
Learning Sentences and Assessments in Probabilistic Description Logics 1

Author(s):
José Eduardo Ochoa Luna

Kate Revoredo

Fabio Gagliardi Cozman

1This work was supported by Fapesp Project LogProb, grant 2008/03995-5, São Paulo, Brazil.



Learning Sentences and Assessments in

Probabilistic Description Logics
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Abstract. The representation of uncertainty in the semantic web can
be eased by the use of learning techniques. To completely induce a pro-
babilistic ontology, represented through a probabilistic description logic,
from data, two basic tasks must be solved: (1) learning concept defini-
tions and (2) learning probabilistic inclusions. In this paper we propose
an algorithm that learns concept definitions using an inductive logic pro-
gramming approach and then learns probabilistic inclusions considering
relational data. Our algorithm was successfully applied to real data.

1 Introduction

Probabilistic Description Logics (PDLs) have been extensively investigated in
the last few years [5, 8, 19, 7]. The goal is to enable uncertainty representation
in classical description logics. So far probabilistic description logics have been
mostly restricted to academic purposes, as caveats in syntax and semantics have
prevented them from spreading into several domains. Additionaly, it can be hard
to elicit the probability component of a particular set of sentences.

The probabilistic description logic crALC [6, 22, 7] allows one to perform
probabilistic reasoning by adding uncertainty capabilities to the logic ALC [2].
Previous efforts for learning crALC have separately focused concept definitions
[20] and probabilistic inclusions [24]. In this paper, we present an algorithm for
learning concept definitions and probabilistic inclusions at once; i.e., we discuss
how to construct the whole probabilistic terminology based on crALC from
relational data. We expect that learning techniques can accomodate together
background knowledge and deterministic and probabilistic concepts, giving each
component its due relevance.

The algorithm we propose is mostly based on inductive logic programming
(ILP) [9] techniques with a probabilistic twist. A search for the best concept
description is performed. At the end of this search a decision is made to whether
consider the concept description found or a probabilistic inclusion based on this
concept.



The work is organized as follows. Section 2 reviews basic concepts of descrip-
tion logics, probabilistic description logics, crALC and learning in a determin-
istic setting. Section 3 presents our algorithm for probabilistic description logic
learning. Experiments are discussed in Section 4 and finally Section 5 concludes
the paper.

2 Basics

The aim of this paper is to learn probabilistic terminologies from data. In this
section we briefly review both deterministic and probabilistic components of
probabilistic description logics. In addition, learning in a deterministic setting is
discussed.

2.1 Description Logics

Description logics (DLs) form a family of representation languages that are typi-
cally decidable fragments of first order logic (FOL) [2]. Knowledge is expressed
in terms of individuals, concepts, and roles. The semantic of a description is
given by a domain D (a set) and an interpretation ·I (a functor). Individuals
represent objects through names from a set NI = {a, b, . . .}. Each concept in the
set NC = {C, D, . . .} is interpreted as a subset of a domain D. Each role in the
set NR = {r, s, . . .} is interpreted as a binary relation on the domain.

Concepts and roles are combined to form new concepts using a set of construc-
tors. Constructors in the ALC logic are conjunction (C⊓D), disjunction (C⊔D),
negation (¬C), existential restriction (∃r.C), and value restriction (∀r.C). Con-
cept inclusions/definitions are denoted respectively by C ⊑ D and C ≡ D, where
C and D are concepts. Concepts (C ⊔ ¬C) and (C ⊓¬C) are denoted by ⊤ and
⊥ respectivelly. Information is stored in a knowledge base (K) divided in two
parts: the TBox (terminology) and the ABox (assertions). The TBox lists con-
cepts and roles and their relationships. A TBox is acyclic if it is a set of concept
inclusions/definitions such that no concept in the terminology uses itself. The
ABox contains assertions about objects.

Given a knowledge base K =< T ,A >, the reasoning services typically in-
clude (i) consistency problem (to check whether the A is consistent with respect
to the T ); (ii) entailment problem (to check whether an assertion is entailed by
K; note that this generates class-membership assertions K |= C(a), where a is
an individual and C is a concept); (iii) concept satisfiability problem (to check
whether a concept is subsumed by another concept with respect to the T ). The
latter two reasoning services can be reduced to the consistency problem [2].

2.2 Probabilistic Description Logics and crALC

Several probabilistic descriptions logics (PDLs) have appeared in the literature.
Heinsohn [12], Jaeger [14] and Sebastiani [25] consider probabilistic inclusion
axioms such as PD(Professor) = α, meaning that a randomly selected object



is a Professor with probability α. This characterizes a domain-based semantics:
probabilities are assigned to subsets of the domain D. Sebastiani also allows
inclusions such as P (Professor(John)) = α as well, specifying probabilities over
the interpretations themselves. For example, one interprets P (Professor(John)) =
0.001 as assigning 0.001 to be the probability of all interpretations where John

is a Professor. This characterizes an interpretation-based semantics.
The PDL crALC is a probabilistic extension of the DL ALC that adopts an

interpretation-based semantics. It keeps all constructors of ALC, but only allows
concept names in the left hand side of inclusions/definitions. Additionally, in
crALC one can have probabilistic inclusions such as P (C|D) = α or P (r) = β for
concepts C and D, and for role r. For any element of the domain, the probability
that this element is in C, given that it is in D is α. If the interpretation of D

is the whole domain, then we simply write P (C) = α. The semantics of these
inclusions is roughly (a formal definition can be found in [7]) given by:

∀x ∈ D : P (C(x)|D(x)) = α,

∀x ∈ D, y ∈ D : P (r(x, y)) = β.

We assume that every terminology is acyclic; no concept uses itself. This as-
sumption allows one to represent any terminology T through a directed acyclic
graph. Such a graph, denoted by G(T ), has each concept name and role name
as a node, and if a concept C directly uses concept D, that is if C and D appear
respectively in the left and right hand sides of an inclusion/definition, then D

is a parent of C in G(T ). Each existential restriction ∃r.C and value restriction
∀r.C is added to the graph G(T ) as nodes, with an edge from r to each restriction
directly using it. Each restriction node is a deterministic node in that its value
is completely determined by its parents.

The semantics of crALC is based on probability measures over the space of
interpretations, for a fixed domain. Inferences, such as P (Ao(a0)|A) for an ABox
A, can be computed by propositionalization and probabilistic inference (for exact
calculations) or by a first order loopy propagation algorithm (for approximate
calculations) [7].

2.3 Learning Description Logics

The use of ontologies for knowledge representation has been a key element of pro-
posals for the Semantic Web [1]. However, constructing ontologies from scratch
can be a bundersome and time consuming task [10]. Nowadays, mainly due to
the availability of data, learning of ontologies has turn out to be an interes-
ting alternative. Indeed, considerable effort is currently invested into developing
automated means for the acquisition of ontologies [16].

Most early approaches were only capable of learning simple ontologies such
as taxonomic hierarchies. Some recent approaches such as YINYANG [13], DL-
FOIL [10] and DL-Learner [18] have focused on learning expressive terminologies
(we refer to [20] for a detailed review on learning description logics). To some
extent, all these approaches have been inspired by Inductive Logic Programming



(ILP) techniques, in that they try to transfer ILP methods to description logic
settings. The goal of learning in such deterministic languages is generally to find
a correct concept with respect to given examples. A formal definition is:

Definition 1. Given a knowledge base K, a target concept Target such that
Target 6∈ K, a set E = Ep ∪En of positive and negative examples given as asser-
tions for Target, the goal of learning is to find a concept definition C(Target ≡ C)
such that K ∪ C |= Ep and K ∪ C 6|= En.

A sound concept definition for Target must cover all positive examples and
none of the negative examples. A learning algorithm can be constructed as a
combination of (1) a refinement operator, which defines how a search tree can
be built (2) a search algorithm, which controls how the tree is traversed and (3)
a scoring function to evaluate the nodes in the tree defining the best one.

The refinement operator Refinement operators allow us to find candidate
concept definitions through two basic tasks: generalization and specialization
[17]. Such operators in both ILP and description logic learning rely on θ-sub-
sumption to establish an ordering so as to traverse the search space. If a concept
C subsumes a concept D(D ⊑ C), then C covers all examples which are covered
by D, which makes subsumption a suitable order. Arguably the best refinement
operator for description logic learning is the one available in the DL-Learner
system [17, 18], as this operator has been proved to be complete, weakly complete
and proper (see [17] for details).

The score function In a deterministic setting a cover relationship simply tests
whether, for given candidate concept definition (C), a given example e holds;
that is, K ∪ C |= e where e ∈ Ep or e ∈ En. In this sense, a cover relationship
cover(e,K, C) indicates whether a candidate concept covers a given example. A
cover relationship is commonly evaluated by instance checking [10].

In description logic learning one often compares candidates through score
functions based on the number of positive/negative examples covered. To avoid
overfitting on concepts, horizontal expansions3 are also explored [18]. For in-
stance, in DL-Learner a fitness relationship considers the number of positive
examples as well as the length of solutions when expanding candidates in the
tree search.

The algorithm to traverse the search space The learning algorithm de-
pends basically on the way we traverse the candidate concepts obtained after
applying refinement operators. In a deterministic setting the search for candi-
date concepts is often based on FOIL [23] algorithm. There are also different
approaches (for instance, DL-Learner, and an approach based on a genetic algo-
rithm procedure [16] and the one which lies on horizontal expansion and redun-
dance checking to traverse the search tree [18]).

3 Given a node in a search tree, the horizontal expansion is its upper bound on the
length of child concepts.



3 Learning the PDL crALC

A probabilistic terminology consists of both concepts definitions and probabi-
listic components (probabilistic inclusions in crALC). We aim at automatically
identifying from data sound deterministic concepts and consistent probabilistic
inclusions. A key design choice in learning under a combined approach is to give
a due relevance to each component.

It is worth noting that there are well established deterministic concepts such
as Father ≡ Male ⊓ hasChild.⊤ for which it would be unnecessary to find a
probabilistic interpretation. On the other hand, there are concepts with natural
probabilistic assessments such as P (FlyingBird|Bird) = α. In principle, a learning
algorithm should be able to deal with these subtleties.

We argue that negative and positive examples underlie the choice of either a
concept definition or a probabilistic inclusion. In a deterministic setting we ex-
pect to find concepts covering all positive examples, which is not always possible.
It is common to allow flexible heuristics that deal with these issues. Moreover,
there are several examples that cannot be ascribed to candidate hypotheses4.
Uncertainty stems from such missing information. Therefore, when we are un-
able to find a concept definition that covers all positive examples we assume such
hypothesis as candidate to be a probabilistic inclusion and we begin the search
for the best probabilistic inclusion that fits the examples.

As in description logic learning three tasks are important and should be
considered: (1) refinement operator, (2) scoring function and (3) a traverse search
space algorithm. The refinement operator described in 2.3 is used for learning
the deterministic component of probabilistic terminologies. The other two tasks
were adapted for probabilistic description logic learning as follows.

3.1 The Probabilistic Score Function

In our proposal, since we want to learn probabilistic terminologies, we adopt a
probabilistic cover relation given in [15]:

cover (e,K, C) = P (e|K, C).

Every candidate hypothesis together with a given example turns out to be a
probabilistic random variable which yields true if the example is covered, and
false otherwise. To guarantee soundness of the ILP process (that is, to cover
positive examples and not to cover negative examples), the following restrictions
are needed:

P (ep|K, C) > 0, P (en|K, C) = 0.

In this way a probabilistic cover relationship is a generalization of the deter-
ministic cover, and is suitable for a combined approach. Probabilities can be

4 In some cases the Open World Assumption inherent to description logics prevent us
for stating membership of concepts.



computed through Bayes’ theorem:

P (e|K, C1, . . . , Ck) =
P (C1, C2, . . . , Ck|T )P (T )

P (C1, . . . , Ck)
,

where C1, . . . , Ck are candidate concepts definitions, and T denotes the target
concept variable. Here are three possibilities for modeling P (C1, . . . , Ck|T ): (1)
a naive Bayes assumption may be adopted [15] (each candidate concept is in-
dependent given the target), and then P (C1, . . . , Ck|T ) =

∏
i P (Ci|T ); (2) the

noisy-OR function may be used [20]; (3) a less restrictive option based on tree
augmented naive Bayes networks (TAN) may be handy [15]. This last possibility
has been considered for the probabilistic cover relationship used in this paper.
In each case probabilities are estimated by maximum (conditional) likelihood
parameters. The candidate concept definition Ci with the highest probability
P (Ci|T ) is the one chosen as the best candidate.

As we have chosen a probabilistic cover relationship, our probabilistic score
is defined accordingly:

score(K|C) =
∏

ei∈Ep

P (ei|K, C).

where C is the best candidate chosen as described before.
In the probabilistic score we have previously defined, a given threshold allow

us differentiate between a deterministic and probabilistic inclusion candidate.
Further details are given in the next section.

3.2 The Algorithm to Learn Probabilistic Terminologies

Previous efforts for learning the PDL crALC have separately explored concepts
definitions [20] and probabilistic inclusions [24]. In this paper, we advocate for a
combined approach where we use a classical approach for traversing the space of
deterministic concepts and a probabilistic procedure for generating probabilistic
inclusions.

The choice between a deterministic or a probabilistic inclusion is based on
a probabilistic score. We start by searching a deterministic concept. If after
a set of iterations the score of the best candidate is below a given threshold,
a search for a probabilistic inclusion is preferred rather than keep searching
for a deterministic concept definition. Then, the current best k-candidates are
considered as start point for probabilistic inclusion search. The complete learning
procedure is showed in Algorithm 1.

The algorithm starts with an overly general concept definition in the root
of the search tree (line 1). This node is expanded according to refinement op-
erators and horizontal expansion criterion (line 4), i.e, child nodes obtained by
refinement operators are added to the search tree (line 5). The probabilistic pa-
rameters of these child nodes are learned (line 6) and then they are evaluated
with the best one chosen for a new expansion (line 3) (alternative nodes based



Require: an initial knowledge base K =< T ,A > and a training set E.
1: SearchTree with a node {C = ⊤, h = 0}
2: repeat

3: choose node N = {C, h} with highest probabilistic score in SearchTree
4: expand node to length h + 1:
5: add all nodes D ∈ (refinementOperator(C)) with lenght =h + 1
6: learn parameters for all nodes D

7: N = {C, h + 1}
8: expand alternative nodes according to horizontal expansion factor and h + 1[18]
9: until stopping criterion

10: N ′ = best node in SearchTree
11: if score(N ′) > threshold then

12: return deterministic concept C′ ∈ N ′

13: else

14: call ProbabilisticInclusion(SearchTree)
15: end if

Algorithm 1: Algorithm for learning probabilistic terminologies.

on horizontal expansion factor are also considered (line 8)). This process contin-
ues until a stopping criterion is attained (difference for scores is insignificant);
After that, the best node obtained is evaluated and if it is above a threshold,
a deterministic concept definition is found and returned (line 11). Otherwise, a
probabilistic inclusion procedure is called (line 13).

The Algorithm 2 learns probabilistic inclusions; It starts retrieving the best
k nodes in the search tree and computing the conditional mutual information for
every pair of nodes (line 2). Then an undirected graph is built where the vertices
are the k nodes and the edges are weighted with the value of the conditional
mutual information [21] for each pair of vertices (lines 4 and 5). A maximum
weight spanning tree [4] from this graph is built (line 6) and the target concept
is added as a parent for each vertice (line 7). The probabilistic parameters are
learned (line 8). This learned TAN-based classifier [11] is used to evaluate the
possible probabilistic inclusion candidates (line 9) and the best one is returned.

4 Experiments

In order to evaluate the learning algorithm we have divided the analysis in two
stages. In a first stage, the algorithm is compared with, arguably, the best de-
scription logic learning algorithm available (the DL-Learner system). The second
stage evaluates suitability of the algorithm for learning probabilistic terminolo-
gies in real world domains.

The aim of the first stage is to investigate if by introducing a probabilistic
setting the algorithm behaves as well as traditional deterministic approaches in
description logic learning tasks. In this preliminar evaluation (as a rule, there is
a lack of evaluation standards in ontology learning [18]) we have considered five



Require: SearchTree previously computed
1: for each pair of candidates Ci, Cj in first k nodes of the SearchTree do

2: compute the conditional mutual information I(Ci, Cj |T )
3: end for

4: build an undirected graph in which vertices are the k candidates
5: annotate the weight of an edge connecting Ci to Cj by the I(Ci, Cj |T )
6: build a maximum weight spanning tree from this graph
7: add T as parent for each Ci

8: learn probabilities for P (Ci|Parents(Ci))
9: return the highest probabilistic inclusion P (T |C′) = α

Algorithm 2: Algorithm for learning probabilistic inclusions.

datasets available in the DL-Learner system and reported in [18]. Evaluation
results are showed in Table 1.

Table 1. Description logic learning results

Problem axioms, examples DL-learner Combined approach

correct (length) correct(length)

trains 252,10 100(5) 100%(5)
arches 47,5 100%(9) 100%(10)
moral 31,43 100%(3) 100%(5)

poker(pair) 35,49 100%(8) 100%(8)
poker (straight) 45,55 100%(5) 100%(5)

The combined approach was able to learn correct concept definitions. How-
ever, in some cases produced longer solutions.

In the second stage we focus learning of probabilistic terminologies from real
world data, Wikipedia5 has been used to do so. Wikipedia articles consist mostly
of free text, but also contain various types of structured information in the form
of Wiki markup. Such information includes infobox templates, categorization
information, images geo-coordinates, links to external Web pages, disambigua-
tion pages, redirects between pages, and link across different language editions
of Wikipedia.

In the last years, there were several projects aimed at structuring such huge
source of knowledge. Examples include, The DBpedia project [3] which extracts
structured information from Wikipedia and turns it into a rich knowledge base
and YAGO [26]. YAGO is a huge semantic knowledge base based on data from
Wikipedia and WordNet6. Currently, YAGO knows more than 2 million entities
(like persons, organizations, cities, etc.). It knows 20 million facts about these en-

5 http://www.wikipedia.org/
6 wordnet.princeton.edu/



tities. Unlike many other automatically assembled knowledge bases, YAGO has a
manually confirmed accuracy of 95%. Several domains ranging from films, places,
historical events, wines, etc. have been considered in this ontology. Moreover,
facts are given as binary relationships which turn out suitable for our learning
settings. There are approximately 92 relationships available. Examples include
actedIn, bornIn, created, discovered describes, diedIn, happenedIn, hasAcademicAdvisor,

hasChild, hasHDI, hasWonPrize, influences, isMarriedTo, isPartOf, livesIn, politicianOf,

worksAt.
We have used subsets of YAGO facts for learning probabilistic terminologies.

Two domais have been mostly explored. The first, related to scientists. The
second, related to film directors. In both cases the threshold used was 0.85 and
the 20 best candidates were considered in the probabilistic inclusion learning
step.

The first dataset is composed by 2008 potential scientists for wich we have
learned concept definitions and probabilistic inclusions. The complete terminol-
ogy is given below:

P (Person) = 0.9
P (Topic) = 0.4
P (Year) = 0.35
P (Prize) = 0.2
P (Text) = 0.25
P (EducationalInstitution) = 0.3
P (wrotes) = 0.4
P (hasAcademicAdvisor) = 0.80
P (interestedIn) = 0.6
P (diedOnYear) = 0.7
P (hasWonPrize) = 0.4
P (worksAt) = 0.85
P (influences) = 0.6

Scientist ≡ Person

⊓(∃hasAcademicAdvisor.Person
⊓∃wrotes.Text ⊓ ∃worksAt.EducationalInsitution)

P (InfluentialScientist | Scientist ⊓ ∃influences.

∃diedOnYear.Year) = 0.85
P (Musician | Person ⊓ ∃hasAcademicAdvisor.∃wrote.Text) = 0.1
HonoredScientist ≡ Scientist

⊓ ∃hasWonPrize.Prize

This resulting crALC terminology can further investigated by probabilistic
inference7. The basic task we address is classification. Assume we are interested
in classifying a potential scientist given we know he/she has written a book and
has an academic advisor:

P (Scientist(0)|Person(0) ⊓ ∃wrote.Text(1) ⊓ hasAcademicAdvisor.Person(2)) = 0.5

When further evidence is available the value probability is updated to:

P (Scientist(0) |Person(0)
⊓(∃wrote.Text(1) ⊓ ∃hasAcademicAdvisor.

∃influences.Person(3))) = 0.65

7 According to a given size domain a relational Bayesian network is constructed to do
so.



In the second dataset we have collected facts about film directors ranging
from classical to contemporary. About 5589 potential directors have been con-
sidered. The complete probabilistic terminology is showed below.

P (Person) = 0.9
P (Prize) = 0.1
P (Year) = 0.25
P (Film) = 0.3
P (isMarriedTo) = 0.1
P (influences) = 0.35
P (hasWonPrize) = 0.28
P (hasChild) = 0.05
P (diedOnYear) = 0.5
P (directed) = 0.8
P (actedIn) = 0.4

Actor ≡ Person ⊓ ∀actedIn.Film
P (Director | Person ⊓ (∃directed.Film ⊓ ∃influences.

∃actedIn.Film) = 0.75
P (FomerActor | Director ⊓ ∃actedIn.Film) = 0.6
HonoredDirector ≡ Director ⊓ ∃hasWonPrize.Prize
FamilyDirector ≡ Director ⊓ (∃isMarriedTo.Director ⊔ ∃hasChild.Director)
P (InfluentialDirector | Director ⊓ ∃hasWonPrize.Prize ⊓ ∃influences.

∃isMarriedTo.Director) = 0.7
P (MostInfluentialDirector | Director ⊓ ∃diedOnYear.Year ⊓ ∃influences.

∃hasWonPrize.Prize) = 0.8

Learned components range from basic concept definitions such as Actor to
probabilistic inclusions for describing most influential directors. Assume we are
interested in classifying a person given we know that he/she has acted and
directed. According to evidence available:

P (Actor(0)|Person(0) ⊓ ∃actedIn.Film(1) ⊓ ∃directed.Film(2)) = 0.4

P (Director(0)|Person(0) ⊓ ∃actedIn.Film(1) ⊓ ∃directed.Film(2)) = 0.55

As further evidence is given, probability value changes to:

P (Actor(0) |Person(0)
⊓(∃actedIn.Film(1) ⊓ ∃directed.Film(2)
⊓∃influences.Person(3))) = 0.3

5 Conclusion

We have proposed a method for learning deterministic/probabilistic components
of terminologies expressed in crALC. Differently from previous approaches, we
have produced a combined scheme, where both the deterministic and probabi-
listic components receive due attention.

This unified learning scheme has the following components: (1) a refinement
operator for traversing the search space, (2) probabilistic cover and score rela-
tionships for evaluating candidates, (3) a mixed search procedure. Initially, the
search aims at finding deterministic concepts. If the score obtained is below a
given threshold, a probabilistic inclusion search is conducted (a probabilistic clas-
sifier is produced). Experiments with probabilistic terminology in a real-world
domain suggest that probabilistic inclusions do lead to improved likelihoods.



Probabilistic description logics offer expressive languages in which to conduct
learning, while charging a relatively low cost for inference. The present contri-
bution offers novel ideas for this sort of learning task; we note that the current
literature on this topic is rather scarce. Our future work is to investigate the
scalability of our learning methods.
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