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Abstract

A square matrix A = (aij) of order n is skew-symmetric if aij = −aji,
for each 1 ≤ i ≤ j ≤ n. A well-known theorem of Cayley states that the
determinant of a skew-symmetric matrix A is a perfect square. It is easy to
see that when n is odd, the determinant of A is in fact zero (see Exercise 2.1).
When n is even, it turns out that det(A) is the square of a polynomial in the
entries of A known as the Pfaffian of A. Each term in the Pfaffian of A,
denoted by Pf(A), corresponds to a perfect matching in a graph G(A) that
is associated with A. This correspondence leads to the notion of a Pfaffian
orientation of a graph. Pfaffian orientations are the subject of Part III of our
book.

1 Digraph Representations of Square Matrices

Let A = (aij) be a square matrix of order n, and let {1, 2, . . . , n} be the index
set of the rows and columns of A. The standard way of representing A is by an
n × n array. But A can be visualized by means of a weighted digraph D∗(A) on
{1, 2, . . . , n} in which, there is a loop at each vertex i with attached weight aii, and
between any two distinct vertices i and j, there are arcs (i, j) and (j, i) with attached
weights aij and aji, respectively. (When there is no scope for confusion, we shall
simply write D∗ for D∗(A).) Observe that, in this digraph D∗, for any vertex i, the
weights of the arcs with i as their tail correspond to the entries in the ith row of A,
and the weights of the arcs with i as their head correspond to the entries in its ith

column.

A transversal of A is a selection of n entries of A no two of which belong to the
same row or the same column. Consider any transversal T . Since T has n entries,
it corresponds in D∗ to a set of n arcs such that, at each vertex i, there is precisely
one incoming arc with i as its head, and precisely one outgoing arc with i as its tail.
This leads us to the following pivotal observation:

Proposition 1.1 The subdigraph of D∗ induced by the set of arcs in a transver-
sal T of A is a union of vertex disjoint directed cycles which covers all the vertices
of D∗. ✷

We refer to this subdigraph of D∗ corresponding to a transversal T of A as the
support of T . The above proposition says that all the components of the support of
a transversal are directed cycles.

We now define the notions of weights and signs of transversals of A, and use
them to define the determinant det(A) of A.

Let C be a directed cycle in the digraph D∗. Then the weight wt(C) of C in
D∗ is the product of the weights of the the arcs in C. The sign of C, denoted by
sign(C), is plus if the length of C is odd, and is minus if that length is even. Now
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suppose that T is a transversal of A. Then, the weight wt(T ) of T is the product
of the weights of the directed cycles whose union is the support of T . Similarly,
the sign of T , denoted by sign(T ), is the product of the signs of the directed cycles
whose union is the support of T .

Definition of det(A) in terms of D∗

The determinant det(A) of A is
∑

T sign(T )wt(T ), where the sum is taken over
the set of all transversals T of A. (Exercise 1.1 provides a simple illustration of
how to compute the determinant of a matrix using this definition.)

Notes: The definition of the determinant of a square matrix is usually phrased in
terms of permutations. To see that the above given definition is equivalent to the
‘standard’ definition, observe that T := {a1τ(1), a2τ(2), . . . , anτ(n)} is a transversal
of A if and only if τ is a permutation of {1, 2, . . . , n}. Thus, there is a one-to-
one correspondence between the set of all transversals of A and the set of all the
n! permutations of {1, 2, . . . , n}. Proposition 1.1 implies that any permutation of
{1, 2, . . . , n} may be decomposed into cyclic permutations. The sign of a cyclic
permutation is plus or minus depending whether or not it is odd or even. Thus
the above definition of the determinant of A is the same as the definition using the
language of permutations. In the first three sections, we shall restrict ourselves to
the language of graph theory. But in the last two sections, we will need to resort to
the terminology of the theory of permutations which is commonly used (including
our own book Perfect Matchings). Most undergraduate texts on algebra include the
basic material concerning permutations we need. But, for the convenience of our
readers, we give a brief review of all the facts concerning permutations that we use
in the appendix at the end.

Exercise

1.1 Consider the skew-symmetric matrix A of order four in which the six upper
diagonal entries a12, a13, a14, a23, a24 and a34 are positive, the six lower diagonal
entries a21 = −a12, a31 = −a13, a41 = −a14, a32 = −a23, a42 = −a24, and a43 = −a34
are negative, and the four diagonal entries a11, a22, a33 and a44 are zero.

(i) Draw the digraph D∗(A). (There is no need to draw the loops at the four ver-
tices because any transversal which includes a diagonal entry has zero weight
and thus makes no contribution to det(A).)

(ii) Find all the transversals of A of nonzero weight and their signs and weights.
Hint: There are three transversals of nonzero weight whose supports are
unions of two directed cycles of length two in D∗(A). One such transver-
sal is {a12, a21, a34, a43}, its sign is plus, and its weight is

a12.a21.a34.a43 = a12.(−a12).a34.(−a34) = a212.a
2
34.

There are six transversals whose supports are single directed cycles of length
four, which come in pairs that pertain to directed cycles in D∗(A) which are

2



converses of each other. For example, the cycles (1, 2, 3, 4, 1) and (1, 4, 3, 2, 1)
are two such directed cycles in D∗; the signs of the transversals which corre-
spond to these two cycles are minus, and their weights are a12.a23.a34.a41 and
a14.a43.a32.a21, respectively. Using the skew-symmetry property, show that
the weights of both these directed cycles are equal to −a12.a23.a34.a14.

(iii) Now find the det(A) and verify that it is the square of

a12a34 − a13a24 + a14a23.

2 Representation of Skew-Symmetric Matrices by Sim-

ple Digraphs

Suppose that A is a skew-symmetric matrix. Then, by definition, aij = −aji for
1 ≤ i ≤ j ≤ n. This implies that all the diagonal entries of A are zero. The
weight of any transversal of A which includes a diagonal entry or, more generally,
any transversal of A which includes an entry that is zero, makes no contribution to
det(A). For this reason, in D∗(A) we retain only those arcs which correspond to
nonzero entries ofA. Half the arcs ofD∗(A) corresponds to positive entries ofA and,
in view of the fact that A is skew-symmetric, the remaining arcs of A correspond to
negative entries of A. We denote the spanning weighted simple subdigraph of D∗

induced by the set of arcs corresponding to the positive entries of A by D := D(A),
and the underlying weighted simple undirected graph of D(A) by G := G(A). The

weights of all edges in G are positive.

Example 2.1 The weighted digraph D depicted in Figure 1 represents a skew-
symmetric matrix A of order ten with 15 positive entries corresponding to the arcs
of D. In this case the underlying undirected graph G is the 5-prism. (To obtain D∗

from D, for each arc (i, j) of D we simply have to add the reverse arc (j, i) and
assign it the weight −aij .)

2.1 Definitions of transversals of A and their signs and weights in

terms of the simple digraph D(A)

In order for us to transition from D∗ to D, we must first identify what happens
to directed cycles of D∗ when all the arcs with negative weights are deleted. If
(v1, v2, . . . , v2k−1, v2k, v1) is a directed cycle in D∗ of length three or more, then
(v1, v2k, v2k−1, . . . , v2, v1)) is also a directed cycle in D∗. These two directed cycles in

D∗ correspond to the same cycle inD traversed in two opposite senses. For convenience,
we refer to the two possible senses of traversal of a cycle γ in D as ‘clockwise’
and ‘anti-clockwise’ and denote them by γc and γa, respectively (even when these
designations have no geometric context).

The weight of a cycle in D with a prescribed sense of traversal is the product
of the weights of those of its arcs whose orientations are also in the same sense
and the negatives of the weights of those whose orientations are in the opposite
sense. For example, let γ be the 5-cycle bounding the outer face in the drawing
of the pentagonal prism shown in Figure 1. When γ is traversed in the clockwise
sense, it encounters the heads of the four arcs (2, 1), (3, 2), (4, 3), and (5, 4) first
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Figure 1: The weighted digraph D associated with a skew-symmetric matrix.

and then their tails later, and the tail of (5, 1) first then its head. Therefore, the
weight of γc is (−a21).(−a32).(−a43).(−a54).a51. On the other hand, the only arc
of γa := (1, 5, 4, 3, 2, 1) whose orientation is not in the anti-clockwise sense is (5, 1).
Therefore, the weight of γa is (−a51).a54.a43.a32.a21.

Since D is simple, it has no cycles of length two. But, given any arc (i, j) of D,
there is a unique directed cycle of length two in D∗, namely (i, j, i) and its weight is
aij .aji = aij .(−aij) = −a2ij , and its sign is minus because it corresponds to an even
cycle in D∗. For each arc (i, j) in D, we regard (i, j, i) as a cycle (albeit a flattened
cycle) and we represent it simply by (i, j).

If A is a skew-symmetric matrix and T is a transversal of A, we observed in
Section 1 that the support of T in D∗ is a vertex-disjoint union of directed cycles
which covers all its vertices. The weight of T is the product of the weights of directed
cycles in its support, and the sign of T is plus if the number of even directed cycles
in its support is even, and is minus if that number is odd. Weights and signs of T
with respect to D may be defined similarly noting the exceptional case in which
a subdigraph of D with just one arc corresponds to a directed cycle of length two
in D∗, and that directed cycles of length three or more corespond in D to cycles
with specified senses of traversal.

Example 2.2
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Let T := {a1t, at6, a65, a51, a29, a98, a83, a32, a74, a47} be a transversal of the skew-
symmetric matrixA represented by the graphD in Figure 1. The support of T inD∗

is the union of the the three directed cycles γ1 := (1, t, 6, 5, 1), γ2 := (2, 9, 8, 3, 2), and
γ3 := (7, 4, 7). The support of T in D is the union of the cycles γc1 := (1, t, 6, 5, 1),
γa2 := (2, 9, 8, 3, 2) and γ3 := (7, 4, 7).

Between any two adjacent vertices in D∗ there are two arcs; one whose weight
is positive and one whose weight is negative. In D there are no arcs whose weights
are negative, but one may traverse an arc from its head to its tail by ‘paying the
price’. In this world, the weight function is multiplicative and two wrongs make a
right! Thus

wt(γc1) = a1tat6a65a51 = a1t(−a6t)(−a56)a51 = a1ta6ta56a51
wt(γa2 ) = a29a98a83a32 = a29(−a89)a83a32 = −a29a89a83a32
wt(γ3) = a74a47 = a74(−a74) = −a274; and
wt(T ) = wt(γc1)wt(γ

a
2 )wt(γ3)

Finally, note that the sign of T is minus because its support is a union of three (an
odd number) of even cycles!

2.2 Forward arcs and reverse arcs

Let γ be a cycle in D, and let γc and γa be obtained by assigning opposite senses of
traversal (clockwise and anti-clockwise) to γ. An arc (i, j) of γ is a forward arc in γc

if, in the clockwise order, its tail precedes its head, and is a reverse arc, otherwise.
Forward and reverse arcs in γa are similarly defined. Clearly, a forward arc of γc is
a reverse arc of γa and vice versa.

Thus the weight of γc is the product of the weights of forward arcs and the
negatives of the weights of reverse arcs in γc. Similar statement applies to γa. This
observations lead us to the following useful result:

Lemma 2.3 Let γ be a cycle of length three or more in D, let C denote the cycle in
G obtained by disregarding the orientations of the arcs in D, and let wt(C) denote
the product of the weights of the edges of G of C (which is positive because weights
of all edges in G are positive). Let r and f denote the the numbers, respectively, of
reverse and forward arcs in γc. Then,

wt(γc) = (−1)rwt(C).

On the other hand, since those arcs of γ which are forward arcs in γc are reverse
arcs in γa,

wt(γa) = (−1)fwt(C). ✷

(The interplay between cycles in the simple directed graph D and the cycles in the

undirected graph G is an important aspect of the proof of Cayley’s Theorem.)

If γc is a cycle of odd length, then r and f clearly have different parities because
the length of γc is r+ f . On the other hand, if the γc is of even length, then r and f

have the same parity. Furthermore, forward arcs in γc are reverse arcs in γa, and
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vice versa. Thus, the above lemma implies the following useful property regarding
the weights of cycles in D.

Odd and even cycles

Corollary 2.4 Let γ be a cycle in G and let γc and γa denote cycles in D

corresponding to the two senses of traversal of γ.

(i) if γ is an odd cycle, then wt(γa) = −wt(γc); and

(ii) if γ is an even cycle, then wt(γa) = wt(γc). (The fact that the weights
of γc and γa are the same when γ is an even cycle might lead one to
think that, in the expansion of det(A) one needs to consider only one of
them. This is not true. Consider, for example, the cycle γ := (1, 2, 3, 4, 1)
in the digraph D representing the skew-symmetric matrix A of order four
described in Exercise 1.1. Although γc and γa have the same the signs and
same weights, they correspond to distinct transversals and both appear in
the expansion of the determinant of the matrix A.) ✷

By Proposition 1.1, the support of a transversal cannot contain the same cycle
with two different senses of traversal. The above result implies the following:

Proposition 2.5 Suppose that T and T ′ are two different transversals of a skew-
symmetric matrix A, and, in digraph D representing A, let γc and γa be the same
odd cycle with opposite senses of traversal such that (i) the support of T has γc as a
component, (ii) the support of T ′ has γa as a component, and otherwise, (iii) every
component of the support of T is also a component of the support of T ′, and vice
versa. Then wt(T ) = −wt(T ′) (and sign(T ) = sign(T ′)). (So, in the expansion of the

determinant of A, the terms corresponding to T and T ′ cancel out.) ✷

For example, consider the skew-symmetric matrix represented by the digraph D

shown in Figure 1, let γ1 and γ2 denote, respectively, the outer and inner facial
pentagons, and let T and T ′ be the transversals whose support are, respectively,
γc1 ∪ γc2 and γc1 ∪ γa2 . Then wt(T ) = −wt(T ′) and signs of both T and T ′ are plus.

As we noted in the abstract the determinant of skew-matrix A of order n is zero
if n is odd. This result can be deduced easily using Proposition 2.5 by observing
that, as n is odd, the support of any transversal of A must contain an odd cycle.
We leave the details as Exercise 2.1.

Henceforth, we restrict ourselves to the consideration of skew-symmetric matrices
of even order. Proposition 2.5 leads us to the following important conclusion:

Skew-symmetric matrices of even order

Theorem 2.6 The expansion of the determinant of any skew-symmetric matrix A

of even order may be restricted to transversals whose supports in D do not contain

odd cycles. ✷
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Exercises

2.1 Give a proof of the statement that the determinant of an odd oder skew-
symmetric matrix is zero, using Proposition 2.5.

2.2 Let D be an orientation of the Petersen graph with positive weights attached to
all its arcs, and let A be the skew-symmetric matrix represented by D. How many
transversals of A of nonzero weight are there which do not include odd cycles?

3 Perfect Matchings Enter the Game

Let A be an n × n skew-symmetric matrix, where n is even. By Theorem 2.6,
the expansion of the determinant of A may be restricted to those transversals of
nonzero weight whose supports in D are disjoint unions of arcs (representing flat-
tened directed cycles of length two) and even cycles with assigned senses of traversal.
Henceforth, by a transversal of A we shall mean one which satisfies this property.

Suppose that T is a transversal of A and γ1 ∪ γ2 ∪ · · · ∪ γℓ is the support of T ,
where each γi is either a single arc of D representing a flattened directed cycle of
length two; or is an even cycle (not necessarily a directed cycle) of length four or
more in D with a prescribed sense of traversal. If all γi are arcs, then the set of
edges of G which correspond to that set of arcs in D which belong the support
of T is a perfect matching in G. Alternatively, suppose that, adjusting notation,
γ1, γ2, . . . , γk are even cycles of length four or more in D with prescribed senses of
traversal, for some k ≤ ℓ; and γk+1, γk+2, . . . , γℓ are arcs of D representing directed
cycles of length two. If we disregard the orientations of the arcs in the support of T ,
we would have a spanning subgraph of G whose components are either even cycles
or copies of K2. Thus the set of edges of G which corresponds to the set of arcs in
the support of the transversal of T may be expressed as the union of two perfect
matchings of G; in some cases, one may be able to do this in more than one way.
We give three examples below to illustrate how these cases arise. All these examples
pertain to the matrix A represented by Figure 1.

Example 3.1 Let T := {(1, t, 1), (2, 9, 2), (8, 3, 8), (7, 4, 7), (5, 6, 5)} be a transversal
whose support consists entirely of cycles of length two. It corresponds to the set
{(1, t), (2, 9), (8, 3), (7, 4), (5, 6)} of arcs of D and, in turn, the corresponding set
M := {1t, 29, 83, 74, 56} of edges of G is a perfect matching of G.

The weight of T is (−a21t).(−a229).(−a283).(−a274).(−a256) = −a21t.a
2
29.a

2
83.a

2
74.a

2
56;

and the sign of T is minus because it is the union of an odd number of even cycles.
Therefore sign(T )wt(T ) = a21t.a

2
29.a

2
83.a

2
74.a

2
56.

Example 3.2 Let γ1 be the 8-cycle (5, 6, 7, 8, 9, 2, 3, 4, 5), and let γ2 := {(1, t, 1)}.
Then, there are two transversals T1 and T2 whose supports in D are, respectively,
γc1 ∪ γ2 and γa1 ∪ γ2. (The cycles γc1 and γa1 in D correspond, respectively, to
the directed cycles (5, 6, 7, 8, 9, 2, 3, 4, 5) and (5, 4, 3, 2, 9, 8, 7, 6, 5) in D∗; and the
arc (1, t) of D represents the directed cycle (1, t, 1) in D∗.) Thus, for i = 1, 2,
the spanning subgraph of G which is obtained by disregarding the orientations
of arcs in the support of Ti has two components, one of which is the 8-cycle
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(5, 6, 7, 8, 9, 2, 3, 4, 5) and the other has just one edge, namely 1t. The edge set of
this subgraph of G is the union of the two perfect matchings M := {56, 78, 92, 34, 1t}
and N := {67, 89, 23, 45, 1t}.

For i = 1, 2, the support of Ti has two components, both of which are even cy-
cles. Therefore both sign(T1) and sign(T2) are plus. Furthermore, by Corollary 2.4,
wt(T1) = wt(T2). Therefore sign(T1)wt(T1) = sign(T2)wt(T2).

Example 3.3 Let γ1 and γ2 denote, respectively, the two cycles (1, 5, 6, t, 9, 2, 1)
and (7, 8, 3, 4, 7) in D. There are four transversals whose support in D is the union
of the arcs sets of γ1 and γ2, namely (i) T1 whose support inD is γc1∪γ

c
2; (ii) T2 whose

support in D is γc1 ∪ γa2 ; (iii) T3 whose support in D is γa1 ∪ γc2; and (iv) T4 whose
support is γa1∪γ

a
2 . For 1 ≤ i ≤ 4, the subgraph ofG which is obtained by disregarding

the orientations of the arcs of the support of Ti is the union of the two disjoint
even cycles (1, 5, 6, t, 9, 2, 1) and (7, 8, 3, 4, 7). Its edge set may be expressed as the
union of two perfect matchings in two different ways, namely: {15, 6t, 29, 78, 34} ∪
{56, t9, 21, 83, 24}; and also as {15, 6t, 29, 83, 47} ∪ {56, t9, 21, 78, 34}.

By Corollary 2.4, all T1, T2, T3 and T4 have the same weight and, since their sup-
ports are unions of two even cycles, their signs are positive. Thus, sign(Ti)wt(Ti) =
sign(Tj)wt(Tj), for 1 ≤ i ≤ j ≤ 4.

In the next section, we shall elaborate on the role perfect matchings play in the
theory of determinants of even order skew-symmetric matrices.

4 Weights and Signs of Perfect Matchings

4.1 Weights of perfect matchings

Suppose that A is a skew-symmetric matrix of even order and that T is a transversal
of A whose support in D is the disjoint union of γ1, γ2, . . . , γk, where each γi
is either an arc or an even cycle in D with a prescribed sense of traversal. For
convenience, we shall assume that, for all cycles of length four or more, this sense
is ‘clockwise’. By Corollary 2.4, this incurs no loss of generality!

For 1 ≤ i ≤ k, let Ci be the subgraph of G obtained by disregarding the orien-
tations of arcs in γi. Then either Ci is a copy of K2 or is an even cycle, and the
edge set of C1 ∪ C2 ∪ · · · ∪ Ck may be expressed as the union of two, not necessar-
ily distinct, perfect matchings, say M and N , of G. Furthermore, for 1 ≤ i ≤ k,
Mi := E(Ci)∩M and Ni := E(Ci)∩N are perfect matchings of Ci, and Mi∩Ni = ∅
if Ci is an even cycle, and Mi = Ni if Ci is a copy of K2.

The weight of Ci in G, for 1 ≤ i ≤ k, denoted by wt(Ci), is the product of the
weights of edges of Ci, and weight of wt(C1 ∪ C2 ∪ · · · ∪ Ck) in G is the product
of the weights of C1, C2, . . . , Ck. Since weights of all edges of G are positive, this
weight is positive. However, the weight of γc1 ∪ γc2 ∪ · · · ∪ γck, which is relevant to the
computation of the determinant of A, depends on the orientations of the arcs in D.
For 1 ≤ i ≤ k, the weight of γci in D is the same as the weight of Ci in G, if the
number of reverse arcs in γci is even, and it is the negative of the weight of Ci in G,
if the number of reverse arcs in γci is odd. But the number of reverse arcs in γci is
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the sum of the number of reverse arcs in the perfect matching Mi and those in the
perfect matching Ni.

Taking the above observations into account, the key idea now is to define, for each
perfect matching M of G, the notions of sign(M) weight wt(M) of M and show that,
given any transversal T of A, there exist two perfect matchings M and N (which
maybe the same) such that:

sign(T ) · wt(T ) = (sign(M) · wt(M)) · (sign(N) · wt(N)) (1)

4.2 Weights of perfect matchings

The weight of a perfect matching M of G, denoted by wt(M), is the product of the
weights of edges of M in G. Since the weights of all edges in G are positive, the
weights of all perfect matchings are positive.

We now proceed to define the concept of the sign of a perfect matching ofG which
takes into account the orientations of its edges in the digraph D. This necessarily
involves the notion of a permutation of the vertex set of G which we have avoided
so far. To prove Cayley’s Theorem, we shall also need a few basic facts from the
theory of permutations of a finite set. A review of the definitions, terminology and
the simple results related to permutations we use can be found in the appendix at
the end.

4.3 Signs of perfect matchings

Permutations associated with perfect matchings and their signs

Let M = {e1, e2, . . . , er} be a perfect matching of G, and for 1 ≤ i ≤ r, let
ui and vi denote, respectively, the tail and the head of ei in D. Then the
permutation π(M) associated with M is:

π(M) :=

(

1 2 3 4 . . . 2k − 1 2k
u1 v1 u2 v2 . . . ur vr

)

Signs of perfect matchings: The sign of M of G (with respect to the di-

graph D), denoted by sign(M), is the sign of the permutation π(M).

Example 4.1 Consider the perfect matchings M := {12, 9t, 65, 78, 34} and N :=
{29, t6, 51, 83, 47} in the underlying undirected graph of the digraph D shown in
Figure 1. Then,

π(M) :=

(

1 2 3 4 5 6 7 8 9 t

2 1 9 t 5 6 7 8 4 3

)

π(N) :=

(

1 2 3 4 5 6 7 8 9 t

2 9 6 t 5 1 8 3 7 4

)

It can be verified that π(M) decomposes into four odd cyclic permutations and
two even cyclic permutations, and hence, sign(M) is plus; on the other hand, π(N)
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decomposes into two odd cyclic permutations and one even cyclic permutations, and
hence sign(N) is minus. (One might wonder if signs of M and depend on the order
in which the edges of M are enumerated. They do not. (Exercise 4.2).)

The following proposition should give the reader an intuitive idea of the meaning
of the signs of perfect matchings. (To understand this statement, try to verify the
result for two or three different orientations of C8 = (1, 2, . . . , 8, 1).)

Proposition 4.2 Let G be the even cycle (1, 2, . . . , 2n, 1) of length four or more,
let M and N be the two perfect matchings of G, and let D = γ be an orientation
of G. Let M be the perfect matching containing the edge 12 and N be the perfect
matching containing the edge 23. Suppose that we assign a clockwise sense of
traversal to the cycle γ. Then

(i) the sign of M with respect to γc is plus if the number of reverse arcs that
belong to M is even, and is minus if that number is odd;

(ii) in contrast to the sign of M , the sign of N with respect to γc is minus if the
number of reverse arcs that belong to N is even, and is plus if that number is
odd.

(iii) The two perfect matchings M and N of G have the same signs with respect
to γc if the number of reverse arcs in γc is odd, and different signs if that
number is even. (This follows from items (i) and (ii) and the fact that the
number of reverse arcs in γc is the sum of the numbers of reverse arcs that
belong M and of those which belong to N). As the parity of the number of
reverse arcs in γa is the same as the parity of the number of reverse arcs in γc,
the analogous result also holds with respect to γa. ✷

The third item in the statement of the above proposition holds even if the vertices

of γc are not labeled in the cyclic order (1, 2, . . . , n). That is the essence of the following
statement:

A crucial lemma

Lemma 4.3 Let C be an even cycle of length four or more and let M and N

denote the two perfect matchings of C. Consider any orientation γ of the cycle C.
Then, sign(M) = sign(N) (or, equivalently, sign(M) · 1sign(N) is positive) in
the digraph γ if and only if the parity of the number of reverse arcs in any sense
of traversal of γ is odd. ✷

The result above, which is stated differently in our book and appears as Exer-
cise 19.2.1, plays a crucial role in the proof of Cayley’s Theorem. Solution to 19.2.1
is given in Appendix A of the book, but try to find a proof of Lemma 4.3 which is
your own.
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Exercises

4.1 Figure 2 depicts two different orientations D1 and D2 of C6. Graph G, the
underlying undirected graph of both D1 and D2, has has four perfect matchings,
namely M1 := {12, 36, 45}, M2 := {15, 34, 26}, M3 := {14, 23, 56}, and M4 :=
{12, 34, 56}. Determine the signs of these four perfect matchings with respect to
each of D1 and D2.

1 2

34

5 6

a12

a15

a41

a26

a32

a36

a43

a45

a56

(a) D1

1 2

34

5 6

a12

a15

a41 a32

a56

a63

a62

a34

a54

(b) D2

Figure 2: Two different orientations of C6.

4.2

(i) Verify that the sign of the perfect matching M := {15, 26, 34} of the digraph
D1 shown in Figure 2 is plus regardless of the order in which the edges of M
are enumerated.

(ii) Prove the general fact that the sign of a perfect matching M of G does not
depend on the order in which the edges of M are enumerated.

4.3 Give your own proof of Lemma 4.3.

5 Pfaffians and Cayley’s Theorem

In the abstract we indicated that the determinant of a skew-symmetric matrix A of
even order is the square of a certain polynomial in the entries of A. We now have
all the terminology needed to define that polynomial.

5.1 The Pfaffian

Let A be a skew-symmetric matrix of even order, let D be the simple digraph
representing A, and let G be the underlying undirected graph of D. Them, the
Pfaffian of A, denoted by Pf(A) is

Pf(A) :=
∑

M∈M(G)

sign(M)wt(M) (2)

where M(G) denotes the set of all perfect matchings of G.
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Example 5.1 Consider the two orientations D1 and D2 of G := C6 depicted in
Figure 2. The undirected graph G, as we noted, has four perfect matchings M1 =
{12, 36, 45}, M2 = {15, 34, 26}, M3 = {14, 23, 56} and M4 = {12, 34, 56}. The
weights of these four perfect matchings are, respectively,

a12a36a45, a15a34a26, a14a23a56, and a12a34a56.

The signs of M1 and M3 in D1 are plus, where as those of M2 and M4 are minus
(see Exercise 4.1.) Therefore, in this case:

Pf(A) = a12a36a45 − a15a34a26 + a14a23a56 − a12a34a56

On the other hand, with respect to the orientation orientation D2, the signs of all
the four perfect matchings are plus, and their weights are, respectively,

a12a63a54, a15a34a62, a41a32a56, and a12a34a56.

Therefore, in this case:

Pf(A) = a12a63a54 + a15a34a62 + a41a32a56 + a12a34a56.

Observe that all perfect matchings of C6 have the same sign with respect to D2

which is not the case with respect to D1. In the language of Chapter 19, digraph D2

is a Pfaffian orientation of G and D1 is not!

5.2 Cayley’s Theorem

Theorem 5.2 The determinant of an even order skew-symmetric matrix A is the
square of its Pfaffian.

Proof: In the definition of the Pfaffian of a digraph D (Equation (2)) we used M

as a generic symbol for a perfect matching of G. In the expression for the square of
the Pfaffian of D, we shall use M as the generic symbol in one factor and N as the
generic symbol in the other. With this understanding, the square of the Pfaffian of
D is the following expression:

(Pf(A))2 =
∑

M∈M(G)

sign(M)wt(M)
∑

N∈M(G)

sign(N)wt(N)

=
∑

M∈M(G)

∑

N∈M(G)

sign(M)wt(M)sign(N)wt(N).

Observe that if M and N are two distinct perfect matchings of G, then there
are two terms in the above expression. One of these corresponds to the ordered pair
(M,N) and the other to (N,M). But if M = N there is just one term, namely
(sign(M).wt(M))2.

12



What needs to proved?

Let A be a skew-symmetric matrix of order 2r. Recall that the determinant
det(A) of A is

∑

T sign(T )wt(T ), where the sum is taken over the set of all
transversals T of A. Since the order of A is even, we need consider only those
transversals T of nonzero weight whose supports do not include any odd cycles.
Thus, to prove the validity of the statement of Cayley’s Theorem, we need to
establish a one-to-one correspondence between the set of all such transversals
of A and the set of ordered pairs (M,N) of perfect matchings of G (allowing
for the possibility that M = N) such that:

sign(T )wt(T ) = sign(M)wt(M) · sign(N)wt(N) (3)

5.3 Equivalence classes of transversals and ordered pairs of perfect

matchings

Our first task is to establish a one-to-one correspondence between the set of all
transversals of A and ordered pairs of perfect matchings of G. Thus, let T be
a transversal of A whose support in D has ℓ cycles γ1, γ2, . . . , γℓ, of which the
first k cycles γ1, γ2, . . . , γk are of length four or more, each with an assigned sense
of traversal, and the remaining cycles γk+1, γk+2, . . . , γℓ are flattened directed cycles
of length two represented by arcs in D.

Let us first consider the case in which k = 0. In this case then ℓ = r and the set
of edges of G which correspond to the arcs of D representing the flattened cycles
γ1, γ2, . . . , γℓ is a perfect matching of G.

Now supose that k ≥ 1. In this case, each of the k cycles γ1, γ2, . . . , γk may,
independently, be assigned either the clockwise or the anti-clockwsie sense of traver-
sal. Thus T belongs to a class T of 2k transversals of A. (By Corollary 2.4, any
two members of T have the same weight and the same sign.)

On the other hand, by disregarding the orientations of the arcs of D in the
support of T , we obtain a subgraph H of G which is a union of k disjoint even
cycles C1, C2, . . . , Ck corresponding the cycles γ1, γ2, . . . , γk of D; and copies of K2

corresponding to the arcs of D representing the flattened cycles γk+1, γk+2, . . . , γℓ.
Thus the edge set E(H) of H may be expressed as a union of two perfect matchings;
in fact E(H) may be expressed as the union of two perfect matchings in 2(k−1)

different ways. Thus, there are 2k ordered pairs (M,N) of perfect matchings of the
graph G such E(H) = M ∪N .

It is therefore possible to establish a one-to-one correspondence between the set
T of transversals and ordered pairs of perfect matchings whose union is E(H). One
‘natural’ way to do this is as follows: Colour the edges of each component of H that
is an even cycle, alternately, in two colours c (crimson) and a (amber), and colour the
edges of H corresponding flattened cycles of length two by a neutral colour b (beige)
which is meant to be both c and a. In each of the components C1, C2, . . . , Ck of H
which are even cycles, the set of edges labelled c and those labelled a are disjoint
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perfect matchings of that component. Any combination of these matchings could
be extended to a perfect matching of H by including those edges of H which are
coloured by the neutral colour b.

Given any transversal T in T , there is another member T ′ of T , which we shall
refer to as the complement of T , that is obtained by reversing the senses of traversal
assigned to the cycles γ1, γ2, . . . , γk. It can be verified that if the ordered pair of
perfect matchings associated with T is (M,N), the the ordered pair associated with
its complement T ′ is (N,M). For a concrete example, see Exercise 5.1

5.4 Proof of Cayley’s Theorem

For notational convenience, we split the proof into two cases, the first being the one
that is easier to deal with.

Case 1 Let T be a transversal of A whose support in D is a subdigraph of D whose
arc set is disjoint union of r arcs, say {(u1, v1), (u2, v2), . . . , (ur, vr)}.

For 1 ≤ i ≤ r, the arc (ui, vi) of D corresponds to the directed cycle (ui, vi, ui)
in D∗. Since A is skew-symmetric, wt(ui, vi, ui) is −(auivi)

2, and its sign is minus
because it is an even cycle. Therefore

sign(T )wt(T ) = (au1v1au2v2 . . . aurvr)
2.

Clearly M := {u1v1, u2v2, . . . , urvr} is a perfect matching of G. Regardless of what
the sign of M in D is,

sign(T )wt(T ) = (au1v1au2v2 . . . aurvr)
2 = (sign(M)wt(M))(sign(M)wt(M))

Thus, in this case, the required equality holds. ✸

Case 2 Let T be a transversal of the skew-symmetric matrixA of even order, whose
support in D has k even cycles γ1, γ2, . . . , γk of length four or more, where k ≥ 1,
each with an assigned sense of traversal; and flattened cycles γk+1, γk+2, . . . , γℓ of
length two.

Let T denote the set of all transversals of A whose support in D is the union
of γ1, γ2, . . . , γℓ; and consider any bijection between T and the set of all ordered
pairs of perfect matchings of the subgraph H of G obtained by disregarding the
orientations of the arcs in D. Now, let (M,N) be the pair of perfect matchings of H
associated with the given transversal T , and for 1 ≤ i ≤ ℓ, let Mi := M ∩ E(Ci)
and Ni := N ∩ E(Ci). Observe that, for 1 ≤ i ≤ k, the two subsets Mi and Ni

of E(H) are disjoint perfect matchings of Ci such that Mi ∪ Ni = E(Ci); and, for
k + 1 ≤ i ≤ ℓ, Mi = Ni = E(Ci).

Clearly wt(M) ·wt(N) = wt(M1) ·wt(N1) ·wt(M2) ·wt(N2) · . . . ·wt(Mk) ·wt(Nk)
does not depend on the labeling of the vertices of D. The signs sign(M) and

sign(N) of perfect matchings M and N of G do depend on the labelings

of the vertices of D. However, the product sign(M)sign(N) does not. This

follows from Lemma 4.3. With this understanding, let us relabel the vertices
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in such a way that, for 1 ≤ i ≤ k, the labels of vertices of Ci is a segment of
|V (Ci)| consecutive integers of the vertex set {1, 2, . . . , 2r} of G; and let sign(Mi)
and sign(Ni) denote respectively, the signs of Mi and Ni in the subdigraph γi of D;
and note that

sign(M) = sign(M1) · sign(M2) · . . . · sign(Mℓ) (4)

sign(N) = sign(N1) · sign(N2) · . . . · sign(Nℓ). (5)

Thus, to establish the desired Equation 3, it suffices to show that, for i = 1, 2, . . . , ℓ,

sign(γi)wt(γi) = sign(Mi)wt(Mi) · sign(Ni)wt(Ni). (6)

For 1 ≤ i ≤ ℓ, the cycle γi is even, implying that sign(γi) = −1. (By Corol-
lary 2.4, wt(γci ) = wt(γai ). We refer to this common value as wt(γi).) The cy-
cles γk+1, γk+2, . . . , γℓ are of length two, say γi = (ui, vi, ui). Then, as in Case 1,
sign(γi)wt(γi) = a2uivi

. Furthermore, Mi = Ni, and wt(Mi) = wt(Ni) = auivi . Hence
Equation (6) holds for k + 1 ≤ i ≤ ℓ.

In the remaining cases, that is, for 1 ≤ i ≤ k, we need subtler arguments to
establish the validity of Equation (6). Since Mi ∪ Ni = E(Ci), it follows that
wt(Mi).wt(Ni) = wt(Ci), Equation (6) may be rephrased as:

sign(γi)wt(γi) = (sign(Mi)sign(Ni)).wt(Ci), (7)

where wt(Ci) denotes the product of the weights of edges of the cycles Ci which
does not depend on the orientations of the corresponding arcs in D.

We now consider two subcases depending on the parity of the number of reverse
arcs in γi with respect to the orientation D. (Note that this number depends on the
sense of traversal assigned to γi, and the senses of traversal assigned to constituent
cycles is a part of the description of a transversal.)

Case 2.1 The number of reverse arcs in γi is even.

In this case, wt(γi) is equal wt(Ci) which is positive because the weights of all edges
of G are positive. On the other hand, by Lemma 4.3, sign(Mi) 6= sign(Ni), implying
that sign(Mi)sign(Ni) = −1. Hence Equation (7) holds.

Case 2.2 The number of reverse arcs in γi is odd.

In this case, wt(γi) is equal −wt(Ci) and, as noted earlier, sign(γi) = −1. On the
other hand, by Lemma 4.3, sign(Mi) = sign(Ni), implying that sign(Mi)sign(Ni) =
+1. Thus, Equation (7) holds in this case as well! ✷

Exercise

5.1 Let A be a skew-symmetric matrix of order sixteen, and let T denote the set
of all transversals of A whose support in D has three cycles γ1, γ2 and γ3 of lengths
four, six and four, respectively, and one flattened cycle γ4 of length two, and suppose
that the octagonal prism shown in Figure 3 is the corresponding subgraph H of G
obtained by disregarding the orientations of the arcs in D.

Find the ordered pairs of perfect matchings associated with the eight possible
transversals with the given profile.
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C1

C2

C3

Figure 3: The support in G of a transversal T in T .
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Appendix
A permutation of a set S is a bijection of S onto itself. When S is a finite set,
permutations are usually specified using the familiar two-line notation. (If S =
{1, 2, . . . , n}, a permutation π of S is specified by listing (1, 2, . . . , n) in the first
line and (π(1), π(2), . . . , π(n)) in the second line so that π(i) appears below i, for
1 ≤ i ≤ n.)

Here we recall the basic facts related to permutations of finite sets using the
terminology we have used used in sections 3 and 4.

6 Cyclic Permutations

Let S := (i1, i2, . . . , ik) of k be an cyclically ordered set consisting of k distinct
indices. Then the permutation

γ =

(

i1 i2 . . . ik−1 ik
i2 i3 . . . ik i1

)

(8)

which permutes the indices of S cyclically is called a cyclic permutation of S and
is denoted simply by (i1 i2 . . . ik). (Thus, we use one-line notation for cyclic
permutations.)

By reversing the order of elements in S, we obtain the cyclically ordered set
(i1, ik, . . . , i2). The corresponding cyclic permutation is

δ =

(

i1 ik . . . i3 i2
ik ik−1 . . . i2 i1

)

(9)

In one-line notation, δ is (ik ik−1 . . . i1).

Example 6.1 The permutation γ which maps 3 to 2; 2 to 4; 4 to 1; and 1 back
to 3 is the cyclic permutation (3 2 4 1); and the permutation δ which maps 3 to 1,
1 to 4, 4 to 2, and 2 back to 3 is the cyclic permutation (3 1 4 2).

Notice that δ ‘undoes’ what σ ‘does’ in the sense that if γ maps an element i of
the index set to an element j, then δ maps j back to i. Similarly, γ ‘undoes’ what δ
‘does’. For this reason, we refer to γ and δ as inverses of each other and refer to δ

as γ−1 and γ as δ−1.

The notion of cyclic permutations will become clearer when we start using the
language of graphs which will be introduced in a later section.

6.1 Decomposition into cyclic permutations

Any permutation π of a set S := {1, 2, . . . , n} decomposes uniquely into cyclic
permutations of disjoint subsets of S. To illustrate what this statement means, let
us consider the permution π of {1, 2, . . . , 10} shown below:

π =

(

1 2 3 4 5 6 7 8 9 10
3 4 6 8 7 1 5 2 10 9

)

(10)
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This permutation π sends (maps) 1 to 3, 3 to 6 and 6 back to 1; sends 2 to 4, 4
to 8, and 8 back to 2; sends 5 to 7, and 7 back to 5; and finally, 9 to 10 and 10 back
to 9. Thus, π decomposes into the four cyclic permutations (1 3 6), (2 4 8), (5 7)
and (9 10).

It is common practice to present a permutation in terms of its decomposition
into cyclic permutations. Thus,

π := (1 3 6)(2 4 8)(5 7)(9 10),

where π is the permutation displayed in 10. Note that π decomposes into two odd
cyclic permutations and two even cyclic permutations.

We sometimes refer to the cyclic permutations into which a permutation π de-
composes as its ‘factors’ and π as the ‘product’ of those factors.

6.2 Signs of permutations

Any permutation π of a set {1, 2, . . . , n} maybe transformed into the identity per-
mutation by means of a sequence of transpositions. There may clearly be different
ways of achieving this. An important result in combinatorics says that the parity
of the number transpositions required to transform π into the identity permutation
is always the same. If this parity is even, then π is an even permutation, and if
it is odd, then π is an odd. The sign of π, denoted by sign(π) is + (or +1) if π
is even, and − (or −1) if it is odd. (Suppose that π and ρ are two permutations
of {1, 2, . . . , n}. Then the number of transpositions required to transform π to ρ is
even if and only if they have the same parity.)

Proposition 6.2 The sign of an even cyclic permutation is minus, whereas the sign

of an odd cyclic permutation is plus. ✷

Proposition 6.3 The sign of a permutation π of (1, 2, . . . , n) is plus if the number
of even cycles in the decomposition of π into cyclic permutations is even, and is
minus if that number is odd. (Thus, for example, the sign of the permutation π

displayed in equation (10) is plus.) ✷

Of the six permutations of S = {1, 2, 3}, the signs of the three permutations
(1)(2)(3), (1 2 3) and (1 3 2) are even; and those of (1)(2 3), (2)(1 3) and (3)(1 2)
are odd.

Exercises

6.1 Find a permutation of {1, 2, . . . , 10} which decomposes into two odd cyclic per-
mutations and one even cyclic permutation.

6.2 Of the 24 permutations of {1, 2, 3, 4}, there are 12 that are even and 12 that
are odd. List all of them.
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