Engel-type subgroups and length parameters of finite groups

Evgeny Khukhro*

School of Mathematics and Physics, University of Lincoln, U.K., and Sobolev Institute of Mathematics, Novosibirsk, Russia E-mail: khukhro@yahoo.co.uk

Abstract

Let g be an element of a finite group G. For a positive integer n, let $E_n(g)$ be the subgroup generated by all commutators $[\dots[[x, g], g], \dots, g]$ over $x \in G$, where g is repeated n times. By Baer's theorem, if $E_n(g) = 1$, then g belongs to the Fitting subgroup F(G). We generalize this theorem in terms of certain length parameters of $E_n(g)$.

For soluble G we prove that if, for some n, the Fitting height of $E_n(g)$ is equal to k, then g belongs to the (k + 1)th Fitting subgroup $F_{k+1}(G)$.

For nonsoluble G the results are in terms of nonsoluble length and generalized Fitting height. The generalized Fitting height $h^*(H)$ of a finite group H is the least number h such that $F_h^*(H) = H$, where $F_0^*(H) = 1$, and $F_{i+1}^*(H)$ is the inverse image of the generalized Fitting subgroup $F^*(H/F_i^*(H))$. Let m be the number of prime factors of |g|counting multiplicities. It is proved that if, for some n, the generalized Fitting height of $E_n(g)$ is equal to k, then g belongs to $F_{f(k,m)}^*(G)$, where f(k,m) depends only on k and m.

The nonsoluble length $\lambda(H)$ of a finite group H is defined as the minimum number of nonsoluble factors in a normal series each of whose factors either is soluble or is a direct product of nonabelian simple groups. It is proved that if $\lambda(E_n(g)) = k$, then g belongs to a normal subgroup whose nonsoluble length is bounded in terms of k and m.

We also state conjectures of stronger results independent of m and show that these conjectures reduce to a certain question about automorphisms of direct products of finite simple groups.

^{*}Joint work with Pavel Shumyatsky