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Abstract

In this paper we show that, with 11 exceptions, any matching cov-
ered bipartite graph on n vertices, with minimum degree greater than
two, has at least 2n − 4 perfect matchings. Using this bound, which
is best possible, and McCuaig’s Theorem [8] on brace generation, we
show that any brace on n vertices has at least (n − 2)2/8 perfect
matchings. A bi-wheel on n vertices has (n−2)2/4 perfect matchings.
We conjecture that there exists an integer N such that every brace on
n ≥ N vertices has at least (n− 2)2/4 perfect matchings.
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1 Matching Covered Graphs

For graph theoretical notation and terminology, we essentially follow Bondy
and Murty [1]. The order of a graph is the number of its vertices, and its
size is the number of its edges. We denote the number of perfect matchings
in a graph G by Φ(G), and the minimum degree of vertices of G by δ(G).

A graph is matching covered if it is connected, has at least two vertices,
and each of its edges lies in a perfect matching. In studying questions related
to the number of perfect matchings in a graph one may clearly restrict one-
self to matching covered graphs. Thus, all the graphs we consider here are
matching covered graphs. The treatise by Lovász and Plummer [7], and the
seminal work by Lovász [6] on the matching lattice, contain the basic theory
of matching covered graphs.

Let G be a bipartite matching covered graph on n vertices. Voorhoeve [10]
showed that if G is 3-regular, then Φ(G) ≥ (4

3
)n/2. (Establishing a more

general conjecture of Lovász and Plummer, Esperet et al [5] have shown
that any 2-connected cubic graph on n vertices has at least 2n/3656 perfect
matchings.) As mentioned in the abstract, we shall show here that if δ(G) ≥
3, and n is large enough, then Φ(G) ≥ 2n− 4. We shall also show that if G

is a brace, then Φ(G) ≥ (n−2)2

8
. (For the definition of a brace, see Section 2.)

For the convenience of the reader, we shall briefly review here the termi-
nology and results which are pertinent to this article.
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1.1 Function f(n)

We denote the class of all bipartite matching covered graphs with minimum
degree at least three by F , and the subclass of those graphs on n vertices
in F by Fn. For each even integer n ≥ 2, we define the function f(n) as
min{Φ(G)}, where the minimum is taken over all graphs in Fn. It can be
verified that f(2) = 3, f(4) = 5, f(6) = 6, and f(8) = 9.

A graph G∗ in Fn is extremal if Φ(G∗) = f(n). Figure 1 shows extremal
graphs on two, four, six and eight vertices.

(a) (b) (c) (d)

Figure 1: (a) The Theta graph (b) P4 (c) K3,3 (d) B8 = P8

For each even integer n ≥ 6, let An be the graph obtained from a matching
{u1u2, u3u4, . . . , un−3un−2}, by adjoining two vertices, h1 and h2, and then
joining h1 to each of u1, u3, . . . , un−3 by a pair of multiple edges, and h2 to
each of u2, u4, . . . , un−2 by a pair of multiple edges. Figure 2 shows a drawing
of A10. (Compare the definition of An with the definition of bi-wheel Bn given
in Section 2.1.)

We note that An is a matching covered graph with minimum degree three,
that is, for n ≥ 6, the graph An belongs to Fn. In the graph An, vertex h1

has degree n− 2, and each edge incident with h1 is in two perfect matchings.
Therefore, Φ(An) = 2n− 4. Thus:

f(n) ≤ 2n− 4, for n ≥ 6 (1)

This upper bound is not attained for n < 14. But we shall see later on that
f(n) = 2n− 4, for all n ≥ 14.

1.2 Tight cuts

Let G be a matching covered graph. We shall refer to a subset of edges of G
of the form ∂(X), where X is a nonempty proper subset of V , as a cut of G
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u1 u2

u3 u4

u5 u6

u7 u8

h1 h2

A10

Figure 2: The graph A10

with X and X = V \ X as its shores. A cut is trivial if one of its shores
consists of exactly one vertex.

Given any cut C := ∂(X) of G, one may obtain two graphs G/X and
G/X by shrinking the shores of C to single vertices; they are called the C-

contractions of G. A cut C := ∂(X) of a matching covered graph G is tight if
every perfect matching of G has exactly one edge in common with C. Trivial
cuts are examples of tight cuts. As we shall see below, tight cuts in bipartite
matching covered graphs may be described in a simple manner.

We denote a bipartite graph G with bipartition (A,B) by G[A,B]. Let
G := G[A,B] be a bipartite matching covered graph. If X is an odd subset
of V then the larger of the two sets |X∩A| and |X∩B| is called the majority

part of X and is denoted by X+, and the other is called the minority part

and is denoted by X−. If X is a subset of V such that |X+| = |X−|+ 1 and
all edges of ∂(X) have one end in X+ and one end in X+, then ∂(X) is a
tight cut of G. It is not difficult to see that every tight cut of a bipartite
matching covered graph is of this form.

Let F and H be two given matching covered graphs. A graph G is called
a splicing of F and H, and is denoted by F ⊙H, if there is a tight cut ∂(X)
of G such that F ∼= G/X and H ∼= G/X. In general, there may be many
graphs G with this property. But in cases of interest to us here, F ⊙ H is
unique up to isomorphism. The two graphs in the top row of Figure 3 are
P4 ⊙K3,3 and P4 ⊙B8, where P4 is the graph shown in Figure 1(b), and B8

is the cube, shown in Figure 1(d). The two graphs in the bottom row are
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X

XX

X

Figure 3: Top: P4 ⊙K3,3 and P4 ⊙ B8; bottom: K3,3 ⊙K3,3 and K3,3 ⊙B8

K3,3 ⊙K3,3 and K3,3 ⊙B8.

Observation 1.1 Since Φ(P4 ⊙K3,3) = 10 < 2× 8− 4 = 12, Φ(P4 ⊙B8) =
15 < 2 × 10 − 4 = 16, Φ(K3,3 ⊙ K3,3) = 12 < 2 × 10 − 4 = 16, and
Φ(K3,3 ⊙ B8) = 18 < 2 × 12 − 4 = 20, we note that the four graphs in
Figure 3 will have to be in the list of exceptions mentioned in the abstract.

1.3 Bi-contractions and retracts

Vertices of degree two in a matching covered graph give rise to a very simple
type of tight cuts. Let v be a vertex of degree two in a matching covered
graph G, and let X := {v, v1, v2}, where v1 and v2 are the two neighbours
of v. Then ∂(X) is a tight cut of G, and the the graph G/X is said to be
obtained from G by the bi-contraction of v.

Lemma 1.2
Let G be a graph on four or more vertices, let v be a vertex of degree two
in G, and let H be the graph obtained from G by bi-contracting v. Then,
Φ(G) = Φ(H).

Proof: Every perfect matching of H has a unique extension to a perfect
matching of G. Conversely, the restriction of any perfect matching of G is a
perfect matching of H. ✷

If a graph G has at least three vertices and is not a cycle, then one can
obtain a graph of minimum degree greater than two from G by means of
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bi-contractions. Up to isomorphism, the graph so obtained does not depend
on the sequence of bi-contractions performed (see [2]). We refer to it as the

retract of G, and denote it by Ĝ.

Corollary 1.3
For any graph G, Φ(G) = Φ(Ĝ). ✷

We denote the number of perfect matchings of a graph G containing
a given edge e by Φe(G). If u and v are the two ends of e, then clearly
Φe(G) = Φ(G − {u, v}). The following simple lemma plays a useful role in
the proofs of many results.

Lemma 1.4 (Recursion Lemma)
Let G be a graph and let e = uv be any edge of G. Then

Φ(G) = Φ(Ĝ− e) + Φ(G− {u, v}) (2)

Proof: The number of perfect matchings not containing the edge e is equal to

Φ(G− e), but Φ(G− e) = Φ(Ĝ− e). On the other hand, the number Φe(G)
of perfect matchings containing e is Φ(G− {u, v}). Hence the identity. ✷

Lemma 1.5
Let G be a graph in F , let v be a vertex of G, let d denote the degree of v.
Then,

Φ(G) =
1

d− 1

∑

e∈∂(v)

̂Φ(G− e).

Proof: The following equalities hold:

∑

e∈∂(v)

̂Φ(G− e) = (d− 1)
∑

e∈∂(v)

Φe(G) = (d− 1)Φ(G).

✷

2 Braces

A matching covered graph without nontrivial tight cuts is called a brace if it
is bipartite, and a brick if it is nonbipartite. The theorem below provides a
characterization of braces:
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Theorem 2.1 (See [6], [7])
Let G[A,B] be a bipartite matching covered graph. The following statements
are equivalent:

(a) G is a brace;

(b) G − a1 − a2 − b1 − b2 has a perfect matching, for any two vertices a1
and a2 in A and any two vertices b1 and b2 in B;

(c) for every subset X of A such that 0 < |X| < |A|−1, we have |N(X)| >
|X|+ 1. ✷

A graph G is said to be 2-extendable if it has two non-adjacent edges
and for any two non-adjacent edges e and f graph G has a perfect matching
which includes {e, f}. Theorem 2.1 implies that every brace of order four or
more is 2-extendable. It also implies that every vertex of a brace of order six
or more has at least three distinct neighbors.

The following observation will be found useful later on. The only simple
cubic bipartite graphs on six and eight vertices are, respectively, K3,3 and
the cube (see Figure 1(d)). Both of them happen to be braces. However,
this not the case for larger orders. The Möbius ladder M10, introduced in
the next subsection, is a cubic brace of order 10, and there is a simple cubic
bipartite graph of order 10 which is different from it.

Proposition 2.2
The only simple cubic bipartite graph of order 10 that is not a brace is
K3,3 ⊙K3,3.

Proof: Let G be a simple cubic bipartite graph, and let ∂(X) be a nontrivial
tight cut of G. Since each vertex has three distinct neighbours, and the
vertices of X− are joined only to those in X+, it follows that |X| ≥ 5.
Similarly, |X| ≥ 5. Thus, |X| = 5 = |X|. It is now easy to deduce that G is
K3,3 ⊙K3,3. ✷

2.1 McCuaig braces

There are three families of braces of special importance, namely prisms,
Möbius ladders and bi-wheels. McCuaig [8] showed that all braces of or-
der at least six may be generated from these special braces by using three
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elementary operations. (We shall briefly review McCuaig’s result in Sec-
tion 2.3.)

Prisms: The prism P2r of order 2r, r ≥ 2, is the cartesian product of the
r-cycle Cr and the complete graphK2. For each even integer r ≥ 2, the prism
P2r is a brace. Figures 1(b) and (d) depict the prisms P4 and P8. Figure 4(a)
depicts the prism P12.

Consider the sequence F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 =
8, F7 = 13, F8 = 21, . . ., of Fibonacci numbers defined by F1 = F2 = 1 and by
the recursion Fi = Fi−1 +Fi−2, for i ≥ 3. Using simple inductive arguments,
it is easy to see that the number of perfect matchings in the prism P2r may
be expressed in terms of Fibonacci numbers as follows:

Φ(P2r) = Fr+1 + Fr−1 + 2 (3)

In particular, Φ(P12) = F7 + F5 + 2 = 13 + 5 + 2 = 20.

(a) (b) (c)

Figure 4: (a) P12 (b) M10 (c) B10

Möbius ladders: TheMöbius ladderM2r, r ≥ 3, is the cubic graph obtained
from the 2r-cycle by joining each vertex of the cycle to the vertex that is
antipodal to it. For each odd integer r ≥ 3, the Möbius ladder M2r is a
brace. Furthermore,

Φ(M2r) = Fr+1 + Fr−1 + 2 (4)

The Möbius ladder M6 is isomorphic to K3,3. Figure 4(b) depicts the Möbius
ladder M10. It follows from (4) that Φ(M10) = F6+F4+2 = 8+3+2 = 13.

Bi-wheels: For r ≥ 4, the bi-wheel B2r of order 2r is the graph obtained
from a (2r − 2)-cycle (u1, u2, . . . , u2r−2, u1), called the rim, by adjoining
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two vertices, h1 and h2, called the hubs, and then joining h1 to each of
u1, u3, . . . , u2r−3, and h2 to each of u2, u4, . . . , u2r−2. (Figure 4(c) depicts the
bi-wheel B10.) It is easy to verify that B2r is a brace and that any edge
incident with h1 and any edge incident with h2 are contained together in a
unique perfect matching of B2r. Consequently,

Φ(B2r) = (r − 1)2 (5)

The cube, which we noted is a prism, is also a bi-wheel, the smallest bi-wheel
B8. Using the above formula, we have Φ(B8) = (4− 1)2 = 9.

Extended bi-wheels: The brace obtained by adding an edge to B2r joining
its two hubs is denoted by B+

2r and is called an extended bi-wheel. This
auxiliary family of braces also plays an important role in McCuaig’s work [8].
Figure 5 shows drawings of B+

8 and B+
10. It is easy to see that Φ(B+

2r) =
(r − 1)2 + 2. In particular, Φ(B+

8 ) = 9 + 2 = 11.

h1

h1

h2

h2

Figure 5: The extended bi-wheels B+
8 and B+

10

2.2 Removable edges and their indices

An edge e of a matching covered graph G is removable if G−e is also matching
covered. Suppose that the order of G is at least four. In this case, if e is
removable, then both ends of e have degree at least three in G. The index of
a removable edge is the number of its ends which have degree exactly three.
Thus, the index of e is zero if both ends of e have degree greater then three,
one if exactly one end of e has degree three, and two if both ends of e have
degree three.

The following statement concerning braces may be deduced from Theo-
rem 2.1.
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Corollary 2.3
Every edge in a brace of order six or more is removable. ✷

If G is a bipartite matching covered graph, then it is known (see [7])
that the dimension of the linear space generated by the incidence vectors of
perfect matchings of G is |E(G)| − |V (G)|+ 2, implying that:

Φ(G) ≥ |E(G)| − |V (G)|+ 2 (6)

The proof of the next lemma uses this fact. However, the above lower bound
is rarely attained. A characterization of bipartite graphs for which equality
holds in (6) is given in [2].

Lemma 2.4
Let G = G[A,B] be a brace of order 2r ≥ 6, and let e = uv be a any edge
of positive index of G, with u ∈ A and v ∈ B. Then H := G − {u, v} is
matching covered, and Φ(H) ≥ r − 1.

Proof: The fact that H is matching covered follows from the fact that G is
2-extendable.

Since G has positive index, at least one of the ends of e has degree two
in G− e. Without loss of generality, suppose that v has degree two in G− e,
and let u1 and u2 denote the neighbours of v in A − u. Then dH(u1) =
dG(u1) − 1 ≥ 2, dH(u2) = dG(u2) − 1 ≥ 2, and for u′ ∈ A − u − u1 − u2,
dH(u

′) = dG(u
′) ≥ 3. We therefore have:

|E(H)| ≥ 2 + 2 + 3(r − 3) = 3r − 5

Clearly, |V (H)| = 2r− 2. Thus, using (6), we have Φ(H) ≥ (3r− 5)− (2r−
2) + 2 = r − 1. ✷

We note that the assumption that e has positive index is necessary. For
example, if G is the extended bi-wheel B+

2r, and e = h1h2 is the edge joining
the two hubs, then Φ(B+

2r − {h1, h2}) = 2, for all r.

2.3 McCuaig’s Theorem on brace generation

Let G be a brace on six or more vertices, let e be an edge of G. We note

that the number of bi-contractions required to obtain Ĝ− e from G − e is

equal to the index of e. Edge e is thin if Ĝ− e is a brace, and is strictly thin
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if Ĝ− e is a simple brace. The three edges e0, e1 and e2 in Figure 6 are,
respectively, thin edges of index zero, one and two in that brace. Edges e0
and e1 are strictly thin, but e2 is not.

e0

e1

e2

Figure 6: Edges e0 and e1 are strictly thin, but e2 is not

Prisms, Möbius ladders, and bi-wheels do not have any strictly thin edges.
We shall refer to braces in these families as McCuaig braces. In [8] McCuaig
proved the following fundamental theorem. (In fact, he proved a stronger
(splitter) version of the statement given here.)

Theorem 2.5 (The strictly thin edge theorem)
Every simple brace of order six or more which is not a McCuaig brace has a
strictly thin edge.

A brace G is called an extension of index i of another brace H if G has a
thin edge e of index i such that H = Ĝ− e. As an immediate consequence
of the above theorem, we have:

Theorem 2.6 (Brace generation theorem)
Given any simple brace G of order at least six, there exists a sequence
(G1, G2, . . . , Gr) of simple braces such that:

(i) G1 is a McCuaig brace,

(ii) Gr = G,

(iii) for 1 ≤ i ≤ r − 1, Gi+1 is an extension of Gi.
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McCuaig braces do not have strictly thin edges, but they do have thin
edges. Thus we may conclude from McCuaig’s Theorem the following:

Theorem 2.7 (The thin edge theorem)
Every brace of order six or more has a thin edge.

We gave a direct proof of the above theorem in [4] (unpublished) and
showed how Theorem 2.5 may be deduced from it. (Our paper [3] contains
the proof of an analogous theorem for bricks. An extension of that result has
been published by Norine and Thomas [9]).

2.4 Braces of orders six to twelve

Braces of order six: The only simple brace of order six is K3,3, and it has
six perfect matchings.

Observation 2.8 Since Φ(K3,3) = 6 < 2×6−4 = 8, we note that K3,3 will
have to be in the list of exceptions mentioned in the abstract.

Braces of order eight: Every simple brace of order eight is obtained by
deleting the edges of a matching from K4,4, and thus the sizes (numbers of
edges) of such braces range from 12 to 16. The one of size twelve is the
bi-wheel B8 (which is the cube), the one of size thirteen is the extended bi-
wheel B+

8 . We have seen that Φ(B8) = 9, and Φ(B+
8 ) = 11. The following

proposition is easily verified.

Proposition 2.9
Every simple brace of order eight, other than B8, and B+

8 , has at least 14
perfect matchings.

Observation 2.10 Since 2 × 8 − 4 = 12, we note that the bi-wheel B8,
with 9 perfect matchings, and the extended bi-wheel B+

8 , with 11 perfect
matchings, will have to be in the list of exceptions.

McCuaig’s Stricly This Edge Theorem 2.5 plays a crucial role in the study
of braces of order more than eight.

Braces of order 10:

Lemma 2.11
In a brace of order 10, no thin edge of index two is strictly thin.
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Proof: Let G be a brace of order 10, and let e be a thin edge in G of index two.

Then both ends of e have degree three in G, and |V (Ĝ− e)| = |V (G)|−4 = 6

and |E(Ĝ− e)| = |E(G)| − 5 ≥ 10. A simple bipartite graph on six vertices

has at most nine edges. Hence, the brace Ĝ− e is not simple, and e is not
strictly thin. ✷

Corollary 2.12
The Möbius ladder M10 is the only cubic brace on 10 vertices.

Proof: Let G be a cubic brace on 10 vertices. Since all degrees of G are
three, G cannot have any strictly thin edges of index zero or of index one.
By Lemma 2.11, G cannot have any strictly thin edges of index two either.
Thus, by the Strictly Thin Edge Theorem, G is either M10 or B10. But B10

is not cubic. ✷

Lemma 2.13
The only simple braces of order 10 and size 16 are M+

10 and (K3,3 ⊙K3,3)
+

(shown in Figure 7), and B10.

u

u

v

v

(a) (b)

Figure 7: (a) M+
10, (b) (K3,3 ⊙K3,3)

+

Proof: Let G be a simple brace of order 10 and size 16. Then, clearly, G has
two vertices u and v of degree four, one in each part of the bipartition of G,
and all the remaining vertices have degree three.

Suppose first that u and v are adjacent. If G − uv is a brace then,
by Corollary 2.12, G is isomorphic to the graph M+

10. If G − uv is not a
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brace then, by Proposition 2.2, G − e is = K3,3 ⊙K3,3, and G is the graph
(K3,3 ⊙K3,3)

+ obtained by adding an edge to K3,3 ⊙K3,3.
Now suppose that u and v are not adjacent. It follows from Theo-

rem 2.1(b) that graph G − u − v is matching covered. As every vertex
of G− u− v has degree two, G− u− v is a cycle on eight vertices. Thus G
is the bi-wheel B10 with u and v as its hubs. ✷

Observation 2.14 Note that 2 × 10 − 4 = 16. Since Φ(M10) = 13, and
Φ((K3,3 ⊙K3,3)

+) = 15, the two braces M10 and (K3,3 ⊙K3,3)
+ will have to

be included in the list of exceptions.

Braces of order twelve:

Lemma 2.15
There are three cubic braces of order twelve, namely the prism P12, and the
two braces G1

12 and G2
12 shown in Figure 8.

(a) (b)

Figure 8: (a) G1
12 (b) G1

12

Proof: Let G be a cubic brace of order twelve. Clearly G cannot have any
strictly thin edges of index zero or one. If it has no strictly thin edges of index
two either, then by the Strictly Thin Edge Theorem, G is P12. So, suppose

that G has a strictly thin edge e of index two. Then |V (Ĝ− e)| = 12−4 = 8,

and |E(Ĝ− e)| = 18−5 = 13. It follows that Ĝ− e is the extended bi-wheel
B+

8 . Thus G is an extension of index two of B+
8 . It can be verified that G1

12

and G2
12 are the only such extensions. ✷
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Observation 2.16 The numbers of perfect matchings of G1
12 and G2

12 are,
respectively, 17 and 18. Since 2 × 12 − 4 = 20, it follows that G1

12 and G2
12

will have to be included in the list of exceptions.

3 A Linear Lower Bound for f (n)

3.1 The list E of exceptions

Recall that F is the class of all bipartite matching covered graphs with min-
imum degree at least three. We define E to be the family of 11 graphs in F
consisting of:

• the brace K3,3 of order six (Figure 1(c));

• the graph P4⊙K3,3 (Figure 3, top left), and the braces B8 (Figure 1(d))
and B+

8 (Figure 5, left) of order eight;

• the graphs P4 ⊙ B8 (Figure 3, top right) and K3,3 ⊙ K3,3 (Figure 3,
bottom left), and the braces M10 (Figure 4(b)) and (K3,3 ⊙ K3,3)

+

(Figure 7(b)) of order ten; and

• the graph K3,3 ⊙ B8 (Figure 3, bottom right), and the the braces G1
12

and G2
12 (Figure 8) of order twelve.

It would be useful to keep in mind that all members of E , except B+
8 and

(K3,3 ⊙K3,3)
+, are cubic.

We have observed that if G ∈ E , then Φ(G) < 2|V (G)| − 4. We wish to
prove the following theorem:

Theorem 3.1
Any graph G in F \ E has at least 2|V (G)| − 4 perfect matchings.

In order to prove Theorem 3.1 by induction, it turns out to be convenient
to prove a more general assertion. The notions of minimal graph and solitary
edge play an important role in this more general setting.

3.2 Minimal graphs

A graph G in F is minimal if there is no edge e of G such that G− e belongs
to F . As an immediate consequence of the definition we have:
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Lemma 3.2
If G is a minimal graph in F then every removable edge of G is incident with
a vertex of degree three. ✷

Corollary 3.3
If G is a minimal graph in F and e and f are multiple edges of G then at
least one end of e has degree three in G. ✷

Lemma 3.4
Let G be a graph in F . If G is minimal and simple then it has a vertex v of
degree three such that each edge in ∂(v) is removable in G.

Proof: The minimality ofG implies that every removable edge ofG is incident
with a vertex of degree three. Consider first the case in which G is a brace.
In that case, every edge of G is removable and the assertion holds.

Assume thus that G is not a brace. Let X be a minimal set of vertices of
G such that C := ∂(X) is a non-trivial tight cut of G. Then, H := G/X is
a brace. Let X+ and X− denote, respectively, the majority and the minority
parts of X. Every edge of G having both ends in X is removable in H, hence
removable in G. To complete the proof, we now show that X− has a vertex
of degree three.

Consider first the case in which X+ has a vertex w of degree four or more.
Every vertex of X+ is adjacent to some vertex of X−. Every edge having both
ends in X is removable. Every vertex of X− adjacent to w has degree three.
The assertion holds in this case.

Alternatively, assume that every vertex of X+ has degree three. Then,

|∂(X−)| = |∂(X+)| − |C| ≤ 3|X+| − 2 = 3|X−|+ 1.

The simplicity of G implies that |X+| ≥ 3. Thus, |X−| ≥ 2. Then, the
average degree of vertices in X− is 3.5 or less. Consequently, at least one
vertex of X− has degree three. ✷

Lemma 3.5
Let G be a minimal brace in F of order 2r ≥ 6. If G has a vertex of degree
at least four then Φ(G) ≥ 2|V (G)| − 4.
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Proof: Let u be a vertex of degree at least four in G. By Corollary 2.3, every
edge of G is removable. As G is minimal, every neighbor of u has degree
three. Thus, every edge incident with u has index one. By Lemma 2.4, every
edge incident with u lies in at least r − 1 perfect matchings. Therefore,

Φ(G) ≥ 4(r − 1) = 2(2r)− 4 = 2|V (G)| − 4.

✷

3.3 Solitary edges

For an edge e of a graph G, recall that we denote the number of perfect
matchings of G containing e by Φe(G). We say that an edge e of G is solitary
if Φe(G) = 1.

A brace of order six or more cannot have any solitary edges, but non-
braces in F may have any number of them. Consider, for example, the graph
A

(k)
n obtained from An (described in Section 1) by joining the two vertices h1

and h2 by k multiple edges. Then each of those k edges is a solitary edge.
The following property of solitary edges will be found to be very useful.

Lemma 3.6
Let G be a graph in F and let e = uv be a solitary edge of G. If G has four
or more vertices then there exists a vertex w in V (G)−u−v that has degree
one in G− u− v, and is joined to v by two or more parallel edges in G.

Proof: Since G has at least four vertices, H := G − u − v has at least
two vertices. By hypothesis e is solitary, hence H has precisely one perfect
matching. Let M be the perfect matching of H, and let P be a maximal
M -alternating path in H. Path P has odd length, its ends lie in distinct
color classes of G. Moreover, both ends of P have degree one in H. Let w be
the end of P that lies in the same colour class of u in G. Then, w is joined
to v by two or more edges. ✷

Using the above lemma, we deduce that if G is a graph in F having
solitary edges then G has two non-adjacent sets of parallel edges. One may
then easily verify the following corollary:
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Corollary 3.7
Let H be a graph in the family E . Then both H and H + e, where H + e is
any graph obtained by adding an edge e joining two vertices of H, are free
of solitary edges. ✷

For a graph G, we denote by µ(G) the maximum multiplicity of solitary
edges; in other words, µ(G) is the maximum number of parallel solitary edges
joining any pair of vertices of G. If G has no solitary edges, then µ(G) = 0.

In the graph A
(k)
n described in Section 3.3, the k parallel edges joining h1

to h2 are solitary, but no other edge is solitary. Therefore, µ(A
(k)
n ) = k. Note

that Φ(A
(k)
n ) = 2n− 4 + µ(A

(k)
n ) .

3.4 A generalization and its proof

We are now ready to state and prove an assertion that is more general than
Theorem 3.1.

Theorem 3.8
Any graph G in F \ E has at least 2|V (G)| − 4 + µ(G) perfect matchings.

Proof: By induction on |E(G)|. LetG be a graph of order n in F\E . Assume
inductively that if H is any graph in F \ E with |E(H)| < |E(G)|, then
Φ(H) ≥ 2|V (H)| − 4 + µ(H). We shall deduce that the asserted inequality
holds for G by analyzing various cases.

Case 1 Graph G is not minimal.

By the definition of minimality, there exists an edge e of G such that
H := G− e ∈ F .

Case 1.1 Suppose first that H is not in E .

Then, by induction hypothesis, Φ(H) ≥ 2n − 4 + µ(H). Every edge of
G distinct from e that is solitary in G is also solitary in H. Thus, µ(H) ≥
µ(G)− 1. Therefore,

Φ(G) ≥ Φ(H) + 1 ≥ 2n− 4 + µ(H) + 1 ≥ 2n− 4 + µ(G),

showing that the assertion holds in this case.

Case 1.2 Now suppose that H is in E .
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If H is a graph in E other than B8, K3,3 ⊙ K3,3, M10 and G1
12 then, as we

have seen, the difference between Φ(H) and 2|V (H)| − 4 is at most two.
By Corollary 3.7, µ(G) = 0, that is, e is not solitary in G. Thus, Φ(G) ≥
2|V (G)| − 4 in this case.

If H = B8 then either G = B+
8 and belongs to E or e is a parallel edge and

Φ(G) = 12 = 2|V (G)| − 4. If H is M10 or G1
12 then the difference between

Φ(H) and 2|V (H)| − 4 is three, and if H is K3,3 ⊙K3,3 then the difference
between Φ(H) and 2|V (H)| − 4 is four. One can now verify that if H is M10

or G1
12 then e lies in at least three perfect matchings, and if H is K3,3 ⊙K3,3

then G is (K3,3 ⊙ K3,3)
+, a member of E , or e lies in at least four perfect

matchings.

Case 2 Graph G is minimal but has multiple edges.

Let us first suppose that µ(G) > 1. In this case, we assert that G is the
theta graph (shown in Figure 1(a)). Let e′ and e′′ be two parallel edges
that are solitary. By the minimality of G, at least one end of e′ has degree
three; otherwise G − e′ ∈ F , in contradiction to the minimality of G. By
Lemma 3.6, G has only two vertices. We deduce that G is the theta graph
in this case. Then, Φ(G) = µ(G) = 3 and the assertion holds.

We may thus assume that µ(G) ≤ 1. Then, G has more than two vertices.
By the hypothesis of the case, G has multiple edges. Let e′ and e′′ be two
parallel edges of G. If possible, choose e′ and e′′ so that they are adjacent
to some solitary edge of G. Let u1 and v1 denote the ends of e′ and e′′.
The minimality of G implies that at least one of u1 and v1 has degree three.
Adjust notation so that u1 has degree three. Then, e′ and e′′ are the only
edges that join u1 and v1. Let u1v2 be the edge of G incident with u1 but
not with v1 (Figure 9). Let X := {u1, v1, v2}. Clearly, C := ∂(X) is a tight
cut of G. For i = 1, 2, let Ci denote the set of edges of C that are incident
with vertex vi.

Let H := G/X. Clearly, C1 is non-empty and C2 has two or more edges.
Thus H ∈ F .

Case 2.1 Graph H does not lie in E .

For i = 1, 2, let si denote the number of edges in Ci that are solitary in H.
Then,
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Figure 9: The case in which G has multiple edges

Φ(G) = Φ(H) +
∑

f∈C2

Φf (H),

∑

f∈C2

Φf (H) ≥ 2|C2| − s2 ≥ 4− s2,

Φ(H) ≥ 2(n− 2)− 4 + s1 + s2 = 2n− 8 + s1 + s2,

where the last inequality follows by induction. Addition and simplification
yields

Φ(G) ≥ 2n− 4 + s1.

To complete the analysis of the case, we prove that s1 ≥ µ(G). This
inequality certainly holds if µ(G) = 0. We have assumed that µ(G) ≤ 1. We
may thus assume that µ(G) = 1. By Lemma 3.6 and the criterion used for
choosing e′ and e′′, it follows that a solitary edge of G is incident with one
of u1 and v1. If u1v2 is solitary in G then v1 also has degree three and the
edge of C1 is solitary. Alternatively, if u1v2 is not solitary then, by the choice
of e′ and e′′, some edge of C1 is solitary in G. In both alternatives, we may
assume that some edge of C1 is solitary in G. Every perfect matching of H is
extendable to a perfect matching of G. Thus, every solitary edge of G that
lies in E(H) is solitary in H. We conclude that some edge of C1 is solitary
in H. In other words, s1 > 0. The assertion holds in this case.

Case 2.2 Graph H is in E .
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By Corollary 3.7, H is free of solitary edges. Every edge of H that is solitary
in G is also solitary in H. Edges e′ and e′′ are not solitary in G. Edge u1v2
is not solitary, otherwise C1 would consist of a single edge, an edge of H
solitary in G. We conclude that G is free of solitary edges. We must thus
prove that Φ(G) ≥ 2|V (G)| − 4.

Define the parameter φ2(H) to be the minimum of Φe(H)+Φf (H), where
the minimum is taken over all pairs {e, f} of adjacent edges of H. Clearly,

Φ(G) ≥ Φ(H) + φ2(H) (7)

If H is either K3,3 or B8, then G also belongs to E . So, we need only
examine the other nine graphs in E . For each of those graphs, the parameter
φ2 can be computed, and it can be verified that Φ(G) ≥ 2|V (G)| − 4. The
details are included in Table 1.

Graph H Φ(H) φ2(H) 2|V (G)| − 4
P4 ⊙K3,3 10 6 16

B+
8 11 5 16

P4 ⊙B8 15 9 20
K3,3 ⊙K3,3 12 8 20

(K3,3 ⊙K3,3)
+ 15 7 20

M10 13 8 20
K3,3 ⊙B8 18 12 24

G1
12 17 11 24

G2
12 18 12 24

Table 1: Values of Φ(H), φ2(H) and 2|V (G)| − 4

Case 3 Graph G is minimal and free of multiple edges.

We remark that as G is free of multiple edges it is also free of solitary edges,
by Lemma 3.6. We must thus prove that Φ(G) ≥ 2n− 4. Every graph in F
having fewer than six vertices has multiple edges. Thus, G has six or more
vertices. The brace K3,3 is the only simple graph on six vertices in F . But
K3,3 is a member of E . Thus, G has eight or more vertices. Every graph
in F on eight vertices and free of multiple edges is a brace. Every brace on
eight vertices includes the cube B8 as a subgraph. The minimality of G then
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implies that G is B8. But B8 is a member of E . We deduce that G has more
than eight vertices.

Case 3.1 n = 10.

Consider first the case in which G has a non-trivial tight cut C := ∂(X).
The absence of multiple edges in G implies that H := G/X is K3,3, up to
multiple edges in C. Every edge in C lies in two perfect matchings of H.
Likewise, H ′ := G/X is K3,3 up to multiple edges in C and each edge in C
lies in two perfect matchings of H ′. We deduce that every edge of C lies in
four perfect matchings of G. As C is tight in G it follows that Φ(G) = 4|C|.
But 2n−4 = 16. Thus, the asserted inequality holds, unless |C| = 3. In that
case, G is K3,3 ⊙K3,3, which is a member of E .

We consider now the case in which G is a brace. If G is cubic, then by
Corollary 2.12, G is M10. But M10 belongs to the list E . If G is not cubic
then by Lemma 3.5, Φ(G) ≥ 2n− 4.

Case 3.2 n = 12.

Consider first the case in which G is not a brace. The simplicity of G
implies that it has a non-trivial tight cut C := ∂(X), where H := G/X is
K3,3, up to multiple edges of C. Let H ′ := G/X.

• If H ′ 6∈ E then, by induction hypothesis, Φ(H ′) ≥ 12, and Φ(G) =
2Φ(H ′) ≥ 24 > 2n− 4;

• If H ′ = P4⊙K3,3 then Φ(H ′) = 10 and Φ(G) = 2Φ(H ′) = 20 = 2n− 4;

• If H ′ = B8 then G is the graph K3,3 ⊙B8 which is a member of E ;

• If H ′ = B+
8 , then Φ(H ′) = 11, and Φ(G) ≥ 2Φ(H ′) = 22 > 20 = 2n−4.

Hence the assertion holds for graphs of order 12 that are not braces.
We now consider the case in which G is a brace. If G is not cubic then,

by Lemma 3.5, Φ(G) ≥ 2n−4. Assume thus G to be cubic. By Lemma 2.15,
G is either P12, or one of the two braces G1

12 and G2
12 shown in Figure 8.

The number of perfect matchings of P12 is equal to the required lower bound
20 = 2n − 4. On the other hand, the two braces G1

12 and G2
12 are members

of E . Hence the assertion holds for braces of order 12.

Case 3.3 n ≥ 14.
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By Lemma 3.4, G has a vertex v of degree three such that every edge in ∂(v)

is removable in G. Let e be any edge in ∂(v). The retract Ĝ− e of G− e is

not cubic and has n− 4 or more vertices. Thus, either Ĝ− e does not lie in
E or it is (K3,3 ⊙K3,3)

+. By induction hypothesis,

Φ(Ĝ− e) ≥ 2(n− 4)− 5 = 2n− 13,

with equality only if (i) n = 14, (ii) edge e has index two and (iii) Ĝ− e =
(K3,3 ⊙K3,3)

+. Assume that equality does not hold, for any edge e in ∂(v).
In that case, by Lemma 1.5,

Φ(G) ≥
3 · (2n− 12)

2
= 3n− 18 ≥ 2n− 4.

To complete the analysis of the case, we must consider the situation in
which n = 14 and ∂(v) has an edge e of index two such that the retract
of G − e is (K3,3 ⊙ K3,3)

+. Up to isomorphism, there are two graphs of
order fourteen, denoted by G1

14 and G2
14, which are expansions of index two

of (K3,3 ⊙K3,3)
+. They are shown in Figure 10.

The first graph G1
14 has 25 perfect matchings, the second graph G2

14 has
24. We may now conclude that the assertion holds, by induction, for every
minimal simple graph. ✷

We may deduce from the proof of the above theorem that f(6) = 6,
f(8) = 9, f(10) = 12, and f(12) = 17, and that the unique extremal graphs
of orders six, eight, 10, and twelve are, respectively, K3,3, B8, K3,3 ⊙ K3,3,
and G1

12. The value of f(14) is 24, and A14, G
1
14 are extremal graphs of order

fourteen. The well-known Heawood graph, which is an expansion of B10, is
also an extremal graph of order fourteen.

4 A Quadratic Lower Bound for b(n)

We denote the class of all braces of order n by Bn. Analogous to f(n), we
define b(n) to be min{Φ(G) : G ∈ Bn}. Clearly, b(4) = 2. Moreover, Bn ⊆ Fn

for n ≥ 6. Thus:

Proposition 4.1
For all n ≥ 6, f(n) ≤ b(n).
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x
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Figure 10: (a) (K3,3 ⊙K3,3)
+, (b) G1

14 and (c) G2
14

It so happens that, for n = 6, 8, the values of f(n) and b(n) coincide. But
the brace of order 10 with the fewest number of perfect matchings isM10, and
it has thirteen perfect matchings, that is, b(10) = 13, whereas f(10) = 12.

A brace B∗ of order n is extremal if Φ(B∗) = b(n). By Proposition 4.1, if
an extremal graph of order n happens to be a brace, then it is also an extremal
brace of order n. Thus, b(6) = 6, b(8) = 9, b(10) = 13, and b(12) = 17.

Since the bi-wheel of order n is a brace and has (n−2)2/4 perfect match-
ings, it follows that, for n ≥ 8,

b(n) ≤ (n− 2)2/4 (8)

As mentioned in the abstract, we shall show that, for all n ≥ 2, b(n) ≥
(n− 2)2/8. We find it compelling to believe that, for large enough n, b(n) =
(n− 2)2/4.
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Theorem 4.2
A brace of order n, where n ≥ 4, has at least ℓ(n) := (n−2)2

8
perfect matchings.

Proof: Let us compare ℓ(n) and b(n) for small values of n. The following
table shows the values of ⌈ℓ(n)⌉ and b(n) for 4 ≤ n ≤ 12.

n ⌈ℓ(n)⌉ b(n)
4 1 2
6 2 6
8 5 9
10 8 13
12 13 17

Thus ℓ(n) ≤ b(n), for 4 ≤ n ≤ 12. This inequality also holds for
14 ≤ n ≤ 18. To see this, first observe that, in this range, ℓ(n) ≤ 2n − 4.
By Theorem 3.1, 2n − 4 ≤ f(n), for n ≥ 14. On the other hand, by Propo-
sition 4.1, f(n) ≤ b(n). Thus, for 14 ≤ n ≤ 18, we have ℓ(n) ≤ b(n).

We shall prove the validity of the inequality for n ≥ 20 by induction on
the number of edges. Consider any brace G of order n, where n ≥ 20. By
Theorem 2.7, G has a thin edge, say, e = uv.

Case 0 Index of e is zero.

In this case, Ĝ− e = G − e is a brace on n vertices. By the induction
hypothesis, Φ(G− e) ≥ ℓ(n), implying that Φ(G) > ℓ(n).

Case 1 Index of e is one.

In this case, Ĝ− e has n− 2 vertices, and by induction hypothesis,

Φ(Ĝ− e) ≥ ℓ(n− 2) = ℓ(n)−
4n− 12

8
(9)

On the other hand, by Lemma 2.4,

Φ(G− {u, v}) ≥
n− 2

2
=

4n− 8

8
(10)

Adding inequalities (9) and (10), and using Lemma 1.4 we deduce that
Φ(G) > ℓ(n).

Case 2 Index of e is two.
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In this case, Ĝ− e has n− 4 vertices. By the induction hypothesis,

Φ(Ĝ− e) ≥ ℓ(n− 4) = ℓ(n)− n+ 4 (11)

The graph G−{u, v} is a matching covered graph on n− 2 ≥ 18 vertices
and at least 25 edges. It has at most four vertices of degree two. Let H
denote the retract of G − {u, v}. Each bi-contraction decreases the number
of vertices and edges by two. Since H is obtained from G−{u, v} by at most
four bi-contractions, the number of vertices of H is at least n− 10 ≥ n

2
.

If at most two bi-contractions were required to obtain H from G−{u, v},
then |V (H)| ≥ 14. If three bi-contractions were required to obtain H then
H would have 12 vertices and 19 edges. The members of E on 12 vertices
(graphs G1

12 and G2
12) have 18 edges. If four bi-contractions were required to

obtain H then H would have 10 vertices and 17 edges. The members of E
on 10 vertices have at most 16 edges. Hence H belongs to F , but is not a
member of E . Consequently, by Theorem 3.1,

Φ(G− {u, v}) = Φ(H) ≥ 2
n

2
− 4 = n− 4 (12)

Now, adding the two inequalities (11), and (12), and using Lemma 1.4 we
deduce that Φ(G) ≥ ℓ(n). ✷
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