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Abstract. A cut C := ∂(X) of a matching covered graph G is a separating cut if both its
C-contractions G/X and G/X are also matching covered. A brick is solid if it is free of nontrivial
separating cuts. Three of us (Carvalho, Lucchesi, and Murty [J. Combin. Theory Ser. B, 92 (2004),
pp. 319–324]) showed that the perfect matching polytope of a brick may be described without recourse
to odd set constraints if and only if it is solid, and we proved (Carvalho, Lucchesi, and Murty [Discrete
Math., 306 (2006), pp. 2383–2410]) that the only simple planar solid bricks are the odd wheels. The
problem of characterizing nonplanar solid bricks remains unsolved. A bisubdivision of a graph J is
a graph obtained from J by replacing each of its edges by paths of odd length. A matching covered
graph J is a conformal minor of a matching covered graph G if there exists a bisubdivision H of J
which is a subgraph of G such that G− V (H) has a perfect matching. For a fixed matching covered
graph J , a matching covered graph G is J-based if J is a conformal minor of G and, otherwise, G
is J-free. A basic result due to Lovász [Combinatorica, 3 (1983), pp. 105–117] states that every
nonbipartite matching covered graph is either K4-based or is C6-based or both, where C6 is the
triangular prism. Two of us (Kothari and Murty [J. Graph Theory, 82 (2016), pp. 5–32]) showed
that, for any cubic brick J , a matching covered graph G is J-free if and only if each of its bricks is
J-free. We also found characterizations of planar bricks which are K4-free and those which are C6-
free. Each of these problems remains unsolved in the nonplanar case. In this paper we show that the
seemingly unrelated problems of characterizing nonplanar solid bricks on the one hand, and on the
other of characterizing nonplanar C6-free bricks, are essentially the same. We do this by establishing
that a simple nonplanar brick, other than the Petersen graph, is solid if and only if it is C6-free. In
order to prove this, we first show that any nonsolid brick has one of the four graphs C6, the bicorn,
the tricorn, and the Petersen graph as a conformal minor. Then, using a powerful theorem due to
Norine and Thomas [J. Combin. Theory Ser. B, 97 (2007), pp. 769–817], we show that the bicorn,
the tricorn, and the Petersen graph are dead-ends in the sense that any simple nonplanar nonsolid
brick which contains any one of these three graphs as a proper conformal minor also contains C6 as
a conformal minor.
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1. Background and preliminaries.

1.1. Matching covered graphs. For graph theoretical terminology and nota-
tion, we essentially follow the book by Bondy and Murty [1]. All graphs considered
in this paper are loopless.
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A graph is matchable if it has a perfect matching. Tutte [21] established the
following fundamental theorem.

Theorem 1.1 (Tutte’s theorem). A graph G is matchable if and only if

o(G− S) ≤ |S|

for any subset S of V (G), where o(G− S) denotes the number of odd components of
G− S.

An edge e of a graph G is admissible if there is some perfect matching of G that
contains it. A matching covered graph is a connected graph of order at least two in
which every edge is admissible. A simple argument shows that a matching covered
graph cannot have a cut vertex. Tutte [21] used Theorem 1.1 to strengthen a classical
result of Petersen [19], by showing that every 2-connected cubic graph is matching
covered.

A subsetB of the vertex set V (G) of a matchable graphG is a barrier if o(G−B) =
|B|. Using Tutte’s theorem, one may easily deduce the following characterization of
inadmissible edges.

Proposition 1.2. An edge e of a matchable graph G is inadmissible if and only
if there exists a barrier of G that contains both ends of e.

The above proposition yields the following characterization of matching covered
graphs.

Corollary 1.3. A connected matchable graph G is matching covered if and only
if every barrier of G is a stable set.

There is an extensive theory of matching covered graphs and its applications. In
the book by Lovász and Plummer [16], matching covered graphs are referred to as
1-extendable graphs. The terminology we use here was introduced by Lovász in his
seminal work [15] and in the follow-up work by three of us in [4]. This work relies on
a number of notions introduced and results proved by us and, among others, Lovász
and Norine and Thomas. For the benefit of the readers, we shall describe them and
provide references. For uniformity, we have found it necessary, in some cases, to
change the notation and terminology used in the original sources.

Certain cubic graphs play special roles in this theory. They include the complete
graph K4, and the four graphs shown in Figure 1, namely, the triangular prism which
is denoted by C6 because it is the complement of the 6-cycle, the bicorn denoted by R8,
the tricorn denoted by R10 (as they resemble, in our imagination, the two-cornered
and three-cornered hats worn by pirates), and the ubiquitous Petersen graph, which
we denote by P.

1.2. Bisubdivisions. A bisubdivision of an edge e of a graph J consists of sub-
dividing it by inserting an even number of vertices. A graph H obtained from J by
bisubdividing each edge, in any subset of the edges, is called a bisubdivision of J . (The
term “bisubdivision” is due to McCuaig [17]. The same notion has been called an
“even subdivision” by some authors and an “odd subdivision” by some others.) If J
is a matching covered graph, then any bisubdivision H of J is also matching covered;
in fact, there is a one-to-one correspondence between the sets of perfect matchings of
J and of H .
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(a) (b)

(c) (d)

Fig. 1. (a) C6, (b) the bicorn R8, (c) the tricorn R10, and (d) P.

1.3. Splicing and separation.

1.3.1. The operation of splicing. Let G1 with a specified vertex u, and G2

with a specified vertex v, be two disjoint graphs. Suppose that the degree of u in G1

and the degree of v in G2 are the same and that π is a bijection between the set ∂1(u)
of edges of G1 incident with u, and the set ∂2(v) of edges of G2 incident with v. We
denote by (G1 �G2)u,v,π the graph obtained from the union of G1 − u and G2 − v by
joining, for edge e in ∂1(u), the end of e in G1 − u to the end of π(e) in G2 − v, and
refer to it as the graph obtained by splicing G1 at u with G2 at v with respect to the
bijection π. The proof of the following proposition is straightforward.

Proposition 1.4. The graph (G1 � G2)u,v,π obtained by splicing two matching
covered graphs G1 and G2 is also matching covered.

In general, the result of splicing two graphsG1 andG2 depends on the choices of u,
v, π. (Both the pentagonal prism and the Petersen graph can be realized as splicings
of two copies of the 5-wheel at their hubs.) However, if H is a vertex-transitive cubic
graph, then the result of splicing G1 = K4 with G2 = H does not depend, up to
isomorphism, on the choices of u, v, and π, and we denote it simply by K4�H . More
generally, for any cubic graph H , the result of splicing K4 and H depends, up to
isomorphism, only on the orbit of the automorphism group of H to which v belongs
(and the choices of u and π are immaterial); and we denote it simply by (K4 �H)v.

For example, since both K4 and C6 are vertex-transitive, there is only one way of
splicing K4 with itself or with C6. Thus K4 �K4 = C6, and K4 � C6 is the bicorn.
But the automorphism group of the bicorn has three orbits and, consequently, three
different graphs (one of which is the tricorn) can be produced by splicing K4 with the
bicorn (Figure 2). The automorphism group of the tricorn also has three orbits and
splicing K4 with the tricorn yields three different graphs (Figure 3).
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(a) (b) (c)

Fig. 2. Cases of splicing K4 and the bicorn R8.

Fig. 3. Cases of splicing K4 and the tricorn R10.

1.3.2. Cuts and cut-contractions. For a subset X of the vertex set V (G) of
a graph G, we denote the set of edges of G which have exactly one end in X by ∂(X)
and refer to it as the cut of X . (For a vertex v of G, we simplify the notation ∂({v})
to ∂(v).) If G is connected and C := ∂(X) = ∂(Y ), then Y = X or Y = X = V −X ,
and we refer to X and X as the shores of C.

For a cut C of a matching covered graph, the parities of the cardinalities of the
two shores are the same. Here, we shall only be concerned with those cuts that have
shores of odd cardinality. A cut is trivial if either shore has just one vertex and is
nontrivial otherwise.

Given any cut C := ∂(X) of a graph G, one can obtain a graph by shrinking X
to a single vertex x (and deleting any resulting loops); we denote it by G/(X → x)
and refer to the vertex x as its contraction vertex. The two graphs G/(X → x) and
G/(X → x) are the two C-contractions of G. When the names of the contraction
vertices are irrelevant we shall denote the two C-contractions of G simply by G/X
and G/X .

1.3.3. Separating cuts. A cut C := ∂(X) of a matching covered graph G is
separating if both the C-contractions of G are also matching covered. All trivial cuts
are clearly separating cuts. Figures 4(a) and 4(b) show examples of separating cuts,
but the cut indicated in Figure 4(c) is not a separating cut.

The following proposition provides a necessary and sufficient condition under
which a cut in a matching covered graph is a separating cut and is easily proved.

Proposition 1.5 (see [4, Lemma 2.19]). A cut C of a matching covered graph
G is a separating cut if and only if, given any edge e, there is a perfect matching Me

of G such that e ∈ Me and |C ∩Me| = 1.



1482 LUCCHESI, DE CARVALHO, KOTHARI, AND MURTY

(a) (b) (c)

Fig. 4. Cuts shown in (a) and (b) are separating cuts, but the one in (c) is not.

Let G1 and G2 be two disjoint matching covered graphs. Then, as noted before,
any graph G = (G1 � G2)u,v,π obtained by splicing G1 and G2 is also matching
covered. Clearly the cut C := ∂(V (G1) − u) = ∂(V (G2) − v), which we refer to as
the splicing cut, is a separating cut of G, and G1 and G2 are the two C-contractions
of G. Conversely, if C := ∂(X) is a separating cut of a matching covered graph
G, then G can be recovered from its two C-contractions G1 := G/(X → x) and
G2 := G/(X → x), by splicing them at the contraction vertices with respect to the
identity mapping between ∂1(x), which is equal to C, and ∂2(x), which is also equal
to C. Thus, a matching covered graph G has a nontrivial separating cut if and only
if it can be obtained by splicing two smaller matching covered graphs G1 and G2.

1.4. Bricks and braces.

1.4.1. Tight cuts, bricks and braces. A cut C in a matching covered graph
G is a tight cut of G if |C ∩M | = 1 for every perfect matching M of G. It follows
from Proposition 1.5 that every tight cut of G is also a separating cut of G. However,
the converse does not always hold. For example, the cut shown in Figure 4(b) is a
separating cut, but it is not a tight cut.

A matching covered graph, which is free of nontrivial tight cuts, is a brace if it is
bipartite and is a brick if it is nonbipartite.

1.4.2. Tight cut decompositions. Given any matching covered graph G one
may apply to it a procedure, called a tight cut decomposition, to produce a list of
bricks and braces. If G is free of nontrivial tight cuts, then this list simply consists
of G. If not, we choose a nontrivial tight cut, say, C, of G and obtain the two
C-contractions, say, G1 and G2, of G. Since C is nontrivial, the two graphs G1 and
G2 are matching covered graphs of smaller order than G. We may now apply the tight
cut decomposition procedure recursively to each of G1 and G2, and then combine the
resulting lists to produce a tight cut decomposition of G.

Clearly, any application of the tight cut decomposition procedure on a given
matching covered graph produces a list of bricks and braces. Lovász [15] proved the
following striking property of this procedure.

Theorem 1.6 (uniqueness of the tight cut decomposition). Any two applications
of the tight cut decomposition procedure on a matching covered graph yield the same
list of bricks and braces (up to multiple edges).

In other words, the list of underlying simple graphs of bricks and braces produced
by an application of the tight cut decomposition procedure does not depend on the
choices of tight cuts made during the course of the application. In particular, any two
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applications of the tight cut decomposition procedure on a matching covered graph
G yield the same number of bricks; we denote this invariant by b(G) and refer to it
as the number of bricks of G.

1.4.3. Barrier cuts and 2-separation cuts. Let G be a matching covered
graph. If B is a barrier of G, then, for any perfect matching M of G and any odd
component K of G−B, a simple counting argument shows that |M ∩ ∂(V (K))| = 1
(and also that G−B has no even components). Consequently, ∂(V (K)) is a tight cut
of G for any component K of G−B. Tight cuts of G which arise in this manner are
called barrier cuts associated with the barrier B (see Figure 4(a)).

We shall refer to a vertex cut {u, v} of G which is not a barrier as a 2-separation
of G. When {u, v} is a 2-separation of G, the fact that {u, v} is not a barrier implies
that each component of the disconnected graph G − u − v is even. Let S denote the
vertex set of the union of a nonempty proper subset of the components of G− u− v.
It can then be verified that both C := ∂(S ∪ {u}) and D := ∂(S ∪ {v}) are tight cuts
of G. Tight cuts which arise in this manner are called 2-separation cuts.

An ELP-cut in a matching covered graph is a tight cut which is either a barrier
cut or is a 2-separation cut. A theorem due to Edmonds, Lovász, and Pulleyblank [11]
states that if a matching covered graph has nontrivial tight cuts, then it has an ELP-
cut. The following characterization of bricks is a consequence of that basic result.

Theorem 1.7 (the ELP theorem). A matching covered graph is a brick if and
only if it is 3-connected and is free of nontrivial barriers.

Characterizations of braces can be found in [15] and [16].

1.4.4. Bicontractions and retracts. Suppose that v0 is a vertex of degree two
in a matching covered graph G of order four or more, and let v1 and v2 denote the two
neighbors of v0. Then {v1, v2} is a barrier of G and the barrier cut ∂(X) associated
with this barrier, where X := {v0, v1, v2}, is a tight cut of G. The graph G/X is a
brace on four vertices, and G/X is a matching covered graph on |V (G)| − 2 vertices
and is said to be obtained by bicontracting the vertex v0 in G.

Let G be any matching covered graph which has order four or more and is not
an even cycle. Then one can obtain a sequence (G1, G2, . . . , Gr) of graphs such that
(i) G1 = G, (ii) Gr has no vertices of degree two, and (iii) for 2 ≤ i ≤ r, the graph
Gi is obtained from Gi−1 by bicontracting some vertex of degree two in it. Then,
up to isomorphism, the graph Gr does not depend on the sequence of bicontractions
performed (see [7, Proposition 3.11]). We denote it by ̂G and refer to it as the retract
of G. The retract of a bisubdivision H of a brick J is J itself. The notion of the
retract of a matching covered graph will play an important role in the last section of
this article.

1.4.5. Five special families of bricks. We now describe five families of bricks
that are of particular interest in this work.

(i) Wheels. For each odd integer k ≥ 3, the wheel Wk with k spokes is a brick.
(ii) Prisms. For each integer k ≥ 3, the k-prism, which we denote by P2k, is

the Cartesian product of the k-cycle Ck and K2. For each odd k ≥ 3, the
prism P2k is a brick (and for each even k ≥ 4, the prism P2k is a brace).
McCuaig [17] and Norine and Thomas [18] refer to prisms as planar ladders.

(iii) Möbius ladders. For each integer integer k ≥ 2, the Möbius ladder of order
2k, which we denote by M2k, is the cubic graph obtained from the cycle C2k

by joining each vertex to the one that is antipodal to it. The Möbius ladder
M2k is a brick if k is even and is a brace if k is odd.



1484 LUCCHESI, DE CARVALHO, KOTHARI, AND MURTY

(iv) Truncated biwheels. Let (v1, v2, . . . , v2k) be a path of odd length, where k ≥ 2,
and let h and h′ be two vertices (hubs) not on that path. We shall refer to the
graph obtained by joining the hub h to the k vertices in {v1, v3, . . . , v2k−1} ∪
{v2k}, and joining the hub h′ to the k vertices in {v1} ∪ {v2, v4, . . . , v2k} as a
truncated biwheel. We denote it by T2k+2. The smallest truncated biwheel is
isomorphic to C6. Every truncated biwheel is a brick. Norine and Thomas [18]
refer to truncated biwheels as lower prismoids. The reason we have chosen
to call them truncated biwheels is because they are closely related to braces
known as biwheels. See [9].

(v) Staircases. Let (u1, u2, . . . , uk) and (v1, v2, . . . , vk) be two disjoint paths of
length at least one. The graph obtained from the union of these two paths
by adjoining two new vertices x and y, and joining ui to vi, for 1 ≤ i ≤ k,
and, in addition joining x to u1 and v1, y to uk and vk, and x and y to each
other, is referred to as a staircase by Norine and Thomas [18]. We denote it
by S2k+2. The staircase on six vertices is isomorphic to the triangular prism.
Every staircase is a brick.

For illustrations and for further details concerning these families of bricks, we refer
the reader to [9] and [13].

1.4.6. Near-bricks. Let G be a matching covered graph and let C := ∂(X) be
a separating cut of G such that the subgraph G[X ] induced by X is bipartite. As C
is a separating cut, by definition, the C-contraction G1 := G/(X → x) is matching
covered and thus |X | is odd. So, one of the color classes of G[X ] is larger than the
other. We denote the larger color class by X+ and the smaller color class by X− and
refer to them, respectively, as the majority and minority parts of X . If the contraction
vertex x were joined by an edge to a vertex v in the minority part, then the graph
G1 − {x, v} would be a bipartite graph with color classes of different cardinalities,
implying that there is no perfect matching of G1 which contains the edge xv. This
is impossible because G1 is matching covered. The following results may be easily
deduced from this observation.

Proposition 1.8. Let C := ∂(X) be a separating cut of a matching covered graph
G such that the subgraph G[X ] is bipartite. Then the majority part X+ of X is a
barrier of G, and C is a tight cut associated with this barrier.

Corollary 1.9. A cut of a bipartite matching covered graph is separating if and
only if it is tight.

Corollary 1.10. Let G be a matching covered graph. Then, G is bipartite if and
only if b(G) = 0.

Corollary 1.11. Let G be a matching covered graph with b(G) = 1, and let C be
a tight cut of G. Then one of the C-contractions of G is bipartite, the majority part
of that shore is a barrier of G, and C is a barrier cut associated with that barrier.

We refer to a matching covered graph G with b(G) = 1 as a near-brick. Proper-
ties of near-bricks are in many ways akin to those of bricks and, in trying to prove
statements concerning bricks by induction, it is often convenient to try to prove the
corresponding statements for near-bricks.

1.5. Solid bricks. A matching covered graph is solid if every separating cut of
G is a tight cut. In particular, any bipartite matching covered graph is solid. That
is, in a bipartite matching covered graph, every separating cut is also a tight cut
(Corollary 1.9). However, nonbipartite graphs, even bricks, may have separating cuts
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which are not tight. (For example, see Figure 4(b).) Solid bricks are precisely those
bricks which are free of nontrivial separating cuts. It can be verified that the graph
shown in Figure 4(c) is a solid brick. The following theorem is a consequence of [4,
Theorem 2.25].

Theorem 1.12. Let G be a matching covered graph and let G1 and G2 be the two
C-contractions with respect to a tight cut C of G. Then G is solid if and only if both
G1 and G2 are solid.

Corollary 1.13. A matching covered graph G is solid if and only if each of its
bricks is solid.

The notion of solid matching covered graphs was introduced in [4] by three of
us (CLM—Carvalho, Lucchesi, and Murty). We noted there that certain special
properties that are enjoyed by bipartite graphs are shared by the more general class
of solid matching covered graphs and exploited these properties in establishing the
validity of a conjecture due to Lovász.

In a later paper [6], we (CLM) showed that bipartite matching covered graphs
and solid near-bricks share the property that their perfect matching polytopes may
be defined without using the odd set inequalities.

The problem of recognizing solid bricks is in co-NP, since any nontrivial sepa-
rating cut serves as a certificate for demonstrating that a brick is nonsolid. In the
same paper mentioned above, we presented a proof of the following (unpublished)
theorem due to Reed and Wakabayashi [20] that provides another succinct certificate
for demonstrating that a brick is nonsolid.

Theorem 1.14 (Reed and Wakabayashi). A brick G has a nontrivial separating
cut if and only if it has two vertex-disjoint odd cycles C1 and C2 such that G−(V (C1)∪
V (C2)) has a perfect matching.

We showed in [8] that the only simple planar solid bricks are the odd wheels. The
solid-brick-recognition problem remains unsolved for nonplanar graphs.

Unsolved Problem 1.15. Characterize solid bricks. (Is the problem of deciding
whether or not a given brick is solid in the complexity class NP? Is it in P?)

As stated in the abstract, the objective of this paper is to establish a connection
between this unsolved problem and another basic problem (Problem 1.34) concerning
matching covered graphs.

A graph is odd-intercyclic if any two odd cycles in it have a vertex in common.
(Odd wheels and Möbius ladders of order 4k, k ≥ 1, are examples of odd-intercyclic
bricks.) It follows from Theorem 1.14 that every odd-intercyclic brick is solid.

Kawarabayashi and Ozeki [12] showed that an internally 4-connected graph G is
odd-intercyclic if and only if it satisfies one of the following conditions: (i) G − v is
bipartite for some v ∈ V , (ii) G− {e1, e2, e3} is bipartite for some three edges e1, e2,
and e3 which constitute the edges of a triangle of G, (iii) |V | ≤ 5, or (iv) G can be
embedded in the projective plane so that each face boundary has even length.

The above result leads to a polynomial-time algorithm for deciding whether or not
a given internally 4-connected graph is odd-intercyclic. However, not all solid bricks
are odd-intercyclic, nor are they necessarily internally 4-connected. For example,
the graph shown in Figure 4(c) is a solid brick which is not odd-intercyclic. We
describe below a general procedure for constructing odd-intercyclic graphs of type (iv)
mentioned in the previous paragraph and then present two infinite families of solid
bricks which are not odd-intercyclic.
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H G

v1
v2

v3

v4

v5

v6
v7v8

v9

v10

v11

v12

Fig. 5. A construction of odd-intercyclic graphs.

(a) H (b) G

Fig. 6. An example of a cubic solid brick that is not a Möbius ladder.

An infinite family of odd-intercyclic bricks. An infinite class of odd-inter-
cyclic graphs may be obtained as follows. Let H be a 2-connected planar bipartite
graph and let (v1, v2, . . . , v2k) be a facial cycle of H , where k is even. Obtain G from
H by joining, for 1 ≤ i ≤ k, the vertices vi and vi+k by a new edge. Such a graph G
has an embedding on the projective plane so that all faces are even and it is not too
difficult to see that it is odd-intercyclic. See Figure 5 for an example, where k = 6.

In the above construction, if H is just a cycle of length 2k, where k ≥ 2 is an
even integer, the resulting brick is the Möbius ladder M2k.

To obtain an odd-intercyclic brick using the above construction, it is not always
necessary to add all the chords vivi+k; in some cases, it is adequate to add just “two
crossing chords” as illustrated in Figure 6. The graph G shown in that figure is a
cubic odd-intercyclic brick. It can be checked that it is not isomorphic to the Möbius
ladder M12. (The Möbius ladder M12 does not have 5-cycles whereas the brick G
shown in Figure 6 has 5-cycles.)

A family of solid bricks obtained from bipartite Möbius ladders. Let
n ≥ 8 be an integer which is divisible by four. Then k = (n − 2)/2 is an odd
integer. Consider the Möbius ladder M2k (a brace) which is obtained from the 2k-
cycle (0, 1, 2, . . . , 2k − 2, 2k − 1) by joining each vertex i to its antipode i + k for
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0
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k − 1 k + 1
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Fig. 7. The solid brick G := Σn.

0 ≤ i ≤ k − 1. Let H denote the cubic graph obtained from M2k by deleting the
vertex k, adding three new vertices u, v, and w, and joining u to k − 1, v to 0 by an
edge labeled g, vertex w to k + 1, and u and w to each other by an edge labeled e.
(Thus H is obtained by splicing M2k and K4.) Now add to H an edge joining 1 and
2k − 1 by an edge labeled f to obtain the graph of order n = 2k + 2, which we shall
denote Σn. This construction is illustrated in Figure 7. (Note that Σ8 is the same as
the brick shown in Figure 4(c).) It is straightforward to show that the deletion of any
two vertices from G := Σn results in a connected graph with a perfect matching and
deduce, using Theorem 1.7, that G is a brick for all integers n ≥ 8 which are divisible
by four.

A somewhat more involved argument is necessary to show that G is solid. Toward
this end, let C1 and C2 be any two vertex-disjoint odd cycles of G. As may easily be
verified, the graph G−{e, f, g} is bipartite. Also any cycle that passes through g also
passes through at least one end of e and at least one end of f . Thus, we may assume
without loss of generality that e ∈ E(C1), f ∈ E(C2) and g 	∈ E(C1) ∪ E(C2). Now
we note that the graph G−{v, 0} is a bisubdivision of the odd-intercyclic brick Mn−4.
So, (V (C1) ∪ V (C2)) ∩ {v, 0} is not empty. If this intersection consists of just one of
the two vertices v and 0, then the other is an isolated vertex of G− (V (C1)∪ V (C2))
implying that this graph has no perfect matching. On the other hand, if both the
vertices v and 0 belong to V (C1) ∪ V (C2), then C1 would have to be the triangle
(u, v, w, u) and C2 would have to be the triangle (1, 0, 2k− 1, 1) and, as can be easily
checked, the graph G−(V (C1)∪V (C2)) has no perfect matching. Now it follows from
Theorem 1.14 that G is solid.

A family of solid bricks obtained from odd wheels. Let n ≥ 12 be an even
integer. If we set k := (n − 6)/2, then 2k + 1 ≥ 7 is an odd integer. Let W2k+1
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Fig. 8. The solid brick G := T12.

denote the wheel whose rim is the cycle (0, 1, 2, . . . , 2k − 1, 2k, 0). First split the hub
h of W2k+1 into three pairwise nonadjacent vertices h1, h2, and h3 and distribute the
spokes of the wheel so that

• h1 is adjacent to the vertices 0 and 1;
• h2 is adjacent to 2, 4, . . . , 2k; and
• h3 is adjacent to 3, 5, . . . , 2k − 1.

Now add two new vertices v1 and v2, and join v1 to h1 and h2, v2 to h2 and h3, and
v1 and v2 to each other, to obtain a graph, which we shall denote by Tn, of order
2k + 6 = n. (The graph G := T12 is depicted in Figure 8.) This construction can be
better understood in terms of the expansion operation (expansion of a vertex by a
barrier of size three) defined on p. 25 of [8]. Theorem 36 of the same article implies
that Tn is a brick for all even integers n ≥ 12. Using fairly simple case analysis, one
can show that if C1 and C2 are any two vertex-disjoint odd cycles of G := Tn, then
the graph G − (V (C1) ∪ V (C2)) has no perfect matching, and then, by appealing to
Theorem 1.14, deduce that G is solid.

No graph in the two families of bricks described above is cubic. We have not been
able to find a cubic solid brick that is not odd-intercyclic and would be surprised if
the following were not true.

Conjecture 1.16. Every cubic solid brick is odd-intercyclic.1

We conclude this section by defining an important parameter related to each
nontrivial separating cut C of a nonsolid brick G. Since G is free of nontrivial tight
cuts, it follows that some perfect matching M meets C in at least three edges. We
define the characteristic of C to be the minimum value of |M∩C|, where the minimum
is taken over all perfect matchings M of G that meet C in at least three edges. (In
particular, the characteristic of a nontrivial separating cut in a brick is at least three.)

1An infinite family of counterexamples to Conjecture 1.16 appears in a recent manuscript by
Guantao Chen, Xing Feng, Fuliang Lu and Lianzhu Zhang.
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1.6. Removable classes.

1.6.1. Removable edges and doubletons. LetG be a matching covered graph
and let e and f be two edges of G. We say that e depends on f , and write e ⇒ f ,
if every perfect matching of G that contains e also contains f . Edges e and f are
mutually dependent if e ⇒ f and f ⇒ e, and we write e ⇔ f to signify this. It is easy
to see that ⇔ is an equivalence relation on the edge set E(G) of G. In general, the
cardinality of an equivalence class may be arbitrarily large. (For example, C2k, the
cycle of length 2k, has two equivalence classes of size k each.) However, in a brick, an
equivalence classes has at most two edges (see Theorem 1.18).

The relation ⇒ may be visualized by means of the directed graph on the edge set
E(G) of G, where there is an arc with e as tail and f as head whenever e ⇒ f . From
this digraph we obtain a new digraph, denoted by D(G), by identifying equivalence
classes under the relation ⇔. Clearly D(G) is acyclic. Moreover, there is an arc
from a class R to a class S if and only if every edge of R depends on every edge
of S. Thus, the acyclic digraph D(G) suggests an obvious partial order on the set
of equivalence classes of the precedence relation. For this reason, we refer to the
equivalence classes that correspond to the sources of D(G) as minimal classes. For
any edge e of G, a source Q of D that contains an edge f that depends on e is said
to be a minimal class induced by e. (Here we admit the possibility that e and f may
be the same.)

If R is a minimal class of G, then every edge of G − R is admissible. Moreover,
if G − R happens to be connected, then G− R is matching covered; in this case, we
shall say that R is a removable class.

An edge e of a matching covered graph G is a removable edge if G− e is matching
covered, and a pair {e, f} of edges of G is a removable doubleton if neither e nor f is
individually removable, but the graph G− {e, f} is matching covered. In the former
case, {e} is a minimal class, and in the latter, {e, f} is a minimal class. A removable
class is either a removable singleton (consisting of a removable edge) or a removable
doubleton.

The result below concerning braces will prove to be useful.

Theorem 1.17 (see [3, Lemma 3.2]). Every edge in a brace of order six or more
is removable.

1.6.2. Removable classes in bricks. A matching covered graph G is near-
bipartite if it has a removable doubleton R such G−R is a bipartite matching covered
graph.

Theorem 1.18 (see [3, Lemma 2.3], [15, Lemma 3.4]). Any equivalence class R
in a brick G has cardinality at most two. Moreover, if |R| = 2, say, R = {e, f}, then
G− e− f is a bipartite matching covered graph, both ends of e are in one part of the
bipartition of G− e− f , and both ends of f are in the other part.

In particular, every removable class of a brick is either a removable edge or is
a removable doubleton. It follows from the above theorem that every brick with a
removable doubleton is indeed near-bipartite. Truncated biwheels, prisms of order
2 (modulo 4), Möbius ladders of order 0 (modulo 4), and staircases are examples
of near-bipartite bricks. The bicorn (Figure 1(b)) has two removable doubletons
and also a unique removable edge. The two bricks K4 and C6 have three remov-
able doubletons each, but have no removable edges; the following was established by
Lovász [15].
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Theorem 1.19. Every brick distinct from K4 and C6 has a removable edge.

There is an extensive discussion of removable edges in bricks in our paper [10].
We now present a technical result which will turn out to be useful in the proof of the
main theorem (Theorem 2.1) in section 2.

For a fixed vertex v0 of a matching covered graph G, a subset M of the edges
of G is a v0-matching if |M ∩ ∂(v)| = 1 for each vertex v distinct from v0, and if
|M ∩ ∂(v0)| > 1. A simple counting argument shows that |M ∩ ∂(v0)| is odd. The
following may also be easily verified.

Proposition 1.20. Let G[A,B] be a bipartite graph such that |A| = |B|. Then
G does not have a v0-matching for any vertex v0.

Lemma 1.21. Let G be a brick, let v0 be a vertex of G, and let M be a v0-matching.
Let e be an edge in ∂(v0)−M and let Q be a minimal class of G induced by e. Then,
Q is a singleton which is disjoint from M .

Proof. If e is the only member of Q, then there is nothing to prove. Let f be an
edge of Q such that f 	= e. Then, f ⇒ e in G. As G− e has a perfect matching, and
f is inadmissible, by Proposition 1.2, G − e has a barrier B containing both ends of
f , and G− e− B has exactly |B| odd components, two of which contain the ends of
e. In particular, v0 lies in an odd component K of G− e−B.

As |V (G)| is even, |M∩∂(v0)| is odd and so, |M∩∂(V (K))| is also odd. Moreover,
|M∩∂(V (K ′))| ≥ 1 for any other odd component K ′ of G−e−B. By simple counting,
and taking into account that e /∈ M , we conclude that |M ∩ ∂(V (K ′))| = 1 for each
odd component K ′ of G− e− B and that each vertex of B is matched by M with a
vertex in an odd component of G− e−B. Thus, f /∈ M . As f is an arbitrary edge of
Q− {e}, and since e /∈ M , we conclude that the minimal class Q does not meet M .

It remains to argue that |Q| = 1. By Theorem 1.18, Q has at most two edges.
Suppose that |Q| = 2. By Theorem 1.18, G−Q is a bipartite matching covered graph.
Since Q ∩ M is empty, M is a v0-matching of the bipartite graph G − Q, and this
contradicts Proposition 1.20. Thus, |Q| = 1.

1.6.3. Removable classes in solid graphs. Here we state some useful results
regarding the properties and existence of removable edges in solid graphs.

Theorem 1.22 (see [4, Theorem 2.2.8]). For any removable edge e of a solid
matching covered graph G, the graph G− e is also solid.

We now proceed to prove a result which we shall refer to as the lemma on odd
wheels (Lemma 1.24), which will play a crucial role in the proof of the main theorem
of section 2. (A weaker version of this result appeared in [5].) The proof of this lemma
relies on the following.

Theorem 1.23 (see [10, Theorem 6.11]). Let G be a solid brick, let v be a vertex
of G, let n be the number of neighbors of v, and let d be the degree of v. Enumerate
the d edges of ∂(v) as ei := vvi for i = 1, 2, . . . , d. Assume that neither e1 nor e2 is
removable in G. Then, n = 3 and, for i = 1, 2, there exists an equipartition (Bi, Ii)
of V (G) such that

(i) ei is the only edge of G that has both ends in Ii,
(ii) every edge that has both ends in Bi is incident with v3, and
(iii) the subgraph Hi of G, obtained by the removal of ei and each edge having both

ends in Bi, is matching covered and bipartite with bipartition {Bi, Ii}.
Moreover, B1 = (I2 − v) ∪ {v3} and B2 = (I1 − v) ∪ {v3}. (See Figure 9 for an
illustration.)
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Fig. 9. The solid brick G and the pairs B1, I1 and B2, I2.

We say that G is a v0-wheel if G is a wheel having v0 as a hub.

Lemma 1.24 (lemma on odd wheels). Let G be a simple solid brick, let v0 be a
vertex of G, and let M0 be a v0-matching. Then either G is a v0-wheel or G has a
removable edge e /∈ M0 ∪ ∂(v0).

Proof.
Case 1. The brick G has a vertex v 	= v0 that has degree four or more in G. As

G is simple, at least two edges, e1 and e2, are not in M0 ∪∂(v0) but are incident with
v. By Theorem 1.23, one of e1 and e2 is removable in G.

We may thus assume that every vertex v 	= v0 has degree three in G.

Case 2. Every vertex of G − v0 is adjacent to v0. Since every vertex v 	= v0 has
degree three in G and is adjacent to v0, every vertex distinct from v0 has degree two
in G− v0. Then G− v0 is a collection of cycles. By the 3-connectivity of G, it follows
that G− v0 is a cycle and, consequently, G is a v0-wheel.
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Case 3. The previous cases are not applicable. Every vertex v 	= v0 of G has
degree three in G. Moreover, G has a vertex, v 	= v0, that is not adjacent to v0. Let
ei := vvi, i = 1, 2, 3, be the three edges incident with v. Adjust notation so that
e3 ∈ M0.

1.24.1. One of the edges e1 and e2 is removable in G.

Proof. Assume the contrary. By Theorem 1.23, G has an equipartition (B1, I1)
such that e1 is the only edge having both ends in I1 and every edge having both ends
in B1 is incident with v3. Moreover, the bipartite graph H obtained from G by the
removal of e1 and each edge having both ends in B1 is matching covered. Vertex v3, a
vertex adjacent to v, is distinct from v0. Thus, v3 has degree three. As H is matching
covered, precisely one edge of ∂(v3), say, f , has both ends in B1. But e3 is the only
edge of M0 incident with v and its end v is in I1. Thus, f 	∈ M0 and e1 /∈ M0. In
particular, M0 is a v0-matching of H , and this contradicts Proposition 1.20.

The proof of the lemma on odd wheels is complete.

1.7. Ear decompositions.

1.7.1. Deletions and additions of ears. A path P := v0v1 . . . v� of odd length
in a graph G is a single ear in G if each of its internal vertices v1, v2, . . . , v�−1 has
degree two in G. If P1 and P2 are two vertex-disjoint single ears in G, then {P1, P2}
is a double ear with P1 and P2 as its constituent single ears. The deletion of a single
ear P from G consists of deleting all the edges and internal vertices of P , and the
graph obtained by deleting P from G is denoted by G−P . Likewise, the deletion of a
double ear {P1, P2} consists of deleting each of its constituent single ears P1 and P2.

A single ear P in a matching covered graph G is removable if the graph G − P
obtained by deleting P from G is also matching covered. If P1 and P2 are two
vertex-disjoint single ears neither of which is removable, but the graph G− P1 − P2

is matching covered, then the double ear {P1, P2} is removable. When the length
of a single ear is one, then we identify it with its only edge. An ear decomposition
of a matching covered graph G is a sequence (G1, G2, . . . , Gr) of matching covered
subgraphs of G such that

(i) G1 = K2 and Gr = G; and
(ii) for 2 ≤ i ≤ r, the graph Gi−1 is obtained from Gi by the deletion of either a

removable single ear or of a removable double ear.
The following basic result was proved by Lovász and Plummer [16].

Theorem 1.25 (the two-ear theorem). Every matching covered graph G has an
ear decomposition.

1.7.2. Conformal subgraphs. A matching covered subgraph H of a matching
covered graph G is conformal if the graph G − V (H) has a perfect matching. It is
easily seen that this notion obeys transitivity.

Proposition 1.26. Any conformal subgraph of a conformal subgraph of a match-
ing covered graph G is also a conformal subgraph of G.

Conformal subgraphs have been referred to by various other names (“nice” sub-
graphs, “central” subgraphs, and “well-fitted” subgraphs) in the literature. The fol-
lowing result is due to Lovász and Plummer [16].

Theorem 1.27. A matching covered subgraph H of a matching covered graph G
is conformal if and only if there is some ear decomposition G := (G1, G2, . . . , Gr) of
G such that H is one of the graphs in G.
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Fig. 10. Conformal minors: (a) K4 of P, (b) C6 of P+ e, (c) C6 of K4 � P.

Every ear decomposition of a bipartite matching covered graph involves only
single ear additions. However, in an ear decomposition of a nonbipartite matching
covered graph there must be at least one double ear addition. Lovász established the
following fundamental result concerning nonbipartite graphs.

Theorem 1.28 (see [14]). Every nonbipartite matching covered graph has an ear
decomposition such that either the third graph is a bisubdivision of K4 or the fourth
graph is a bisubdivision of C6.

This theorem gives rise to natural questions which are described in terms of special
types of minors of matching covered graphs which we now proceed to discuss.

1.7.3. Conformal minors and matching minors. Let G be a matching cov-
ered graph. A matching covered graph J is a conformal minor of G if some bisubdivi-
sion H of J is a conformal subgraph of G. Figure 10(a) shows that K4 is a conformal
minor of P, the Petersen graph. It is not too difficult to show that C6 is not a con-
formal minor of P. However, if P+ e is any graph obtained by adding an edge e to P

joining two nonadjacent vertices, then C6 is a conformal minor of P+ e as illustrated
in Figure 10(b), and also of K4 � P as illustrated in Figure 10(c).

A bicontraction of a vertex v of degree two is restricted if at least one of the
two neighbors of v also has degree two. It follows from Theorem 1.27 that if H is a
conformal matching covered subgraph of a matching covered graph G, then H can be
obtained from G by a sequence of deletions of removable ears (single or double). But
the deletion of an ear amounts to first reducing that ear to one of length one by means
of restricted bicontractions and then deleting the only edge of that ear. Likewise, if H
is a bisubdivision of a graph J , then J can in fact be obtained from H by restricted
bicontractions. These observations imply the following consequence.

Corollary 1.29. A matching covered graph J is a conformal minor of a match-
ing covered graph G if and only if J can be obtained from G by restricted bicontractions
of vertices of degree two and deletions of removable classes.

Norine and Thomas [18] call a matching covered graph J a matching minor of a
matching covered graph G if J can be obtained from a conformal subgraph H of G
by means of bicontractions. It follows that a matching covered graph J is a matching
minor of a matching covered graph G if and only if J can be obtained from graph G
by bicontractions and deletions of removable classes.

Corollary 1.30. Every conformal minor of a matching covered graph G is a
matching minor of G.
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Fig. 11. The wheel W5 is a matching minor of G.

The converse is not true in general, due to the fact that unrestricted bicontractions
are permissible in obtaining a matching minor of G. For example, the wheel W5 is a
matching minor of the graph G shown in Figure 11 because W5 can be obtained from
G by first deleting the edge e and then bicontracting the vertex v in the resulting
graph. But it is not a conformal minor of G for the simple reason that G has no
vertices of degree greater than four.

However, it is easily seen that if a cubic matching covered graph J is obtained
from a matching covered graph H by means of bicontractions, then H must be a
bisubdivision of J . Consequently, we have the following.

Corollary 1.31. A cubic matching covered graph J is a matching minor of a
matching covered graph G if and only if J is a conformal minor of G.

Given a fixed matching covered graph J , we say that a matching covered graph
G is J-based if J is a conformal minor of G, and otherwise G is J-free. For example,
the Petersen graph P is K4-based but is C6-free, and P + e depicted in Figure 10(b)
is both K4-based and C6-based.

Theorem 1.28 implies that every nonbipartite matching covered graph is either
K4-based or is C6-based (or both), and it raises two natural problems: characterize
those matching covered graphs that are K4-free and those that are C6-free. Two of
us (KM–Kothari and Murty) showed that it suffices to solve these problems for bricks
by establishing the following result concerning cubic bricks.

Theorem 1.32 (see [13]). Suppose that J is a cubic brick and that C is a tight
cut of a matching covered graph G. Then G is J-free if and only if each C-contraction
of G is J-free. (In particular, G is J-free if and only if each brick of G is J-free.)

The restriction that J be a cubic brick is crucial for the validity of the above
statement. (Curiously, it is not valid even for cubic braces. For example, consider the
graph G := K4 �K3,3. If C denotes the unique nontrivial tight cut in G, one of the
C-contractions of G is the brace K3,3. However, K3,3 is not a conformal minor of G!)

In light of Theorem 1.32, it suffices to solve the following problems.

Unsolved Problem 1.33. Characterize K4-free bricks.

Unsolved Problem 1.34. Characterize C6-free bricks.

Using the brick generation theorem of Norine and Thomas, which will be described
later on, we (KM) were able to resolve Problems 1.33 and 1.34 in the special case of
planar bricks by proving the following results. (By a well-known theorem of Whitney
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[22], every simple 3-connected planar graph has a unique embedding in the plane [1,
Theorem 10.28]).

Theorem 1.35 (see [13]). A simple planar brick is K4-free if and only if its
(unique) planar embedding has precisely two odd faces.

Theorem 1.36 (see [13]). The only simple planar C6-free bricks are the odd
wheels, staircases of order 4k, and the tricorn.

In the case of nonplanar bricks, Problems 1.33 and 1.34 remain unsolved.
We conclude this section by observing that matching minors of solid matching

covered graphs inherit their solidity.

Lemma 1.37. Every matching minor of a solid matching covered graph is a solid
matching covered graph.

Proof. Let G be a solid matching covered graph and let J be a matching minor
of G. We prove that J is solid by induction on |E(G)|. If J = G, we are done.
Assume then that J and G are distinct. Thus, by definition, J may be obtained from
G by means of bicontractions (of vertices of degree two) and deletions of removable
classes. In particular, J is a matching minor of a matching covered graph G′ such
that either (i) G′ is obtained from G by a bicontraction (of a vertex of degree two) or
(ii) G′ = G−R, where R is a removable class of G. In each case, |E(G′)| < |E(G)|, and
thus it suffices to prove that G′ is solid. From Corollary 1.13, we deduce immediately
the following property.

1.37.1. For each tight cut C of G, both C-contractions of G are solid.

Suppose that G′ is obtained from G by a bicontraction (of a vertex of degree
two). Then, G has a nontrivial tight cut C such that G′ is one of its C-contractions.
In that case, by 1.37.1, we deduce that G′ is solid. The assertion holds in this case.

We may thus assume that G′ = G−R, where R is a removable class of G. Every
bipartite matching covered graph is solid. If G − R is bipartite, then it is solid. We
may thus assume that G−R is not bipartite. This implies that G is not bipartite. If
G is a brick, then, by Theorem 1.18, R is a singleton. In that case, G−R is solid, by
Theorem 1.22.

We may thus assume that G is not a brick hence G has a nontrivial tight cut C.
Let G1 and G2 be the two C-contractions of G. By 1.37.1, G1 is solid. The set C−R
is a tight cut of G−R. The graph G1−R, a (C−R)-contraction of G−R, is matching
covered. Moreover, G1 −R is a matching minor of G1. By induction, G1 −R is solid.
Likewise, G2 −R is also solid. By Theorem 1.12, G′ = G−R is solid. This completes
the proof.

Corollary 1.38. Every conformal minor of a solid matching covered graph is a
solid matching covered graph.

However, not every conformal minor of a nonsolid graph is nonsolid. For example,
the bicorn is nonsolid, but K4, which is solid, is a conformal minor of the bicorn.
Moreover, the bicorn is C6-free.

Since C6 is nonsolid, we have the following consequence.

Corollary 1.39. Every solid matching covered graph is C6-free.

1.8. Robust cuts in nonsolid bricks. A nontrivial separating cut C := ∂(X)
of a nonsolid brick G is robust if both the C-contractions G/X and G/X of G are
near-bricks. We say that a robust cut C is k-robust if C has characteristic k. We were
able to prove the following fundamental result.
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Theorem 1.40 (see [5, Theorem 4.1]). Every simple nonsolid brick distinct from
the Petersen graph has a 3-robust cut. The Petersen graph has only 5-robust cuts.

This was one of the main tools used by us (CLM) in our proof of a conjecture
due to Lovász (see [4] and [5]).2

2. Conformal minors of nonsolid bricks. We shall refer to C6, the bicorn,
the tricorn, and the Petersen graph as the basic nonsolid bricks.

Theorem 2.1 (main theorem). Every nonsolid matching covered graph contains
a basic nonsolid brick as a conformal minor.

Proof. Let G be any nonsolid matching covered graph. We shall prove the validity
of the assertion by induction on the number of edges of G.

It follows from Theorem 1.28 that the smallest nonsolid matching covered graph
is C6, which is a basic nonsolid brick. For the general case, we adopt as the inductive
hypothesis that every nonsolid matching covered graph with fewer edges than G has
one of the four basic nonsolid bricks as a conformal minor.

Case 1. G contains a proper conformal subgraph H that is a nonsolid matching
covered graph. By the induction hypothesis, H contains a basic nonsolid brick as a
conformal minor. Hence, by Proposition 1.26, G also contains a basic nonsolid brick
as a conformal minor.

Note that this case applies when G has multiple edges.

Case 2. Graph G has a nontrivial tight cut C. By Corollary 1.13, G has a C-
contraction, G1, that is nonsolid. By the induction hypothesis, G1 contains a basic
nonsolid brick as a conformal minor. Since each of the basic nonsolid bricks is cubic, it
follows from Theorem 1.32 that G also contains a basic nonsolid brick as a conformal
minor.

Case 3. The previous cases do not apply. The graph G is free of nontrivial tight
cuts, and hence G is either a brick or a brace. Every bipartite graph is solid. Thus,
G is a brick. In fact, G is a simple nonsolid brick, free of nonsolid proper conformal
minors. In sum, the following holds.

Lemma 2.2. Let R be a nonempty set of edges of G. If G−R is matching covered,
then it is solid.

We shall prove that G is one of the four basic nonsolid bricks. If G is the Petersen
graph, then we are done. We may thus assume that G is not the Petersen graph. We
shall prove that G is either C6, the bicorn, or the tricorn.

As G is not the Petersen graph, then, by Theorem 1.40, G has 3-robust cuts.
Let C := ∂(X) be a 3-robust cut of G and let M0 be a perfect matching of G such
that |M0 ∩ C| = 3. Let G1 := G/(X → x) and G2 := G/(X → x) be the two
C-contractions of G obtained by contracting X and X to single vertices x and x,
respectively. As C is robust, the graphs G1 and G2 are near-bricks.

Lemma 2.3. Let R be a nonempty set of edges of G. If G1 − R and G2 − R are
both matching covered, then the graphs G1 −R and G2 −R are both solid and C −R
is tight in G−R.

2In a later unpublished paper [2], Campos and Lucchesi showed that, in fact, in every simple
brick distinct from the Petersen graph, every nontrivial separating cut has characteristic three. In
particular, in every simple brick distinct from the Petersen graph, every robust cut is 3-robust.
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Fig. 12. The brace J1 := G/(Y → y)/(Z → z).

Proof. Suppose that G1−R and G2−R are both matching covered. Then, G−R
is matching covered, and the cut C − R is separating in G − R. By Lemma 2.2, the
graph G−R is solid. Thus, C−R must be tight in G−R. Moreover, by Corollary 1.13,
both (C − R)-contractions of G−R must be solid. That is, G1 −R and G2 −R are
both solid.

Corollary 2.4. Let e be an edge of G. If G1 − e and G2 − e are both matching
covered, then e ∈ M0 and G1 − e and G2 − e are both solid.

Proof. Suppose that the graphs G1 − e and G2 − e are both matching covered.
By Lemma 2.3, the cut C − e is tight in G − e. Thus, M0 is not a perfect matching
of G − e, and hence e ∈ M0. Moreover, also by Lemma 2.3, the graphs G1 − e and
G2 − e are both solid.

Lemma 2.5. The graphs G1 and G2 are bricks.

Proof. Suppose that G1 is not a brick. As G1 is a near-brick that is not a brick, it
has nontrivial tight cuts. Moreover, by Corollary 1.11, for any tight cut D of G1, one
of the D-contractions of G1 must be bipartite, and the other must be a near-brick.

2.5.1. Let D be a nontrivial tight cut of G1, and let Y be its nonbipartite shore.
The vertices x and y lie in distinct parts of the bipartition of J := G1/(Y → y).

Proof. The graph J is bipartite and matching covered. If one of the parts in the
bipartition of J contains neither of the contraction vertices, then that part would be
a barrier of G. Since G is a brick, this is not possible. It follows that x and y belong
to different parts of the bipartition of J .

Now let Y be a minimal nontrivial subset of X = V (G1) − x such that ∂(Y )
is a tight cut of G1. Then the minimality of Y , together with 2.5.1, implies that
G0 := G/(Y → y) is a brick and G1/(Y → y) is a bipartite matching covered graph
with the two contraction vertices y and x in different parts of its bipartition. Moreover,
|M0∩∂(Y )| = |M0∩C| = 3, and hence M0∩E(G0) is a y-matching of G0. In general
G1/(Y → y) need not be a brace. However, if we take Z to be a minimal subset of
X which properly contains Y and is such that ∂(Z) is a nontrivial tight cut of G1,
then the graph J1 := (G/(Y → y))/(Z → z) is a brace of order four or more. See
Figure 12.
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By 2.5.1, the vertices y and z lie in distinct parts of the bipartition of J1. Let
v denote a vertex in the same part that contains z but is distinct from z. Then, no
edge incident with v is in C because the contraction vertex x of G1 is in Z.

Consider first the case in which v is adjacent to at most one vertex of Y . As G is
a brick, vertex v is adjacent to three or more vertices of the brace J1. Thus, J1 has six
or more vertices. By Theorem 1.17, all the edges of J1 are removable. In particular,
one of the edges of J1 incident with v is not in M0 ∪ ∂(Y ). Thus, G1 has a removable
edge that does not lie in M0 ∪C. This is a contradiction of Corollary 2.4.

Alternatively, suppose that v is adjacent to two vertices of Y , say, w1 and w2.
The edges vw1 and vw2 are multiple edges in G/Y , and hence removable in G1/Y . At
least one of the edges vw1 and vw2 is not in M0. Adjust notation so that vw1 /∈ M0.
Since M0 ∩ E(G0) is a y-matching of G0, it follows, by Lemma 1.21, that either vw1

is removable in the brick G0 or G0 has an edge that is removable and does not lie in
M0 ∪ ∂(Y ). In both cases, G1 has a removable edge that does not lie in M0 ∪ C, a
contradiction of Corollary 2.4.

In all cases considered, we have derived a contradiction. We deduce that G1 is a
brick. Likewise, a similar argument may be used to prove that G2 is also a brick.

Lemma 2.6. C ⊆ M0.

Proof. Suppose, to the contrary, that C − M0 contains an edge, e. By Corol-
lary 2.4, at least one of the graphs G1− e and G2− e is not matching covered. Adjust
notation so that G1 − e is not matching covered. That is, the edge e is not removable
in the brick G1. By Lemma 1.21, G1 has a removable edge, f , that does not lie in
M0 ∪ C. Thus, G1 − f and G2 − f = G2 are both matching covered, a contradiction
of Corollary 2.4. Indeed, C ⊆ M0.

Lemma 2.7. If a C-contraction Gi of G is solid, then Gi = K4.

Proof. Suppose that G1 is solid. Assume, to the contrary, that G1 	= K4. The cut
C consists only of three edges inM0 (by Lemma 2.6) andG1 is a brick (by Lemma 2.5).
Thus, G1 is simple but is not a wheel having x as a hub. By Lemma 1.24 (lemma
on odd wheels), G1 has a removable edge e that does not lie in M0 ∪ C. In this
case, G1 − e and G2 − e = G2 are both matching covered and e /∈ M0. This is a
contradiction of Corollary 2.4. We conclude that G1 = K4. Likewise, if G2 is solid,
then G2 = K4.

Lemma 2.8. If a C-contraction Gi of G is not solid, then Gi is one of the four
basic nonsolid bricks.

Proof. Suppose that the C-contraction G1 is not solid. By induction, G1 has a
conformal minor J that is one of the four basic nonsolid bricks. Thus, some bisub-
division H of J is a conformal subgraph of G1. As G1 is a brick, if G1 = H , then
G1 = J . In this case, the assertion holds.

We may thus assume that H is a proper subgraph of G1. By Theorem 1.27, G1

has a removable ear R such that H is a conformal subgraph of G1 −R. Furthermore,
as G1 is a brick, it follows that the edges of R constitute either a removable edge or
a removable doubleton.

If R and C are disjoint, then G1 − R is matching covered and nonsolid (by
Corollary 1.38), and G2 − R = G2 is matching covered. This is a contradiction
of Lemma 2.3. Thus, R contains an edge, e, in C. Clearly, since all edges of C are
incident with the contraction vertex x of G1, edge e is the only edge of R in C. Let
S be a minimal class of the dependence relation in G2 induced by edge e. As G2

is a brick, G2 − S is matching covered. If e ∈ S, then G1 − (R ∪ S) is G1 − R, a
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e1

e2e3

f1

f2

f3

Fig. 13. The three removable edges of the tricorn: e1, e2, and e3.

nonsolid matching covered graph, and G2 − (R ∪ S) is G2 − S, a matching covered
graph. Alternatively, if e /∈ S, then G1 − S = G1 is nonsolid and matching covered,
and G2 − S is matching covered. In both alternatives, we derive a contradiction of
Lemma 2.3. We deduce that G1 is one of the four basic nonsolid bricks. Likewise, if
G2 is not solid, then it is one of the four basic nonsolid bricks.

Let us denote the bicorn by R8 and the tricorn by R10. From the preceding two
lemmas, we now know that G1 and G2 are both in the set {K4, C6, R8, R10,P}. We
now proceed to show that, in fact, no C-contraction of G is the Petersen graph and
no C-contraction of G is the tricorn.

Lemma 2.9. Neither G1 nor G2 is in {P, R10}.
Proof. Assume, to the contrary, that G2 is the Petersen graph. Every one of the

15 edges of P is removable and 9 of them do not lie in M0 ∪ C, a contradiction of
Corollary 2.4. As asserted, G2 	= P.

Suppose now, to the contrary, that G2 is the tricorn. The tricorn has three
removable edges, ei, i = 1, 2, 3. The three removable edges of the tricorn, together
with the edges fi, i = 1, 2, 3, constitute the edge set of a hexagon which we shall
denote by H . See Figure 13.

If M0 does not contain at least one of these three edges, then again we get a
contradiction of Corollary 2.4. We may thus assume that {e1, e2, e3} ⊂ M0. In this
case, the contraction vertex x of G2 cannot be in the vertex set of the hexagon H ,
and hence H is an M0-alternating cycle. We may then replace M0 by its symmetric
difference with E(H) and again obtain a contradiction of Corollary 2.4.

We conclude that G2 /∈ {R10,P}. The same conclusion holds for G1.

Lemma 2.10. At least one C-contraction of G is solid.

Proof. Assume the contrary. By Lemma 2.8, both C-contractions of G are basic
nonsolid bricks. By Lemma 2.9, G1 and G2 are both in {C6, R8}.

Assume that G2 = C6. The brick C6 has three removable doubletons Ri :=
{ei, fi}, i = 1, 2, 3. See Figure 14.

No vertex of C6 is incident to edges of all three doubletons. Thus, G2 has a
removable doubleton R disjoint with C, and hence G1 − R = G1 is nonsolid and
G2 −R is matching covered. This is a contradiction of Lemma 2.3.
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e1

e2

e3 f3

f1

f2

Fig. 14. The three removable doubletons of C6: {ei, fi}, i = 1, 2, 3.

x

e1 e2

e

f1 f2

Q

Fig. 15. The three removable classes of R8: the doubletons {ei, fi}, i = 1, 2, and the edge e.

Alternatively, assume that G2 = R8. The graph R8 has three removable classes,
the two doubletons {ei, fi}, i = 1, 2, and the edge e. See Figure 15.

The edge e and {e1, f1} are disjoint. Thus, G2 has a removable class R disjoint
with C, and hence G1 −R = G1 is nonsolid and G2 −R is matching covered. This is
a contradiction of Lemma 2.3.

In all cases considered, we derived a contradiction. Indeed, at least one C-
contraction of G is solid.

If G1 and G2 are both solid, then, by Lemma 2.7, G1 and G2 are both K4 and
therefore G is C6. The assertion holds in this case. We may thus assume that at least
one of G1 and G2 is nonsolid. Adjust notation so that G2 is nonsolid. By Lemma 2.10,
the brick G1 is solid. By Lemmas 2.7 to 2.9, the brick G1 is K4 and the brick G2 is
either C6 or the bicorn.

If G2 is C6, then G is the bicorn. Consider next the case in which G2 is the
bicorn. If x is not incident with the only removable edge e of G2 but e ∈ M0 (see
Figure 15), then there is only one possibility, up to automorphisms. The edge e lies in
an M0-alternating quadrilateral Q and we may replace M0 by its symmetric difference
with E(Q), in contradiction of Corollary 2.4. Thus, x is an end of e. In that case, G
is the tricorn.

Indeed, if G is not the Petersen graph, then G is either C6, the bicorn, or the
tricorn. The proof of Theorem 2.1 is complete.

3. Equivalence of Problems 1.15 and 1.34.

3.1. Thin and strictly thin edges. Motivated by the problem of recursively
generating bricks, we were led to the notion of thin edges. An edge e of a brick G is
thin if the retract of G − e is also a brick. (Our definition of a thin edge in [8] was
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(a) (b) (c)

Fig. 16. (a) The wheel W5, (b) the pentagonal prism, (c) the tricorn.

phrased in terms of sizes of barriers, but is equivalent to the one given here.) We
(CLM) proved in [8] the following assertion.

Theorem 3.1. Every brick distinct from K4, C6, and P (the Petersen graph) has
a thin edge.

The above theorem implies the following corollary which has the flavor of Theo-
rem 1.25.

Corollary 3.2. Given any brick G, there exists a sequence (G1, G2, . . . , Gr) of
bricks such that

(i) Gr = G and G1 ∈ {K4, C6,P}; and
(ii) for 1 < i ≤ r, the brick Gi has a thin edge ei such that Gi−1 is the retract of

Gi − ei.

This corollary is the basis of a recursive procedure for generating bricks described
in [8]. We showed that there exist four elementary “expansion operations” which can
be used to build any brick starting from one of K4, C6, and P. (The simplest of these
operations consists of just adding an edge joining two distinct vertices of a given brick
G. The other three involve bisplitting vertices and adding edges.)

We associate with each thin edge a number called its index, as defined below. Let
G be a brick and let e be a thin edge of G. Then the retract of G− e, by definition,
is a brick. The index of e is

• zero if both ends of e have degree four or more in G;
• one if exactly one end of e has degree three in G;
• two if both ends of e have degree three in G and edge e does not lie in a
triangle;

• three if both ends of e have degree three in G and edge e lies in a triangle.
Examples of thin edges of indices one, two, and three are indicated by solid lines

in the three bricks, respectively, shown in Figure 16.
The following consequence of Theorem 1.32 will be useful later.

Proposition 3.3 (see [13]). Let G be a brick and e be a thin edge of G. For
any cubic brick J , if the retract of G− e is J-based, then G is also J-based.

In order to establish recursive procedures for generating simple bricks, one needs
the notion of a strictly thin edge. An edge e of a simple brick G is strictly thin if e is
thin and the retract of G−e is simple. There are five infinite families of bricks that are
free of strictly thin edges; these are (i) odd wheels, (ii) prisms of order 2 (modulo 4),
(iii) Möbius ladders of order 0 (modulo 4), (iv) staircases, and (v) truncated biwheels.
We refer to bricks in these five families together with the Petersen graph as Norine–
Thomas bricks. (Note that K4 is the Möbius ladder of order four, and C6 is the prism
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of order six.) For brevity, we shall denote the family of all Norine–Thomas bricks by
NT .

Norine and Thomas established the following strengthening of Theorem 3.1.

Theorem 3.4 (see [18]). Every simple brick G which is not a Norine–Thomas
brick has a strictly thin edge.

The work of Norine and Thomas is independent of our work and uses entirely
different methods. After learning about the statement of their result, we were able
to show that it is possible to derive Theorem 3.4 from our Theorem 3.1. Our proof
appears in an unpublished report [9]. As an immediate consequence of the above
theorem, we have the following.

Corollary 3.5. Given any simple brick G, there exists a sequence

(G1, G2, . . . , Gr)

of simple bricks such that
(i) Gr = G and G1 is in NT ; and
(ii) for 1 < i ≤ r, the brick Gi has a strictly thin edge ei such that Gi−1 is the

retract of Gi − ei.

In the same paper [18], Norine and Thomas have also proved the following pow-
erful generalization of Theorem 3.4; it belongs to a class of theorems in structural
graph theory known as “splitter theorems.” To state this generalization, we need to
define a new class of graphs. The graph T+

2k is obtained from the truncated biwheel
T2k by joining its hubs. The extended Norine–Thomas family NT + is the union of
NT and {T+

2k : k ∈ Z, k ≥ 3}.
Theorem 3.6. Let G be a simple brick which is not in NT + and let J be a simple

brick that is distinct from K4 and C6. If J is a matching minor of G, then there there
exists a sequence G1, G2, . . . , Gr of simple bricks such that

(i) Gr = G and G1 = J , and
(ii) for 1 < i ≤ r, the brick Gi has a strictly thin edge ei such that Gi−1 is the

retract of Gi − ei.

Since any cubic brick which is a conformal minor of G is also a matching minor
of G, the above theorem is applicable to the case in which J is a cubic brick, distinct
from K4 and C6, that happens to be a conformal minor of G.

3.2. Proof of the equivalence of Problems 1.15 and 1.34. By Corol-
lary 1.39, every solid brick is C6-free. A natural question then is to determine which
nonsolid bricks are C6-free. The staircases of order 0 (modulo 4) are nonsolid and
C6-free. The tricorn and the ubiquitous Petersen graph are also nonsolid and C6-free.
It turns out that these are the only simple nonsolid bricks that are C6-free. Indeed,
in this section we prove that the family of simple nonsolid bricks consists of precisely
the following bricks:

(i) the C6-based simple bricks,
(ii) the staircases of order 0 (modulo 4),
(iii) the tricorn, and
(iv) the Petersen graph.
By Theorem 1.36, the only simple planar bricks that are C6-free are the odd

wheels, the staircases of order 0 (modulo 4), and the tricorn. The odd wheels are
solid. This establishes the result for planar bricks. We now establish the equivalence
of Problems 1.15 and 1.34 for nonplanar simple bricks.
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Theorem 3.7. The Petersen graph is the only brick that is simple, nonplanar,
nonsolid, and C6-free.

Proof. Let G be a simple, nonplanar, nonsolid brick distinct from the Petersen
graph. The only nonplanar members of the family NT + are the Möbius ladders of
order 0 (modulo 4) and the Petersen graph. The Möbius ladders are solid. It follows
that G 	∈ NT +. Also, by Theorem 2.1, G contains one of the four basic nonsolid
bricks as a conformal minor. To complete the proof, it suffices to show that if G has
either the bicorn, the tricorn, or the Petersen graph as a conformal minor, then it also
has C6 as a conformal minor. Toward this end, let J be one of the above-mentioned
bricks (that is, bicorn, tricorn, or the Petersen graph) such that J is a conformal
minor of G.

By Theorem 3.6, there exists a sequence G1, G2, . . . , Gr of simple bricks such that
(i) Gr = G and G1 = J , and (ii) for 1 < i ≤ r, the brick Gi has a strictly thin edge
ei such that Gi−1 is the retract of Gi − ei. In particular, G1 = J is the retract of
G2 − e2. Since J is a cubic brick, it follows that e2 is a strictly thin edge of index
zero and, hence, that J = G2 − e2. In other words, G2 is obtained from J by joining
two nonadjacent vertices by an edge. By Proposition 3.3, every cubic brick that is a
conformal minor of G2 is also a conformal minor of G. Thus, in order to complete the
proof, all we need to do is to show that any brick obtained from either the bicorn, the
tricorn, or the Petersen graph P by adding an edge e joining two nonadjacent vertices
contains a bisubdivision of C6 as a conformal subgraph. This is routine. (Figure 10(b)
shows the relevant conformal subgraph of P+ e. Propositions 6.5 and 6.6 in [13] deal,
respectively, with bricks obtained by adding an edge to the bicorn and the tricorn.)

Corollary 3.8. The only simple nonsolid C6-free bricks are the staircases of
order 0 (modulo 4), the tricorn, and the Petersen graph.
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