left unchanged. Let G′ denote the directed bipartite graph thus
obtained. Now, each directed cut of G is a directed cut of G′. And each
directed cut of G′ that is not in G has at least k edges. Moreover, for every
packing of transversals of G′, the images of these transversals in G make up
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a packing of directed cut transversals of G. So the minimax equality holds
in G if and only if it holds in directed bipartite graph G′.

2 f-Coverings and Supermodular Functions

In this section, we characterize when an f -covering in a directed graph exists
in terms of the existence of a supermodular function satisfying a certain
inequality.

For directed graph G, let f be a real-valued function defined on some
subsets of V G. An f -covering is a set t of edges of G such that for each X in
the domain Domf of f , fX ≤ |t ∩ δ+X |−|t ∩ δ−X |. Given two real-valued
functions f and g, we say that f ≤ g if Domf ⊆ Domg and, for all X in
Domf, fX ≤ gX. Note that ≤ is transitive.

Whenever the domain of f is closed under intersection and union, f is
supermodular if f(X ∩ Y )+f(X ∪ Y ) ≥ fX+fY for each X, Y in Domf ;
f is submodular if the reverse inequality holds, and modular if equality holds.

For q and r subsets of eG, let [q, r] := [r]+ − [q]−, where [r]+X :=
|δ+X ∩ r | and [q]−X := |δ−X ∩ q |, for all subsets X of V G. Let [t] ab-
breviate [t, t]. Then t is an f -covering if and only if f ≤ [t].

Proposition 1 For edge sets q, r and vertex sets X, Y of G,

[q, r]X + [q, r]Y = [q, r](X ∩ Y ) + [q, r](X ∪ Y )
+ |δ+X ∩ δ−Y ∩ r | + |δ−X ∩ δ+Y ∩ r |
− |δ+X ∩ δ−Y ∩ q | − |δ−X ∩ δ+Y ∩ q |.

Proof. The asserted equation follows from

[r]+X + [r]+Y = [r]+(X ∩ Y ) + [r]+(X ∪ Y )
+ |δ+X ∩ δ−Y ∩ r | + |δ−X ∩ δ+Y ∩ r |,

and the similar relation for q.✷

Corollary [q, r] is submodular if q ⊆ r and modular if q = r.✷
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The main result of this section is

Theorem 2 For directed graph G, let f be a real-valued function on subsets

of the vertex set of G; let q and r be subsets of eG such that q ⊆ r. There is

an f -covering t satisfying q ⊆ t ⊆ r if and only if there exists a supermodular

integer-valued function h such that f ≤ h ≤ [q, r].

Proof. For necessity, let t be an f -covering satisfying q ⊆ t ⊆ r. Then
f ≤ [t] = [t, t] ≤ [q, r]. The inequality is satisfied with [t] in the role of h. By
the above Corollary, [t] is modular.

For sufficiency, let h be an integer-valued supermodular function such
that f ≤ h ≤ [q, r]. We use induction on r \ q. If this difference is null, i.e.,
q = r, then [q, r] = [q, q] = [q], whereupon f ≤ [q], i.e., q is an f -covering.

Assume then that r \ q is nonnull.

Lemma For each edge α in r \ q, either h ≤ [q, r \ {α}] or h ≤ [q ∪ {α} , r].

Proof. Since h ≤ [q, r], either

(a) h ≤ [q, r \ {α}], or

(b) ∃X ⊆ V G such that hX = [q, r]X and α ∈ δ+X.

Likewise, either

(a) h ≤ [q ∪ {α} , r], or

(b) ∃Y ⊆ V G such that hY = [q, r]Y and α ∈ δ−Y.

Suppose that in each case, alternative (b) holds. Then α ∈ δ+X ∩ δ−Y ,
whence by Proposition 1,

[q, r]X + [q, r]Y > [q, r](X ∩ Y ) + [q, r](X ∪ Y ).

The left side is equal to hX + hY ; the right side is at least as large as
h(X ∩ Y ) + h(X ∪ Y ). This contradicts the supermodularity of h. So at
least one of alternatives (a) holds. ✷

Under each of the alternatives of the Lemma, there is by induction hy-
pothesis an f -covering t such that q ⊆ t ⊆ r. The Theorem follows by
induction. ✷
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3 (l, u)-Transversals for Directed Bipartite

Graphs

Consider a graph G with directed bipartition (V +, V −). We seek necessary
and sufficient conditions for the existence of a set of edges in G satisfying
lower and upper bounds, l and u, on directed coboundaries.

The first such Theorem we take to be Hall’s [5]: the lower bound is 1
on each vertex in V +; the upper bound is 1 on each vertex in V G. There
exists such an (l, u)-transversal in G if and only if, for each subset X of V +,
|X| ≤ |N |, where N is the neighbor set of X.

Hall’s Theorem has been generalized to arbitrary integer-valued functions
l and u on the vertices of G. As a notational device, the domains of l and u
are extended to subsets of V G by lX :=

∑

{lv : v ∈ X} and likewise for u.
There exists an (l, u)-transversal in G if and only if, for each X and N such
that one of X and N is a subset of V + and the other a subset of V −, the
following inequality holds:

lX ≤ uN + |δX \ δN | . (1)

There have been results which extend this Theorem further, so that the
domain of one of l and u includes directed subsets of V G other than sin-
gletons. Theorems of this type have been found by McWhirter-Younger [9],
Rolle [10], Edmonds-Giles [1] and Feofiloff [2, 3]. The generalization described
here is easy to relate to special cases, even to Hall’s Theorem.

We begin with a general definition of (l, u)-transversal. Let V+ and V− be
the collections of all outdirected and indirected subsets of V G, respectively.
Let l be an integer-valued function on some subcollection Dom l of V+ that
is closed under intersection and union; for X in V+ ∩ V− , we take lX = 0;
finally, l is supermodular. Let u have the same defining properties over V−,
except that u is submodular rather than supermodular. Subset t of eG is an
(l, u)-transversal if lX ≤ |δ+X ∩ t | for eachX inDom l, and |δ−X ∩ t | ≤ uX
for each X in Domu. More compactly, set t of edges is an (l, u)-transversal
if l ≤ [t] and −u ≤ [t]. Note that an (l, u)-transversal is a directed cut
transversal if lX ≥ 1 for each X in V+ \ V−.

Let the join of l and −u be a function 〈l,−u〉 whose domain is
Dom l ∪Domu and whose value is lX if X ∈ Dom l, and −uX if X ∈
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Domu. Set t of edges is an (l, u)-transversal if and only if 〈l,−u〉 ≤ [t].
Consequently, an (l, u)-transversal is an 〈l,−u〉-covering, and conversely.

In the following Theorem, function u is restricted to singletons and
co-singletons: Domu := {{v} : v ∈ V −} ∪ {{v} : v ∈ V +} . Under these re-
strictions, we adopt the following notational conventions: uv := u{v} for
v ∈ V − and uv := u{v} for v ∈ V +. Moreover, for N a subset of V G,
uN :=

∑

{uv : v ∈ N}. We also assume that u ≥ 0.

Theorem 3 Let G be a graph with directed bipartition (V +, V −). Let q and

r be subsets of eG such that q ⊆ r. There exists an (l, u)-transversal t such
that q ⊆ t ⊆ r if and only if for each X in Dom l and subset N of V G,

lX ≤ uN + [q, r](X ⊕N).

Remark To see that this inequality generalizes (1), observe that

if X ⊆ V +, N ⊆ V −, then δX \ δN = δ+(X ∪N ) = δ+(X ⊕N);
if X ⊆ V −, N ⊆ V +, then δX \ δN = δ+(X \N) = δ+(X ⊕N).

Proof of Theorem 3. To prove necessity, consider any X in Dom l and subset
N of V G. Let N1 := N ∩X and N2 := N \X. Let t be an (l, u)-transversal.
By hypothesis, l ≤ [t]; by the Corollary of Proposition 1, [t] is modular.
Thus,

lX ≤ [t]X = [t](X ⊕N) + [t]N1 − [t]N2.

By hypothesis, [t] ≤ u and 0 ≤ u, whence

[t]N1 ≤ [t]+N1 ≤ u(V + ∩N1 ) ≤ uN1

−[t]N2 ≤ [t]−N2 ≤ u(V − ∩N2 ) ≤ uN2.

Using these inequalities, we conclude that

lX ≤ uN1 + uN2 + [t](X ⊕N)

≤ uN + [t](X ⊕N).

By hypothesis, q ⊆ t ⊆ r, whence [t] ≤ [q, r]: the cited inequality holds.
To prove sufficiency, assume that the inequality stated in the Theorem

holds. Define function h : 2V G → Z by

hY := max{lX − uN : Y = X ⊕N,X ∈ Dom l,N ⊆ V G}.
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Function h is well-defined since for every subset Y of V G, it is the case that
Y = X ⊕ Y for X = ∅ ∈ Dom l. We claim that this function h satisfies
〈l,−u〉 ≤ h ≤ [q, r] and is supermodular. Assuming this, since h is integer-
valued, there is, by Theorem 2, an 〈l,−u〉-covering t such that q ⊆ t ⊆ r.
An 〈l,−u〉-covering is an (l, u)-transversal. So the proof is completed by
verifying this claim.

(i) 〈l,−u〉 ≤ h ≤ [q, r].

For X in Dom l, X = X ⊕ ∅, whence hX ≥ lX − u∅ = lX. For Y ⊆ V G,
Y = ∅ ⊕ Y , whence hY ≥ l∅ − uY = −uY . Thus 〈l,−u〉 ≤ h.

For Y a subset of V G, there exist X in Dom l and subset N of V G, where
Y = X ⊕ N , such that hY = lX − uN . Since lX − uN ≤ [q, r](X ⊕ N) =
[q, r]Y , there follows h ≤ [q, r].

(ii) h is supermodular.

Let Y , Y ′ be subsets of V G. There exist X,X ′ in Dom l and subsets
N,N ′ of V G, where Y = X ⊕N , Y ′ = X ′ ⊕N ′, for which

hY = lX − uN
hY ′ = lX ′ − uN ′.

Let XI := X ∩X ′ , XU := X ∪X ′ . By the supermodularity of l,

lX + lX ′ ≤ lXI + lXU .

Let YI := Y ∩ Y ′ , YU := Y ∪ Y ′ . There is just one pair NI , NU of subsets
of V G such that YI = XI ⊕ NI , YU = XU ⊕ NU , namely, NI := XI ⊕ YI ,
NU := XU ⊕ YU . A look at the Venn Diagrams (Figure 1) verifies that
N ∩N ′ ⊇ NI ∩NU and N ∪N ′ ⊇ NI ∪NU ; since u is nonnegative,

uN + uN ′ ≥ uNI + uNU .

Therefore
hY + hY ′ ≤ lXI − uNI + lXU − uNU .

The right side of this inequality is at most hYI + hYU . We conclude that h
is supermodular.✷
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X

✎ ☞Y

☞

✌
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Y ′

N N ′

Figure 1: A comparison of N and N ′ with NI and NU .
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4 An Application of the (l, u)-Transversal

Theorem

Proposition 4 For directed bipartite graph G, let k be the size of a minimum

directed cut. There is a transversal t of directed cuts such that eG \ t is a

(k − 1)-transversal of vertex coboundaries.

A subset t of eG is a (k − 1)-transversal of vertex coboundaries if each non-
isolated vertex of G has at least k − 1 edges of t incident.
Proof of Proposition 4. For each set of vertices X in V+, denote by µX the
cardinality of a maximum partition of δX into nonnull directed coboundaries.
Frank, Sebö and Tardos [4] showed that function µ is supermodular. Let l be
this function µ. Let u be the function on vertices which assigns each vertex
v the value |δ{v}| − (k − 1) if v is nonisolated, and 0 otherwise.

Consider the conditions of the (l, u)-transversal Theorem, with q := ∅ and
r := eG. If X ∈ V+ and N ⊆ V G, let N+ := N ∩ V + and N− := N ∩ V − .
By the hypotheses on k and r, and the definition of l and u,

k · lX ≤ |δX| ,
|δN+| ≤ k · uN+,
|δN−| ≤ k · uN−.

Every edge of δX either has one end in N or lies in δ+(X ⊕N), whence

|δX| ≤
∣

∣

∣δN+
∣

∣

∣+
∣

∣

∣δN−

∣

∣

∣+
∣

∣

∣δ+(X ⊕N)
∣

∣

∣ .

From these inequalities we conclude that

k · lX ≤ k
[

uN+ + uN− +
∣

∣

∣δ+(X ⊕N)
∣

∣

∣ /k
]

,

whence lX ≤ uN + [∅, eG](X ⊕ N), i.e., the conditions of Theorem 3 are
satisfied. By that Theorem, G has an (l, u)-transversal t. For these values of
l and u, set t is a transversal of directed cuts and eG\t is a (k−1)-transversal
of vertex coboundaries.✷

While this result is modest, it suggests that a strengthened (l, u)-
transversal Theorem could have useful implications for the Woodall Con-
jecture.
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