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ABSTRACT. The purpose of this paper is to prove necessary and sufficient
criteria for a GL(m|n)-supermodule to have a good or Weyl filtration. We
also introduce the notion of a Steinberg supermodule analogous to the classical
notion of Steinberg module. We prove that the Steinberg supermodule inherits
some properties of the Steinberg module. Some new series of finite-dimensional
tilting supermodules are found.
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INTRODUCTION

Modules with costandard (good) or standard (Weyl) filtrations and tilting mod-
ules as well, play a crucial role in the representation theory of finite-dimensional
algebras and reductive algebraic groups over an algebraically closed field of posi-
tive characteristic. The concept of a tilting module can be adapted to any highest
weight category C in the sense of [4]. It has been proven in [4] that if the partially
ordered set of weights (weight poset) A of such category C is finite, then the full
subcategory consisting of all objects of finite length is equivalent to a category of
finite-dimensional modules over a quasi-hereditary algebra (a nice introduction to
the theory of quasi-hereditary algebras and tilting modules over them can be found
in [6]; see also [8, 20]). In many cases, like Schur algebras or rational representa-
tions of reductive algebraic groups, A is not finite but any finitely generated ideal
I" of the poset A is. In that case, the full subcategory of finite objects belonging to
I" is equivalent to a category of finite-dimensional modules over a quasi-hereditary
algebra.

It was proven in [22] that the category GL(m|n) — Smod of left rational super-
modules over the general linear supergroup GL(m|n) is a highest weight category.
However, the poset of weights A of GL(m|n) does not satisfy the condition that
every finitely-generated ideal I of A is finite. In fact, for every weight A € A, the
interval {u|p < A} is infinite.

In [15] it was suggested how to overcome this obstacle. Since a highest weight
category is an abelian category of finite type, it can be regarded as a right comodule
category over a coalgebra. Equivalently, it can be viewed as a left discrete mod-
ule category over a pseudocompact algebra. If T is finitely generated (or finitely
cogenerated, respectively) good (or cogood, respectively) ideal (see Definitions 3.9
and 3.17 of [15]), then the corresponding highest weight category is equivalent to a
category of discrete modules over an ascending (or descending, respectively) quasi-
hereditary pseudocompact algebra. The theory of objects with good (decreasing
costandard) or Weyl (increasing standard) filtration has been developed in §4 of
[15]. The notion of a tilting object was introduced there and it was proven that the
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category of discrete modules over an ascending quasi-hereditary peseudocompact
algebra has enough indecomposable tilting objects. However, if T" is infinite, it is
not clear if the tilting objects are finite or not. It is natural to look for a sufficient
condition on the highest weight category C that would guarantee that all of its
indecomposable tilting objects are finite.

It makes sense to investigate first the category GL(m|n)—Smod. The costandard
and standard objects in GL(m|n) — Smod are (up to a parity shift) the induced
supermodules H%(\) and the Weyl supermodules V()), respectively (cf. [22]). If
HO()) is irreducible, then H°(\) = V() is tilting. Irreducible induced supermod-
ules H°(\) were characterized in [14]. Until recently, no other examples of tilting
supermodules in GL(m|n) —Smod has been known, except in the case of the super-
group GL(1|1) or in the case when char K = 0. In both cases every indecomposable
tilting supermodule is injective, projective and finite-dimensional; see [3, 15].

In this article we present a series of finite-dimensional (indecomposable) tilting
supermodules, which are not irreducible, using the concept of a Steinberg super-
module. We prove that the Steinberg supermodule inherits some properties of
its counterpart, a Steinberg module St,.. For example, a Steinberg supermodule
remains both projective and injective when regarded as a supermodule over the
corresponding Frobenius kernel in GL(m|n).

It was proven in [9] (see also I1.10.5.2 (1) of [11]) that, for every (dominant)
weight ), the tensor product St, ® I(\)I" is isomorphic to I((p” —1)p+p"\), where
I(p) is the injective envelope of an irreducible module L(u) of the highest weight .
We prove an analogous statement for Steinberg supermodules. More specifically,
the tensor product of the r-th Steinberg supermodule with the r-th even Frobenius
twist of an indecomposable injective module over GL(m|n),.s is both injective and
indecomposable. The most difficult part of the proof is to show that this tensor
product is injective. To prove it, we use the aforementioned fact that the Steinberg
supermodule is injective over the corresponding Frobenius kernel and some spectral
sequence arguments (see Lemma 10.9 and Theorem 10.10). Our series of tilting
supermodules is obtained in a similar way; they are tensor products of Steinberg
supermodules with even Frobenius twists of tilting modules over GL(m|n);.s. This
generalizes Proposition (2.1) from [8] for general linear supergroups.

The paper is organized as follows. In the first seven sections and in the ninth
section we give all necessary definitions, notations and derive auxiliary results. In
the eighth section we prove two criteria for a GL(m|n)-supermodule to have a
decreasing good or increasing Weyl filtration (both possibly infinite). The results
of this section are interesting on their own and they are used in the last section to
describe completely all cases when a symmetric or an exterior (super)power of the
standard GL(m|n)-supermodule W have a good or Weyl filtration. In the tenth
section we introduce the notion of a Steinberg supermodule and prove some of its
important properties mentioned earlier.

1. HOPF SUPERALGEBRAS

We follow definitions and notations from [17]. For the convenience of the reader
we will recall some of them here. Let A be an (associative) superalgebra. The cat-
egory of left (or right, respectively) A-supermodules (with ungraded morphisms)
is denoted by 4SMod (or by SMod 4, respectively). If A is a supercoalgebra, then
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the category of left (or right, respectively) A-supercomodules (with ungraded mor-
phisms) is denoted by 4SMod (or by SMod?, respectively). These categories are
not abelian, but their underlying even categories 4Smod,Smod 4, Smod, Smod”,
consisting of the same objects but considered only with even morphisms, are.

Let H be a Hopf superalgebra. A Hopf subsuperalgebra R of H is called right
normal if S (=1)""lsy(hy)rhy € R for all » € R and h € H (cf. [16]). Sym-
metrically, R is called left normal if S (—1)I"11P2lh 755 (hy) € R for all 7 € R and
h € H. If R is both left and right normal, then R is called just normal. If H is
supercocommutative and the antipode sy is bijective, then the right normality is
equivalent to the left normality.

Let M be a left H-supermodule. Denote by Mpr a subsuperspace of M that is
generated by the elements rm for m € M and r € R* = kereg.

Lemma 1.1. If R is left normal in H, then Mg is a H-subsupermodule.

Proof. For every r € R we have

(hrym =Y (> (=1)I""=lhyrs g (hy))ham € Mp.
([l

Let R be a finite-dimensional Hopf superalgebra. The dual superspace R* has a
natural structure of Hopf superalgebra given by

(@9)(r) = Y _(=1)II"lg(r1)ip(ra), where ¢, € R*,r € R and Ag(r) =Y ri@rs;

Ap-(¢) = > ¢1 ® ¢2 whenever ¢(rs) = Z(fl)‘@wgbl(r)gbg(s) for every r,s € R;
sr+(9)(r) = ¢(sgr(r)), and €gr-(¢) = ¢(1r).

Lemma 1.2. The functor ® : R — R* is a self-duality on the category of finite-
dimensional Hopf superalgebras.

Proof. Follow the arguments in 1.8(1) of [11]. O

Additionally, if M is a left R-supermodule, then M is a right R*-supercomodule
via the linear map M — Homg(R,M) ~ M ® R* which maps m € M to l,, :
R — M given by I,,(r) = (—=1)I™I"lrm for € R. Symmetrically, if M is a right R-
supercomodule, then M is a left R*-supermodule by ¢m = S (=1)I¢lm1lg(ry)m,,
where Tpr(m) = Y my @ re, ¢ € R* and m € M. Furthemore, all of the above
statements remain valid after replacing the right coaction by the left action and
vice-versa.

The proof of the following lemma is easy and is left for the reader.

Lemma 1.3. There is an equivalence of categories SMod® ~ z.SMod that pre-
serves parities of morphisms. Symmetrically, ®SMod ~ SModg-.

In particular, the category SMod® has enough projective objects. Thus for
any M, N € SMod” we have Extgy, qr (M, N) =~ H"(Homgpogr (Py, N)), where
Pr — M — 0 is a projective resolution of M (cf. Proposition 8.2 in XX of [12]).

Moreover, the resolution Py, can be chosen in Smod”.
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2. ALGEBRAIC SUPERGROUPS AND THEIR LINEAR REPRESENTATIONS

Let SAlgy denote the category of supercommutative K-superalgebras with even
morphisms. Let B be a supercommutative Hopf superalgebra. Then the repre-
sentable functor A — Homsag, (B, A) from SAlg to the category of sets is a
natural group functor. It is denoted by G = SSp B and called an affine super-
group. If B is finitely generated, then G is called an algebraic supergroup. Any
(closed) subsupergroup H of G is uniquely defined by a Hopf superideal Iy of B
such that an element g € G(A) belongs to H(A) if and only if g(Ir) = 0. For ex-
ample, the largest even subsupergroup G, of G corresponds to the ideal BB;. The
restriction of G, to the full subcategory of commutative K-algebras is denoted by
G7'6S'

Let W be a finite-dimensional superspace. The group functor A — End4(W®A)j
is an algebraic supergroup. It is called a general linear supergroup and denoted by
GL(W). If dim Wy = m,dim Wy = n, then GL(WW) is also denoted by GL(m|n).

Fix a homogeneous basis of W, say consisting of w; for 1 < ¢ < m + n, where
|w;| = 0 provided 1 < ¢ < m, and |w;| = 1 otherwise. It is easy to see that
K[GL(mn)] is a localization of K[c;;|1 < 4,5 < m + n], where |c;;| = |w;| + |w;],
by some element d. More precisely, the generic matrix C' = (¢;;)1<i,j<m+n has a

block form
( Coo Co >
Cio Cu )’

where the m x m and n x n blocks Cyg and C7; are even, and the m xn and n x m
blocks Cy; and Cg are odd. Then

Acrimin)(cij) = Z Cik @ Chjs €GL(mln)(Cij) = 6ij,
1<k<m+n
and d = det(CQ()) det(Cn).

The element Ber(C) = det(Coo—Co1Cy; Cro) det(Ch1) ™! is called the Berezinian.
It is a group-like element of the Hopf superalgebra K[GL(m|n)] (cf. [1]). It is easy
to show that K[GL(m|n)] = Klci;|1 <i,j < m + n]perc)-

By definition, the category of left (or right, respectively) G-supermodules coin-
cides with the category of right (or left, respectively) K[G]-supercomodules. Denote
them by G —SMod and SMod — G respectively. The corresponding even underlying
categories are denoted by G — Smod and Smod — G, respectively. For example, the
right supercomodule structure of GL(W)-supermodule W is defined by

Tw(wz) = Z w; @ Cjj-
1<j<m+n

There is an endofunctor M — IIM, called the parity shift, in all above categories
such that IIM coincides with M as a K[G]-comodule and (IIM); = M; 14 for i € Zs.

Every G, e¢s-module can be regarded as a purely even Ge,-supermodule. Furthe-
more, Gre.s — mod is a full subcategory of both G, — Smod and G., — SMod and
Exty, (M,N)= Extg,_ (M, N) for every M, N € Gres —mod and n > 0.

There is a one-to-one correspondence between G-supermodule structures on a
finite-dimensional superspace M and linear representations G — GL(M) (cf. [11,
22]). If 7ap(m) = > m1 ® fa € M ® K[G], then g € G(A) acts on M ® A by the
even A-linear automorphism 7(g)(m ® 1) = > > m; ® g(f2). In other words, M is a
G-supermodule if and only if the group functor G acts on the functor M, = M®?
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in such a way that for every A € SAlg, the group G(A) acts on M,(A) =M A
by even A-linear automorphisms.

A subsupergroup H is called (faithfully) evact in G if the induction functor ind$
is (faithfully) exact. The exactness of H is equivalent to the condition that the
restriction functor M — M|y takes injectives to injectives (cf. [11, 22]). Besides,
H is faithfully exact if and only if G/H is an affine superscheme (see Theorem 5.2
of [23]).

In what follows, we use the following criterion for G/H to be an affine super-
scheme (cf. Corollary 8.15 of [17]). A superscheme G/H is affine if and only if
Gey/Hey is affine if and only if G5/ Hyes is affine. For example, if H is a normal
or finite subsupergroup of G, then G/H is affine, hence H is faithfully exact in G.

Let B denote a standard Borel subsupergroup of G = GL(W) that consists of
all lower triangular matrices. Let V' be its largest unipotent subsupergroup that
consists of all lower triangular matrices with units on their diagonals.

Let T be a maximal torus of B consisting of all diagonal matrices and let X (T) be
its character group. The group X (T') can be naturally identified with Z™*" so that
an element A € X(T) has a form (A1,..., A\jpyn), where \; € Z for 1 < i < m + n.
Let ¢; denote a character

0,..., 1 ,oo.,0) for 1 <i<m+n.
i—th place

Let B°PP denote the transpose of B, that is B°PP is a Borel subsupergroup
consisting of all upper triangulat matrices. Then the transpose VPP of V is the
largest unipotent subsupergroup of BFP.

Any simple B-supermodule has the form K or IIK for some A € X(T'), where
the K[B]-comodule structure of K is given by 1+ 1&]]; ;< pin ¢}t The induced
supermodule indG11* Ky is denoted by H°(\?) for a = 0,1. Observe that H?(\?) =
I*HO(\) # 0 if and only if A is a dominant weight, that is Ay > ... > A\, A1 >
o > Aman. If it is the case, then H%(A\?) has a simple socle L(A*) = II*L(\) and
any irreducible GL(W)-supermodule is isomorphic to the socle of some HY(A\?%).
The set of dominant weights is denoted by X (T')7.

As it has been shown in [22], the even category of GL(W)-supermodules is a
highest weight category with H%(\%) as costandard objects, subject to a Bruhat-
Tits order such that p < A if and only if

ZuiSZAifor1§i§m+n—17and Z i = Z i

1<i<k 1<i<k 1<i<m+n 1<i<m+n
if and only if
)\—[LG Z ZZO(Ei_Gj)~
1<i<j<m+n

The standard object of the highest weight A in GL(W) — Smod is denoted by V().

Let T be a finitely generated ideal in X (T')*. We say that a GL(W)-supermodule
M belongs to I' whenever any composition factor of M is isomorphic to some
L(A\*) with A € T'. For any GL(W)-supermodule N there exists a unique maximal
subsupermodule of N which belongs to I'. It is denoted by Or(N). Also, there
exists a unique minimal subsupermodule N’ of N such that N/N’ belongs to T
The subsupermodule N’ is denoted by OY(N). For notions of (decreasing) good
and (increasing) Weyl filtrations we refer the reader to §4 of [15].
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Let He,(A) and Vg, (A) denote costandard and standard objects in the highest
weight category GL(W),..s — mod, respectively (subject to the same partial or-
der). Then the category GL(W)., — Smod is also a highest weight category with
costandard objects I1* H,,,(A) and standard objects 11V, () for a = 0, 1.

3. SUPERALGEBRAS OF DISTRIBUTIONS

Let G be an algebraic supergroup and Dist(G) be the superalgebra of distri-
butions of G. As a superspace Dist(G) coincides with |J,~, Disti(G) € K[G]*,
where Dist(G) = (K[G]/m*™1)* and m = ker ex(q) = K[G]T. Dist(G) is a super-
cocommutative Hopf superalgebra with a bijective antipode (see [11, 23] for more
details). For example, the comultiplication A p;¢(c) maps an element ¢ € Disty(G)
to Y 1 ® ¢2 € Dist(G)®? if and only if

$(fh) =Y (1)1 1gy ()¢ (R)

for every f,h € K[G].

If H is a subsupergroup of G, then Dist(H) is a Hopf subsuperalgebra of
Dist(G). More precisely, ¢ € Dist(G) belongs to Dist(H) if and only if ¢(Ig) = 0.
Furthemore, if H is a normal subsupergroup of G, then for every f € Iy we have
S (=)l fy @ sa(f1) fs € In @ K[G] (cf. p. 731 of [23]). Therefore Dist(H) is
normal in Dist(G). If G is connected (pseudoconnected in the terminology of [23];
see also §3 of [10]), then the converse statement is also valid (follow arguments in
the proof of Lemma 5.1 of [10]).

4. UNIPOTENT AND FINITE SUPERGROUPS

An algebraic supergroup G is called unipotent if every simple G-supermodule M
is trivial, that is M ~TI*K for a = 0,1 (cf. [24, 16]).

We refer the reader to [5] for more detailed introduction to the theory of finite or
infinitesimal algebraic supergroups. A finite supergroup G is called infinitesimal if
K[G]* is nilpotent. Therefore Dist(G) = K[G]* and, by Lemma 1.3, the category
G —SMod is equivalent to the category pis¢(q)SMod. The functor F': G —SMod —
SModk such that F'(M) = M/Mp;s ) is right exact. Denote its n-th left derived
functor L, F'(M) by H,(G,M). In other words, H, (G, M) = H,(F(Py;)) for any
projective resolution Py; of M. Theorem 7.1’ from chapter XX of [12] implies that
Exty (M, K)* ~ H, (G, M) for every n > 0.

Lemma 4.1. If G is unipotent, then every injective G-supermodule is isomorphic
to K[G]®! @IIK[G]®7 for some (possibly infinite) index sets I and J.

If G is also infinitesimal, then every projective G-supermodule is isomorphic to
Dist(G)® @ TIDist(G)®7.

Proof. Every injective G-supermodule is a direct sum of indecomposable injective
hulls of simple supermodules. On the other hand, the socle of a G-supermodule
M is equal to M“. Since K[G]% = K, up to an isomorphism, K[G] and IIK[G]
are unique indecomposable injectives. If G is infinitesimal and P is a projective G-
supermodule, then radP = Dist(G)" P. Since Dist(G)/Dist(G)" = K, the claim
follows. O

Lemma 4.2. If G is unipotent, then a G-supermodule M is injective if and only if
HY(G,M) = 0. If G is also infinitesimal, then a G-supermodule M is projective if
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and only if Hi (G, M) = 0. Moreover, if M is injective (or projective, respectively),
then H"(G, M) =0 (or H,(G, M) = 0, respectively) for every n > 1.

Proof. Extl,(K,M) = 0 implies Ext; (N, M) = 0 for every finite-dimensional G-
supermodule N. Following arguments in the proof of Proposition 3.4 in [22], we
obtain that Fats (N, M) = 0 for every N. The proof of the second statement is
similar. O

Lemma 4.3. Let N < H and H be unipotent. Then an H-supermodule M is
injective if and only if both the H/N-supermodule M™ and the N-supermodule
M| are injective.

Proof. If M|y is an injective N-supermodule, then the spectral sequence (cf. Propo-
sition 3.1(3) of [18])

Ey™ =H"(H/N,H™(N,M)) = H"™(H, M)
degenerates, which yields H"(H/N, M"~) ~ H"(H, M) for every n > 1. Lemma

4.2 implies that M is injective if and only if M?¥ is an injective H/N-supermodule.
On the other hand, if M is injective, then so is M|y. O

Every superalgebra A is a Zs-module, where the generator of Zy acts on A as
a — (=1)lelg for a € A. The semi-direct product algebra A x Zy is isomorphic to
Ao @ A1, where each component A; coincides with A as a vector space for i € Zs.
Besides, aia; = (—1)i|“/|(aa')iﬂ- for a; € Ai7a;- € A; and i,j € Zy. Additionally,
if A is a (not necessarily supercommutative) Hopf superalgebra, then A x Zs is a
Hopf algebra with the comultiplication

Aa;) = (a1)it)as @ (a2)i,
the counit €(a;) = e4(a) and the antipode s(a;) = (—1)+aDlals, (@), 4.

Lemma 4.4. Let H be an infinitesimal supergroup. Then a H -supermodule M is
injective if and only if M is projective.

Proof. By Lemma 1.3, H —SMod ~p; 47y SMod. Since Dist(H) x Z3 is Frobenius
by the main theorem from [19] and p;s(r)SMod ~p;g(ryxz, Mod by Lemma 7.6
from [15], the statement follows. O

5. FROBENIUS KERNELS

Assume that K is a perfect field and V is a K-superspace. Denote by V(")
the superspace that coincides with V' as a Zs-graded abelian group, but on which
each a € K acts as a? does on V. If A is a (not necessarily (super)commutative)
(super)algebra, then A(") is also a (super)algebra with respect to the same multipli-
cation. Moreover, if A is a Hopf (super)algebra, then A(") is a Hopf (super)algebra
with A e = A4, S40) = a4 and €4y = eﬁ(. From now on we, assume that K is
perfect unless stated otherwise.

Let G be an algebraic supergroup. Assume that G is reduced, that is G5 is an
reduced algebraic group. For every r > 1 there is an exact sequence

1-G—G—=GU 51,
where the epimorphism G — Gg,) is induced by the Hopf superalgebra embedding
K[Gg,)] = K[G¢y)™ — K[G] given by the rule f — fP", where f is the residue class
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of f € K[G]o in K[G.,] = K[G]o/K[G]? (see §8 of [23]). The subsupergroup G, is
called the r-th Frobenius kernel of G. Since Ig, = 3 tcr(qy, K[G]f?", each G, is
a (finite) infinitesimal subsupergroup in G. Lemma 1.3 shows that the category of
G ,-supermodules is naturally equivalent to the category of Dist(G,.)-supermodules.

Let G = GL(W). A simple G,-supermodule is isomorphic to the top L,(\) of
Zy(A) = Dist(Gr) @pisperey K or to its parity shift TIL,.(\) (cf. Theorem 5.4 of
[13]). Moreover, L,.(\) ~ L, (u) if and only if A — p € p" X(T)).

A simple G,-supermodule L,()) is also isomorphic to the socle of Z.(A\) =
indg:K a- In fact, there is a natural superscheme isomorphism B, x VP — G,
(see Lemma 14.1 of [25]). By Lemma 8.2 and Remark 8.3 of [25], Z/.(\)|gerr ~
Ky ® K[V,°PP], where T acts on K[V,°PP] by conjugations and V,°PP acts trivially
on K. Thus Z.(\)"""" ~ K as a T,-(super)module, hence the socle of Z/.(\)
is irreducible. Let L’()\) denotes the socle of Z.(\). Since L.(\)""" ~ K ,
(co)Frobenius reciprocity law implies

Homg,r,(ZT()\), L;()\)) ~ HO’IntpP (K)\,L;‘()\)) = K;

that is L. (\) = LL.(\).

Since Dist(G) = Dist(Ge,)Dist(G,), one can mimic the proofs of Proposition
4.3 and Proposition 4.4 of [21] to show that a simple G-supermodule L(A) of highest
weight A € X(T)*" is completely reducible as a G,-supermodule. Furthemore, it is
irreducible as G,-supermodule whenever A € X,.(T)T, where

X (D) ={XeX(T)0< N\ —Niy1 <p" for 1 <i<m+n—1such that i # m}.

It is easy to see that for every weight A\ € X (T') there are r > 1 and p € X,.(T)*
such that A — pu € p" X(T'). Therefore, L, (\) ~ L(p)|c,..

6. FROBENIUS TWISTS

Let G be areduced algebraic supergroup defined over F,. In other words, K[G] =
A®r, K, where A is a Hopf F,-superalgebra. Since K[Ge,] ~ A/AA1®F, K, Gey and
Ges are also defined over IF),. There is a natural Hopf superalgebra endomorphism
7, K[G] — K[G) given by f @b — fP" @bfor f€ Aand b€ K.

Let M be a left G-supermodule. Then one can define a new representation of G
on M, denoted by MI") by 711 (m) = (idar @ 7 )7as (cf. 9.10, Part T of [11]). We
call MU the r-th Frobenius twist of M.

It is evident that G, acts on M trivially. Since G/G, ~ Gey s MU has the
natural structure of a G, -supermodule via the Hopf (super)algebra isomorphism
K[Gep)™) ~ AST ®r, K C K[G] given by f @b — fP" ® bP", where f is the residue
class of f € Ag in Ag/A? and b € K.

Let M be a G,.s-module. It has been observed that M is also a G¢,-supermodule.
The supergroups G, and Gg}) are isomorphic to each other (cf. Remark 1.9.5 of
[11]). More precisely, the corresponding Hopf superalgebra isomorphism K[G.,] —
K[ng)] is defined as h@b — h @b for h € AJAA; and b € K. In particular, M
has a natural G-supermodule structure via the epimorphism G — G.(;,) (see Remark
8.4 later). This structure is defined as

T'(m) =" mi@ f§ @b,
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where Ty (m) = > mi @ fo @by, fo € Ag and by € K. We call such a G-supermodule
the r-th even Frobenius twist of M and by abuse of notation we also denote it by
Ml

Remark 6.1. The concepts of the even Frobenius twist has been introduced in [13],
where it has been called just the Frobenius twist (see also [5]). Since the concept
of the Frobenius twist makes sense for any supermodule, we decided to distinguish
these (obviously different) constructions by their names. Observe also that if M is
a Gres-module, then the r-th Frobenius twist of Ge,-supermodule M coincides with
its r-th even Frobenius twist, restricted to Ge,.

Lemma 6.2. If M is a G,cs-module, then Endg(MU) = Endg,, (M).
Proof. Consider a basis mq,...,mg of M. Then
Tar(mi) = Z m; @ fj; for fj; € Ag ®r, K,
1<j<k
and
Ty (M) = Z m; @ mp(f;) for 1 <4 <k.
1<j<k
An endomorphism ¢ € Endg (M) given by
(b(ml) = Z quimj for 1 S ) S k
1<j<k
belongs to Endg (M) if and only if F® = ®F, where
m(fir) oo 7 (fik) 11 ... Pk
F=l o Jade=| o1
me(frr) o 7 (frn) br1 - Dk

Since m, induces an algebra isomorphism K[G,.s] = K[G]o/K[G]? — Agr ®r, K,
the latter condition is equivalent to F® = ®F, where
e

7. DUALITIES

Let G be an algebraic supergroup and o be an anti-automorphism of the Hopf
superalgebra K[G]. If M is a finite-dimensional G-supermodule, then one can define
its o-dual M<?> as follows (cf. [22]). Fix a homogeneous basis of M consisting of
elements m; for 1 < i <t If 7ar(my) = > cpep Mk @ fri, where fi; € K[G] and
| fril = |mi| 4 |me| (mod 2), then the G-supermodule M <?> has a basis consisting
of elements m;~?~ such that

Tar<es (M777) = Y mp77 @ (=1)Imelimdtimeg (g,
1<k<t

The functor M — M<9~> is a self-duality of the full subcategory of all finite-
dimensional supermodules.



10 ALEXANDR N. ZUBKOV

Moreover, o induces an anti-automorphism of Dist(G) by ¢ + ¢ -0 = ¢<7~
for ¢ € Dits(G). In other words, (¢p1p)<7> = (—1)I¢I1¥lh<o>p<> for every ¢, 1) €
Dist(G).

Lemma 7.1. M <7 can be identified with the dual superspace M* on which Dist(G)
acts by (of)(v) = (=D f(p<o>m) for f € M* and m € M.

Proof. Let m} form a dual basis of M*. The required isomorphism M* — M <7~
is defined by m} — m;7~.

[l
Remark 7.2. If 0 = sk, then M<°S~ coincides with the dual G-supermodule

M*. In particular, Dist(G) acts on M* by (¢f)(m) = (—1)‘4)"f‘f(sDiSt(G)((b)m).

Assume G = GL(m|n). Then the map ¢ : ¢;; > (—1)I1#+1D¢;; induces an anti-
automorphism of the Hopf superalgebra K [G]. Furthemore, this anti-automorphism
induces a self-duality M ~— M <!> of the full subcategory of all finite-dimensional
G-supermodules. For example, HY(\)<t> = V(\) (see [22] for more details).

The related anti-automorphism ¢ +— ¢<*> of the superalgebra Dist(G) is defined

by (egé))<t> = eyi) if e;; is even, and €'~ = (—1)lli+lDe,; otherwise.

8. GooD AND WEYL FILTRATIONS

Let N be a normal subsupergroup of an algebraic supergroup G and M be a
finite-dimensional G-supermodule. Denote Mp;s(n) by My

Lemma 8.1. If G is connected, then My is a G-subsupermodule.
Proof. Combine Lemma 1.1 and Lemma 9.4 of [23]. O
Corollary 8.2. The statement of Lemma 8.1 holds for every G-supermodule M.

Proof. The supermodule M coincides with a union of its finite-dimensional subsu-
permodules M,, where o runs over a directed set I such that M, C My if and
only if < 3. We have My = ,c;(Ma)n. By Lemma 8.1, each (M,)n is a
G-subsupermodule. Thus My is a G-subsupermodule. ([l

Remark 8.3. My is the smallest subsupermodule of G such that N acts identically
on M/My.

Remark 8.4. Let w : G — H be an epimorphism of algebraic supergroups. Then
every H-supermodule M can be regarded as a G-supermodule via 7. In [9] this G-
supermodule is denoted by mo(M). Additionally, if G = N xH, then mo(M)|g ~ M.

From now on assume that G = GL(m|n) and P = Stabg (V7). Let U denote the
kernel of P — G.,. Then P = U % G, (cf. Remark 5.2 of [22]). Symmetrically,
denote Stabg (V) by P°PP. As above, we have an epimorphism PP — G, and its
kernel is denoted by U°PP. Besides, P°PP = U°PP x (G¢,. Both supergroups U and
U°PP are obviously infinitesimal and unipotent.

A standard supermodule V() can be also defined as a universal supermodule of
the highest weight A. In other words, V' (\) is generated by a B°PP-primitive vector
of weight A and if a G-supermodule M is generated by a B°PP-primitive vector of
weight A, then there is an epimorphism V() — M.

By Remark 8.4, a G¢,-(super)module N can be regarded as a P°PP-supermodule
as well. By Corollary 3.5 of [2], Dist(G) @ pist(pere) N is a G-supermodule.
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Lemma 8.5. For every dominant weight A, the Weyl supermodule V() is isomor-
phic to Dist(G) @ pjs(porr)y Veu(A)-

Proof. Denote a G-supermodule Dist(G) ®pjst(porr) Veo(A) by M. The formal
character of M coincides with the formal character of V/(X) (cf. Proposition 5.9
and Theorem 5.4 of [22]). Since M is generated by a primitive vector of weight A,
it is an epimorphic image of V(\). Therefore M ~ V(). O

Proposition 8.6. For each G-supermodule M and each G, -supemodule N there
is the following spectral sequence

E}™ = Eatg, (N, H™(U",M)) = Ext™™(Dist(G) @ pisi(porry N, M).

v

Proof. Using (co)Frobenius reciprocity law we have
HOmG(DZSt(G) ®Dist(Popp) N, M) ~ Hompoz:p (N, M|P0pp).

Let I*® be an injective resolution of G-supermodule M. Since P%?? = G.,,, G/PPP
is an affine superscheme, hence P°PP is exact (even faithfully exact) in G (see
also Proposition 5.1 of [22]). Thus I®|pers is an injective resolution of P,,,-
supermodule M |pors such that the complexes Homg(Dist(G) ®pisy(porry N, 1°)
and Hom pops (N, I®|porr) are isomorphic to each other. Then

Exty(Dist(G) @pisi(porry Ny M) 2 Extipop, (N, M|porn).
The statement now follows from Proposition 3.1 (2) of [18]. O

Remark 8.7. If M|yorr is an injective U°PP-supermodule, then the above spectral
sequence degenerates and there is an isomorphism

Exty (N, M""") ~ Ext®(Dist(G) @pist(porry N, M)
for alln > 0.

By Lemma 5.1 of [22], for every P-supermodule M there is an isomorphism of
U°PP-supermodules M ® K[U°PP] — indgM . Moreover, it is also an isomorphism
of Gep-(super)modules, where G, acts on K[U°PP] by conjugations. In particular,
indIGgM is an injective U°PP-supermodule and the Gg,-supermodule (indgM )Uopp
is isomorphic to M|g,, -

For example, Lemma 5.2 from [22] states HO(\) ~ indGH?,()\). Thus H°()) is
an injective U°PP-supermodule and HO(A\)Y""" ~ H? (\). These elementary obser-
vations inspire the following theorem.

Let T be a finitely generated ideal of (dominant) weights and M be a I-restricted
G-supermodule (cf. [15]).

Theorem 8.8. M has a decreasing good filtration if and only if Ge,-supermodule
(01 Gres-module) MU™" has a decreasing good filtration and H*(U°PP, M) = 0.

Proof. Apply Proposition 8.6 to N = V,,(\) and obtain the five-term exact se-
quence (cf. p.50 of [11]):

0 — Baty, (Veo(N), MY"™") = Ext&,(V(N), M) — Homg,, (Veo(\), H (UPP, M)) —
= Ext, (Veo(N), MY™) = ExtZ,(V(N), M).
By Theorem 4.9 and Lemma 4.19 of [15], M has a decreasing good filtration if

and only if Exts(V(\),M) = 0 for every (dominant) weight A\. Furthemore, in
this case Extl,(V(A), M) = 0 for every i > 1. Thus Extl, (Vey(A), MU™") =0,
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and MU”" has a decreasing good filtration as a Ge,-supermodule, provided M
has a decreasing good filtration as a G-supermodule. The latter condition implies
Ext}, (Vey(A), MU™) = 0 and Homg,,(Veo(X), H(UPP, M)) = 0 for every A.
On the other hand, if H(U°PP, M) # 0, then there is a weight A such that L., () is
a direct summand of soc(H(U°PP, M)). Thus Homg,, (Vew(N), HY(U°PP, M)) # 0,
which is a contradiction. Conversely, if M satisfies the conditions of this theorem,
then the first and the third member of the above exact sequence are zeroes, hence
Exty,(M,V()\)) = 0. O

Remark 8.9. By Lemmas 4.1 and 4.2, M|yeer is injective and isomorphic to
K[Uerr|®T QUK[UPPI® for (possibly infinite) index sets I and J. If M is finite-
dimensional, then the cardinalities It and J* of I and J are given as
It = > dim H? (\) and J* = > dim H? ()).

A (M:HO(X0))#0 A (M:HO(A1))#£0

In fact, if M has a good filtration
0OCM;C...CMy=M

such that M;/M;_1 ~ H°(\{*), where a; = 0,1 and 1
good filtration

<1i<s, then MY has a

0 g Monpp g g MSUOPP _ MU"PP
such that MY™" JMU"" ~ HO (M), where 1 < i < s. Besides, M ~ @, ;. M;/M;_1
as U°PP -supermodule.

Observe that the anti-automorphism ¢ — ¢<'> of Dist(G) induces an anti-
isomorphism between subsuperalgebras Dist(U) and Dist(U°PP). Moreover, if M
is a Dist(U)-supermodule, then the dual superspace M* has a natural structure of
a Dist(U°PP)-supermodule given by

(of)(m) = (—=1)1?IF1(¢<t>m), where ¢ € Dist(UPP), f € V* and m € M.

Symmetrically, if M is a Dist(U°P)-supermodule, then M* has a structure of
Dist(U)-supermodule via the same rule. We denote M* by M <!> no matter over
which superalgebra the supermodule M is defined. The following lemma is now
obvious.

Lemma 8.10. The functor M — M<'> is an anti-equivalence between the cate-
gories of finite-dimensional U-supermodules and U°PP-supermodules.

Proof. Since Dist(U) = K[U]* and Dist(U°PP) = K[UP]*, the result follows from
Lemma 1.3. g

Observe that if M is a G-supermodule, then M <" |y = (M|yor»)<*>, and sym-
metrically, M <" |gop» = (M|y)<t>.

Proposition 8.11. Let M be a finite-dimensional U-supermodule. Then for every
k > 0 there is a natural isomorphism of superspaces Hy (U, M)<t> ~ HF(U°PP M <t>).
Moreover, if M is a G-supermodule, then it is an isomorphism of Ge,-supermodules.

Proof. An element f belongs to (M <t>)U""" if and only if for every ¢ € Dist(UPP)*
one has ¢f = 0; meaning that for every m € M one has f(¢#<”>m) = 0. The last
condition is equivalent to f € (M/My)<'*>. Since the functor V +— V<!> maps
projective resolutions to injective resolutions, both statements follow. (Il
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Theorem 8.12. A finite-dimensional G-supermodule M has a Weyl filtration if
and only if Gey-supermodule (or Gres-module) M /My has a Weyl filtration and
H,(U,M) =0.

Proof. Apply Theorem 8.8 to the G-supermodule M <!> and refer to Proposition
8.11. O

Remark 8.13. By Lemmas 4.1 and 4.2, M|y is projective and isomorphic to
Dist(U)®T @TIDist(U)®7. As in Remark 8.9, if M has a Weyl filtration
0CM, C...CMy,=M

such that M;/M;_1 ~ V(X{") for a; =0,1 and 1 < i < s, then M /My has a Weyl
filtration

0C M /(My)y C...C Ms/(Ms)y = M/My
S’LLCh that Mz/(Mz)U/Mz—l/(Mz—l)U ~ (Mi/Mi—l)/(Mi/Mi—l)U = ‘/;U(A?I) fO’f’
1 <1 < s. Additionally, M ~ @199 M;/M;_1 as an U-supermodule. Therefore

I = > dimVe(\) and J* = > dim V().
A (M:V(X0))70 A (M:V(A1))#0
Corresponding to a decreasing chain of finitely generated ideals
Fr=Try2orh 2, o...
such that '\ Ty, is finite for every k > 0 and (,~,'x = 0, there is an increasing
chain of finite-dimensional subsupermodules -
0CoO(M)yco(m)C....

By Theorem 4.11 of [15], M has an increasing Weyl filtration if and only if each
M), = O*(M) has an increasing Weyl filtration if and only if each M'> has a
good filtration.

Corollary 8.14. M has an increasing Weyl filtration if and only if for every k > 1
Hy(U,My) =0 and My/(My)u has a Weyl filtration as a Gey-supermodule (or as
a Gres-module).

Analogously as in Remark 8.13, we derive that M ~ @, ., Mj/Mj_1 is a projec-
tive U-supermodule. Moreover, M /My, has an increasing Weyl filtration consisting
of submodules My, /(My)u.

Question 8.15. Assume that M is projective as U-supermodule and G, -supermodule
M /My has an increasing Weyl filtration. Does it imply that M has an increasing
Weyl filtration as a G-supermodule?

We have proved the following theorem.
Theorem 8.16. A restricted G-supermodule M is tilting if and only if the following
two conditions are satisfied.
(1) The Gep-supermodule MUV has a decreasing good filtration and M|gers is
mjective;
(2) For any decreasing chain of finitely generated ideals
Fr=Try2oIh 2, 2...

such that T\ Ty is finite for every k > 0 and mkzo Iy, =0, each M), =
O'* (M) is projective as U-supermodule and My /(M) has a Weyl filtra-
tion as a Gey-supermodule.
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9. REPRESENTATIONS OF G, T AND G,.B

Following [11], we denote ind%"? K¢ and Dist(G,BP?)@pist(porr) K5 by Zl ()
and Z,(\*) respectively. Without a loss of generality, one can assume that a = 0.
By Lemma 14.2 of [25] there are superscheme isomorphisms
B x VPP ~ BG, = G, B and B°?? x V, ~ BP’G, = G,B°PP.
Thus Dist(G,B°P) is a free Dist(B°PP)-supermodule (see Lemma 5.2 of [13]).
Combining this and Theorem 10.1 of [25], we obtain that Z/(A\)|q,. ~ Z.(A) and
Z»(N)|a, =~ Z-(\). Analogously, there are natural superscheme isomorphims

B, T x VPP ~ G, T and BPPT x V, ~ G, T

such that Z.(\)|g, 7 ~ ind§ 7 Ky and Z,(\)|g, 1 = Dist(G,T) @ pisi(perrr) Ka-

As in the fifth section, we see that Z/, (N)| gorep = Kx®K[V,°PP] and ZIWV =
Z!'(A)x =~ K. Thus the socle of Z/()\) is irreducible and generated by a BoPPT-
primitive vector of weight A. Observe also that Z.()\), # 0 implies u < \.

Analogously, Z.(\)|g,r ~ Dist(V,)® K. Since the B,T-top of Z,.(\) is isomor-
phic to Z,(\)/Z-(N)v, ~ Ky, the G, B°?P-top of Z,.()) is also irreducible. Moreover,
ZT(A) is generated by a B°PP-primitive vector of weight A and ZT(A) u 7 0 implies
<A

Denote by L’.(\) and L, () the modules socg, pZ.(\) and Z,.(\) /rada, ore Zy(N),
respectively.

Lemma 9.1. The supermodules Z'.(\) (and Z.(\), respectively) are couniversal
(and universal, respectively) objects in the category G,.B — SMod (and G,B°PP —
SMod, respectively). In particular, each irreducible G, B-supermodule is isomorphic
to exactly one IA/T()\“) and each irreducible G,B°PP-supermodule is isomorphic to
exactly one L,.(\*).

Proof. The statement related to ZT(A) is obvious. Let M be a G,B-supermodule
that is cogenerated by a ByPPT-primitive vector v of weight A\ and M, # 0 implies
p < A Consider a vector m € MY="" \ 0 of weight pu. Set M’ = Dist(G,B)m =
Dist(V)m (this is a G, B-subsupermodule generated by m; see Lemma 9.4 of [23]).
Then M, = Km and M, # 0 implies 7 < p1. Since v € M, it follows that u = A
and MV""" = M, = Kv. In particular, socq gM = L,(AI"]).

Furthermore, M|p has a factor that is isomorphic to K (cf. Remark 5.3 of
[22]), hence Homg, (M, Z!()\)) ~ Homp(M,K,) = K and M is embedded into
ZH(A)- O

We leave for the reader to verify that the socle of Z/(\)|g,7 and the top of
Zr(N)| @, 1 are irreducible G, T-supermodules. Furthemore, Z/.(\)|¢, 7 and Z.(\)|a. 1,
respectively are couniversal and universal objects, respectively, in G, T — SMod.
Therefore every irreducible G, T-supermodule is isomorphic to the socle of exactly
one Z'(A\*)|¢. 1 and to the top of exactly one Z,.(A\%)|q. 1, respectively.

The anti-automorphism ¢ +— ¢<'> maps Dist(G,.B) onto Dist(G,B°PP). In
particular, the functor M — M <!> induces a duality between the full subcategory
of G, B—SMod, consisting of all finite-dimensional supermodules, and the same kind
subcategory in G, B°PP — SMod. Since M<*>|p ~ M|t for every T-supermodule
M (cf. Lemma 5.4 of [22]), this implies Z/(A*)<!> ~ Z,(\%) and L.(\*)<*> ~
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L.(\*). Moreover, ¢ — ¢<*> induces an anti-automorphism of Dist(G,T), hence

it induces a self-duality of the full subcategory of G, T — SMod, consisting of all

finite-dimensional supermodules, such that (Z.(A%)|q,7)<" ~ Z,(\%)
The following lemma generalizes Proposition I1.9.6 from [11].

G, T-

Lemma 9.2. The socle of Z.(\)|g, 1 is isomorphic to the top of Z.(N|a,r. If
L.(\) denotes this irreducible G, T-supermodule, then L,(\)<"> ~ L,.(\).
Also,
soca, Z1(N) = socq, 7 ZL(N) = soca, pZL(N)
and
radg, Z,(\) = radg, 72, (\) = rada, gore Zr(\).

Proof. Since (socq,7Z.(\)V""" ~ Ky, the first statement follows by the same
arguments as in the fifth section.
Let v denotes a generator of Z/.(\),. Then
socq, 72 (N) = Dist(V,)v = socg,7Z.(\) C Dist(V)v = socp,72.(\).

On the other hand, Dist(G,B) = Dist(Be,)Dist(G,). Thus socg, pZ.(\) is com-
pletely reducible as G,-supermodule, and therefore it is contained in socg,7Z..(\).
Application of the duality M — M <!> implies the last statement. O

10. STEINBERG SUPERMODULES

The positive even roots of G are ¢; —¢;, where 1 <¢ <j<morm+1<i<
j < m+n and the positive odd roots of G are ¢; —¢; for 1 <i <m < j<m+n.
Let pg denote the half of the sum of all positive even roots of G, p; denote the half
of the sum of all positive odd roots of G, p = pg — p1, and p,; denotes a weight

521§i§m € + tzm+1§i§m+n €; for s,t € Z. Then p; = %pm_m.

Lemma 10.1. For every dominant weight \ and for every positive integer r there
is an isomorphism

HO((p" = 1)po + ps,e) @ HE, (NI = HO((p" — 1)po + ps, +1"A).

Proof. The module HY, (\)"], considered as a G-supermodule, is an even Frobenius
twist of H2,(\). The tensor identity implies

H((p" = 1)po + ps,e) @ HE, (WU = indG(HY, (0" = 1)po + pse) ® He, (W),

The simple Ge,-module Le,(ps,) is one-dimensional. In fact, it is isomorphic to
det(Coo)* @ det(C1)t. Using Proposition 11.3.19 of [11] and the tensor identity we
obtain

H2,((p" = 1)po + ps,t) @ Hoy(M = HY, (0" — 1)po) @ H,(MI @ Ley (ps1) =
H2,((p" = 1)po + D" A) @ Lew(ps,i) = H, (0" — 1)po + p"A + ps,t).

Remark 10.2. Application of the functor M — M<'> gives
V(0" = 1)po+ po) @ Veo W = V(0" = 1)po + poe + p"N).

Lemma 10.3. The supermodule HO((p" — 1)po + ps,¢) is irreducible if and only if
p f(E ) By g 1),
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Proof. Combining Theorem 1 of [14] and Remark 11.3.19 from [11] we see that
HO((p" — 1)po) + ps,t) is irreducible if and only if p f((p" — 1)po) + ps,t + p, @) for
every positive odd root ov. If a« = ¢; —¢; and 1 <7 <m < j <m +n, then

((p" = )po) + pst + p,) = (pr; D)

and the lemma follows. O

(m4+n)+s+t+m+p'(m—i—j—1)

An irreducible G-supermodule from Lemma 10.3 is called an r-th Steinberg su-
permodule. Tt is obvious that an r-th Steinberg supermodule remains irreducible as
a G-supermodule.

Let T'(\) denotes the indecomposable tilting G-supermodule of the highest weight
A (cf. [15]). Let T.,(\) denotes the indecomposable tilting Ge,-supermodule (or
G res-module) of the highest weight A. The following proposition generalizes Propo-
sition (2.1) from [8] to general linear supergroups.

Proposition 10.4. If H°((p" — 1)po + ps) is a Steinberg supermodule, then
HO((p" = 1)po + ps,e) @ Teo(N) = T((p" = 1)po + pse +"A)-

Proof. Denote (p" —1)po+ ps by 7. Since H%(r) = L(7) = V (), Lemma 10.1 and
Remark 10.2 imply that T = HO(7) ® Tp, (M) has both good and Weyl filtrations.
Moreover, 7 + p" A is the unique highest weight of T'. It remains to prove that T is
indecomposable (cf. Theorem 4.17 and Theorem 4.19 of [15]; see also Theorem 1.1
of [8]).

We have Endg(T) ~ (T* @ T)¢ = (T* @ T)P*" &), The action of Dist(G)
on Endg (T) can be described as (¢ - ¢)(v) = (—1)I?I¥1yd(spis(a) (1)) for ¢ €
Dist(G) and ¢ € Endg (T). We will follow the idea from Lemma in §2 of [7]. Since
G, acts on Tev(x\)m trivially, there is an isomorphism of superalgebras

Endg, (T) ~ Endg, (L-((7)) ® EndK(Tev()\)[T]).

Additionally, we have L.(m)"""" = Z.(m)""" = K,, hence Endg, (L.(r)) =
Kidp(r).
Finally,
Endg(T) = Endg, (T)° ~ Kidp,x) ® Ende(Te, (W) =~ Endg(Ten (W),

Using Lemma 6.2 we derive that Endg(T.,(\)") ~ Endg,. (T.,()\)) is a local
purely even superalgebra, hence T is indecomposable. ([

Lemma 10.5. Let H((p" — 1)po + ps,) be a Steinberg supermodule. Then

HO((p" — 1)po + ps.t)le, 5 =~ LL((p" — 1)po + ps.t)
and
HO((p" = 1)po + ps.t)lG,pore = Le((p" — 1)po + psyt).-
Thus
HO((p" = 1)po + ps.i)la,r =~ Le((p" — 1)po + ps,t)-

Proof. Denote (p" — 1)pg + ps+ by 7, again. Lemma 9.1 implies that H°(7)|g,. p is
embedded into Z/(r). On the other hand, dim H°(x) = dim K[U°??] dim H?, (r) =
dim K[V,PP] = dim Z'(r) (cf. 11.9.16 of [11]). Thus H°(n)|q,5 ~ Z.(r) and by
Lemma 9.2 we obtain Z/.(7) = L. ().
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Since HO(m)<*> = L(m)<*> ~ L(m) = H°(r), the second statement follows. The
last statement follows by Lemma 9.2. (]

The proof of the following lemma can be modified from the proof of Proposition
I1.2.14 in [11].

Lemma 10.6. If A\ £ u, then
Extg ¢ (Ly(A), Ly (1)) ~ Home,r(rad,wZr(N), Ly (1))

For any finite-dimensional G, T-supermodules M; and My there is a (superspace)
isomorphisms

EmthT(Ml,M2) = Extng(M;t>aMl<t>)vn > 0.

We will only sketch a proof of this statement. By Proposition 3.2 from [22] (see
also Lemma 1.4.4 of [11]), there is a superspace isomorphism

Extng(MhMQ) >~ EiEthT(K, Mf (39 Mg)

We leave it for the reader to verify that the G, T-supermodule M7 ® M, is isomorphic
to the G, T-supermodule (M;*>)* @ M*>.

Lemma 10.7. FEvery Steinberg supermodule is both injective and projective as a
G,-supermodule and as a G, T-supermodule.

Proof. Combining the above observation with Lemma 10.6, one can easily superize
Proposition 11.10.2 from [11]. O

Lemma 10.8. Let H be an algebraic supergroup and N be a normal subsupergroup
of H. For every H-supermodules My and My such that MY = My there is an
isomorphism of H/N -supermodules Ext (M, My) ~ ExtS (M1, K) @ Mo.

Proof. Let K — I°® be an injective resolution of the trivial H-supermodule. Then
My — I* ® Ms is an injective resolution of My as a H-supermodule and hence,
also as a N-supermodule. Since Homy (M7, I*® M) and Homy (M1, 1*)® M, are
isomorphic to each other as complexes of H/N-supermodules, the claim follows. O

Lemma 10.9. If H((p" — 1)po + ps,t) is a Steinberg supermodule, then for every
G..-supermodule M we have Ext,(M, HS ((p" — 1)po + ps.i)) e = 0.

Proof. Denote the weight (p” — 1)po + ps by 7, one more time. Observe that
HO(7)|g, ~ Z.(7) ~ indg:Hgv(ﬂ), where M’ = H?, (7)|q.,, is regarded as a
P,.-supermodule via the epimorphism P, — Gy .

As it has been already observed, P, is a faithfully exact subsupergroup of G,
and the functor ind%" is faithfully exact. Thus for every G,-supermodule M there
is a natural isomorphism

Exty, (M, H(r)) ~ Extp, (M, M).

The functor Homp, (M, ?) is isomorphic to Homgy (M,?)/U. Since the functor
Homy(M,?) from P, —SMod to P./U — SMod is left exact and takes injectives to
injectives, there is a spectral sequence

E;™ = H"(P/U, Ext{} (M, N)) = Bat™ (M, N), N € P, — SMod.
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Lemma 10.8 combined with Proposition I1.10.2 of [11] imply that Ext}} (M, M')
Ext}(M, K)®M' is an injective G, , = P, /U-supermodule. In particular, E5""™
0 for every n > 1,m > 0. Using the five-term exact sequence we obtain

Extp (M, M') ~ Ext};(M,M")"/V.

IR

Lemma 10.7 concludes the proof. ([

Let I, (A) be the injective envelope of an irreducible G,..s-module of the highest
weight A. We have already seen that I.,(\) is also an injective envelope of the
purely even irreducible G.,-supermodule of the highest weight A\. Denote by I()\)
the injective envelope of the simple G-module of the highest weight .

Theorem 10.10. If H((p" — 1)po + ps,t) is a Steinberg supermodule, then
H((p" = D)po + pst) @ LW = (07 = Do + ps,i + 17 A).

Proof. We have again G., = P,,, which implies that G/P is an affine superscheme
and the functor ind%? is (faithfully) exact. For every u € X(T)T we have

Eatg(L(p), H(m) © Ly (W) = Eatp(L(p), H,(r) ® Ly ()™),
where m = (p” — 1)po + ps,. Since
H () © Lo W1 2 L7+ p7A)
(see 11.10.5.2 (1) of [11]), arguing as in Lemma 10.9 we obtain
Eatp(L(n), Hoy(m) © Ly W) = Baty (L(w), Hey (1) @ Leo(N)) 7Y =
(Bxtyy (L(n), K)@Hp, (1)@1eo (W) % C (Batyy (L(n), K)@HE, (1)@ 1o, (A\)IT)Gerr
= (Baty (L(j), HY, (m)) %) im0 g,

Therefore HO(7r) ® I.,(A\)["! is an injective G-supermodule. As in the proof of
Proposition 10.4, we obtain that H°(7) ® I.,(\)" is indecomposable. Since this

supermodule contains a subsupermodule H°(7+p"\), its socle coincides with L(7+
prA). O

Remark 10.11. Let (p" — 1)po + ps.. be a highest weight of some Steinberg super-
module. Define a map 0, : X(T)" — X(T)" by 6,(\) = (p" — 1)po + ps.t + P"\.
Theorem 10.10 implies that if B is a block of GL(m|n)-supermodules, then 0,.(B)
is a block as well. The proof can be modified from the proof of Corollary 2.5, [9].

11. EXAMPLES

Consider two G-supermodules M and M’ over an algebraic supergroup G. The
right K[G]-supecormodule structure on M ® M’ is given by Taem (m @ m') =
Z(—l)'fé”ml‘ml@m’l®f292, where Tps(m) =Y m1® fo and 7 (M) = > M) @go.
The following lemma is evident.

Lemma 11.1. Dist(G) acts on M @ M’ by the rule
- (mem) = Z(fl)\fﬂlml\+\¢\(\m1|+|m'1\)+|¢>2||f2|m1 @ m)d1(f2)b2(g2).

In particular, if ¢ is a primitive element, then

p-(mom)=¢-mom' +(=1)Mmee¢.m.
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As above, let G = GL(m|n). From now on we assume that m,n > 1.

The superalgebra Dist(UP) is generated by the primitive elements (matrix
units) eij for 1 <7 < m < j < m+n. They act on basis vectors wy of W as
eij - wi = 0jpw; for 1 <k <m +n.

Consider the k-th (super) exterior power AF(W) = Do<i<minfm.k} A (Wp) ®
Sk=i(W7y). Basis vectors of A¥(W) are of the form

wil...wiswfj+1...wfn"+n, where 1 <i; <...<ig<mand f,...,8, > 0.
We will denote wy, ...w;, by wl, where I = {i1,...,is}, and wﬁjﬂ . .wﬁ"+n by

w”, where 8= (B1,...,8,). Also denote > 1<t<n B by [B].

Lemma 11.2. There is a decomposition

opp ; k=i —m
AR = ( D A (Wo)eS™ (W) €D A™ (Wo)@ 8"~ (W),
0<i<min{k,m—1},p|(k—1)
Here S%(Wf) is a subspace of S*(W1) spanned by the elements w™, where |y| =

%. The last summand appears only if k > m.

Proof. If 1 <i<m < j <m+n, then

I I B '7m,_1 n
eij - (w+w[z) :,Bj_,nw+wiwf,§+l...wjj ...wgl_HL.
The decomposition in the statement of the lemma follows. [

Corollary 11.3. The G, -supermodule A*(W)U™™ has a good filtration if and only
ifn=1ork=ps+r, where s >0 and m <r <p.

Lemma 11.4. Ifn = 1, then A*(W) has a good filtration if and only if k = ps+r,
where s > 0 and m <1 < p. In this case A¥(W) ~ H°((1™|k — m)?) = L((1™|k —
m)®) = V((1™|k — m)?®), where a = k —m (mod 2), is a tilting supermodule.

Proof. Assume that A*(WW) has a good filtration. By Lemma 4.1, dim A*(W) is a
multiple of dim K[U°PP] = 2™. Thus k > m, dim A¥(W) = dim A™(W) = 2™ and
AF(W)|gore ~ I K[U°PP] for a = 0, 1.

Since K[U°PP]V”" = K and A*(V) has a unique highest weight (1"|k — m),
Lemma 11.2 and Remark 8.9 imply that £k = ps + r, where s > 0,m < r < p and
AF(W) ~ HO((1™|k — m)®) for a = k —m (mod 2). Moreover, by Theorem 1 of
[14], H°((1™|k — m)) is irreducible, hence HO((1™|k —m)®) = L((1™|k —m)*) =
V((1™]k —m)®) is tilting. In fact, ((1"™|k —m) + p,€; — €m41) = k+ 1 — i is not
divided by p for any 1.

Conversely, let L(7®) be a simple subsupermodule of A*(W), where k = ps +
r,s > 0 and m < r < p. Then its highest weight vector is annihilated by
Dist(B°PP)*. Since there is only one such vector wi ... wy,wp 7 of weight m =
(1I™k —m), we get L((1™|k — m)®) C A™(W). As it has already been observed,
L((1™]k —m)) = H°((1"™|k — m)) and this supermodule has the dimension 2™.
Thus AF(W) ~ HO((1™|k — m)®). O

Since U°PP is abelian, any subsupergroup of U°PP is normal. Let N be a subsu-
pergroup of U°PP that is defined by the equations ¢; ;41 =0for 1 <i<m . In
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other words, an element g € U°PP belongs to N if and only if gw,,+1 = wymy1. Let
W' denote the subsuperspace Zl§i§7n+n,i;ém+l Kw; of W. Then

W)y~ @ AW

0<t<k

If n > 1 and A¥(W) is an injective U°PP-supermodule, then every A*(W') for
0 < s < k, is injective as a N-supermodule by Lemma 4.3. On the other hand,
every (finite-dimensional) injective N-supermodule has a dimension that is divided
by 271 > 2. Thus A°(W’) = K can not be injective as a N-supermodule.
This contradiction shows that the only case when A¥(W) is injective as a U°PP-
supermodule is n = 1. The following proposition is now evident.

Proposition 11.5. A*(W) has a good filtration if and only if n = 1 and k = ps+r,
where s >0 and m < r < p.

In the previous notation, ej; - (w+w ) # 0 if and only if ¢ € I. In this case
eji - (w+w ) = tw \lw_, where (3 = B] + 1 and B;, = By for k # j. Thus
Dist(U)T - A*(W) is spanned by all w+w_ with I* < m and |3| > 1. Therefore,
AFW) /AR (W) = A™(Wo) @ SE=™ (W) provided k > m, and A*(W)/AF(W)y ~
AR (W) otherwise.

Proposition 11.6. The G-supermodule A¥ (W) has a Weyl filtration if and only if
n=1and k=ps+r, where s >0 and m <r < p.

Proof. Assume that A*(W) has a Weyl filtration. Then A*(W) is a projective U-
supermodule, hence injective by Lemma 4.4. Let N be a subsupergroup of U that
is defined by the equations ¢, 4n,; = 0 for 1 <7 <'m. Then

AWy = @ AW,

0<t<k

where W' = 37, ., 1 Kw;. Arguing as before, n = 1 and k > m is the
only case when A¥(WW) can be an injective, hence projective U-supermodule. Re-
mark 8.13 implies that A¥(W) has to be isomorphic to V((1™|k — m)®) for a =
k —m (mod 2). Furthermore, since the vector ws ... w,wl, 7 is annihilated by
Dist(B°PP)* | it implies that L((1™|k —m)®) C A¥(W) =~ V((1™|k —m)®). On the
other hand, L((1™|k —m)®) is the top of V((1™|k —m)®). Since V((1™|k —m)?) is
indecomposable, L((1™|k —m)®) = V((1™|k —m)*) = H°((1™]k —m)®). Theorem
1 from [14] implies that k¥ = ps + r, where s > 0 and m < r < p. Lemma 11.4

concludes the proof. O
Any basis element of S*(W) has the form w]w’ = w* ... wlrw;, ... w;,, where
YiyeoosYm > 0and m+1 < j; < ... < js < m+n. As we have seen earlier,

e;j -+ (wlw?) # 0 if and only if there is an index ¢ such that j = j;. In this case
€ij - (wlwi) = (=)t ...w;’“’l w’)’me\{Jt}

Analogously, we have

vy vi—1 v o
eji - (wlw?) = yw w T wlrwwl .

In particular, S*(W)U™"" = S*(Wy) = Hev((k‘on))'
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o / r_ .
If N = Stabyors(W'), where W' =37, i1 sy, Kwy, then

S*W)|lv =~ @ S

0<t<k

Again, if S*(W) is an injective U°PP-supermodule, then m = 1 and k > n. Analo-
gously, if S¥(W) is a projective U-supermodule, then it is also injective. Working
with the subsupergroup of U defined by the equations c;,, = 0 for m+1 < j < m+n,
we derive that this is possible only if m =1 and k > n.

Proposition 11.7. S*(W) has a good filtration if and only if m = 1 andn < k < p.
In this case S*(W) = HO((k|0™)) = L((k|0™)) = V((k|0™)) is tilting.

Proof. If S*(W) has a good filtration, then m = 1 and k > n. Remark 8.9 implies
that S¥(W) ~ HO((k|0™)). Let k = ps + r, where s > 0 and 0 < r < p. Assume
that s > 0. Then the subsuperspace

W' = > Kw? !
Ji=r—t,0<t<r

is a proper subsupermodule in S*(1W). But the highest weight vector w¥ does not
belong to W', which is a contradiction. Thus s = 0 and H°((k|0")) is irreducible
by Theorem 1 of [14]. Conversely, the vector w¥ of the unique highest weight (k|0™)
generates a simple subsupermodule of S*(W) that is isomorphic to L((k|0™)). If
m=1and n <k < p, then H((k|0"™)) = L((k|0")) has the dimension 2", and the
proof is concluded. O

Proposition 11.8. S*(W) has a Weyl filtration if and only if m =1 andn < k <
p.

Proof. The conditions m = 1 and k > n are necessary for S¥(W) to have a Weyl
filtration. Furthermore, we have

Sk(W)U = Z Kwiwi.
pt+1),0<t<k—1,k=t+Jt

This implies
SHW) /85 (W) =~ 5% (Wo) ) Kt ).

I<IS[ ML pl—14 T8 =k, T8 >1

As above, S*(W)|y ~ I’ Dist(U), where b = 0, 1. Therefore dim S*(W)/S*(W )y =
1, hence k < p and S*(W) ~ V((k|0")) = L((k|0™)) = H((k|0™)) is tilting. The
converse statement follows by Proposition 11.7. (]
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