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Abstract

Given an undirected graph G and four distinct special vertices s1, s2, t1, t2, the Undirected

Two Disjoint Paths Problem consists in determining whether there are two disjoint paths con-

necting s1 to t1 and s2 to t2, respectively.

There is an analogous version of the problem for acyclic directed graphs, in which it is

required that the two paths be directed, as well.

The well known characterizations for the nonexistence of solutions in both problems are, in

some sense, the same, which indicates that under some weak conditions the edge orientations

in the directed version are irrelevant. We present the first direct proof of the irrelevance of edge

orientations.

1 Introduction

In this paper all graphs are simple, that is, free of loops and multiple edges.
Given an undirected graphG and four distinct special vertices s1, s2, t1, t2, the Two Disjoint Paths

Problem consists in establishing that there exists in G a disjoint pair of paths, one connecting s1 to
t1, the other connecting s2 to t2, or, if no such paths exist, producing a certificate of nonexistence.

This problem was solved independently by Seymour [4] and by Thomassen [6]. Both authors
gave a structural characterization which leads to a polynomial algorithm for solving the problem.
Polynomial algorithms were also given by Perl and Shiloach [3] and by Shiloach [5].

As pointed out by Seymour [4], if there exists a vertex set X of G such that |X| ≤ 3 and G−X

has a connected component K free of special vertices, then the existence of solutions is preserved
by the following reduction:

• Remove from G all vertices of K.

• Join each pair of vertices of X by an edge.

We say that G is irreducible if the reduction described above is not applicable.
It is also easy to see that if one adds four edges, joining each of s1 and t1 to each of s2 and t2, then

the existence of solutions is also preserved: we call cycle s1–s2–t1–t2 thus obtained a quadrilateral.
The characterizations of the problem, mentioned above, are equivalent to the following.

Theorem 1 If G is irreducible then the two disjoint paths problem has no solution if and only
if addition of edges joining each of s1 and t1 to each of s2 and t2 yields a planar graph having
quadrilateral s1–s2–t1–t2 as one of its faces.

∗Partial support from fapesp, sp and from cnpq, Brasil.
†Partial support from fapesp, sp, Brasil.
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An analogous version of the problem, for acyclic directed graphs, called the Acyclic Directed Two
Disjoint Paths Problem, requires that the two paths be directed, as well. This version of the problem
was solved by Thomassen [7]. Again, the structural characterization given therein leads naturally
to a polynomial algorithm. A very simple and elegant algorithm for solving this problem was given
by Perl and Shiloach [3].

As pointed out by Thomassen [7], the aciclicity of the graph and the existence of solutions is
preserved by the following reductions :

• Remove edges entering s1 and s2; remove edges leaving t1 and t2.

• Remove sources and sinks that are nonspecial vertices.

• Contract an edge if it is the only edge leaving (entering) a vertex, and at least one of its ends
is non special.

After performing these reductions, Thomassen derives a characterization for the existence of
solutions that is quite similar to that of Theorem 1. An equivalent assertion is given below (Corol-
lary 4). A constructive generalization of this result was given by A. Metzler in her Ph. D. thesis [2].
It follows [7, Corollary 3.4] that if the graph is free of the reductions mentioned in the previous
paragraph then there exists a solution for the directed version if and only if there exists a solution
for the corresponding undirected version of the problem.

Thomassen [7] also indicates that it would be interesting to have a direct proof of this fact. That
proof is given herein.

More specifically, we prove the following result.

Theorem 2 Let G be an acyclic directed graph such that special vertices s1 and s2 are sources,
special vertices t1 and t2 are sinks and every nonspecial vertex has indegree and outdegree at least
2. The Acyclic Directed Two Disjoint Paths Problem has a solution if and only if the corresponding
undirected Two Disjoint Paths Problem has a solution.

The following result will play a central role in the proof and follows from Menger’s Theorem and
the hypothesis of Theorem 2 [7].

Proposition 3 Under the hypothesis of Theorem 2, for every nonspecial vertex v there exist directed
paths from s1 to v, from s2 to v, from v to t1 and from v to t2, disjoint except at v.

It follows that, under the hypothesis of Theorem 2, the underlying undirected graph is irreducible;
we then have an alternate proof of the characterization of nonexistence of solution for the Acyclic
Directed Disjoint Two Paths Problem:

Corollary 4 Under the hypothesis of Theorem 2, the Acyclic Directed Two Disjoint Paths Problem
has no solution if and only if addition of edges joining each of s1 and t1 to each of s2 and t2 yields
a planar graph having quadrilateral s1–s2–t1–t2 as one of its faces.

The results presented herein are a revision of an earlier version contained in the second author’s
M. Sc. Dissertation [1], written under the first author’s supervision.

2 Terminology

A path is a sequence P := (u0, α1, u1, · · · , αm, um) in a directed graph, where the ui are pairwise
distinct vertices, the αi are edges, and ui−1 and ui are the ends of αi, for each i such that 1 ≤ i ≤ m.
The reversal of P is path (um, αm, · · · , u1, α1, u0). We allow m = 0, in which case P is degenerate.
Vertices u0 and um are, respectively, the origin and the terminus of P . We denote by V P vertex set
{u0, u1, · · · , um}.

Let Q := (v0, β1, v1, · · · , βn, vn) be a path such that um and v0 are identical. The product P ◦Q
of P and Q is defined to be the sequence (u0, α1, u1, · · · , αm, um, β1, v1, · · · , βn, vn); such sequence is
a path if and only if V P ∩ V Q = {um}.
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For 0 ≤ i ≤ j ≤ m, we denote by P [ui, uj ] the subpath of P with origin ui and terminus uj ,
that is, P [ui, uj ] := (ui, αi+1, ui+1, · · · , αj , uj); we denote by P [uj , ui] the reversal of P [ui, uj ], that
is, P [uj , ui] := (uj , αj , · · · , ui+1, αi+1, ui). It is very important to realize that for vertices u and v in
V P , P [u, v] may not be a subpath of P , but in that case it certainly is a subpath of the reversal of
P .

An edge αi (1 ≤ i ≤ m) is forward in P if it is directed away from ui−1 into ui, otherwise it is a
reverse edge. Vertex ui (0 ≤ i ≤ m) is a switch in P if

either (i) i = 0 < m and α1 is a reverse edge in P ,
or (ii) 0 < i < m, one of αi and αi+1 is a forward edge, the other

a reverse edge in P ,
or (iii) 0 < i = m and αm is a reverse edge in P .

In other words, a switch in P usually is a vertex where a change of direction occurs, but it is
important to notice that we also consider the origin of P a switch if its first edge is reverse; likewise,
the terminus of P is a switch if its last edge is reverse.

We denote by SP the set of switches of P .

Path P is directed if αi is directed away from ui−1 into ui for each i such that 1 ≤ i ≤ m. Thus
P is directed if and only if SP is the null set.

Proposition 5 Let P := A ◦B be a path, let v denote the origin of B (and the terminus of A).

(a) If v is not a switch of A, then SP ∩ V B = SB.

(b) If v is not a switch of B, then SP ∩ V A = SA. ✷

Corollary 6 Let P := A ◦B ◦ C be a path. If A and C are both directed, then SP = SB. ✷

3 Proof of Theorem 2

Clearly, any solution for the directed version is also a solution to the undirected version. To prove
the converse, assume that there exist two disjoint (not necessarily directed) paths in G, joining s1
to t1 and s2 to t2, respectively. Among such pairs of paths, choose one, (P1, P2), say, such that the
corresponding set of switches S := SP1 ∪ SP2 is minimal. We now prove that each of P1 and P2 is
a directed path, thereby proving Theorem 2.

Assume, to the contrary, that at least one of P1 and P2 is not directed. That is, assume that S
is nonnull.

Define relation ≤ on the vertex set of G by u ≤ v if and only if there exists a directed path from
u to v in G. Since G is acyclic, relation ≤ is a partial order.

Let u0 be a minimal element of S, with respect to partial order ≤. That is, u0 ∈ S and
∀x ∈ S, x 6< u0. Let v0 be a maximal element of {v : v ∈ S, u0 ≤ v}. Clearly, v0 is maximal in S.

By Proposition 3, there exist two directed paths, Q1 and Q2, respectively from s1 and s2 to u0,
disjoint except at u0. Similarly, there exist two directed paths, R1 and R2, from v0 to respectively
t1 and t2, disjoint except at v0.

Proposition 7 For each vertex q in V Q1 ∪ V Q2 and each vertex r in V R1 ∪ V R2 , inequality
q ≤ u0 ≤ v0 ≤ r holds.

Proof. Each of Q1, Q2, R1 and R2 is a directed path. Vertex u0 is the terminus of Q1 and Q2,
whence q ≤ u0. Vertex v0 is the origin of R1 and R2, whence v0 ≤ r.

By definition of v0, u0 ≤ v0.

We conclude that q ≤ u0 ≤ v0 ≤ r, and the assertion follows. ✷
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Vertex s1, the origin of P1, lies in Q1. Let q1 be the last vertex of P1 in V Q1 ∪ V Q2 : that is,
no vertex of P1[q1, t1] except q1 lies in V Q1 ∪ V Q2 . Likewise, define r1 to be the first vertex of P1

in V R1 ∪ V R2 . Define q2 and r2, vertices of P2, similarly.

Proposition 8 For i, j, k ∈ {1, 2}, for each vertex q in V Pi ∩ V Qj and for each vertex r in
V Pi ∩ V Rk , the following properties hold:

(a) Neither q nor r is a switch in Pi[q, r].

(b) If q 6= u0 then path Pi[si, q] is directed.

(c) If r 6= v0 then path Pi[r, ti] is directed.

(d) Vertex u0 lies in {q1, q2} and vertex v0 lies in {r1, r2}.

(e) If r precedes q in Pi then q = u0 and r = v0.

(f) Vertex qi is the only vertex of Pi[qi, r] in V Q1 ∪ V Q2 .

(g) Vertex ri is the only vertex of Pi[q, ri] in V R1 ∪ V R2 .

Proof.

(a) Assume, to the contrary, that q is a switch in Pi[q, r]. By definition of switch, q 6= r and the
first edge of Pi[q, r] is reverse. Or, equivalently, the last edge of Pi[r, q] is forward. Let thus T be
a maximal (nondegenerate) directed subpath of Pi[r, q] having terminus q; let t be the origin of T .
Path T is directed, whence t < q. Since q lies in V Q1 ∪ V Q2 , q ≤ u0, whence

t < u0. (1)

From this, by Proposition 7, t does not lie in V R1 ∪ V R2 . In particular, t 6= r. From this, by the
maximality of T , we conclude that t is a switch of Pi[r, q]. Since t does not lie in {q, r}, it follows
that t is a switch of Pi, regardless of the order in which q and r occur in Pi. In that case, (1) is a
contradiction to the minimality of u0. As asserted, q is not a switch in Pi[q, r].

A similar argument may be used to prove that r is not a switch in Pi[q, r], either.

(b) Let T be a maximal directed subpath of Pi[si, q] having terminus q, let t be its origin. Assume,
to the contrary, that si 6= t.

By the maximality of T , vertex t is a switch in Pi[si, q]. By part (a), q is not a switch in Pi[q, ti].
By Proposition 5(b), t is a switch in Pi.

Since T is directed, t ≤ q. By hypothesis, q 6= u0. From these, by Proposition 7, t ≤ q < u0, in
contradiction to the minimality of u0 in S.

(c) Analogous to (b).

(d) Let i be such that u0 lies in Pi. We assert that u0 = qi. For this, assume the contrary. By
definition of qi, vertex u0 lies in Pi[si, qi]. By part (b), Pi[si, qi] is directed, whence u0 < qi. This
inequality contradicts Proposition 7.

We conclude that u0 ∈ {q1, q2}. By symmetry, v0 lies in {r1, r2}.
(e) Assume that r precedes q in Pi. Assume, to the contrary, that q 6= u0 or r 6= v0. If q 6= u0 then,
by part (b), Pi[si, q] is directed. If r 6= v0, then, by part (c), Pi[r, ti] is directed. In both cases,
Pi[r, q] is directed. Thus, r ≤ q. By Proposition 7, q = u0 = v0 = r.

(f) If qi precedes r in Pi, the assertion follows immediately, by definition of qi. Assume thus that r
precedes qi in Pi. By part (e), qi = u0; also by part (e), qi is the only vertex of V Q1 ∪ V Q2 that
vertex r precedes in Pi. The assertion follows.

(g) Analogous to (f). ✷

The proof of the Theorem is divided into 3 cases. In each case a new pair of paths is defined and
it is shown that the corresponding set of switches is a proper subset of S, a contradiction.
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Case 1 r1 ∈ V R1 and r2 ∈ V R2.

Define

P ′

1 := P1[s1, r1] ◦R1[r1, t1]

P ′

2 := P2[s2, r2] ◦R2[r2, t2].

We begin the analysis of Case 1 by showing that P ′

1 and P ′

2 are disjoint paths.
By definition, r1 is the only vertex of P1[s1, r1] in R1. Thus P

′

1 is a path. Similarly, P ′

2 is a path.
Paths P1 and P2 are disjoint, whence so too are P1[s1, r1] and P2[s2, r2]. In particular, r1 and r2

are distinct.
Paths R1[r1, t1] and R2[r2, t2] are subpaths of R1 and R2, respectively. Paths R1 and R2 are

disjoint except at their common origin v0. Since r1 and r2 are distinct, paths R1[r1, t1] and R2[r2, t2]
are disjoint.

By definition of r1, no vertex of P1[s1, r1], except possibly r1, lies in R2. Vertex r1 lies in
R1[r1, t1], in turn disjoint with R2[r2, t2]. It follows that paths P1[s1, r1] and R2[r2, t2] are disjoint.
Likewise, P2[s2, r2] and R1[r1, t1] are disjoint. It follows that P ′

1 and P ′

2 are disjoint.
We now conclude the analysis of Case 1 by showing that

SP ′

1 ∪ SP ′

2 ⊆ (SP1 ∪ SP2 ) \ {v0},

thereby contradicting the choice of (P1, P2).
Path R1 is directed and R1[r1, t1] is a subpath of R1. Thus, R1[r1, t1] is directed. By Corollary 6,

SP ′

1 = SP1[s1, r1].

By Proposition 8(a), vertex r1 is not a switch of P1[s1, r1]. Moreover, P1[s1, r1] is a subpath of P1.
Thus

SP1[s1, r1] ⊆ SP1 \ {r1}.

By Proposition 8(d), either v0 does not lie in P1 or it is equal to r1. We conclude that

SP ′

1 ⊆ SP1 \ {v0}.

Similarly,
SP ′

2 ⊆ SP2 \ {v0}.

It follows that the new set of switches is thus a proper subset of S, a contradiction. This concludes
the analysis of Case 1.

Case 2 q1 ∈ V Q1 and q2 ∈ V Q2.

Define

P ′

1 := Q1[s1, q1] ◦ P1[q1, t1]

P ′

2 := Q2[s2, q2] ◦ P2[q2, t2].

The proof in this Case is the directional dual of that of Case 1.

Case 3 The hypotheses of Cases 1 and 2 are both false.

We begin the analysis of this case by showing that

r1 ∈ V R2, r2 ∈ V R1, q1 ∈ V Q2 and q2 ∈ V Q1.

Since the hypothesis of Case 1 does not apply, either r1 6∈ V R1 or r2 6∈ V R2. Assume that r1 6∈ V R1.
Thus r1 ∈ V R2 \ V R1. Since v0 is the common origin of R1 and R2, r1 6= v0. By Proposition 8(d),
v0 ∈ {r1, r2}, whence r2 = v0 ∈ V R1. It follows that if r1 6∈ V R1 then r1 ∈ V R2 and r2 ∈ V R1.
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The same conclusion holds if r2 6∈ V R2. We conclude that r1 ∈ V R2 and r2 ∈ V R1. Likewise, the
hypothesis of Case 2 does not apply, whence q1 ∈ V Q2 and q2 ∈ V Q1.

Define

P ′

1 := Q1[s1, q2] ◦ P2[q2, r2] ◦R1[r2, t1]

P ′

2 := Q2[s2, q1] ◦ P1[q1, r1] ◦R2[r1, t2].

We proceed in the analysis of Case 3 by showing that P ′

1 and P ′

2 are disjoint paths.
By Proposition 8(f), q2 is the only vertex of P2[q2, r2] in Q1[s1, q2]; similarly, r2 is the only vertex

of P2[q2, r2] in R1[r2, t1].
Paths Q1[s1, q2] and R1[r2, t1] are subpaths of Q1 and R1, respectively. The terminus of Q1 is

u0, the origin of R1 is v0. By Proposition 7, V Q1 ∩ V R1 = {u0} ∩ {v0} . It follows that

V Q1[s1, q2] ∩ V R1[r2, t1] = {q2} ∩ {r2} . (2)

Thus P ′

1 is a path. Similarly, P ′

2 is a path.
Paths P1 and P2 are disjoint by hypothesis, whence

V P1[q1, r1] ∩ V P2[q2, r2] = ∅. (3)

In particular, each of q1 and r1 is distinct from each of q2 and r2.
Paths Q1[s1, q2] and Q2[s2, q1] are subpaths of Q1 and Q2, respectively. Paths Q1 and Q2 are

disjoint except at their common terminus u0. Since q1 and q2 are distinct,

V Q1[s1, q2] ∩ V Q2[s2, q1] = ∅. (4)

In a way similar to the proof of (2), we obtain V Q1[s1, q2] ∩ V R2[r1, t2] = {q2} ∩ {r1} . But q2 and
r1 are distinct. Thus,

V Q1[s1, q2] ∩ V R2[r1, t2] = ∅. (5)

By Proposition 8(f), no vertex of P2[q2, r2], except possibly q2, lies in Q2. But q2 lies in Q1[s1, q2],
in turn disjoint with Q2[s2, q1]. It follows that

V P2[q2, r2] ∩ V Q2[s2, q1] = ∅. (6)

By symmetry, from (4), (5) and (6), respectively, we obtain (7), (8) and (9)–(11), below.

V R1[r2, t1] ∩ V R2[r1, t2] = ∅. (7)

V Q2[s2, q1] ∩ V R1[r2, t1] = ∅. (8)

V P2[q2, r2] ∩ V R2[r1, t2] = ∅, (9)

V P1[q1, r1] ∩ V Q1[s1, q2] = ∅, (10)

V P1[q1, r1] ∩ V R1[r2, t1] = ∅. (11)

From (3)–(11), it follows that P ′

1 and P ′

2 are disjoint.
We now conclude the analysis of Case 3 by showing that

SP ′

1 ∪ SP ′

2 ⊆ (SP1 ∪ SP2 ) \ {u0, v0},

thereby contradicting the choice of (P1, P2).
Path Q1 is directed and Q1[s1, q2] is a subpath of Q1. Thus, Q1[s1, q2] is directed. Similarly,

R1[r2, t1] is directed. By Corollary 6,

SP ′

1 = SP2[q2, r2].

By Proposition 8(a), neither q2 nor r2 is a switch of P2[q2, r2]. Moreover, P2[q2, r2] is a subpath of
either P2 or the reversal of P2. Thus

SP2[q2, r2] ⊆ SP2 \ {q2, r2}.
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By Proposition 8(d), either u0 does not lie in P2 or q2 = u0; similarly, either v0 does not lie in P2 or
r2 = v0. We conclude that

SP ′

1 ⊆ SP2 \ {u0, v0}.

Similarly,
SP ′

2 ⊆ SP1 \ {u0, v0}.

From the last two inclusions we conclude that the new set of switches is a proper subset of S, a
contradiction.

The conclusion of the analysis of Case 3 completes the proof of Theorem 2. ✷
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