Minimal Ideals of Jordan Systems

J. T. Anquela, T. Cortes, K. McCrimmon

For associative algebras it is well known that a minimal ideal of an associative algebra is either simple or trivial (all products zero). This was established for linear Jordan algebras (in the presence of $\frac{1}{2}$) by Medvedev in 1987 and Skosirskii in 1988. Partial results for quadratic Jordan algebras were obtained by Nam and McCrimmon in 1983. In 2007 Anquela and Cortes established that minimal ideals I of quadratic Jordan systems J (algebras, triples, or pairs) over an arbitrary ring of scalars Φ. were either simple or trivial in the sense that all triple products $\{I, I, I\}, U_{I}(I), P_{I}(I), Q_{I^{\varepsilon}}\left(I^{-\varepsilon}\right)$ vanish.

Thus as systems in their own right these triples and pairs have zero products, but in the case of algebras it is not obvious that a minimal ideal I which is cubeless $U_{I} I=0$ is also trivial as an algebra, i.e., squareless $I^{2}=0$ (implying $\{I, I, J\}=\{I, J, I\}=0$ as well). We will close this gap, and prove the stronger result that trivial minimal ideals are doubly trivial: all products of degree two in algebras, pairs, and triples also vanish.

$$
\text { The Algebra Case: } U_{I}(\widehat{J})=0
$$

Since J and its unital hull \widehat{J} have the same ideals, may assume that J is unital. We will prove that $U_{I} J=0$, in particular $I^{2}=U_{I}(1)=0$, by showing that $\boldsymbol{U}_{\boldsymbol{I}} \boldsymbol{J} \neq \mathbf{0}$ leads to a contradiction. Otherwise, since $U_{I} J$ is an ideal of J contained in I it equals I by minimality, hence $I=U_{I}(J)=$ $U_{U_{I} J} J$ is spanned for $w_{i} \in I, a_{i} \in J$ by elements

$$
\begin{aligned}
U_{\sum_{i} U_{w_{i}} a_{i}} J & =\sum_{i} U_{U_{w_{i}} a_{i}} J+\sum_{i<j} U_{U_{w_{i}} a_{i}, U_{w_{j}} a_{j}} J \\
& \subseteq 0+\sum_{i<j} U_{I, I} J=\{I, J, I\},
\end{aligned}
$$

since all $z_{i}:=U_{w_{i}} a_{i}$ are trivial $\left[U_{z_{i}} J=U_{w_{i}} U_{a_{i}} U_{w_{i}} J \subseteq\right.$ $U_{I}\left(U_{J} U_{I} J\right) \subseteq U_{I} I=0$ by cubelessness] leading to $\quad I=$ $\{I, J, I\}=V_{I, J}(I)$.

Choose a nonzero trivial element $z=U_{w} a \in U_{I} J$, so the ideal in J it generates is by minimality $I=\mathcal{M}(J) z$ where the multiplication algebra $\mathcal{M}(J)$ is spanned by all $U_{a}, a \in J$. Thus $I=V_{I, J}(I)=V_{I, J} \mathcal{M}(J) z$ and $z=T(z)$ for $T=\sum_{i} V_{w_{i}, y_{i}} U_{x_{i 1}} \cdots U_{x_{i n(i)}}$ for $w_{i} \in I, y_{i}, x_{i j} \in J$. Let X_{0} be the unital subspace spanned by the finite set of all $y_{i}, x_{i j}$ appearing in this sum (including $x_{0}=1$), and \mathcal{M}_{0} the unital subalgebra generated by all $U_{x}, x \in X_{0}$. Thus $\boldsymbol{T} \in \boldsymbol{V}_{\boldsymbol{I}, \boldsymbol{X}_{\mathbf{0}}} \mathcal{M}_{\mathbf{0}}$.

We have a Migration Lemma moving \mathcal{M}_{0} to the left past $V_{I, X_{0}}, V_{\boldsymbol{I}, \boldsymbol{X}_{\mathbf{0}}} \mathcal{M}_{\mathbf{0}} \subseteq \mathcal{M}_{\mathbf{0}} \boldsymbol{V}_{\boldsymbol{I}, \boldsymbol{X}_{\mathbf{0}}}$ repeatedly using the fact that for $w \in I, x, y \in X_{0}$ we have
$V_{w, y} U_{x}=-V_{w_{3}, x_{0}}+V_{w_{1}, x}+U_{x, x_{0}} V_{w_{1}, x_{0}}-U_{x} V_{w_{2}, x_{0}}+U_{x} V_{w, y}$ for $w_{1}=\{x, y, w\}, w_{2}=y \circ w, w_{3}=x \circ w_{1} \in I$. Thus by induction on m,

$$
T^{m} \in \overbrace{\left(V_{I, X_{0}} \mathcal{M}_{0}\right) \cdots\left(V_{I, X_{0}} \mathcal{M}_{0}\right)}^{m} \subseteq \mathcal{M}_{0} \overbrace{V_{I, X_{0}} \cdots V_{I, X_{0}}}^{m} .
$$

But for fixed $z_{i} \in I$ each $V_{z_{1}, y_{1}} \cdots V_{z_{m}, y_{m}}$ is an alternating multilinear function of $y_{1}, \ldots, y_{m} \in X_{0}$ modulo the ideal \mathcal{Z} of multiplications which annihilate $I, Z(I)=0$, since $V_{I, y} V_{I, y} \subseteq V_{I, U_{y} I}+U_{I, I} U_{y} \subseteq V_{I, I}+U_{I, I} U_{J}$ maps I into $\{I, I, I\} \subseteq U_{I} I=0$ by cubelessness. This alternating function must vanish on the finitely-spanned subspace X_{0} as soon as m exceeds the rank of the subspace, so for suitably large m we have $z=T^{m}(z) \subseteq Z(I)=0$, the desired contradiction.

The General Case:
All $P_{I} J=\{I, I, J\}=0$ for Jordan triples and pairs
It suffices to establish the result for triples: a Jordan pair $V:=\left(V^{+}, V^{-}\right)$determines a polarized Jordan triple $T(V)=V^{+} \oplus V^{-}$where triple and pair products coincide via $P_{V^{\varepsilon}}\left(V^{-\varepsilon}\right)=Q_{V^{\varepsilon}}\left(V^{-\varepsilon}\right)$ and $P_{V^{\varepsilon}}\left(V^{\varepsilon}\right)=\left\{V^{\varepsilon}, V^{\varepsilon}, V\right\}$ $=0$, and with some effort one can check that $I=\left(I^{+}, I^{-}\right)$ is a minimal ideal of V iff $T(I)=I^{+} \oplus I^{-}$is a minimal ideal of $T(V)$. Thus it suffices to consider only trivial minimal ideals $P_{I}(I)=0$ of a triple system J, and to prove double triviality $P_{I} J=\{I, I, J\}=0$.

Using Jordan triple multiplication rules such as $L_{x, a} P_{y}=$ $P_{y,\{a, x, y\}}-P_{y} L_{x, a}$ for $a \in I$ and $x, y \in X$, we obtain the $M_{I, X}$-Migration Lemma $M_{I, X} \mathcal{M}_{X} \subseteq \mathcal{M}_{X} M_{I, X}$ and the Switching Lemma $\quad M_{I, x} M_{I, y} \subseteq \widehat{M_{I, y}} M_{I, x}+\mathcal{Z}$ where $M_{I, X}=L_{X, I}+L_{I, X}+P_{X, I}$ denotes all the degree1 multiplications by I and elements of X, and \mathcal{M}_{X} is the unital subalgebra generated by all X-multiplications $L_{X, X}, P_{X, X}, P_{X}$ and \mathcal{Z} is the ideal of multiplications which annihilate $I, \mathcal{Z}(I)=0$.

LEMMA. (1) $\{I, I, J\} \subseteq\{I, J, I\} \subseteq P_{I}(J)$, so that if $P_{I} J=0$ then I is doubly trivial. (2) If $P_{I} J \neq 0$ then $I=P_{I} J=\{I, J, I\}=L_{I, J}(I) . \square$

THEOREM. Any trivial minimal ideal I in a Jordan triple system is doubly trivial.

PROOF: By (1) we may ASSUME $\boldsymbol{P}_{\boldsymbol{I}} \boldsymbol{J} \neq \mathbf{0}$, so some $z:=P_{w} y \neq 0$ for $w \in I, y \in J$. Again z is trivial and $I=\mathcal{M}(J) z$. Since by $(z), z \in I=L_{I, J}(I)=L_{I, J} \mathcal{M}(J) z$, there is a finite set $X=\left\{x_{1}, \ldots, x_{n}\right\} \subseteq J$ of elements appearing in this relation and we have $z=T(z)$ for $T \in$ $L_{I, X} \mathcal{M}_{X}$. Thus again
$T^{m} \in \overbrace{\left(M_{I, X} \mathcal{M}_{X}\right) \cdots\left(M_{I, X} \mathcal{M}_{X}\right)}^{m} \subseteq \mathcal{M}_{X} \overbrace{M_{I, X} \cdots M_{I, X}}^{m}$
by the $M_{I, X}$-Migration Lemma.

The proof for triples is more involved than that for algebras. We will prove that $T^{m} \in \mathcal{Z}$ for $m \geq 4 n+1$, so $z=T^{m}(z)=0$, contradicting our assumption. For $m \geq 4 n+1$ one of the n different x_{i} must appear at least 5 times, and by the Switching Lemma we can move them all to the end, so it suffices to prove that $M_{I, x}^{5} \subseteq \mathcal{Z}$. Each string of $5 L_{x, I}, L_{I, x}, P_{x, I}$ with the same x can be normalized modulo \mathcal{Z} as follows: the Jordan triple relations and $P_{I, I}, L_{I, I} \subseteq \mathcal{Z}$ by triviality imply
(I) $\quad L_{I, x} L_{x, I}$ can be replaced by $P_{x, I} P_{x, I}$, and vice versa
(II) $L_{I, x} P_{x, I}$ can be replaced by $P_{x, I} L_{x, I}$,
(III) $L_{I, x} L_{I, x}, L_{x, I} L_{x, I}, L_{x, I} P_{x, I}, P_{x, I} L_{I, x}$ can be replaced by 0 .

From (I)-(III) we can assume any $L_{I, x}$ appears at the end (and by (III) there is at most one of them), so the string has an initial substring of at least 4 terms consisting only of $L_{x, I}$'s and $P_{x, I}$'s. But $L_{x, I}$ cannot be followed by $L_{x, I}$ or $P_{x, I}$ by (III), so there is at most one $L_{x, I}$ at the end. Thus there must be a string of at least $3 P_{x, I}$, and we have $P_{x, I} P_{x, I} P_{x, I} \subseteq P_{x, I} L_{I, x} L_{x, I}+\mathcal{Z}[$ by (I)] $\subseteq \mathcal{Z}[$ by (III)]. Thus any string of 5 terms with the same x falls in \mathcal{Z}, leading to the contradiction $z=T^{m}(z) \in \mathcal{Z}(I)=0$.

