
Using mathematical programming to solve Factored Markov Decision Processes with

Imprecise Probabilities 1

Author(s):
Karina Valdivia Delgado

Leliane Nunes de Barros

Fabio Gagliardi Cozman

Scott Sanner

1This work was supported by Fapesp Project LogProb, grant 2008/03995-5, São Paulo, Brazil.

International Journal of Approximate Reasoning 52 (2011) 1000–1017

Contents lists available at SciVerse ScienceDirect

International Journal of Approximate Reasoning

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / i j a r

Using mathematical programming to solve Factored Markov Decision
Processes with Imprecise Probabilities

Karina Valdivia Delgado a,∗, Leliane Nunes de Barros b, Fabio Gagliardi Cozman c, Scott Sanner d

a Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, SP, Brazil
b Instituto de Matemática e Estatística, Universidade de São Paulo, SP, Brazil
c Escola Politécnica, Universidade de São Paulo, SP, Brazil
d NICTA and the Australian National University, Canberra ACT 2601, Australia

A R T I C L E I N F O A B S T R A C T

Article history:

Received 17 March 2010

Revised 15 April 2011

Accepted 16 April 2011

Available online 27 April 2011

Keywords:

Imprecise Markov Decision Processes

(MDPIPs)

Probabilistic planning

Multilinear programming

This paper investigates Factored Markov Decision Processes with Imprecise Probabilities
(MDPIPs); that is, Factored Markov Decision Processes (MDPs) where transition probabili-
ties are imprecisely specified.Wederive efficient approximate solutions for FactoredMDPIPs
based on mathematical programming. To do this, we extend previous linear programming
approaches for linear approximations in Factored MDPs, resulting in a multilinear formu-
lation for robust “maximin” linear approximations in Factored MDPIPs. By exploiting the
factored structure in MDPIPs we are able to demonstrate orders of magnitude reduction in
solution time over standard exact non-factored approaches, in exchange for relatively low
approximation errors, on a difficult class of benchmark problems with millions of states.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Sequential decisionmaking is anessential activity inmanydomains, ranging fromoperations research [1] andplanning [2]
to robotics [3]. Markov Decision Processes (MDPs) provide an elegant mathematical framework for representing and solving
sequential decision problems under uncertainty in completely observable environments. An MDP encodes the interaction
between an agent and its environment: at every stage, the agent decides to execute an action (with probabilistic effects) that
takes it to a next state and yields a reward. The agent’s goal is to maximize the expected reward over a sequence of actions.

Traditionally, MDPs assume a “flat” (enumerated) representation of states. Amore compact representation forMDPs uses
a state representation factored intomultiple state variables — the so-called FactoredMDPs. Such representations suffer from
Bellman’s curse of dimensionality [4]: the size of the state space grows exponentially in the number of state variables. Recent
approximate solutions for Factored MDPs exploit the factored representation [5–7] so as to solve problems that are orders
of magnitude larger than those solvable using classical flat dynamic programming approaches.

Despite their elegance and generality, Markov Decision Processes are often inadequate to represent real-world problems.
In many problems, it is simply impossible to obtain precise values for all transition probabilities. This may occur for many
reasons, including: (a) imprecise or conflicting transition probabilities elicited from experts, (b) insufficient data to estimate
precise transition models, or (c) abstraction of parts of the model that are too complex to detail, for instance by omitting
variables that cannot be properly measured.

The seminal work by Satia and Lave [8] studied several optimality criteria for Markov Decision Processes with Imprecise
Probabilities (MDPIPs); that is, MDPs where transition probabilities may be imprecisely specified. Satia and Lave paid signif-

∗ Corresponding author.

E-mail addresses: karinaval@gmail.com, kvd@usp.br (K.V. Delgado), leliane@ime.usp.br (L.N. de Barros), fgcozman@usp.br (F.G. Cozman), ssan-

ner@nicta.com.au (S. Sanner).

0888-613X/$ - see front matter © 2011 Elsevier Inc. All rights reserved.

doi:10.1016/j.ijar.2011.04.002

http://dx.doi.org/10.1016/j.ijar.2011.04.002
http://www.sciencedirect.com/science/journal/0888613X
www.elsevier.com/locate/ijar
http://dx.doi.org/10.1016/j.ijar.2011.04.002

K.V. Delgado et al. / International Journal of Approximate Reasoning 52 (2011) 1000–1017 1001

icant attention to a maximin criterion: an agent must choose an action that maximizes the lowest possible future expected
reward (that is, “Nature” is assumed to select transition probabilities in an adversarial manner). While there have been
proposals for exact and approximate solutions to MDPIPs using this maximin criterion [8–10], these approaches can only
solve relatively small problems. These algorithms face the difficulty that, to deal with imprecisely specified probabilities,
they have to solve at least one nonlinear programming problem per state.

The present article makes a number of fundamental contributions to state-of-the-art solutionmethods for largeMDPIPs:

• We introduce a definition of FactoredMDPIPs and a factored specification of imprecision in transition probabilities (based
on dynamic credal networks (DCNs) [11]). To the best of the authors’ knowledge, no previous work has investigated
Factored MDPIPs.

• Weprovide algorithms for approximate solution of FactoredMDPIPs based onmathematical programming, by extending
previous work [10,12]. Specifically, we first give a bilevel programming formulation for the approximate solution of
FactoredMDPIPs, and then transform it intomultilinear programming, a well known formalism forwhichmany practical
solvers with strong convergence guarantees exist.

• We extend previous work [12] so as to obtain efficient approximate linear programming solutions for Factored MDPs.
We exploit the Factored MDPIP structure to reduce the number of constraints generated and to compactly encode
the remaining constraints that empirically leads to an exponential reduction in the number of constraints for some
problems.

Section 2 reviews basic concepts on MDPs and Factored MDPs, and the basic theory of “flat” MDPIPs. Section 3 defines
Factored MDPIPs and gives bilevel and multilinear programming formulations. Section 4 presents an algorithm, called
FactoredMPA (Factored Multilinear programming-based approximation), that produces maximin policies by resorting to
approximate nonlinear programming. We demonstrate orders of magnitude reduction in solution time over standard exact
non-factored approaches to MDPIPs in exchange for relatively low approximation errors on a difficult class of benchmark
problems with millions of states.

2. Background

In this section we review basic concepts on MDPs and Factored MDPs. We also define MDPIPs given two flat (i.e., non-
factored) formulations: (i) based on bilevel programming and (ii) based on multilinear programming.

2.1. Flat Markov Decision Processes

In this paper aMarkov Decision Process is a tupleM = 〈S,A, T, R, P, γ 〉, where [1,13]:

• S is a finite set of fully observable states;
• A is a finite set of actions;
• T is a countable set of stages starting at stage 0;
• R : S × A → R is a fixed reward function associated with every state and action;
• P(s′|s, a) is the conditional probability of reaching state s′ at stage t+1when in state s ∈ S at stage t, given action a ∈ A

is taken at t;
• γ ∈ (0, 1) is a discount factor (the reward obtained t stages into the future is discounted in the sense that it is multiplied

by γ t).

A policy returns an action in each state, at any stage. A stationary policy π : S → A returns an action π(s) in state s
(regardless of stage). The value of a stationary policy π , starting in state s0 at stage 0, and progressing with an infinite
horizon (|T = ∞|), is here taken to be the following expected value, known as the value function:

Vπ (s) = Eπ

[
∞∑

t=0

γ tRt|s0 = s

]
, (1)

where Rt is the reward obtained at stage t ∈ T . Eq. (1) can be decomposed and rewritten recursively based on the values of
the possible successor states s′ ∈ S as follows:

Vπ (s) = R(s, π(s)) + γ
∑

s′∈S

P(s′|s, π(s))Vπ (s′).

The goal is to find a policyπ∗ that yields themaximal value in each state: ∀s, π ′ : Vπ∗(s) ≥ Vπ ′(s). For infinite horizonwith
discounted cost there always exists such an optimal stationary policy. The optimal value function associated with an optimal

1002 K.V. Delgado et al. / International Journal of Approximate Reasoning 52 (2011) 1000–1017

X
1

current

state

next

state

X
1

’

X
2 X

2

’

X
3 X

3

’

X
n X

n

’

X =1
2

’
X

1
X X’

2

T T T 0.9

T F T 0.01

F T T 0.33

F F T 0.01

1

T T F 0.95

T F F 0.01

F T F 0.35

F F F 0.005

... ...

(a) (b)

X =0
2

’
X

1
X X’

2

T T T 0.1

T F T 0.99

F T T 0.67

F F T 0.99

1

T T F 0.05

T F F 0.99

F T F 0.65

F F F 0.995

(c)

Fig. 1. (a) A Dynamic Bayesian Network (DBN) for an action a; (b) conditional probability table for X ′
2 = 1; (c) conditional probability table for X ′

2 = 0.

policy, represented by V∗, can be computed by the Bellman equation [14]:

V∗(s) = max
a∈A

⎧
⎨
⎩R(s, a) + γ

∑

s′∈S

P(s′|s, a)V∗(s′)

⎫
⎬
⎭ . (2)

The Bellman equation can be solved through a linear program [15]:

min
V∗

:
∑

s

V∗(s) (3)

s.t. : V∗(s) ≥ R(s, a) + γ
∑

s′∈S

P(s′|s, a)V∗(s′), ∀s ∈ S, a ∈ A.

To see that linear program (3) produces the unique fixed-point solution of Eq. (2), note that constraints force V∗(s) to be
greater than or equal to maxa{R(s, a) + γ

∑
s′∈S P(s′|s, a)V∗(s′)}, considering all a ∈ A, and then minimizing

∑
s V

∗(s) to
enforce that the minimal V∗(s) is obtained.

2.2. Factored Markov Decision Processes

In a Factored MDP, states s ∈ S are represented by a set X = {X1, X2, . . . , Xn} of state variables: a state s is represented as
a tuple x = (x1, x2, . . . , xn)where xi is the value of the state variable Xi. The cardinality of S is exponential in the number n
of state variables. 1 In a FactoredMDP, the reward function R(x, a) is usually defined by the sum ofψ local-reward functions
Rj(x, a):

R(x, a) =

ψ∑

j=1

Rj(x, a). (4)

The scope of each local-reward function Rj(·, a) is typically restricted to a subset of the variables X = {X1, . . . , Xn}.
The next step is to encode transition probabilities using Dynamic Bayesian Networks (DBNs) [18]. That is, we employ a

directed acyclic graph with two layers for each action: one layer represents the variables in the current state and the other
layer represents the next state (Fig. 1a). Nodes Xi and X′

i refer to the current and next state respectively. Directed edges
are allowed from nodes in the first layer into the second layer, and also between nodes in the second layer. We denote by
pa(X′

i) the parents of X′
i in the graph. The graph is assumed endowed with the following Markov condition: a variable X′

i
is conditionally independent of its nondescendants given its parents. This leads to the following factorization of transition
probabilities:

P(x′|x, a) =
n∏

i=1

P(x′
i |pa(X

′
i), a), (5)

1 Finding an optimal policy is a P-Complete problem for flat MDPs [16,17]; factored MDPs introduce an exponential increase in the size of the state space.

K.V. Delgado et al. / International Journal of Approximate Reasoning 52 (2011) 1000–1017 1003

where pa(X′
i) may be fixed by x. That is, the probability of moving to x′ ∈ S , given the agent is in state x ∈ S and executes

the action a ∈ A, is the product of conditional probabilities for {X′
i = x′

i} given the configuration of parents of X′
i and the

action a ∈ A.
Fig. 1b shows the conditional probability table (CPT) for X′

2 = 1; Fig. 1c shows the CPT for X′
2 = 0. The tables include all

combinations of variables values only for the parents of X′
2, i.e., pa(X

′
2) and the sum of each line in Fig. 1b and c is 1.

Recent results have shown that it is possible to solve a Factored MDP with billions of states [5,17]. The technique of
Approximate Linear Programming (ALP) [19] has emerged as one of the most promising methods for solving complex
Factored MDPs. The basic idea is to solve an MDP, formulated as problem (3), by approximating the optimal value function
through basis functions that are provided by domain experts or automatically generated [17,20,21]. The quality of the
approximation depends on the set of basis functions.

The approximate value function is denoted by V̂(x). Given x ∈ S and a set of basis functions H = {h1, . . . , hk}, V
∗(x) is

approximated using a linear combination:

V̂(x) =
k∑

j=1

wjhj(x). (6)

The ALP formulation of an MDP, given expressions (3), (4) and (6), is given by the linear program:

min
w

:
∑

x

k∑

i=0

wihi(x) (7)

s.t. :
k∑

i=0

wihi(x) ≥

ψ∑

j=1

Rj(x, a) + γ
∑

x′∈S

P(x′|x, a)
k∑

i=0

wihi(x
′), ∀x ∈ S, a ∈ A.

In order to guarantee that this linear program is feasible, a constant basis function must be included. We denote the
constant function by h0, that has the same constant value for all states. Hence, the sum

∑
i starts from 0 instead of 1.

The number of variables in Expression (7) should be made smaller than |S| by selecting a relatively small number of
basis functions. Note however that the number of constraints is the same as in Expression (3). In Section 4 we discuss how
to obtain computational gains in ALP by exploiting the factored structure of the problem.

2.3. Markov Decision Processes with Imprecise Probabilities

An MDPIP is a sequential decision process endowed with state space, actions, rewards and discount factor as any MDP,
but where transition probabilities can be imprecisely specified. For instance, perhaps the tightest bounds on the probability
P(s2|s1, a1) are just P(s2|s1, a1) ∈ [1/3, 1/2]. That is, instead of a probability measure P(·|s, a) over the state space S , we
have a set of probability measures for a fixed pair state/action. We use the term credal set to refer to a set of probability
measures (or a set of distributions for a random variable) [22]. A set of distributions for a variable X is denoted by K(X). We
adopt elementwise conditioning: K(X|B) is obtained from K(X) by conditioning every distribution in the credal set K(X) on
the event B (using Bayes rule). A credal set containing conditional distributions over the state space, given a state s and an
action a, is referred to as a transition credal set [22] and denoted by K

(
s′|s, a

)
.

We assume that all credal sets are closed and convex, an assumption that is often used in the literature, and that encom-
passes most of the practical applications [23–25]. We further assume stationarity for the transition credal sets K

(
s′|s, a

)
;

that is, they do not depend on the stage t. Note that a probability distribution for a complete history of the process (that is,
a sequence of states) may be non-stationary: distributions P(s′|s, a) may be selected from the corresponding credal sets in
a time dependent manner, from stage to stage [26].

There are several criteria of choice regarding policies inMDPIPs. Themaximin criterion selects the policy that maximizes
reward gained under the assumption that Nature minimizes reward; that is, the policy that yields the supremum of lower
expected reward. The maximin criterion is sometimes referred to Γ -maximin [23], to differentiate it from the maximin
criterion used in frequentist decisionmaking [27]. Several other criteria of choice can be found in the literature. For instance,
the “maximax” criterion [8] selects a policy that yields the supremum of upper expected reward [28], while the “maximix”
criterion selects a policy that yields themaximumofα(maxP Vπ)+ (1−α)(minP Vπ), for someα ∈ (0, 1). In this paper we
adopt themaximin criterion throughout, as it is themost prevalent criterion and it offers a reasonable approachwhen robust
policies are sought for. For a critical appraisal of the maximin criterion, including an analysis of incoherence in sequential
decision making, the reader may consult the analysis by Seidenfeld [29].

There is always a deterministic stationary policy that is maximin for expected reward in a discounted infinite horizon
[8]; moreover, this policy induces a value function that is the unique solution of the equation

V∗(s) = max
a

min
P

⎛
⎝R(s, a)+γ

∑

s′

P
(
s′|s, a

)
V∗(s′)

⎞
⎠ . (8)

1004 K.V. Delgado et al. / International Journal of Approximate Reasoning 52 (2011) 1000–1017

There exist algorithms for solving this equation based on dynamic programming [8,9]. In particular, value iteration is a
straightforward implementation of Eq. (8) using dynamic programming techniques. Although value iteration is a general
solution, it is a very inefficient solution that can solve only small problems. Only a few special cases of MDPIPs do admit
efficient solution schemes [30,31].

It does not seem possible to reduce the solution of Eq. (8) to linear programming (similar for instance to Problem (3)). In
our previous work [10] we have shown that it is possible to solve Eq. (8) by resorting to bilevel andmultilinear programming.
First, Eq. (8) can be reduced to bilevel programming:

min
V∗

∑

s

V∗(s) (9)

subject to : V∗(s) ≥ R(s, a) + γ
∑

s′∈S

P(s′|s, a)V∗(s′), ∀s ∈ S, a ∈ A

P(s′|s, a) = arg min
Q

∑

s′∈S

Q(s′|s, a)V∗(s′),

subject to : Q(s′|s, a) ∈ Ka(s
′|s).

This bilevel program can be transformed to an equivalent multilinear program [10]:

min
V∗,P

:
∑

s

V∗(s) (10)

s.t. : V∗(s) ≥ R(s, a) + γ
∑

s′∈S

P(s′|s, a)V∗(s′), ∀s ∈ S, a ∈ A

P(s′|s, a) ∈ Ka(s
′|s).

Lemma 1. Problem (9) and problem (10) produce the optimal value function, V∗(s).

Proof. To verify that Problem (9) produces V∗(s), i.e, that Problem (9) finds the unique fixed-point solution of Eq. (8), V∗(s),
we use the constraints to force V∗(s) to be greater than or equal to:

max
a

⎧
⎨
⎩R(s, a) + γ min

P

∑

s′∈S

P(s′|s, a)V∗(s′)

⎫
⎬
⎭ ,

and then minimizing
∑

s V
∗(s) to enforce that the minimal V∗(s) (at equality) is obtained. Because problems (9) and (10)

are equivalent from [10], we can find V∗(s) by solving the multilinear program in Expression (10). �

Note that the solution of multilinear programs is far from trivial; only relatively small flat MDPIPs can be tackled directly
through Expression (10) [10].

3. Defining and representing Factored MDPIPs

A FactoredMDPIP is essentially a FactoredMDPwhere transition probabilities are not unique.We proposeDynamic Credal
Networks (DCNs) as the adequate language to express factored transition credal sets. A DCN has the same structure as a DBN
(Fig. 1); however, each variable Xi is associated with credal sets Ka(Xi|pa(Xi) = πk) for each value πk of pa(Xi). We assume
that a DCN represents a joint credal set over all of its variables consisting of all distributions that satisfy the factorization

P(x′|x, a) =
n∏

i=1

P(x′
i |pa(X

′
i), a), (11)

where each P(x′
i |pa(X

′
i), a) comes from an appropriate credal set associated with the DCN. This sort of joint credal set is

called the strong extension of the credal network in the literature [11,32]. The entries in the CPT are specified by parame-
ters pijk , for {X′

i = x′
ij} given {pa(X′

i) = πk}; note that each pijk may be free rather than a fixed number. Fig. 2 shows a

Dynamic Credal Network for action a1 ∈ A, the CPT for state variable X′
1 that depends on X1 and the constraints over the

parameters pijk , where i = 1 is the index of X′
1, j ∈ {1, 2} indicates the possible values of X′

1 and k the possible values of

pa(X′
1). Note that Ka(X

′
i |pa(X

′
i)) are defined, indirectly, by a set of constraints Cover the probability values pijk (inequations

in Fig. 2).

K.V. Delgado et al. / International Journal of Approximate Reasoning 52 (2011) 1000–1017 1005

(a) (b)

Fig. 2. (a) Dynamic Credal Network for action a1 ∈ A. (b) The (symbolic) conditional probability table for the state variable X ′
1 and the constraints on probability

values.

3.1. Bilevel and multilinear approximate formulations

To derive maximin policies for Factored MDPIPs, we begin by the bilevel formulation (Problem (9)). The factored value
function of a FactoredMDPIP is given by taking Eq. (6) and restricting the scope of each basis function to some subset of state
variables ℵi ⊂ X = {X1, . . . , Xn}. We can then insert this new factored value function plus the reward function (4) and the
transition probabilities (11) into Problem (9) to obtain:

min
w

∑

x

k∑

i=0

wihi(x) (12)

subject to:
k∑

i=0

wihi(x) ≥ R(x, a) + γ
∑

x′∈S

P(x′|x, a)
k∑

i=0

wihi(x
′), ∀x ∈ S, a ∈ A

P(x′|x, a) = arg min
Q

∑

x′∈S

Q(x′|x, a)
k∑

i=0

wihi(x
′),

where Q(x′|x, a) =
∏

i

Q(x′
i |pa(X

′
i), a)

subject to: Q(x′
i |pa(X

′
i), a) ∈ Ka(X

′
i |pa(X

′
i)),

which is the bilevel formulation of a Factored MDPIP. In this formulation the first level minimizes w and the second level
minimizes Q . Some characteristics of Problem (12) are worth mentioning:

• there are |S| ∗ |A| constraints at the first level;
• the constraints in the first level are non-linear, since the weights wi are multiplied by P(x′|x, a);
• the objective in the second level is non-linear whenever the basis functions are based on more than one variable;
• the first level and the second level share the same free optimization variables (i.e., the probability values).

Thus, Problem (12) is not a trivial bilevel problem, and most existing methods to solve bilevel problems do not apply; for
instance, there are obstacles to applying the following methods: Kth Best [33], Branch-and-bound [34], Trust-Region [35],
Inexact Restoration [36] and Steepest Descent Direction [37]. (For a more detailed discussion on the difficulties faced by these
methods, see the paper by Delgado et al. [38].)

We can also use the factored value function and replace it in the multilinear formulation (Problem (10)) of an MDPIP so
as to obtain the factored multilinear programming problem:

min
w,P

∑

x

k∑

i=0

wihi(x) (13)

subject to:
k∑

i=0

wihi(x) ≥ R(x, a) + γ
∑

x′∈S

P(x′|x, a)
k∑

i=0

wihi(x
′), ∀x ∈ S, a ∈ A

where P(x′|x, a) =
∏

i

P(x′
i |pa(X

′
i), a),

P(x′
i |pa(X

′
i), a) ∈ Ka(X

′
i |pa(X

′
i)).

1006 K.V. Delgado et al. / International Journal of Approximate Reasoning 52 (2011) 1000–1017

In Problem (13), if the set of basis functions is such that V∗(x) =
∑k

j=1 wjhj(x), we say the basis functions attain the exact

solution.

Theorem 1. If the set of chosen basis functions attains the exact solution, the exact solution is obtained by solving Problem (13).

Proof. By replacing V∗ in Problem (13), we obtain Problem (10) and by Lemma 1 we guarantee that solving Problem (13)
we will find the exact solution: V∗(s). �

Notice that in Problem (13), even though we can efficiently compute the coefficients of the objective function and the
constraints, we are still workingwith the complete set of constraints (|S| ∗ |A|+m2), wherem2 is the number of constraints
in C related to the probabilities pijk (used to define the credal sets Ka). The direct use of general non-linear solvers [39,40],
geometric solvers [41] or multilinear solvers [42] for Factored-MDPIPs, can only solve problems of type (13) with small state
space.
Local optimization solution. We can use local optimization algorithms [43] to solve the Multilinear Problem (13). Such an
algorithm divides the variables in groups and, at each iteration, fixes the values of each group to obtain a linear problem.
A Factored-MDPIP formulated as a multilinear programming problem can be solved by this local optimization algorithm if
and only if the basis functions have scope restricted to one state variable, because we can then divide the variables in two
groups (for instance we can define one group with the wi variables for i = 1 to k and the other group with w0) and the
variables related with the probabilities. Whenever basis functions have more than one variable, it is not possible to divide
the variables in order to obtain a linear problem at each iteration, so the algorithm [43] cannot be applied.
Reducing the number of constraints.We can also try to reduce the number of constraints in the problem and call a nonlinear
solver only once. This idea is the same one that has been used to efficiently solve Factored MDPs [5].

Given the mentioned difficulties in solving an MDPIP formulated as a bilevel problem (Problem (12)), in this paper we
explore solutions to the multilinear Problem (13) by applying techniques to reduce the number of constraints. In the next
section we present the main contribution of this paper: an algorithm for the generation of maximin policies in Factored
MDPIPs that solves Problem (13) by reducing the number of constraints, so as to tackle large state spaces.

4. An efficient solution for Factored MDPIPs: FactoredMPA

Wewish to solve Factored MDPIPs by exploiting ideas that have been successfully applied to MDPs; namely, by pursuing
analogues of Approximate Linear Programming (ALP). There has been significant evidence [44] that if one is interested in
Factored MDPs, and thus interested in solving Problem (7), two conditions must be fulfilled so as to apply ALP successfully.
First, it is necessary to restrict the scope of each basis function to some small subset of state variables. Second, it is necessary
to assume a relatively sparse set of dependencies in the DBNs that encode the factorization of probabilities. Guestrin [5] has
demonstrated that these conditions are fulfilled in a variety of applications, and has exploited these conditions to develop
efficient algorithms for Factored MDPs.

The success of Guestrin’s FactoredLPA algorithm to solve MDPs is related with the set of constraints of the approximate
linear program (Problem (7)): (i) the exploitation of factored structure to avoid the generation of unnecessarily complex
constraints and (ii) the generation of compact sets of constraints. 2 Our goal is to solve Factored MDPIPs (Problem (13)) by
developing some form of approximatemultilinear programming. Even though the same techniques used in connectionwith
Guestrin’s algorithm [17,45,46] cannot be applied directly to the multilinear problem, the FactoredLPA algorithm can be
generalized to a FactoredMPA algorithm to solve factored MDPIPs, as we show next.

To solve a Factored MDPIP we have to simplify the set of constraints in Problem (13) by applying the same ideas used by
Guestrin in his FactoredLPA algorithm: it creates a new and smaller equivalent set of constraints for each action in the Linear
Programming Problem (7) before calling a linear solver with the newminimization problem. This is done in two steps: (i) a
simplification step and (ii) a contraction step.

4.1. Simplification step: exploiting the factored structure of an MDPIP

Let an MDPIP be defined by 〈S,A, T, R, K, γ 〉, where S is a set of states, A is a set of actions, T is a countable set of
stages, R is a reward function associated with every state and action and is defined by local-reward functions Rj , K

(
s′|s, a

)
is

the transition credal set defined by DCNs and probability constraints C and γ ∈ (0, 1) is a discount factor. The computing
of constraints in Problem (13) must benefit from the fact that our MDPIP is factored and that the basis functions H have a
restricted scope. So, the purpose of this step is to precompute some values to simplify the constraints. Take Problem (13);
we have the following set of constraints:

∑

i

wihi(x) ≥

ψ∑

j=1

Rj(x, a) + γ
∑

x′∈S

P(x′|x, a)
∑

i

wihi(x
′), ∀x ∈ S, a ∈ A. (14)

2 There are variants of these techniques in the literature, exploiting various schemes from linear programming [17,45,46].

K.V. Delgado et al. / International Journal of Approximate Reasoning 52 (2011) 1000–1017 1007

We can rearrange terms as follows:

∑

i

wihi(x) ≥

ψ∑

j=1

Rj(x, a) + γ
∑

i

wig
a
i (x, p), (15)

where

gai (x, p) =
∑

x′∈S

P(x′|x, a)hi(x
′); (16)

we use p to denote a vector containing all probability values that are free to varywithin the given credal sets (i.e., that satisfy
the probability constraints C in the DCN). That is, p contains all probability values that define the distributions we seek.

Koller and Parr [44] showed that if hi has scope restricted to a subset of state variables ℵi ⊂ X = {X1, . . . , Xn}, then gai
has scope restricted to the parents of ℵi in the DBN of action a (these parents are denoted by Γ).

Intuitively, in
∑

x′∈S P(x′|x, a)hi(x
′) we can push the sum over variables x′

j /∈ Γ inwards to obtain:

∑

x′i∈Γ

P(x′
i |x, a)hi(x

′)
∑

x′j /∈Γ

P(x′
j|x, a).

As the inwards sum adds up to 1, we have:

∑

x′i∈Γ

P(x′
i |x, a)hi(x

′).

For MDPIPs, gai (x, p) is a polynomial expression and has scope restricted to the parents of ℵi in the DCN. That is, it is
described in terms of probability values and has the canonical form d0 +

∑
i di

∏
j pijk , where d0 and di are constants and

pijk are parameters. Thus, to avoid repeated calculations, it is only necessary to calculate gai for each assignment z of Γ . For
further computational improvement, the set of constraints can be rewritten as:

0 ≥

ψ∑

j=1

Rj(x, a) +
∑

i

wic
a
i (x, p), (17)

where

cai (x, p) = γ gai (x, p) − hi(x). (18)

This latter term can be precomputed resulting also in a polynomial form and has scope restricted to Θ = ℵi ∪ Γ . Finally,
we obtain:

0 ≥

ψ∑

j=1

Rj(x, a) +
∑

i

wic
a
i (x, p), ∀x ∈ S, a ∈ A. (19)

Algorithm 1 named computecai has as input an MDPIP given by 〈S,A, T, R, K, γ 〉 and a set of basis functions H and returns
the set of functions Ca. computecai computes gai and cai for each basis function hi as in Expressions (16) and (18) respectively,
note that the term gai has scope restricted to the parents of ℵi in the DCN (denoted by Γ) and cai has scope restricted to
Θ = ℵi ∪ Γ .

Although precomputing the expression cai helps to simplify the constraints, note that we still have the complete set of
constraints (that is, |S| ∗ |A| + m2). Because general non-linear solvers applied to Problem (13) can only solve problems
with small state space, we must further reduce the number of constraints (Section 4.2).

4.2. Contraction step: generating a compact set of constraints

Guestrin [5] generates a compact set of linear constraints to efficiently solve Factored MDPs; we can also generate a
compact set of multilinear constraints to solve Factored MDPIPs (Problem (13)). The basic idea is first to replace the set of
constraints in Expression (19) by an equivalent set of non-linear constraints (maximizing over x), as follows:

0 ≥ max
x

⎧
⎨
⎩

ψ∑

j=1

Rj(x, a) +
∑

i

wic
a
i (x, p)

⎫
⎬
⎭ , ∀a ∈ A. (20)

1008 K.V. Delgado et al. / International Journal of Approximate Reasoning 52 (2011) 1000–1017

Algorithm 1: computecai (MDPIP,H, a)

input :MDPIP (given by 〈S,A, T, R, K, γ 〉),
H (set of basis functions hi),
a (action)

output: Ca (set of functions cai , with 1 ≤ i ≤ |H|)

begin
//k is the number of basis functions;
k = |H|;
for i = 1 to k do

//compute gai
ℵi = scope of hi;
Γ = parents of ℵi in the DCN;
foreach assignment z of Γ do

calculate gai (z, p) //Eq. (16)
//compute cai using gai
Θ = ℵi ∪ Γ ;
foreach assignment θ of Θ do

cai (θ, p) = γ gai (θ, p) − hi(θ);

return C
a ;

end

So, for each action a, we have to satisfy

0 ≥ max
x

⎧
⎨
⎩

ψ∑

j=1

Raj (x) +
∑

i

wic
a
i (x, p)

⎫
⎬
⎭ , (21)

where Raj (x) stands for Rj(x, a). Now we show how to transform the constraint given by the Inequation (21) into a set of

simpler constraints. Since inExpression (21)wehave tosolve themaximizationover thecomplete state space, its computation
is too expensive. Instead of adding up all terms and performing this maximization over all states in S , we canmaximize over
state variables one at a time. To do so, wemodify the version of the variable elimination algorithm proposed by Guestrin [5].

For instance, suppose that wewant to perform themaximization over variable X1 ∈ x. In order to eliminate this variable,
we do as follows: if Ra1 is the only local-reward function for action a that depends on X1; c

a
1 is a function that depends, for

instance, on X1 and X4 and there is no other function cai that depends on X1 in the Inequation (21); then we can push the
maximization over X1 inwards the sum to obtain:

0 ≥ max
X2...Xn

⎧
⎨
⎩

ψ∑

j=2

Raj (x) + w0c
a
0 +

∑

i=2

wic
a
i (x, p) + maxX1

{
Ra1(X1) + w1c

a
1(X1, X4, p)

}
⎫
⎬
⎭ . (22)

Let Ra1(X1) andw1c
a
1(X1, X4, p) in Expression (22), in our hypothetical example, be called relevant function to the variable X1

(since in the example Ra1 is the only local-reward function that depends on X1 and the same for the function ca1). In general,
let be a relevant function, a function whose scope contains a variable Xl that we want to eliminate. In the above example,

the relevant functions, renamed as u
f1
Z1

, . . . , u
fL
ZL
, are u

f1
X1 = Ra1(X1) and u

f2
X1,X4 = w1c

a
1(X1, X4, p) (we call these expressions

as equality constraints). Note that Zi is the scope of each relevant function.
So, for each variable Xi we want to eliminate (under some order criterion O), FactoredMP selects L relevant functions.

Then we can replace the maximization over these relevant functions by:

u
er
Z = max

Xl

L∑

j=1

u
fj
Zi
, (23)

where Z is the union of all variables in functions u
f1
Z1

, . . . , u
fL
ZL

minus Xl , since after performing max, the new function is
independent of Xl .

Back to our example (Expression (22)), the term u
er
Z given by themaximization in the boxwhere Z = {X1}∪{X1, X4}\{X1},

is renamed with relevant functions, as follows:

u
er
X4

= max
X1

{
u
f1
X1

+ u
f2
X1,X4

}
, (24)

K.V. Delgado et al. / International Journal of Approximate Reasoning 52 (2011) 1000–1017 1009

resulting in the following expression:

0 ≥ max
X2...Xn

⎧
⎨
⎩

ψ∑

j=2

Raj (x) + w0c
a
0 +

∑

i=2

wic
a
i (x, p) + u

er
X4

⎫
⎬
⎭ .

Note that, in our example, to eliminate X1 means to simplify the computation of Expression (22) once there are few relevant
functions for X1. But to enforce the definition of uerx4 as in Expression (24) wemust introduce four new inequality constraints,
one for each combination of the configuration of X4 and X1, i.e.:

uerx4 ≥ uf1x1 + uf2x1,x4 ,

u
er
x4

≥ uf1x1 + u
f2
x1,x4

,

uerx4 ≥ u
f1
x1

+ u
f2
x1,x4

,

u
er
x4

≥ u
f1
x1

+ u
f2
x1,x4

.

In the general case, to enforce the definition of u
er
Z as the maximum over Xl (Expression (23)), the FactoredMP algorithm

introduces a new constraint for each assignment z of Z; i.e.:

uerz ≥
L∑

j=1

u
fj
z,xl , ∀xl. (25)

This procedure is repeated until all variables have been eliminated. At the end, all the remaining functions uei have an empty
scope and the following inequality constraint must be added:

0 ≥
∑

i

uei , (26)

that is, at the end of this variable elimination process, we transform the original set of inequality constraints (Expression
(21)) to a new set of constraints (Expressions (25) and (26)) plus the equality constraints for renamed functions, which
corresponds to a smaller set of simpler constraints (i.e., without maximization).

FactoredMP (Algorithm 2) implements the contraction step by creating a smaller equivalent set of constraints J for one
action a ∈ A, as we just described. It has as input the set of functions Ca, the set of local-reward Ra, an order criterion O and
the MDPIP. The algorithm starts with F = {} and J = {} , where F is the set of new functions that will be created during
the process (such as the renamed relevant functions and the new functions created in Expression (25)) and J = {} is the
set of new constraints, initially empty, that will be of two types: equality and inequality constraints. FactoredMP calls the
following functions in order to generate the set of equality constraints:

• generateEqualityConsForReward (Algorithm 3) generates a set of equality constraints, u
er
Z = Raj (Z), for each assign-

ment z of Z(scope) of each local-reward Raj and

• generateEqualityConsForci (Algorithm 4) generates an equality constraint uer = ca0 ∗ w0 and a set of multilinear

equality constraints, u
er
Z = cai (Z, p) ∗ wi, for each assignment z of Z(scope) of each cai function.

Finally, it generates a set of inequality constraints calling the function generateInequalityCons (Algorithm 5), which
eliminates the state variables one by one. These variables must be ordered by some criterion O (for instance, by removing

first the variables that produce the smallest functions). For each eliminated variable Xl , the relevant functions u
f1
Z1

, . . . , u
fL
ZL

are selected and for each assignment z of Z a new inequality constraint, uerz ≥
∑L

j=1 u
fj
z,xl ∀xl , is added to J. Finally an

inequality constraint with the sum over of all empty scope functions, 0 ≥
∑

i u
ei (Expression (26)), is added and the new

set of constraints J is returned.

4.3. The FactoredMPA algorithm

FactoredMP must be applied for all actions a ∈ A. This is done by the main algorithm FactoredMPA (Algorithm 6) that
solves Problem (13) by generating a new (smaller) set of constraints for all action a ∈ A. By doing so, the FactoredMPA
algorithm reduces the structured multilinear programming Problem (13) with exponentially many constraints into a new
smaller equivalent set of constraints. (This property is in fact inherited from the FactoredLP algorithm [5].)

1010 K.V. Delgado et al. / International Journal of Approximate Reasoning 52 (2011) 1000–1017

Algorithm 2: FactoredMP(Ca,Ra,O,MDPIP)

input : Ca (set of functions cai),
R

a (set of local-reward Raj),

O (order criterion),
MDPIP (given by 〈S,A, T, R, K, γ 〉)

output: J (set of constraints)

begin
J = {};
F = {}; //set of new functions
J, F ← generateEqualityConsForReward (J,Ra, F);
//Algorithm 3
J, F ← generateEqualityConsForci (J,C

a, F,MDPIP);
//Algorithm 4
n = number of state variables in the MDPIP;
J ← generateInequalityCons (J,F,O, n); //Algorithm 5
return J;

end

Algorithm 3: generateEqualityConsForReward(J,Ra, F)

input : J (set of constraints),
R

a (set of local-reward Raj , with 1 ≤ j ≤ ψ),

F (set of new functions)
output: J, F

begin
r = |F| + 1;
for j = 1 to ψ do

//create a constraint for each assigment to the scope of Raj
Z = scope of Raj ;

foreach assignment z of Z do
create a new variable uerz ;
add an equality constraint uerz = Raj (z) to J ;

F = F ∪ {uerz };
r = r + 1;

return J, F ;

end

Algorithm 6 has as input an MDPIP, the set of basis functions H and the order criterion O; and returnsw and p. Note that
with these values we can compute the value function for each state.

FactoredMPA first calls the function calculateObjective that constructs the objective function of Problem (13). This is
done by creating an expression that is the sum of the linear combination of the basis function (

∑
x

∑k
i=0 wihi(x)) as it was

done in [17]. Then, for each action a and each basis function hi ∈ H, FactoredMPA calculates cai calling computecai (Algorithm
1). The set of constraints J is initialized with the probability constraints C. Next, for each action a the FactoredMP algorithm
is called to compute a new smaller set of constraints that are added to J. Finally, a nonlinear solver is called (algorithm
callNonLinearSolver)with theobjective functionand thenewset of constraintsJ, to solve a simpler and smallermultilinear
problem, returning w and p.

5. Experimental Results

To run our experiments we used the well-known System Administrator Problem [5], named SysAdmin, where we
have n computers c1, . . . , cn connected via two different directed graph topologies: unidirectional-ring and star (Fig. 3).
The administrator can execute n + 1 actions: reboot(c1), . . . , reboot(cn) and notreboot(), which means not reboot any
machine.

K.V. Delgado et al. / International Journal of Approximate Reasoning 52 (2011) 1000–1017 1011

Algorithm 4: generateEqualityConsForci(J,C
a, F)

input : J (set of constraints),
C
a (set of functions cai , with 1 ≤ j ≤ k),

F (set of new functions),
MDPIP (given by 〈S,A, T, R, K, γ 〉)

output: J, F

begin
r = |F| + 1;
//create a new constraint for the constant basis function h0
calculate ca0 for h0; //Eqs. (16) and (18)
add an equality constraint uer = ca0 ∗ w0 to J;
F = F ∪ {uer };
r = r + 1;
//create a set of constraints for each cai
for i = 1 to k do

//create a new constraint for each assigment to the scope of cai
Z = scope of cai ;
foreach assignment z of Z do

create a new variable uerz ;
add a multilinear equality constraint uerz = cai (z, p) ∗ wi to J;
F = F ∪ {uerz };
r = r + 1;

return J, F ;

end

Algorithm 5: generateInequalityCons(J,F,O, n)

input : J (set of constraints),
F (set of new functions),
O (order criterion),
n (number of state variables)

output: J

begin
r = |F| + 1;
for i = 1 to n do

//select the variable to be eliminated
Xl = O(i);
//select the relevant functions

select u
f1
Z1

, . . . , u
fL
ZL

from F whose scope contains Xl;

Z = ∪L
j=1Zj\{Xl};

r = r + 1;
//define a new function u

er
Z

foreach assignment z of Z do
create a new variable uerz ;

add a constraint uerz ≥
∑L

j=1 u
fj
{z,xl} ∀xl to J;

//add the new function and remove the relevant functions

F = F ∪ {uerz }\{u
f1
Z1

, . . . , u
fL
ZL

};

//at the end all variables have been eliminated
//all remaining functions uei have empty scope
add a constraint 0 ≥

∑
ei∈F uei to J;

return J ;
end

1012 K.V. Delgado et al. / International Journal of Approximate Reasoning 52 (2011) 1000–1017

Algorithm 6: FactoredMPA(MDPIP,H,O)

input :MDPIP (given by 〈S,A, T, R, K, γ 〉,
H (set of basis functions),
O (order criterion)

output: {w, p}

begin
obj = calculateObjective(MDPIP,H);
foreach action a ∈ A do

C
a=computecai (MDPIP,H, a);//where C

a = {ca1, . . . , c
a
k}

//initialize the set of constraints J with the probability constraints C

J = C;
//the set of constraints J is expanded for each action a ∈ A

foreach action a ∈ A do
J = J ∪ factoredMP({ca1, . . . , c

a
k}, {R

a
1, . . . , R

a
ψ },O,MDPIP);

//the nonlinear solver is called with the new set of constrains J

{w, p} = callNonLinearSolver(obj, J);
return {w, p} ;

end

Fig. 3. (a) Unidirectional-ring and (b) star connection topologies for the SysAdmin [5] example used in this paper.

Let variableXi denotewhether computer ci is up and running (Xi = 1) or not (Xi = 0). Let Conn(cj, ci)denote a connection
from cj to ci. Formally, the CPTs in the transition DCN for this domain have the following form:

P(X′
i = 1|x, a) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if a = reboot(ci) : then 1,

if a �= reboot(ci) ∧ Xi = 1 : then

pi ·
|{xj|j �=i∧Xj=1∧Conn(cj,ci)}|+1

|{xj|j �=i∧Conn(cj,ci)}|+1
,

if a �= reboot(ci) ∧ Xi = 0 : then

p′
i ·

|{xj|j �=i∧Xj=1∧Conn(cj,ci)}|+1

|{xj|j �=i∧Conn(cj,ci)}|+1
,

(27)

and the constraints over the probability variables are:

0.85 + p′
i ≤ pi ≤ 0.95, 1 < i < n.

The transition model tells that if a computer is rebooted then its probability of running in the next time step is 1, else the
probability depends on its current status and the number of running computers with incoming connections. The probability
variables pi, p

′
i and the constraint over them define the credal sets. Additionally, the reward is the number of computers that

are running at the current time step: R(x, a) =
∑n

i=1 xi. An optimal policy in this problem will reboot the computer that
has the most impact on the expected future discounted reward, given the network configuration. For example, in the star
configuration on Fig. 3, if the computers c0 and c22 are not running, the administrator should reboot c0 since it will have the

most impact on the whole network, that is, there are more machines depending on c0 than c22 .

K.V. Delgado et al. / International Journal of Approximate Reasoning 52 (2011) 1000–1017 1013

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 4 6 8 10 12 14 16 18 20

N
u

m
b

er
 o

f
co

n
st

ra
in

ts
 (

lo
g

 s
ca

le
)

Number of computers

Multilinear Solution

Original
MPA pairwise basis

MPA simple basis

Fig. 4. Thenumberof constraints for the SystemAdministratordomainwithunidirectional-ring topology: (1) theoriginal numberof constraints; (2) the constraints

after applying the FactoredMPA algorithm with simple basis functions; and (3) with pairwise basis functions.

The instances of the above SysAdmin problem lead to a complex joint transition function with multilinear terms of up
to n parameters pi resulting from multiplying all CPTs in Expression (27); we note that previous imprecise formalisms like
Bounded MDPs (BMDPs) [30] could not represent this problem as BMDPs restrict the transition function to be linear (not
multilinear) in the parameters. We have solved problems using two types of basis functions: (1) basis functions over single
variables hi(Xi = 1) = 1 and hi(Xi = 0) = 0 and (2) basis functions over pairwise variables, that contain indicators for
each neighboring pair of machines (xi, xi+1) as follows:

h1(xi, xi+1) = xi ∧ xi+1,

h2(xi, xi+1) = ¬xi ∧ xi+1,

h3(xi, xi+1) = xi ∧ ¬xi+1,

h4(xi, xi+1) = ¬xi ∧ ¬xi+1

in both cases we have the constant basis function h0 = 1.
We have implemented the FactoredMPA algorithm in Java calling MINOS [39] as the nonlinear solver (to solve the

reduced multilinear program). In order to analyze the scalability of the proposed algorithm, we have calculated the number
of constraints before (i.e., the original number of constraints) for the SysAdmin problems and after applying the algorithm
FactoredMPA. Fig. 4 shows the number of constraints for unidirectional-ring problems involving different numbers of
computers. As we can notice the number of original constraints grows exponentially with the number of computers, while
the constraints generated after applying the FactoredMPA algorithm grows quadratically. We can also notice that the
number of constraints generated by FactoredMPAwith simple basis functions (i.e., single variable functions) and pairwise
basis functions have the same growing rate. Even though, the number of constraints for each problem in these two cases
has a constant factor difference (≈ 4), the problems approximated by pairwise functions involve more complex constraints.
We can see this by the time results obtained by applying our algorithms to solve those problems (Fig. 5).

In Figs. 5 and6we show the running time for problemswithunidirectional-ring and star topologyusing the FactoredMPA

algorithm for simple set and pairwise set of basis functions. We compare those results with the exact solutions given by our
implementation of Value Iteration algorithm [8]. The results show that the exact solution is very time consuming when
compared with the solution given by the FactoredMPA algorithm, that is able to solve large and complex problems (up to
220 states). Thus, FactoredMPA algorithm is many orders of magnitude faster than the exact solution, due to its capability
to generate a compact set of constraints and therefore, solving a less complex problem.

For unidirectional-ring configuration (Fig. 5), the running time to solveproblemswith16 computers (whichwould involve
originally 216 times 17 constraints) was less than 17min and for problemswithmore than 16 computers the cpu-time grows
quickly. A possible reason for this sudden change of behavior is that we have achieved the limit of complex constraints that
themultilinear solver can handle. For star configuration (Fig. 6), the running time to solve problemswith 16 computers (with
216 times 17 constraints) was less than 5 min.

In Fig. 7 we show the percentage true approximation error, that is given by (maxx|V
∗(x) − Vapprox(x)|) divided by the

maximum discount reward sum (RMAX/1− γ) using pairwise basis functions and simple basis functions. To calculate V∗(x)
we used our implementation of Value Iteration algorithm. Since it can only solve small size problems, we show results only
for problems where the exact solution [8] takes up to 10 h. Note that the percentage in value loss incurred by using an
approximation is up to 18% and, as expected, the use of pairwise basis functions resulted in better approximations (except
for the problem with five computers with unidirectional configuration).

1014 K.V. Delgado et al. / International Journal of Approximate Reasoning 52 (2011) 1000–1017

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 4 6 8 10 12 14 16 18 20

T
im

e
(s

ec
o
n
d
s)

Number of computers

Unidirectional-Ring

pairwise basis
simple basis

exact solution

Fig. 5. Running time of FactoredMPA algorithm using simple and pairwise basis functions, and an exact solution for the Unidirectional-Ring configuration of

the System Administrator Domain.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 6 8 10 12 14 16

T
im

e
(s

ec
o
n
d
s)

Number of computers

Star

pairwise basis
simple basis

exact solution

Fig. 6. Running time of FactoredMPA algorithm using simple and pairwise basis functions, and an exact solution for the Star configuration of the System

Administrator Domain.

 6

 8

 10

 12

 14

 16

 18

 20

 22

 4 5 6 7 8 9

T
ru

e
A

p
p

ro
x

im
at

io
n

 E
rr

o
r

(%
)

Number of computers

Unidirectional-Ring

pairwise basis
simple basis

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 6 7 8 9

T
ru

e
A

p
p

ro
x

im
at

io
n

 E
rr

o
r

(%
)

Number of computers

Star

pairwise basis
simple basis

Fig. 7. Percentage true Approximation Error (maxx|V
∗(x) − Vapprox(x)| divided by the maximum discount reward sum) of FactoredMPA for the Unidirection-

al-Ring configuration and the Star configuration of the System Administrator Domain using pairwise basis functions and simple basis functions.

In Fig. 8we show the value of the policy estimated from simulation of an exact solution and FactoredMPA using pairwise
basis functions and simple basis functions. We observe that the exact solution is a little better in some cases and the use of
pairwise basis functions resulted in equal or better approximations.

If we additionally observe the time (Figs. 5 and 6) and the percentage in value loss (Figs. 7 and 8), we can conclude that
this percentage incurred by using an approximation is up to 18% in exchange for a 1000 speedup.

K.V. Delgado et al. / International Journal of Approximate Reasoning 52 (2011) 1000–1017 1015

 30

 35

 40

 45

 50

 55

 4 5 6 7 8 9

R
ew

ar
d
 f

ro
m

 s
im

u
la

ti
o
n

Number of computers

Unidirectional-Ring

pairwise basis
simple basis

exact solution

 48

 50

 52

 54

 56

 58

 60

 62

 64

 66

 68

 6 7 8 9

R
ew

ar
d
 f

ro
m

 s
im

u
la

ti
o
n

Number of computers

Star

pairwise basis
simple basis

exact solution

Fig. 8. Value of policy estimated from simulation (average over 50 trials of 100 steps for 4 initial states) of an exact solution and FactoredMPA for the Unidirec-

tional-Ring configuration and the Star configuration of the System Administrator Domain using pairwise basis functions and simple basis functions.

6. Related work

The Bounded-parameter Markov Decision Process (BMDP) [30] is a special case of an MDPIP, where the probabilities and
rewards are specified by constant intervals. Exploiting the specific structure available in a BMDP given by the intervals, the
algorithm in [30] can directly derive the solution without requiring expensive optimization techniques. Recent solutions to
BMDPs include extensions of real-time dynamic programming (RTDP) [47] and LAO* [48,49] that search for the best policy
under the worst model. TheMarkov Decision Process with Set-valued Transitions (MDPSTs) [50] is another subclass of MDPIPs
where probability distributions are given over finite sets of states. Since BMDP and MDPST are special cases of MDPIPs, we
can represent both by “flat” MDPIPs. Then the algorithms defined in this paper clearly apply to both BMDPs and MDPSTs,
however their solutions do not generalize to the factored MDPIPs we examined in this paper, which allow for general linear
constraints between probabilities, which are prohibited in interval bounded probability settings like BMDPs. This use of
general linear constraints is particularly useful when we do not know the probabilities or the interval they belong to, but
only relative constraints between them.

Models involving imprecision have also been applied in the related field of Markov Chains with the work of Damjan Skulj
[51].

A final piece ofwork that is relatedwithMDPIPs is the Buffet andAberdeen’s paper [52] that explores aminimax approach
with a structured representation. One of the major differences here is that the uncertainty is over opponent actions (finite)
not parameters (infinite), so this work does not generalize to the constrained parameter uncertainty case addressed in our
work.

7. Conclusion

In this work we have investigated Markov Decision Processes with Imprecise Probabilities (MDPIPs), a class of models
that adds considerable flexibility and realism to probabilistic planning allowing the representation of imprecise transition
probabilities. Inspired by the ideas of Guestrin’s work on FactoredMDPs, we first propose a compact FactoredMDPIPmodel,
which represents states throughout state variables and uses Dynamic Credal Networks to specify the imprecise transition
probabilities. A Factored MDPIP is a more natural and compact representation of an MDPIP; it can reveal the structure of an
application domain and allows for the construction of efficient and approximate solutions.

Second, based on mathematical programming formulation for MDPIPs [10] and Factored MDPs [5], we have proposed
an approximate solution to Factored MDPIPs formulated as a multilinear program and we implement a new algorithm,
named FactoredMPA, as an extension of the FactoredLPA (Factored Linear Programming-based Approximation) algorithm
used to solve efficiently MDPs [5,17]. The proposed algorithm finds maximin policies for Factored MDPIPs by resorting to
approximate nonlinear programming and exploiting the domains structure in order to reduce the number of constraints of
themultilinear program.We evaluated the FactoredMPA algorithm solving a difficult class of benchmark problemswith up
to 220 states. Our experiments show that by exploiting the factored representation, we gain orders of magnitude reduction
in solution time over exact non-factored approach in exchange for less than 18% of approximation error.

To thebest of ourknowledge, this is thefirstwork in the literatureonMDPIPs that showsexperimental results forproblems
with large state space sizes. MDPIPs were proposed in 1970, but have lacked general application for many decades, largely
due to their computational complexity. Thus,webelieve this is a significant contribution to both, the planning andoperations
research communities as well as to specific application domains where robust policies are important. A preliminary version
of this paper was published in [53]. We are currently working on an extended version of our work on approximate solutions
to solve Factored MDPIPs based on dynamic programming [54], in order to compare it with the multilinear approach. Our

1016 K.V. Delgado et al. / International Journal of Approximate Reasoning 52 (2011) 1000–1017

preliminary results show that, although with the dynamic programming approach we can give some error guarantees, with
our FactoredMPA algorithm and the right choice of basis functions, we can solve larger problems.

Acknowledgements

This work has been supported by FAPESP grant 2008/03995-5; the first author was supported by CAPES, the third author
is partially supported by CNPq and the fourth author is supported by NICTA.

References

[1] M.L. Puterman, Markov Decision Processes,, John Wiley and Sons, New York, 1994, pp. .
[2] C. Boutilier, S. Hanks, T. Dean, Decision-theoretic planning: structural assumptions and computational leverage, Journal of Artificial Intelligence Research

11 (1999) 1–94.
[3] S. Thrun, W. Burgard, D. Fox, Probabilistic Robotics, The MIT Press, 2005.
[4] R.E. Bellman, Dynamic Programming, Princeton University Press, USA, 1957.
[5] C. Guestrin, Planning under uncertainty in complex structured environments, Ph.D. Thesis, Stanford University, Adviser – Daphne Koller, 2003.
[6] J. Hoey, R. St-Aubin, A. Hu, C. Boutilier, SPUDD: stochastic planning using decision diagrams, in: Proceedings of the Fifteenth Conference on Uncertainty in

Artificial Intelligence (UAI), Morgan Kaufmann, 1999, pp. 279–288.
[7] R. St-Aubin, J. Hoey, C. Boutilier, APRICODD: approximate policy construction using decision diagrams, in: Advances in Neural Information Processing

Systems (NIPS), MIT Press, 2000, pp. 1089–1095.
[8] J.K. Satia, R.E. Lave Jr., Markovian decision processes with uncertain transition probabilities, Operations Research 21 (1973) 728–740.
[9] C.C. White III, H.K. El-Deib, Markov decision processes with imprecise transition probabilities, Operations Research 42 (4) (1994) 739–749.

[10] R. Shirota, F.G. Cozman, F.W. Trevizan, C.P. de Campos, L.N. de Barros, Multilinear and integer programming for Markov decision processes with imprecise
probabilities, in: Proceedings of the 5th International Symposium on Imprecise Probability: Theories and Applications (ISIPTA), Prague, Czech Republic,
2007, pp. 395–404.

[11] F.G. Cozman, Graphical models for imprecise probabilities, International Journal of Approximate Reasoning 39 (2–3) (2005) 167–184.
[12] C. Guestrin, D. Koller, R. Parr, S. Venkataraman, Efficient solution algorithms for factoredMDPs, Journal of Artificial Intelligence Research 19 (2003) 399–468.
[13] D.P. Bertsekas, J.N. Tsitsiklis, An analysis of stochastic shortest path problems, Mathematics of Operations Research 16 (3) (1991) 580–595.
[14] R.A. Howard, Dynamic Programming and Markov Process, The MIT Press, 1960.
[15] A.S. Manne, Linear programming and sequential decision models, Management Science 6 (3) (1960) 259–267.
[16] C. Papadimitriou, J.N. Tsitsiklis, The complexity of Markov decision processes, Mathematics of Operations Research 12 (3) (1987) 441–450.
[17] R. Patruscu, Linear approximations for factored Markov decision processes, Ph.D. Thesis, University of Waterloo, 2004.
[18] T. Dean, K. Kanazawa, A model for reasoning about persistence and causation, Computational Intelligence 5 (3) (1990) 142–150.
[19] P.J. Schweitzer, A. Seidmann, Generalized polynomial approximations in Markovian decision processes, Journal of Mathematical Analysis and Applications

110 (1985) 568–582.
[20] S. Mahadevan, Samuel meets Amarel: automating value function approximation using global state space analysis, in: Proceedings of the 20th National

Conference on Artificial Intelligence, 2005, pp. 1000–1005.
[21] A. Kolobov, Mausan„ D.S. Weld, Hidden structure of factored MDPs, in: Doctoral Consortium in International Conference on Automated Planning and

Scheduling (ICAPS), Canada, 2010.
[22] I. Levi, The Enterprise of Knowledge, MIT Press, Cambridge, Massachusetts, 1980.
[23] J. Berger, Statistical Decision Theory and Bayesian Analysis, Springer-Verlag, 1985.
[24] P.J. Huber, Robust Statistics, Wiley, New York, 1980.
[25] P. Walley, Statistical Reasoning with Imprecise Probabilities, Chapman and Hall, London, 1991.
[26] A. Nilim, L. El Ghaoui, Robust control of Markov decision processes with uncertain transition matrices, Operations Research 53 (5) (2005) 780–798.,

<http://dx.doi.org/10.1287/opre.1050.0216>.
[27] A. Wald, Statistical Decision Functions, Wiley, New York, 1950.
[28] L.V. Utkin, T. Augustin, Powerful algorithms for decision making under partial prior information and general ambiguity attitudes, in: Proceedings of the

3th International Symposium on Imprecise Probability: Theories and Applications (ISIPTA), Prague, Czech Republic, 2005, pp. 349–358.
[29] T. Seidenfeld, A contrast between two decision rules for usewith convex sets of probabilities:Γ -maximin versus E-admissibility, Synthese 140 (1–2) (2004)

69–88.
[30] R. Givan, S. Leach, T. Dean, Bounded-parameter Markov decision processes, Artificial Intelligence 122 (1–2) (2000) 71–109.
[31] F.W. Trevizan, F.G. Cozman, L.N. de Barros, Planning under risk and Knightian uncertainty, in: Proceedings of the 20th International Joint Conference on

Artificial Intelligence (IJCAI), Hyderabad, India, 2007, pp. 2023–2028.
[32] F.G. Cozman, Credal networks, Artificial Intelligence 120 (2) (2000) 199–233.
[33] W. Bialas,M. Karwan,Multilevel linear programming, Tech. Rep. 78-1, Operations Research Program, Department of Industrial Engineering, State University

of New York at Buffalo, 1978.
[34] J.F. Bard, Convex two-level optimization, Mathematical Programming 40 (1) (1988) 15–27.
[35] B. Colson, P. Marcotte, G. Savard, A trust-region method for nonlinear bilevel programming: algorithm and computational experience, Computational

Optimization and Applications 30 (3) (2005) 211–227.
[36] R. Andreani, S.L.C. Castro, J.L. Chela, A. Friedlander, S.A. Santos, An inexact-restorationmethod for nonlinear bilevel programming problems, Computational

Optimization and Applications 43 (3) (2009) 307–328.
[37] G. Savard, J. Gauvin, The steepest descent direction for the nonlinear bilevel programming problem, Operations Research Letters 15 (5) (1994) 265–272.
[38] K.V.Delgado, L.N. Barros,Usandoprogramaçaoemdoisníveispara resolverprocessosdedecis aomarkovianos comprobabilidades imprecisas, in: Congresso

Brasileiro de Automática (CBA), Brazil, 2010, pp. 5284–5291.
[39] B.A.Murtagh,M.A. Saunders,MINOS5.5user’s guide, Tech. Rep. SOL83-20R, SystemsOptimization Laboratory,Department ofOperationsResearch, Stanford

University, California, 1998.
[40] R. Andreani, E.G. Birgin, J.M. Martinez, M.L. Schuverdt, Augmented Lagrangian methods under the constant positive linear dependence constraint qualifi-

cation, Mathematical Programming 111 (1) (2007) 5–32.
[41] S.Boyd, S.-J.Kim,L.Vandenberghe,A.Hassibi,A tutorialongeometricprogramming,December2009. <http://www.stanford.edu/∼boyd/papers/gp_tutorial.

html>.
[42] H.D. Sherali, C.H. Tuncbilek, A global optimization algorithm for polynomial programming problems using a reformulation–linearization technique, Global

Optimization 2 (1992) 101–112.
[43] A.M. Lukatskii, D.V. Shapot, Problems in multilinear programming, Computational Mathematics and Mathematical Physics 41 (5) (2000) 638–648.
[44] D. Koller, R. Parr, Computing factored value functions for policies in structured MDPs, in: Proceedings of the Sixteenth International Joint Conference on

Artificial Intelligence (IJCAI), 1999, pp. 1332–1339.

http://dx.doi.org/10.1287/opre.1050.0216
http://www.stanford.edu/boyd/papers/gp_tutorial.html
http://www.stanford.edu/boyd/papers/gp_tutorial.html

K.V. Delgado et al. / International Journal of Approximate Reasoning 52 (2011) 1000–1017 1017

[45] D.P. de Farias, B.V. Roy, On constraint sampling in the linear programming approach to approximate dynamic programming, Mathematics of Operations
Research 29 (3) (2004) 462–478.

[46] D.A. Dolgov, E.H. Durfee, Symmetric approximate linear programming for factoredMDPswith application to constrained problems, Annals of Mathematics
and Artificial Intelligence 47 (3–4) (2006) 273–293.

[47] O. Buffet, D. Aberdeen, Robust planning with LRTDP, in: International Joint Conference on Artificial Intelligence (IJCAI), 2005, pp. 1214–1219.
[48] S. Cui, J. Sun,M. Yin, S. Lu, Solving uncertainMarkov decision problems: an interval-basedmethod, in: Second International Conference Advances in Natural

Computatation (ICNC), 2006, pp. 948–957.
[49] M. Yin, J. Wang, W. Gu, Solving planning under uncertainty: quantitative and qualitative approach, in: IFSA (2), 2007, pp. 612–620.
[50] F.W. Trevizan, F.G. Cozman, L.N. de Barros, Planning under risk and Knightian uncertainty, in: International Joint Conference on Artificial Intelligence (IJCAI),

2007, pp. 2023–2028.
[51] D. Skulj, Discrete time Markov chains with interval probabilities, International Journal of Approximate Reasoning 50 (8) (2009) 1314–1329.
[52] O. Buffet, D. Aberdeen, A two-teams approach for robust probabilistic temporal planning, in: Proceedings of the ECML’05 workshop on Reinforcement

Learning in Non-Stationary Environments, 2005.
[53] K.V. Delgado, L.N. de Barros, F.G. Cozman, R. Shirota, Representing and solving factored Markov decision processes with imprecise probabilities, in:

Proceedings of the 6th International Symposiumon Imprecise Probability: Theories andApplications (ISIPTA), Durham,UnitedKingdom, 2009, pp. 169–178.
[54] K.V. Delgado, S. Sanner, L.N. de Barros, F.G. Cozman, Efficient solutions to factoredMDPswith imprecise transition probabilities, in: Proceedings of the 19th

International Conference on Automated Planning and Scheduling (ICAPS), Thessaloniki, Greece, 2009, pp. 98–105.

	Using mathematical programming to solve Factored Markov Decision Processes with Imprecise Probabilities
	1 Introduction
	2 Background
	2.1 Flat Markov Decision Processes
	2.2 Factored Markov Decision Processes
	2.3 Markov Decision Processes with Imprecise Probabilities

	3 Defining and representing Factored MDPIPs
	3.1 Bilevel and multilinear approximate formulations

	4 An efficient solution for Factored MDPIPs: FactoredMPA
	4.1 Simplification step: exploiting the factored structure of an MDPIP
	4.2 Contraction step: generating a compact set of constraints
	4.3 The FactoredMPA algorithm

	5 Experimental Results
	6 Related work
	7 Conclusion
	Acknowledgements
	References

