Ivan P. Shestakov
IME USP

Nonsupercommutative Jordan
superalgebras of capacity n > 2

Alexandre P. Pozhidaev
IM SB RAS

Supported by FAPESP
Proc. 2008/50142-8



e An analogue of K. McCrimmon’'s Coor-
dinatization Theorem

e Simplicity of the symmetrized Jordan
superalgebra of capacity n > 1 — an ana-
log of R. Oehmke’s theorem

e T he problem of classification of the sim-
ple finite dimensional nonsupercommuta-
tive Jordan superalgebras



Noncomm. J. a.: 1948: A. A. Albert;
Noncomm. J. a. y = 0: R.D.Schafer,
Flexible p.-a. a. y # 2: R.H.Oehmke;
Noncom. J.a. cap. > 2: K.McCrimmon;
capacity two: K.C.Smith;

positive characteristic: L.Kokoris.



The f.d. simple J. s.a. (F = F9):
V. G. Kac; 1. Kantor;
J. s.a. x> 0: I. Kaplansky;
f.d. simple J. s.a. y # 2, s.S. even part.:
M. Racine and E. Zelmanov;
the even part is not semisimple:
C. Martinez and E. Zelmanov.



Noncomm. J.a.

(zy)e = 22 (yz), (zy)z = z(yz)
Examples: alternative; anticommutative
a-b=Xab+ (1 — N\)ba
A(aq,...,an) — Cayley-Dickson
Quadratic flexible
e F.d. nil-s.s. possesses the unity, and it
IS the direct sum of simple
e an analog of the Wedderburn theorem
on nil-radical does not hold



1. Coordinatization Theorem

1. Defining identities. U = U5®Uz; Lz, Ry;
(—1)2Y := (—1)P@)p¥); (_1)2¥:2 .= (—1)rytzztyz,

[z, y] =2y — (=1)"Yyz; zoy = xy+ (—1)"Yyx.

Nonsupercomm. Jordan superalgebra:

[Ryoy, L] 4+ (—=1)*WT2) [Ryos, L]
+ (_1)z($+y) [Rzox, Ly] — O7

[Ra, Ly] [La, Ry] -



T he flexibility may be written as:

(:an)'z) — _(_1)£E,y,2(z7y7aj)7

From the definition, we have in NJSA:
[Ezoy, F] + (1)WY T By, Fy]
—|—(—]_)Z(x+y)[Ezow,Fy] =0,
[EwaFy] + (_1)wy[EyaFm] =0,
where {F, F} = {R, L}.



Lemma. In an arbitrary flexible s.a. A
the following operator identities hold:

1) Lgoy — Ly 0 Ly = Raoy — Ry 0 Ry;
2) [Reo Ry, R.] — [Ra, Ry o R:] + (=1)¥*[Ry o R., R,] = O;
3) [Lzo Ly, R.] — [Ra, Ly o L] + (=1)¥*[Lg o L., R,] = O;
4) [Lyo Ly, L.] — [Ly, Lyo L] + (=1)¥*[Ly 0 L., L,] = O;
5) [Rao Ry, L:] — [La, Ry o R.] + (—1)¥*[Rs o R, L,] = O.

Moreover, 2) and 4) hold in every superalgebra.



Lemma. In an arbitrary NJSA U the fol-
lowing hold:

1) [Raoy, R:] — [Rz, Ryoz] + (—1)¥*[Ryoz, Ry] = O;

2) [Laoy, Lz] — [Lay Lyo:] + (—1)¥*[Laoz, Ly] = O.

Denote by I the Grassman superalgebra
on generators 1,&;,,1 € Z; we admit Z = @.



Lemma. U is a nonsupercommutative
Jordan superalgebra iff U is a flexible su-
peralgebra such that U(1) is a Jordan su-
peralgebra.

(Pass to M(U); use M(U(H)) =rw)+)



2. Peirce decompositions. We have

Ry(zory + (1)) (R, + L)Ly L.
+(_]—)yz(Rz + Lz)Lth —
RyR.ot + (—1)"%#(Ry + Ly) L2y
+(~1)YEO(R, + L) Ly,
IfecU: e? =e, e is homog. = e € U, and

Re+ (Re+ Le)L? = (Re+ Le)Le + R2.
Also, L. — L? = R. — R2. Therefore,

(Re + Le)(Le — LZ) = (Le — Lg).



Put U, ={x:ex+ xe =1ix} for i = 0,1, 2.
U=Ug® U1 P Uy
The spaces Up,U; and U, satisfy:

U? C U;, UUp 4+ UyU; C Uy, UglUs = 0,

1
a:EUi:>aze=ea:=§ix, 1 =0, 2,

x,y e Uy = xoy € Uy+ Uo.



If e = % ;e is the sum of orthogonal
idempotents then we have the following
Peirce decomposition:

- n
where

Uoo ={xz €U : e;x = ze; = 0 for all i},
Ui=4{x€U:ex=2xe; =2x,ejx =xe; =0,j # 1},
Uo={zecU:ex+ze; =x,ejx+xe; =0,5 # i} = U,
Uj=4{x€U:ex—+ xe; =ejx+ xe; = x} = Uy,

xz € Ujj = e;x = ze; (even if i = j # 0).



ASs before, we have the associated pro-
Jections F;; on U;; and the inclusions:

Ui C Uy, UiiUsj + UiiU; C Uy,
UijUjk + UjrUij C Uik, Ui C Ugi + Ugj + Uj;
for the pairwise different indices (non-

mentioned products are zero).
Note that Ugg=U;g =0 if e = 1.



Lemma. z,y € Ug,u € Us,u; €U;,i = 0,2, z,w € U=

e(zoy) =ezoy =2zy, (yoz)e=1yoze=uyz;
e(uoz) =uoez=uz, (zou)e = zeou = zu;
P>(ezow) = Py(zowe) = Pr(zw),
Po(woez) = Py(weo z) = Py(wz);
Pi(zw) ou; = Py(z(wouy))

= (—1)""P1((z o uy)w)



Lemma. For z,y € U;, +: = 0,2, the follow-
ing operator equalities hold on Uy :

1) Loy = (=1)"YLyLz + RzLy;

2) Ryy = RzRy + (—1)"YLyRy;

3) Lgy = (—1)$yLny + LRy,

4) Ryy = RyRy + (—1)"YRyLy;

5) LyRy = RyLy; 6) (Ry + Lz)Re = Ru;
7) (R:c + Lx)Le = L.



Lemma. If N; C Uy is such that U;N;i +
N1U; C N1 with : = 0,2 then
N; = P;(U1 N1 + N1Uy) < U;.
Corollary. Ny =U1 = B = Ng+ N1+ N>JU.
red UM ={z ety Lex = Az}

Lemma. U;uN + My, c vl for i =0, 2.



3. Algebras with connected idempotents.
red, ecU: S¥e) = v e) + ul (e,

519 = 519y n sl e))

e; and e (Jo Cb,vij,vﬂ €S, ¢])
even-connected: v;;v;; = vj;v;j = e; + ej;
odd-connected: VijVji = —VjV;5 = €5 — €4,
connected; ¢: indicator of Uj;.



Lemma. For all ¢, 5,k such that : = j:

[¢] [¢]
UjkSir, € Sij

Lemma Z7. Assume that 1 =} ;e; IS
the sum of n > 3 connected orthogonal
idempotents. Then all indicators have
a common value ¢ and the following are
valid:



1) Uy = 57;[?] (i % J),

2) Ui = UpUyj + U iUs, (F 4,5,k ),
3) Uy = Py(U3) (i#k);

4) U3 C Ui + Ugy, (i # k).

If e = ¢;, then we have

5) Uy = S[¢];

6) U; = P,(U2)(i = 0,2);

7) U7 C Ug + Us.



The element ¢ € ®, which is uniquely de-
termined by U, will be called the indica-
tor of U. We say U is of indicator type
¢ if there is a ¢ € ® such that 1)-7) of
Lemma Z7 hold for U. We say that a
nonsupercomm. J. s.a. is of capacity k if
it possesses k pairwise orthogonal idem-
potents, and U with unity of capacity k if
this unity is decomposed into a sum of &
primitive orthogonal idempotents.



Lemma. If U is of indicator type ¢ = ; and
U possesses unity of capacity > 3 then U
IS supercommutative.

Lemma. If U is of indicator type ¢ = 0O
and of capacity > 3 then U is associative.

3. Mutations. If U = (U, -) is a superalge-
bra and \ € & then the \-mutation of U
is the superalgebra UM = (U, -,), where

zay=Ax-y+ (1) (1 - Ny =



Note that U(1/2) is just the symmetrized
superalgebra UT.

The mapping 7 : A— (A+1)/2is a 1-1
mapping of ® onto itself with inverse r—1 :
A— 2\ —1, so in a natural way it carries
the field & = (¥, 4, ) isomorphically onto
a field & = (&, ®,®), where

AO U =2\ — X —pu—+ 1.



Consider the double mutation (UWM)®);
YW = ghow),

If A # % then )\ has an inverse p in &, so
we can recover U from UXN): U =) =
vQor) = (UMY, However, if A = % we
cannot easily recover U because all muta-
tions have the same U(t). Thus we can-
not so easily recover an associative s.a.

U from the special J. s.a. U(),



Note that an ideal in U remains an ideal
in UM, so if A # L ideals in U and UM co-
incide. Since LYY = AL, 4+ (1 — ARy, RV =
AR:+ (1 —M)L,, it is clear that a mutation
of a nonsupercommutative Jordan super-
algebra is again a nonsupercommutative
Jordan superalgebra.



As an example, a split quasi-associative
s.a. is a mutation DY) of an associative
s.a. D. Then U is quasi-associative if
there is (2 D d: Ug Is a split quasi-assoc.
s.a. over Q: Ug = DW for X € Q.

We say that a Jordan s.a. U is strictly
nonsupercomm. if there are some homo-
geneous z,y € U: zy = (—1)%yzx.



Theorem. (Coordinatization Theorem) If U
IS a strictly nonsupercommutative J. s.a.
with n > 3 connected orthogonal idem-
potents then U = D,(f‘) IS a split quasi-
associative s.a. determined by the s.a.
Dy, of n x n matrices with entries in D,
where D is associative.



2. Simple superalgebras
In what follows: xoy = %(xy + (—1)%yx).

Lemma. Let (A,-) be a flexible superal-
gebra. If A(+) possesses the unity 1 =
> i,e; for some orthogonal even idem-
potents e¢; then the same holds for A.

Lemma. The mapping d = [-,x] iS a su-
perderivation in U(T) for every z c U.



Lemma. If U is simple then U() is dif-
ferentially simple.

Theorem. A f.d. central simple non-
supercomm. J. s.a. y = 0 is either

(a) of capacity 1,

(b) of capacity 2,

(¢) a quasi-associative superalgebra,

(d) a Jordan superalgebra.



Proof. Since U is central = Uqg is also
simple for Q2 = ®. It suffices to prove Ug
is of type (a)—(d), so we assume ¢ = o,
Since U™ is a diff. simple J. s.a., by Kac-
Cheng’s Theorem, U™ is the tensor prod-
uct of a simple J. s.a. and a Grassman
s.a. Classification of the simple f.d. J.
s.a. ®0 implies ¢ € U.



Thus, we may assume that U is of capac-
ity n > 2. Then the same argument and
Lemma above say that U contains the
unity, which is a sum of n orth. idemp.:
1 = Z?:lei' We see B = Ng + Uj + No
IS an ideal; by simplicity B = U. Thus,
Po(U?) = Uy, P>(U7) = Us, which gives 6)
and 2)—3) of Lemma Z7. 4) and 7) of
Lemma Z7 are proved as in Lemma 717.



Let o € d. For : =5 set

B;j = Si[;b], Sij = U;jB;j + Bi;Uij,
Bii = > P;i(Sij), B = ®B,,.
1]
B is an ideal. Since ® = &, L., has a
nonzero eigenvector in U;,, SO we may
find ¢: S =0, and B # 0. By simplicity,
B=U, and Uij = Bij = S[¢]

tj



Thus, U is of indicator type ¢ and with
unity of capacity > 3. We may assume
that ¢ + % and pass to the p-mutation
of U, where u is the inverse for ¢ in o.
Moreover, U(#) is a central simple non-
supercomm. J. s.a. (®9) with unity of
capacity > 3. The same argument gives:
U is of indicator type 0. Then U is
associative, and we arrive at (c¢).



Corollary. Let U be a f.d. simple cen-
tral nonsupercomm. J. s.a. over 9 and
of capacity > 3. Then the symmetrized
Jordan superalgebra U+ is simple.

Proof. We assume U dquasi-associative.
Then U = AW for an associative A. It
is easy to see that (A(W)(+) = A+, we
may assume ® = &. Since A is simple f.d.
associative s.a., A(T) is simple J. s.a.



3. An analog of R. Oehmke’s Theorem

Let U be a nonsupercomm. J. s.a., e be
an idempotent in U, and U = @U; be the
Peirce decomposition of U. Fix i € {0,2}.
Define v(z) = R; + L, for x € U;, where
R., L, are the restr. of Ry, L, on Uy. Then

v(zy) = v(@)v(y)Re + (=1)"Yv(y)v(z)Le.



Denote by [; the subalgebra in [ gen-
erated by ¢, i € Z. Let (z,y,2)T be the
associator in U(1),

Proposition. Let U be a nonsupercomm.
J.s.a., U= Jgl for some J. s.a. J, and let
U = ®7_yU; be the Peirce decomposition
of U relative to an idempotent e. Assume
that for every x € U; the mapping y — zoy
is injective on U; and (U;,U1,U;)*T = 0 for
i=0,2. Then I .= ®7_,(J;® 1) qU.



J(V,f): Let V =Vy5+ V73 be a Zr-graded
vector space with a nondeg. superform
f, which is symm. on Vj and skew-symm.
on Vi, f(Vq,Vpy) = f(Vp, V1) = 0. Consider
J = dpV. Let 1 be the unity in . Define:
(a+v)(B+w) = (aB+ f(v,w)) + (aw + Bv).
Then JO = b + VO, Jl = Vl. We may as-
sume J(V, f) has capacity two: 1 = e +teo.



Lemma. Let U be a simple nonsuper-
comm. J.s.a., Jbeald.s.a.: UT) 2 jgr.
If J = J(V,f), K3, Ki9,D¢ then U is under
condition of Proposition. In particular,
U(+) is a simple J. s.a.

Remark. Note that the unity In Kqig IS
the sum of three orthogonal idempotents.
Since Kig IS not special, Theorem says
that U = Kq¢ if U(+) = Kjo.



Consider the associative superalgebra Q(n),
which is a subsuperalgebra in M, (P):

Q(n)(_) — <<z§ j),AEMn(¢)>,
Qn); = <<g €>,B€Mn(¢)>.



Lemma. Let J=0Q2)1) and U =J@T.
Thenforallacec U,z =2 f,y =yRg, x,y €
J., f,g e, i=0,2, holds

(aB)y = (—1)™T*(ap)z;
and v : U, — End (Uq,U7) is injective.
Lemma. Let U be a nonsupercommuta-

tive J. s.a.: UH) =2 92 9. Then
U(+) is simple.



Theorem. Let U be a simple finite di-
mensional nonsupercommutative Jordan
superalgebra of characteristic O and ca-
pacity > 1. Then U(1) is simple.



4. Simple nonsupercommutative Jordan
superalgebras of capacity 2

Lemma. For every fixed i € {0,2} and for
all z,y,z € Uy, the following relations hold:

Pi(z o P1(yz)) = Py(Py(ay) o 2)
= (=)Wt p(y o Py (22)).



The case D;. a,t € . Define U = Dy(«a):

U= U(_) D UI; U@ — <61762>7 UI — (a:,y>,

ef

—e;, ejeo =0, ejxr = axr = xeoy,
ze1 = (1 —a)z = epz,e1y = (1 — a)y = ye,
eoy = ay = yei,zy = 2(aey + (1 — a)ter),

yr = —2((1 — a)e1 + ates), 22 =y2 = 0.



Lemma. The superalgebra D;(«) is flexible;
Di(«) 1s simple &t # 0.

Lemma. Let U be a nonsupercommuta-
tive Jordan superalgebra such that U(+) =2
Dy, t0. Then U = Di(«a) for some o €
(after a possible quadratic ext. of o).

. Note: D;(«) is not quasi-associative,
since otherwise D; =2 A(+) for some asso-
ciative A, which is impossible.



The case Q(2)(1).

Lemma. Let U be a nonsupercommuta-
tive Jordan superalgebra such that U(+) =2
Q(2)(+). Then U is a split quasiassocia-
tive superalgebra.



The case J(V, f). Here U is a nonsuper-
comm J. s.a. J:=U{) =2 j(v, f) Then
J = o+ V; fix wu: f(u u) = —. Then
e1 (2,u) and e, = (2, —u) are orthog.:
1l=e1+erx. W.r.t. eq:

Jo = (ep) = Up, Jo = (e1) = Uy,

= ((O,w) : f(u,w) = 0) = Uj.
The s.a. J induces a multiplication on V:

z xy = P1((0,2)(0,y)).




Lemma. If U is a nonsupercomm. J. s.a.:
Ji=Ut) =dapVisal. s.a. J(V,f) then
the multiplication in U is given by

(a,z)(B,y) = (B + f(z,y),ay + Bz + z x y),

where x is an antisupercomm. product on
Vand f: f(zxy,z) = f(z,y*z).



The case K3. U(t) 2 K3 (K3 of cap. 1).

Define s.a. K3(a,3,v). Put K3(«o,8,7) =
U(—) @ Uz, U@ = (e), U1 = (z,w). Product:

e z w
e e az+ Bw |vz4+ (1 —a)w
z | (1—-—a)z—Pw —2e 2o
w aQw — Yz —2(1 —a)e 2~ve




Lemma. K3(a,3,7) is a simple flexible s.a.

Lemma. Let U be a nonsupercomm. J.
s.a.: U) =2 K5, Then U £ K3z(a, 8,7).

[ (n) stands for the simple J. s.a. of Pois-
son Grassmann brackets.



Theorem. Let U be a f.d. central simple
nonsupercomm. J. s.a. over &9, which is
neither quasi-associative nor supercomm.
Then, either U is isomorphic to one of:
i) U= Kz(a,B,7);

i) U Z2r(n)er;

or dP D & (deg 1 or 2): U®ep P = as a
s.a. over P to one of.

i11) Di(a);

iv) UV, f,%).
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