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Abstract This problem involves imprecise probability judgements,

) ) N widening the scope of application areas. In fact, there is a
In this paper, we study algorithms for probabilis- large number of potential application areas for PSAT, from
tic satisfiability (PSAT), an NP-complete problem, machine learning to the modelling of biological processes,
and their empiric complexity distribution. We de- from hardware and software verification to economics and
fine a PSAT normal form, based on which we pro-  econometrics. However, there are very few, if any, prattica
pose two logic-based algorithms: a reduction of  ajgorithms available, used in limited applications.
normal form PSAT instances to SAT, and a linear- This work aims at studying PSAT algorith® reveal its
algebraic algorithm with a logic-based columngen-  empiric complexity distributiorand, in particular, detect the

eration strategy. We conclude that both algorithms existence of @hase-transitiorbehaviour.
present a phase transition behaviour and that the lat-

ter has a much better performance. 1.1 A Brief History of PSAT
The original formulation of PSAT is attributed to George
1 Introduction Boole[1854. The problem has since been independently re-

discovered several times (sBdailperin, 1986; Hansen and
Probabilistic satisfiability (PSAT) is an NP-complete gesh  Jaumard, 2009 until it was presented to the Computer Sci-
that requires the joint application of deductive and pralib  ence and Avrtificial Intelligence community by NilssEils-
tic reasoning. It consists of an assignment of probatslitte  son, 198% and was shown to be an NP-complete problem,
a set of propositional formulas, and its solution consi$ 0 even for cases where the corresponding classical satlfiabi
decision on whether this assignment is consistent. For exanjs known to be in PTIMEGeorgakopoulost al., 1989.
ple, consider Problem 1.1, in which the goal is to verify the  The PSAT problem is formulated in terms of a linear al-
truthfulness of the claims. gebraic problem of exponential size. The vast majority of
algorithms for PSAT solving in the literature are based on
linear programming techniques, such as column generation,
enhanced by several types of heurisfiksvvadias and Pa-

Problem 1.1 Three friends usually go to a bar, and every

night at least two of them are at their exclusive table. Edch o
H 13 i1} 0 H

them claims to go to the bar “only” 60% of the nights. padimitriou, 1990; Hanseet al, 1995

Question:Can they be telling the truth? Why? Boole’s original formulation of the PSAT problem did not
In this case, the statement of the friends has to be checkegbnsider conditional probabilities, but extensions foenth
against an established fact, namely the presence of two dfave been developdtHailperin, 1986; Hansest al, 1995;
them every night. Another instance of PSAT is the following. Hansen and Jaumard, 2000; Walley al, 2004; the lat-

. . ) . ter two works also cover extensions of PSAT with imprecise
Problem 1.2 Sele_ctlng architecture students is ”Otor'QUSWprobabilities. A few tractable fragments of PSAT were pre-
hard. Staff ata university analysed students thatrecéh@td  gentedAndersen and Pretolani, 2001In this work, how-

final degrees and concluded that: ever, we concentrate on PSAT’s original formulation.
e atleast 75% had good grades in their Math entrance test With respect to practical implementations, initial attesp
or showed good drawing abilities; to implement a solution led to the belief that the problem ap-

. ) eared to be very harNilsson, 1993. There are compu-
e at most a third had good Math grades or did not showgiona) results re);/)orted iWaumardet al, 1991 and[Ka\E)—
any drawing abilities. vadias and Papadimitriou, 199®olving PSAT problems of
Question: Is this consistent with the low expectation (at 140 variables and 300 sentences. However, these implemen-
most 15%) of students that do well in the Math entrance teststations were rarely, if ever, used to solve practical instsrof
- PSAT problems or served as a basis to practical applications
*Work supported by Fapesp Project 2008/03995-5 (LOGPROB)
fPartially supported by CNPq grant PQ 302553/2010-0. Allimplementations available gtsat . sour cef or ge. net .



1.2 Phase Transition of NP-complete Problems Nilsson[1986’s formulation of PSAT considers fa x 2"

Cheesemaet al.[1991] presented the phase-transition phe-Matrix A = [a;;] such thata;; = v;(a;). The probabilis-

nomenon for NP-complete problems and conjectured thalic satisfiabil_ily pro_blem's to decide if there is a pro_bability
it is a property of all problems in that class. Gent andVectorn of dimensior2™ that obeys th&SAT restriction

Walsh[1994 studied phase transition for SAT problems pa- Ar >4 p

rameterised by the rate:/n, wherem is the number of o 1
clauses in a 3-SAT instance ands the number of variables, 2 = (1)
and showed that the harder instances concentrate around a ™ > 0

point wherem/n = I, the phase transition point When A PSAT instance is satisfiableiff its associated PSAT

the ratem/n is small (< 3) almost all instances are satisfi-
able, and when this rate is higt (6) instances are unsatisfi-
able, and the decision time remains low at both cases. At th
phase transition poin®;, the number of expected satisfiable
instances is 50%, which for 3-SAT 1 ~ 4.3. ot I 1 ) c s aln
To the best of our knowledge, no phase transition has beefr|1rSt line, py = 1in Vectorp(. 1)1, S0 -relation is *=".
described for PSAT so far. Example 2.1 Consider Problem 1.1, with friendd, 2, 3}.
Very efficient SAT solvers are now availatleloskewicz ~ Let x; represent that personis at the bar tonight; €
et al, 2001; Een and ®rensson, 2043 but the SAT phase {1,2,3}. As every night at least two friends are at the bar,
transition behaviour remains independent of implemesnati no two friends can be absent at the same night, represented
and number of atoms. However it relies on presenting théy —(—z; A —z;) with 100% certainty foi # j:
gL?rk]):)eeT(IJ? :twgrrnn;a;)lé?rcrpaﬂzgéllym clausal form with a fixed P(21 V 22) = P(a1 V 3) = Pl V 23) = 1.
Efficient SAT-solvers enabled the solution of other NP-Furthermore, each claims to be at the bar “only” 60% of the
complete problems by translating them to a SAT instance antime:
applying the solvers. Cook’s theorem guarantees that there P(x1) = P(z2) = P(x3) = 0.6,
exists a polynomial-time translation from any NP-complete,nq the question is if there exists a probability distribnti
prob_lem into SAT. However, no such translation is found inypat simultaneously satisfies these 6 probability assignsne
the literature from PSAT to SAT. Consider now Problem 1.2. Let mean that a student has

good grades in the Math entrance test apdnean that that

13 _Goals .and Or_ganlsatlon O_f the Paper ) student showed good drawing abilities. In this case, weilobta
The aim of this work is to study logic-based PSAT algorithmsihe restriction<:

and their empiric complexity distribution, looking for a RS

phase transition behaviour. P(z1Vag) 2075 P(z1V-a) <1/3 P(x1) <0.15
For that, we formally present the PSAT problem and de- consider a probability distribution and all the possible

velop a logic-based normal form of it in Section 2, based onyaluations as follows.

which two kinds of algorithms are developed. A (canonical)

restriction (1) has a solution. # is a solution to (1) we say
that 7 satisfiesy. The last two conditions of (1) force to
fe a probability distribution. Usually the first two conditis
of (1) are joined,A is a(k + 1) x 2™ matrix with 1's at its

reduction of PSAT to SAT is developed in Section 3. And 5, o @ gt mv e

an efficient SAT-based modification of usual linear program- 0.05 1 0 1 1

ming PSAT algorithms in Section 4. The empiric complexity 0.70 0 1 1 0

distribution on both algorithms is presented and PSAT phase 0.05 1 1 1 1

transition behaviour is detected. We end with a discussion o 1.00 0.10 0.75 0.80 0.30
thshgiﬁr;ieelggs_ the detection of the PSAT phase transition an\gvhich jointly satisfies the assignments above, so Problém 1.

is satisfiable. We are going to study algorithms to compute
one such probability distribution if one exists. |

An important result of Georgakopoulost al,, 1989 guar-
antees that a solvable PSAT instance has a “small” witness.

2 The PSAT Problem
A PSAT instancés a set® = {P(a;) >; pi|1 < i < k},

where a1, ..., a; are classical propositional formulas de- i

fined onn logical variablesP = {z1,...,z,}, which are ~Fact2.2 If a PSAT instanc& = {P(;) = pi[l <i < k}

restricted by probability assignmenf«;) >; p;, <; € {=  has a solution, then there ade+ 1 columns of4 such that

,<,>}andl < i < k. Variables are also calleatoms the systemi ;. 1)x (k+1)™ = P(r+1)x1has a solutionr > 0.
There are2™ possible propositional valuationsover the The solution given by Fact 2.2 serves as an NP-certificate

logical variablesp : P — {0, 1}; each such valuation is ex- for this instance, so PSAT is in NP. Furthermorepesposi-

tended, as usual, to all formulas; £ — {0, 1}. A probabil-  tional satisfiability(SAT) is a subproblem obtained when all

ity distribution over propositional valuations : V' — [0, 1], ; = 1, PSAT is NP-hard. So PSAT is NP-complete.

is a function that maps every valuation to a value in the reaf) It follows from the Cook-Levin TheorefdiCook, 1971 that
interval [0, 1] such thath; m(v;) = 1. The probabil- there mustbe a polynomial time reduction from PSAT to SAT.
ity of a formula o according to distributionr is given by  However, finding an efficient reduction is neither obvious no
Pr(a) =Y {n(vi)|vi(ar) = 1}. easy. In the following, we study some logical properties of



PSAT instances to study ways in which this kind of reductionPSAT and SAT are NP-complete, the existence of a reduction

can be performed.

First, some notation. Ifi is anm x n matrix, A7 represents
its j-th column, and ib is anm-dimensional columnA[j :=
b] represents the matrix obtained by substitutirfgr A7; if
A is square matrix|A| is A’s determinant. 1fA is a{0, 1}-

is guaranteed.

We present a reduction that inputs a normal form PSAT
instance(I', ¥) and outputs a SAT formula that encodes
Lemma 2.5. Giverp (here presented a), we search for
a matrix A 1)x (+1) whose columns aré-consistent and

matrix, where each line corresponds to a variable, than each Probability distributionr > 0 such thatdr = p. We as-

AJ can be seen as valuation.

2.1 A PSAT Normal Form

We say that a PSAT instanée= {P(«;) >; pi|l <@ <}
is in (atomic) normal fornif it can be partitioned in two sets,
(T, T), wherel' = {P(;) = 1|1 < i < m} and¥ =
{P(y;) = pily;isanatom] < ¢ < k}, with0 < p; < 1,
wherel = m + k. The partitionl” is the SAT part of the nor-

mal form, usually represented only as a set of propositional

formulas and? is theatomic probability assignmemptart.

By adding a small nhumber of extra variables, any PSAT

instance can be brought to normal form.

Theorem 2.3 (Normal Form) For every PSAT instancE
there exists an atomic normal form instan@g ¥) such that
Y is a satisfiable iffI", ¥') is; the atomic instance can be built
from X in polynomial time. O

Example 2.4 The presentation of Problem 1.1 in Exam-
ple 2.1 is already in normal form, with = {z1 V z2,21 V
xr3, T2 V Zg} and¥ = {P(Ll) = P(lg) = P(Zg) = 06}
This indicates that the normal form is a “natural” form in

sume that the elements pfand= are represented by a fixed
point number in binary positional system with precisign

bits, where each bit is a boolean variable, the higher the bit
index the higher its significance. A@j,wﬁ,pg € {0,1},
each such element is represented by a boolean variable. This
is represented by the following schema.

1.-- 1
ai,1 - 01,k+1

0.y -+ i) (1.0...0)

(0.pp, - i)

Gk,1 Ok, k+1 (0.7?5:1 R (0.pF_---ph)

3.1 Determining the Precision

The hard part of this encoding is to find a large enough pre-

cisionb, that guarantees the correctness and polynomial size

of the encoding, assuming a fixed number of bits in the input.
To guarantee a polynomial time reduction, the number of

bits b, in which the components of vectarare encoded has

to be bounded by a polynomial on the size of input of the

PSAT instance. By Cramer's rule,; = % SO we esti-

many cases, such as when one wants to confront a tieory mate the maximum precisidn, as twice the number of bits

with the evidencel.
For the formulation of Problem 1.2, we start by rewriting
the problem in the fornP(«) < p as

S ={P(=(z1Vx2)) <0.25, P(z1 V —x2) < &, P(x1) < 0.15}

Add three new variableg; , y-, y3 and make

D ={ ~(x1Vz2) = y1, (x1V-x2) = Y2, 1 = Y3 }
={x1VzaVy, 21 Vy2,22Vys, 1 Vys }

and¥ = {P(y;) = 0.25, P(y2) = 3, P(y3) = 0.15}. O

The normal form allows us to see a PSAT instaficel)
as an interaction between a probability problérmand a SAT

instancel’. Solutions to the instance can be seen as solution

to W constrained by the SAT instante

This is formalised as follows. A valuatiom over
Y1, - - -, Yx IS I'-consistentf there is an extension aof over
Y1y« Yks X1, - -, Ty SUCh thaw(T) = 1.

Lemma 2.5 A normal form instancél’, ¥) is satisfiable iff
there is a(k + 1) x (k + 1)-matrix Ay, such that all of its
columns ard'-consistent andiym = p has a solutionr > 0.

In Lemma 2.5, a line is added to represgnim; = 1, v a
distribution overk + 1 I'-consistent valuations. This the basis
for the PSAT solving algorithms that present next.

3 Reduction of PSAT to SAT
A (canonical) reductioris a polynomial time translation of

of the maximum possible determinant o gl -matrix A. For
that, we use aresult due to J. Hadamard who solved the Max-
imum Determinant Problem; s¢&arling, 2007.

Fact 3.1 (Hadamard, 1893) Let A = [a;j]nxn, aij €

1)(n+1)/2
{0,1}. Then|A| < %
Thusb, = 2 ([&2log(k +2)] - (k + 1)) = O(klogk),
and the reduction is polynomial-time. This bound presup-
poses rational arithmetic; correctness is kept in the paEse
of truncation errors due to the convexity of the solutioncepa

3.2 The SAT Instance

Rlultiplication of a;; - ; is encoded as a simple conjunction
of each bit-variable ofr; with the variable representing;.
Sums will be directly encoded as bitwise sums for each po-
sition, which demands a carry-bit and a result-bit for each
position. Equality is encoded as bitwise equivalence. Due t
space reasons we do not detail the reduction formulas here.

We only point that the number of variables in the clausal
SAT instance i€)(k* log k) and that the number of clauses is
alsoO(k?log k), wherek = |¥|.

This implies that reduction makes PSAT solving alésts
efficientthan SAT solving, both if? = NP orif P # N P!

3.3 Results: A PSAT Phase Transition

A translation of PSAT instances into SAT was implemented
in C++, which invoked the zchaff SAT solvéMoskewiczet

O

an instance of PSAT into an instance of SAT, such that thal., 2001]. We generate uniformly distributed random PSAT
PSAT instance is satisfiable iff the SAT instance is. As bothinstances in normal form witk probability assignments;
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Figure 1: PSAT Phase Transition, for= 40 andk = 4. Figure 2: Complexity distribution, implementation of (2)

variablesyi, . . . ...,z andm 3-SAT clauses. To Ve now detail (b), (c) and (d) and present our algorithm.
restrict sgh’wple;(?i{c;’ ﬁglf}xeqﬁ _ km: 4 which leads to  WVe first establish some terminology. A matrixthat satisfies

by = 2([(61log6)/2] — 5) = 6. We also fixedn = 40 and conditions (3) is deasible solutiorfor ¥,

increased the rate:/n in steps of0.2. For each value of 1 ... 1 ) 1
m, we generated 100 instances of PSAT, and computed the ain o QL4 T ”m
percentage of satisfiable instances (%SAT) and the average D " . ) = )
time of computation in seconds. We then obtained the graphic : K : : : 3)
illustrated in Figure 1. ag1 ot Okk+1 Th+1 Pk

Figure 1 clearly illustrates a phase transition behaviour, ) )
with the transition point around 4. We know that wheg: 0, a;; €{0,1},  Alisnon-singular, ;>0

PSAT becomes SAT, with phase transition point around 4.3ye will further assume that the input probabilities . . . , p.
As k is increased, it is expected that the rate of satisfiable fory, (3) are in decreasing order. By Lemma 2(B, ¥') has a

mulas decreases for a given/n, so the phase transition point g4 tion iff there is a partial solution satisfying (3) such that
is supposed to dislocate to the left, as observed. With morg .=~ thena, ... ...ay, ; arel'-consistent valuations for
experiments, we could increaseand expect the phase tran- | ;"< 1 1 < /< &'+ 1. We usually abuse terminology
sition point to move even further to the left. However, duecaﬁing;lj éF—EonsTstent column.

to the high complexity of the translation, experiments with

k = 6 were almost impractical around the transition point.4.1 Initial and Further Feasible Solutions

This is why we turn to other algorithms for PSAT solving.  gjyen (D, ¥, consider(z, ¥) obtained by ignoring™. As

. . the elements gf are in decreasing order, consider ffe1}-
4 A LOgIC_AIgebraIC PSAT Solver matrix I'* = [aihj]lgi)jgkle Whereai}j =1iff i < 7 that is,

Traditional algebraic PSAT solvers extend an exponeptiall /* is all 1's in and above the diagonal, 0's elsewhere pAs
large linear program with: + k + 1 new variables (since: in decreasing ordef,* satisfies@, ¥) and is called aelaxed

clauses il have probability 1) of the form solutionfor (", ¥). Clearly,I* is a feasible forl.
minimize (objective function of the fornd ) Example 4.1 The relaxed solution to normal form of Prob-
subject toAr = p andr > 0 (2)  lem 1.2 in Example 2.4 is such that all columns dre
o ) . T ] consistent, this decides positively Problem 1.2 by LemrBa 2.
which is solved iteratively by the simplex algorithm; at kac 11 1 1 0.67 1
iteration step, Fact 2.2 allows for storingl ;) with m+k+1 0 1 i i 0-?8 _ 0.33 v2
columns and aolumn generatiormethod is employed in PO o o2 u 0

which anauxiliary problemgenerates a column that replaces

some column ind;, and decreases the objective function. . . ;
@ ) method. Further feasible solutions are obtained by generat

Vector ¢ selects only the new variables i socm = 0 . LS ; .
iff the PSAT probler); is satisfiable. Figure 2 presents the"9 new{0, 1}-columns and substituting them into a feasible

results of an implementation of this method fxactly the solution, as shown by the following.

same instancesf Figure 1, showing no phase transition andLemma 4.2 Let A be a feasible solution satisfying (3) and
much greater decision times, mainly explained by each forletb = [1 by --- b;]’ be a{0, 1}-column. Then there always
mulaa € T having to be dealt with a restrictiaR(«) = 1. exists a colump such thatd[j := b] is a feasible solutiori]

We propose the following logic-based modifications of that | emma 4.2 is a well-known fact that comes from the piv-
method that inputs a normal form PSAT instance, with oting in the simplex algorithm. Its proof actually gives us a
(@) amuch smaller basi4;) of orderk + 1, by Lemma 2.5;  algorithm to compute a new feasible solution from a previous
(b) a different initial feasible solution at step O; one, so letnerge(A, b) be a function that computes it.

. . Our method moves through feasible solutions, at each step
(c) a new objective function;

generating a columhithat decreases the value of the objective
(d) a new SAT-based auxiliary problem. function.

The relaxed solution is the initial feasible solution of our



4.2 The Objective Function Algorithm 4.1 Logic-algebraic PSAT solver

In a feasible solutionA such thatAr = p andw® > Input: A normal form PSAT instancd”, U').
0, some columns may not bE-consistent. LetJ = Output: Total solutionA; or “No”, if unsatisfiable.
{j|A7 isT-inconsistent ang:; > 0}; J is the set of col- 1: p := sortDecrescent({1} U {p;|P(y;) = p; € ¥};
umn indexes inA corresponding td'-inconsistent columns 2. Ay = I*; s := 0; compute(| (s |, f(5));
with non-null associated probability; cleadly| < & + 1. If 3: while (|J.|, fo)) # (0,0) do
J = @, we call A a(total) solution 4 b= teCol (A T):

By Lemma 2.5, a positive decision for the PSAT instance = Lreneratety otumni A(s), Py L s
(T', W) is reached iff/] = @. Thus, a candidate objective 5: return “No” if b{”) < 0; /% instance is unsat */
function is simply|.J|. Lemma 4.2 guarantees thatif we only 6: A, 1)=merge(A), b*);
generatd'-consistent columns,/| never increases. However, 7:  increments; compute(|.J )|, f(s));
it is not guaranteed that, if a solution exists, we can find a 8: end while
path in which|.J| decreases at every steplf this were true, 9: return A,; /* PSAT instance is satisfiable */
we would have a solution in at most+ 1 steps, which is
unfortunately not the case.

/_A\_ second _Candid_ate Objective function is the sum of prOb'C0|umnAj associated t@-j > 0. By linear a|gebraic manip_
abilities ofI'-inconsistent columng, = > ; m; . Note that  |ation, a new columih = [1y; ...y’ to substituted’ must
f and|.J| become) at the same time, which occurs iff a pos- satisfy the set of linear inequalities:
itive decision is reached. The simplex algorithm with appro
priate column generation ensures that, if there is a salutio (LRi;) (A7 'mi—A7 ' m) Ly ...yn] >0, 1<i<k+1
it can be obtained with finitely (but possibly exponentially _ - . )
many steps of non-increasingvalues. We propose a com- A substitutionb for A7 is obtained by a valuation that sat-
bined objective function(|.J|, f) ordered lexicographically. isfies the formule®; = T" A s Arg,;. Clearly, if©; is
In minimising this combined objective function, we first try satisfiable A[j := b] is T'-consistent and decreage’s.
to minimise the number df-inconsistent columns; if this is Suppose every; is unsatisfiable]l < j < ¢, and let

not possible, then minimisg, keeping.J constant. We thus fr = ;1-:1 mj. Acolumnb = [1 y; ...y, that substitutes
have the following program someA’ and enforces a decreasifig similarly satisfies
min (1, f) LR T AT Ly oy >0
subjectto Ar =p,7>0,f=>,.,m; and (4) (LRy) Ao ]
J = {j|A7 isT-inconsistenty; > 0} A substitutionb for A7 is obtained by a valuation that sat-

. . . isfies the formula®; = T' A Apg,. If ©; is satisfiable,
So the PSAT instanc@l’, ) associated to program (4) is sat- 4[; . ) is I-consistent angi, never increases.
isfiable iff the objept|ve funct!on is minimal &0, 0). The algorithm that compute§enerate Column(A, p,T)
Assume there is a functiofienerate Column(A,p,T), ~ fagter in practice is as follows. First, se@(yy, .. ., i)
presented at Section 4.3, that generatdsansistent col- ;5 gaT.solver. If it is unsatisfiable, return invalid colom
umn that decreases the objective function, if one exists; ot ~10 0)'; in this way we have an early failure. Otherwise
erwise it returns an illegal column of the forfr1 ---]. Al yoeis avs. o ©) = 1. If by = [1vs(31) » (y))
gorithm 4.1 presents a method that decides a PSAT i”Stan%‘:ﬁubstitutesf éo?n@finconsistentf column,j retu'rﬁ'f, fwhich
by solving problem (4). decrease$J| and maybef as well. Otherwise storé;.

Algorithm 4.1 starts with a relaxed solution fdf", ¥) : , j e
(line 2), and via column generation (line 4) generate arothe O €aciL-inconsistentd? submito; (y;. ..., ) t a SAT-

feasible solution (line 6), decreasing the objective fiorgt solver; if it is safisfiable with valuatiorv, retumb =

o AR S lou(yr)...v(yk)], decreasing/|. If all ©; are unsatisfiable,
until either the search fails (line 5) or a solution is foutttg [ . J :
latter only occurs with the termination of the loop in lines 3 returnb, sof does notincrease. As the SAT solver is deter-

o ; ministic and generates answers in a fixed order, by Bland’s
8, when the objective function reachigs0). rule the termination of the whole process is guaranteed.

4.3 SAT-Based Column Generation Example 4.3 Apply Algorithm 4.1 to the presentation of
A T'-satisfiable columm that never increases the value of the Problem 1.2 in Example 2.4. At step 0, the relaxed solution
objective function is obtained by solving at mdst 1 SAT 04 N

0 | 0.6 Y2

0.6 0.6 Y3

problems as follows. Consides, . ..,z over{0, 1} and

whereay, ..., ax,c € Q; (5) can be seen as a propositional is such that the two columns on the left dténconsistent.

formula LR, in the sense that a valuatien: z; — {0, 1} Column generation tries to substitute the column 1, generat

satisfiesL R iff v makes (5) a true condition. Such a formula ing the inequalities-y; + y2 > 0,92 — y3 < 0, 3y; + 2y3 <

Arr can be obtained fromR intime O (k) [Warners, 1998 3,y; < 0 which, when translated to logic and input to a SAT
Supposd, ..., q < k+1 are the-inconsistent columns of  solver jointly withT" produces the valuatiop; = 0,y, =

feasible solutiord. First, we try to eliminate &-inconsistent 1, ys; = 1. At step 1, we substitute column 1 b0 1 1}/,

—
S oo
=Ny
[

1
1
1
ai-x1+---ag - Tk op ¢ Op€{<7év>727:a7é} (5) 1
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Now only column 2 is['-inconsistent;© ; produced by col-
umn generation is unsatisfiabe; and so is the problem.
That is, the drunks are lying. O
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4.4 Results: Another PSAT Phase Transition S

We implemented Algorithm 4.1 in C++, also employing i . )
the zchaff SAT solver, thus obtaining a much faster PSAT ~ Figure 3: PSAT Phase Transition for Algorithm 4.1
solver. We generated uniformly distributed normalised ran

dom PSAT instances in normal form withprobability as- [Eén and Brensson, 2043N. Eén and N. Srensson. An ex-

signments,n variablesyi, . .., yr, Txt1, - .., T andm 3- tensible SAT-solver. ISAT 2003volume 2919 oL.NCS

SAT c_:Iauses. We obtained the_ graphic |II.ustrated in Figure 3 pages 502-518. Springer, 2003.

by fixing k = 12, n = 150, m/n increases in steps 6f1 and ) . »

200 PSAT instances for each valuerof [Garling, 2007 D. J. H. Garling. Inequalities: A Journey
Again, Figure 3 displays an unequivocal phase transition into Linear Analysis Cambridge University Press, 2007.

behaviour, with a phase transition point&at ~ 3.9. The [Gentand Walsh, 1994l. P. Gent and T. Walsh. The sat
phase transition behaviour can be credited to the use of PSAT phase transition. Iilth European Conference on Arti-
normal form and to the fact that, unlike in program (2), only ficial Intelligence pages 105-109, 1994.

I'-consistent columns were generated in a small basis of Siz[%eorgakopoulost al, 1984 G. Georgakopoulos, D. Kav-

k + 1. The increase in efficiency is mainly due to the small” o 4jja5 “and C. H. Papadimitriou. Probabilistic satisfiabil
basis, and also to the use of an efficient SAT solver to and to ity. J. of Complexity4(1):1-11, 1988.

the smaller size of formulas submitted to the SAT solver thar‘t o o , ) .
in the reduction algorithm. Hailperin, 198% T. Hailperin. Boole’s Logic and Probabil-

By generating large instances over the “flat zones” of Fig- ity- North-Holland, second edition, 1986.
ure 3, we were able to obtain a satisfiable instance witfHansen and Jaumard, 2Q0B. Hansen and B. Jaumard.
n = 400,m = 400,k = 50 and decision time 0.76s; and  Probabilistic satisfiability. InHandbook of Defeasible
an unsatisfiable instance with= 200, m = 800,k = 100 Reasoning and Uncertainty Management Systems,.vol.5
and decision time 29.4s. This gives an idea of the capatsiliti  Springer, 2000.

of the method. [Hanseret al, 1995 P. Hansen, B. Jaumard, G.-B. Nguets
. and M. P. Arago. Models and algorithms for probabilistic
5 Conclusion and bayesian logic. INCAI, pages 1862-1868, 1995.

We have shown that a combination of logic and algebraidJaumardet al, 1991 B. Jaumard, P. Hansen, and M.P.
techniques can be very fruitful to the study of algorithms of  Aragido. Column generation methods for probabilistic
PSAT solvers. The logic part appear to be crucial to reveal a |ogic. INFORMS J. on Computing(2):135-148, 1991.

phase transition behaviour in this case. [Kawvadias and Papadimitri .
, - . padimitriou, 1990. Kavvadias and
Further work involves the exploration of efficient PSAT ="~ "/ Papadimitriou. A linear programming approach to

fragments using the algorithm and techniques developeg] her - i 100
and the study of PSAT-based methods and applications that reasorng about probabilitiesMAL, 1:189 205, 199_0'
employ the algorithms presented here. [Moskewiczet al, 2001 M. W. Moskewicz, C. F. Madigan,

Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
Efficient SAT Solver. In38th Design Automation Confer-
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