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Abstract. This paper investigates learning methods where the target
language is the recently proposed probabilistic description logic CRALC.
We start with an inductive logic programming algorithm that learns
logical constructs; we then develop an algorithm that learns probabilistic
constructs by searching for conditioning concepts, using examples given
as interpretations. Issues on learning from entailments are also examined,
and practical examples are discussed.

1 Introduction

A description logic offers a formal language where one can describe concepts such
as “A Professor is a Person who teaches in a University”. To do so, a description
logic typically uses a decidable fragment of first-order logic, trying to reach a
practical balance between expressivity and complexity. The last decade has seen
a significant increase in interest in description logics as a vehicle for large-scale
knowledge representation, for instance in the semantic web. Indeed, the language
OWL [1], proposed by the W3 consortium as the data layer of their architecture
for the semantic web, is an XML encoding for an expressive description logics.

Description logics are not geared towards the representation of uncertainty
about objects and concepts: one cannot express that “with low probability a
Person is a Professor”. The literature contains a number of proposals that add
probabilistic uncertainty to description logics, as this is central to the manage-
ment of semantic data in large repositories. Cozman and Polastro have pro-
posed [3] a probabilistic extension of the popular logic ALC [2], called Credal
ALC (CRALC), where sentences such as P(Professor|Researcher) = 0.4, refereing
to the probability that an object is a Professor given that it is a Researcher, are
allowed. These sentences are called probabilistic inclusions. Inference algorithms
based on Relational Bayesian networks [12] have been proposed; because exact
inference does not seem to be scalable when quantified concepts are employed,
approximate inference algorithms have been developed [3,4].

An important question is how to automatically learn concepts expressed with
description logics. Previous efforts with concept learning in ¢cRALC [14] have
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focused only on logical concept learning, using the ideas of refinement operators
from DL-Learner [13] and DL-FOIL [9], and not dealing with probabilistic inclu-
sions. In this paper, we assume that (logical) concept definitions can be learned
using any algorithm in the literature and we attack the problem of learning pro-
babilistic inclusions. For that, we propose an algorithm that learns the structure
of the probabilistic inclusion by discovering how a concept is probabilistically
conditioned on other concepts and then by estimating the probability of the
probabilistic inclusion. The proposed algorithm learns from examples given as
interpretations. We also discuss the generalization of these ideas to other set-
tings; namely, learning from entailments and learning from proofs [7].

Section 2 provides background knowledge on description logics (Section 2.1),
on probabilistic description logics (Section 2.2) and on relevant learning algo-
rithms based on Inductive Logic Programming (Section 2.3). Section 3 proposes
a learning algorithm for cRALC probabilistic inclusions and Section 4 reports
on some preliminaries experiments. Section 5 concludes the paper.

2 Background

Assume we are given a repository of HTML pages where researchers and stu-
dents have stored data about publications, courses, languages. We might wish
to extract the definition of some concepts, such as Researcher and Person, and
relationships among them. Suppose however that we are unable to state deter-
ministic relations among concepts, but instead we can only give probabilistic
inclusions such as P(Professor|Researcher) = 0.4. Probabilistic inclusions are al-
lowed in probabilistic description logics, as reviewed in this section.

2.1 Description Logics

Description logics (DLs) form a family of representation languages that are typi-
cally decidable fragments of first order logic (FOL) [2]. Knowledge is expressed
in terms of individuals, concepts, and roles. The semantics of a description is
given by a domain A (a set) and an interpretation I (a functor). Individuals
represent objects through names from a set Ny = {a, b, ...}. Each concept in the
set Nc = {C, D, ...} is interpreted as a subset of a domain D. Each role in the
set Ng = {r,s,...} is interpreted as a binary relation on the domain.

Concepts and roles are combined to form new concepts using a set of construc-
tors. Constructors in the ALC logic are conjunction (CMD), disjunction (CUD),
negation (—C), existential restriction (3r.C'), and value restriction (Vr.C'). Con-
cept inclusions/definitions are denoted respectively by C C D and C' = D, where
C and D are concepts. Concepts (C' LI =C) and (C' M —C) are denoted by T and
L respectivelly. Information is stored in a knowledge base (K) divided in two
parts: the TBox (terminology) and the ABox (assertions). The TBox lists con-
cepts and roles and their relationships. A TBox is acyclic if it is a set of concept
inclusions/definitions such that no concept in the terminology uses itself. The
ABox contains assertions about objects.
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Given a knowledge base L =< 7, A >, the reasoning services typically include
(i) consistency problem (to check whether the A is consistent with respect to
the 7); (ii) entailment problem (to check whether an assertion is entailed by
K; note that this generates class-membership assertions K |= C(a), where a is
an individual and C' is a concept); (iii) concept satisfiability problem (to check
whether a concept is subsumed by another concept with respect to the 7). The
latter two reasoning services can be reduced to the consistency problem [2].

2.2 Probabilistic Description Logics and cr.ALC

Several probabilistic descriptions logics (PDLs) have appeared in the literature.
Heinsohn [10], Jaeger [11] and Sebastiani [16] consider probabilistic inclusion
axioms such as Pp(Professor) = «, meaning that a randomly selected object
is a Professor with probability «. This characterizes a domain-based semantics:
probabilities are assigned to subsets of the domain D. Sebastiani also allows
inclusions such as P(Professor(John)) = « as well, specifying probabilities over
the interpretations themselves. For example, one interprets P(Professor(John)) =
0.001 as assigning 0.001 to be the probability of all interpretations where John
is a Professor. This characterizes an interpretation-based semantics.

The PDL crRALC is a probabilistic extension of the DL ALC that adopts an
interpretation-based semantics. It keeps all constructors of ALC, but only allows
concept names in the left hand side of inclusions/definitions. Additionally, in
CRALC one can have probabilistic inclusions such as P(C|D) = a or P(r) = 3 for
concepts C' and D, and for role r. For any element of the domain, the probability
that this element is in C, given that it is in D is «. If the interpretation of D
is the whole domain, then we simply write P(C) = «. The semantics of these
inclusions is roughly (a formal definition can be found in [4]) given by:

Ve e D : P(C(z)|D(z)) = a,

VeeD,yeD : P(r(z,y)) = 0.

We assume that every terminology is acyclic; no concept uses itself. This as-
sumption allows one to represent any terminology 7 through a directed acyclic
graph. Such a graph, denoted by G(7), has each concept name and role name
as a node, and if a concept C' directly uses concept D, that is if C' and D appear
respectively in the left and right hand sides of an inclusion/definition, then D
is a parent of C in G(7'). Each existential restriction 3r.C' and value restriction
Vr.C'is added to the graph G(7') as nodes, with an edge from r to each restriction
directly using it. Each restriction node is a deterministic node in that its value
is completely determined by its parents.

The semantics of CRALC is based on probability measures over the space of
interpretations, for a fixed domain. Inferences, such as P(A,(ag)|.A) for an ABox
A, can be computed by propositionalization and probabilistic inference (for exact
calculations) or by a first order loopy propagation algorithm (for approximate
calculations) [4].
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2.3 Learning in Description Logics

The techniques developed in this paper are inspired by two systems based on
inductive logic programming (ILP) [5], namely, DL-Learner [13] and DL-FOIL
[9]. The goal in ILP is to find an hypothesis H (a definite clause program)
that covers all examples in a set F, of positive examples and none examples
in a set F, of negative examples. In the context of DLs, the hypothesis is a
knowledge base and the examples are assertions. Consider a concept name Target,
a knowledge base K not containing Target, and sets of positive and negative
examples with elements of the form Target(a), where a is an object of the domain
D. Acyclicity is assumed; that is, recursive inclusions/definitions are not learned.
The learning problem is to find a concept C such that Target does not occur in
C and for K' = K U {Target = C} we have K’ = E, and K’ [£ E,,. This
problem can be solved through a search in the space of concepts. Lehmann and
Hitzler [13] impose an ordering on this search space and then use refinement
operators to traverse it. Intuitively, downward (upward) refinement operators
construct specializations (generalizations) of hypotheses. De Raedt [7] defines
three settings for learning a hypothesis in ILP:

i) learning from entailments: the examples are definite clauses and a hypothesis
H covers an example e with background knowledge B if and only if BUH |
e. In many well-known systems, such as FOIL [15], one requires that the
examples are ground facts, a special case of definite clauses.

ii) learning from interpretations: the examples are Herbrand interpretations (set
of true ground facts that completely describe a possible situation) and an
hypothesis H covers an example e with background knowledge B if and only
if e is a model of BU H.

iii) learning from proofs: the examples are ground proof-trees and an example e
is covered by a hypothesis H with background knowledge B if and only if e
is a proof-tree for H U B.

The key difference between learning from interpretations and learning from en-
tailment is that interpretations carry much more information. Indeed, when lear-
ning from entailments, an example may consist of a single fact, whereas when
learning from interpretations, complete descriptions must be available. There-
fore, learning from interpretations requires less computational effort than lear-
ning from entailments [6]. Another point is that learning from interpretations is
well suited for learning from positive examples only.

DL learning algorithms such as DL-Learner and DL-FOIL adopt learning from
entailments. In that case, examples are assertions about the new concept Target
and an example e is covered by a knowledge base K if and only if £ = e. A
DL learning algorithm can be proposed based on learning from interpretations
setting, as we propose in the next section for the PDL cRALC.

3 Learning in cRALC

In this section, we propose our algorithm for probabilistic inclusion learning in
CRALC. We assume learning from interpretations, so as to handle gracefully the
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interpretation-based semantics of CRALC. The idea is as follows. Suppose that
a concept C' is learned (logically only, without probabilities!) as C = D M F.
However, there is noise in the data and a probabilistic inclusion relating these
concepts would be interesting. Therefore, probabilistic inclusions of the form
P(C|X) = « are examined, where X are concepts based on D and F, and « is
a constant learned by maximum likelihood estimation. Here we search for the
best, conditioning concept, by considering parts of the concept definition; in our
example, X can be the whole domain, D, F' or D MF, therefore, probabilities
such as P(C), P(C|D), P(C|F) and P(C|D M F) are evaluated. We then exa-
mine, based on an evaluation function, whether it is best to discard the logical
definition (that is, C' = D M F). In short, we focus on learning probabilistic
inclusions given a base =< 7, A > and a set of examples E. We assume that
a description logic learning algorithm, for instance DL-Learner or DL-FOIL, is
first run to learn definitions for concepts in 7.

3.1 Direct Inference and EM

As CRALC adopts an interpretation-based semantics, we would ideally need data
on each individual in order to learn descriptions. For instance, if we wanted to
learn the probability of P(Professor(a)), we would need a dataset with informa-
tion about the object a having or not the property Professor. Different objects
can have different probabilities; most probabilistic description logics that adopt
interpretation-based semantics combine these different probabilities into a single
value to be adopted by all objects (that is, Vz : P(C(z)) = «).

Most available datasets contain information about all (or at least many) ob-
jects of the domain, instead of information about one specific object. Learning
with such a dataset means learning probabilities with domain-based semantics.
In this paper we consider that the probabilities learned with domain-based se-
mantics are a good approximation for probabilities with interpretation-based se-
mantics; that is, we conduct direct inference by transfering learned probabilities
from domain to interpretations. Our algorithm learns probabilities in probabilis-
tic inclusions by approximating the probabilities estimated with domain-based
semantics.

For estimating domain-based probabilities, we resort to the Ezpectation Maxi-
mization (EM) algorithm [8]. The likelihood function (the score) to be maximized
is

L= ] P(lK).

ecE

3.2 Learning the Structure of Concepts

Our algorithm for structure learning starts by taking concept names as proba-
bilistically independent, and by learning probabilistic inclusions such as P(C).
Then the algorithm verifies whether a concept name provides better results (bet-
ter inference) if probabilistically conditioned on another concept name or on a
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concept description. For that the algorithm considers possibilities from the logi-
cal definition of the concept (as learned by ILP), since it seems nature that the
concept C' can only be conditioned on concepts that the learning process learned
that it is related with. The algorithm uses subsumption, and keeps only the con-
ditioning concept that provides the highest score. When a candidate probabilistic
inclusion uses only part of a original logically learned concept description, fur-
ther analysis is needed. A decision must be taken as to whether the probabilistic
inclusion should be added and the original concept should be discarded. (Note
that if both the original concept description and the probabilistic inclusion were
kept together, then we might not be able to construct a unique probability dis-
tribution out of the learned probabilistic terminology). The procedure is detailed
in Algorithm 1.

Algorithm 1. Algorithm for learning probabilistic inclusions

Require: a knowledge base K =< 7, A > and a training set E.

Ensure: a new knowledge base K =< 75, A > with probabilistic inclusions
1. T =T
2: calculate score scores using E;
3: for all concept C € 7 do

4 search in 7 for the definition of concept C' and include its parts in a set H;
5 if concept C is subsumed by some other concept D then
6: include D in H;
7:  end if

8 score. = scorey;

9:  initialize A.;

10: for all h € H do

11: set 7, =7 U P(C|h);

12: learn probabilities using E;

13: calculate score scorep, using E;

14: if scoren > score. then

15: score. = scorep,

16: Ac = P(C|h)

17: end if

18:  end for

19: 7y = Ty U A. (insertion restrictions are examined).

20: end for

Algorithm 1 receives a knowledge base K =< 7, A > and a training set F,
composed by interpretations. For each concept in the terminology 7, the algo-
rithm searches for its definitions. All subsumed concepts of this definition are
considered separately and included in the set H (line 4); the empty and the
proper definition are also inserted in H. If an inserted concept is subsumed by
another concept, this latter concept is also included in H (line 6). The variable
score,. is initialized with the score of K (line 8), and a variable A, is initiali-
zed as empty (line 9). Each concept included in H is considered separately as
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conditioning the concept of interest (line 11). The probability of this new pro-
babilistic inclusion is estimated using the EM algorithm and then the new score
is calculated (lines 12 e 13). If this new score improves the current one, the
probabilistic inclusion is taken as the current best one and is kept in A. (line
16). After learning a probability inclusion for each concept the algorithm ends,
returning a knowledge base with a new terminology. If the initial score is not
improved by neither probability inclusion proposed for a concept, this concept
is not associated with any probabilistic inclusion.

After the learning algorithm is run, a pruning routine can verify whether the
terminology can be simplified. For example, the inclusion Researcher C Professor
can be automatically deleted from the terminology in the presence of probabilis-
tic inclusions P(Researcher|Professor) = 0.4 and P(Researcher|=Professor) = 0.0.

4 Preliminary Results

Experiments have been run on data extracted from the Lattes Curriculum Plat-
form, a public repository containing data about Brazilian researchers, such as
name, address, education, professional experience, areas of expertise. Biblio-
graphic output and participation on examination boards are our main inte-
rest. For these experiments, concept descriptions were learned using DL-Learner,
available at http://dl-learner.org/Projects/DLLearner. Our algorithm was im-
plemented in the Java language, running in an Ubuntu Linux system with 4GB
RAM, 2.4GHZ INTEL CORE 2 DUO. We selected 202 researchers randomly
and extracted data such as:

Researcher(rl), Researcher(r2), Researcher(r4), . ..

wasAdvised(r8, r179), wasAdvised(r30, r83), wasAdvised(r33,rl), ...
sharePublication(r1, r32), sharePublication(r4, r12), sharePublication(r5, r115), . ..
sameExaminationBoard(r1, r32), sameExaminationBoard(r4, r12), ...
hasSamelnstitution(rl, r27), hasSamelnstitution(rl, r28), . ..

advises(rl, r33), advises(rl, r171), advises(rl, r81),...

We aimed at learning a probabilistic terminology that best describes a set of
collaboration patterns among researchers. Learning was performed in two steps.
The first step was concerned with learning definitions for concepts (such as
NearCollaborator, NullMobilityResearcher, StrongRelatedResearcher) given positive
and negative examples. For instance, the pair of individuals r; and ry could be
positive examples of the NearCollaborator concept. Intuitively, a near collaborator
is a researcher who shares a publication with a colleague of the same institution.
On the other hand, an institution can be interested in asking about mobility
of their former students; that is, whether they remain as staff members after
finishing their PhDs or not. The concept NullMobilityResearcher is intended to
define a researcher with null mobility. The concepts StrongRelatedResearcher and
InheritedResearcher define categories of relationships among researchers.

As noted previously, DL-Learner was employed to generate initial concepts
based on background knowledge and examples. A preliminary terminology is:
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NearCollaborator = Researcher
M (ZhasSamelnstitution.3sharePublication.
JsharePublication.Jadvises.Researcher) 11
(3sharePublication.3hasSamelnstitution.
JsharePublication.Researcher)
FacultyNearCollaborator = NearCollaborator
I dsameExaminationBoard.Researcher
NullMobilityResearcher = Researcher
M(ZhasSamelnstitution.3sameExaminationBoard.
JwasAdvised.Vadvises.ShasSamelnstitution.Researcher) 11
(3wasAdvised.3hasSamelnstitution.Researcher)
StrongRelatedResearcher = Researcher
M (3sharePublication.Researcher M
JwasAdvised.Researcher)
InheritedResearcher = Researcher
M (3sameExaminationBoard.Researcher M
JwasAdvised.Researcher).
The next step focused on learning probabilistic inclusions; Following concept
definitions, possible probabilistic inclusions for concept NearCollaborator are:
P(NearCollaborator|Researcher M (FhasSamelnstitution.3sharePublication.
JsharePublication.Jadvises.Researcher) 1 (JsharePublication.
JhasSamelnstitution.IsharePublication.Researcher)) = a,
P(NearCollaborator|Researcher) = (3,
P(NearCollaborator|Researcher M JhasSamelnstitution.
JsharePublication.3sharePublication.Jadvises.Researcher) =«
P(NearCollaborator|Researcher M 3sharePublication.
JhasSamelnstitution.3sharePublication.Researcher) = 6.
Based on a probabilistic score (maximum likelihood on the set of examples),
the last candidate was chosen. This choice implies that the original concept
description must be removed. The complete probabilistic terminology is:

P(Researcher) = 1.0 P(wasAdvised) = 0.29

P(hasSamelnstitution) = 0.83 P(sharePublication) = 0.73
P(sameExaminationBoard) = 0.41
(

P(NearCollaborator | Researcher M JsharePublication.3hasSamelnstitution.
JsharePublication.Researcher) = 0.95
FacultyNearCollaborator = NearCollaborator
M JsameExaminationBoard.Researcher
P(NullMobilityResearcher | Researcher M JwasAdvised.
JhasSamelnstitution.Researcher) = 0.98
StrongRelatedResearcher = Researcher

M (3sharePublication.Researcher M

IwasAdvised.Researcher)
InheritedResearcher = Researcher

M (dsameExaminationBoard.Researcher 11

IwasAdvised.Researcher)
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We can observe that both StrongRelatedResearch and InheritedResearcher have
no probabilistic inclusions. Conversely, NearCollaborator and NulleMobilityRe-
searcher concepts have been replaced by suitable shorter probabilistic inclusions.

To investigate the application of learned concepts, some inferences in this re-
sulting CRALC terminology were calculated using an exact (propositionalization)
algorithm [3]. When Researcher(0) and Researcher(1)! are given as evidence, we
obtain P(NullMobilityResearcher(0)) = 0.46. Further evidence changes this value
to:

P(NullMobilityResearcher(0)|3wasAdvised(0, 1)) = 0.83,

and to:
P(NullMobilityResearcher(0)|3wasAdvised (0, 1) M 3hasSamelnstitution(0, 1)) = 0.9.

This last probability value indicates that individual 0 can be placed within
NullMobilityResearcher. (Note that given the same evidence, the originally learned
deterministic ontology would misclassify the individual 0.)

5 Conclusion

We have presented techniques for learning concepts in a probabilistic description
logic from relational data. Learning occurs in two steps. In the first step, concept
descriptions are learned by existing description logic learning algorithms. The
second step searches for probabilistic inclusions that can improve the logical de-
scriptions. The algorithm actually compares logical and probabilistic inclusions,
keeping the most accurate ones and discarding the others (where performance is
measured using likelihood). The idea is that by letting probabilities leave descrip-
tions that are a little more flexible, we can obtain better models for dealing with
real data. Experiments, focused on learning a probabilistic terminology from a
real-world domain (the Lattes scientific repository), suggest that probabilistic
inclusions do lead to improved likelihoods.

Probabilistic description logics offer expressive languages in which to conduct
learning, while charging a relatively low cost for inference. The present contri-
bution offers novel ideas for this sort of learning task; we note that the current
literature on this topic is rather scarce. Our future work is to investigate the scal-
ability of our learning methods, with an interest in applications for the semantic
web.
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