Ivan P. Shestakov IME USP

Nonsupercommutative Jordan superalgebras of capacity $n \geq 2$

Alexandre P. Pozhidaev IM SB RAS
Supported by FAPESP Proc. 2008/50142-8

- An analogue of K. McCrimmon's Coordinatization Theorem
- Simplicity of the symmetrized Jordan superalgebra of capacity $n>1$ - an ana\log of R. Oehmke's theorem
- The problem of classification of the simple finite dimensional nonsupercommutative Jordan superalgebras

Noncomm. J. a.: 1948: A. A. Albert; Noncomm. J. a. $\chi=0$: R.D.Schafer; Flexible p.-a. a. $\chi \neq 2$: R.H.Oehmke; Noncom. J.a. cap. > 2: K.McCrimmon; capacity two: K.C.Smith; positive characteristic: L.Kokoris.

The f.d. simple J. s.a. $\left(F=\bar{F}^{0}\right)$:
V. G. Kac; I. Kantor;
J. s.a. $\chi>0$:
I. Kaplansky;
f.d. simple J. s.a. $\chi \neq 2$, s.s. even part:
M. Racine and E. Zelmanov;
the even part is not semisimple:
C. Martinez and E. Zelmanov.

Noncomm. J.a.

$$
\left(x^{2} y\right) x=x^{2}(y x),(x y) x=x(y x)
$$

Examples: alternative; anticommutative

$$
\begin{gathered}
a \cdot{ }_{\lambda} b=\lambda a b+(1-\lambda) b a \\
A\left(\alpha_{1}, \ldots, \alpha_{n}\right) \text { - Cayley-Dickson } \\
\text { Quadratic flexible }
\end{gathered}
$$

- F.d. nil-s.s. possesses the unity, and it is the direct sum of simple
- an analog of the Wedderburn theorem on nil-radical does not hold

1. Coordinatization Theorem

1. Defining identities. $U=U_{\overline{0}} \oplus U_{\overline{1}} ; L_{x}, R_{x}$;
$(-1)^{x y}:=(-1)^{p(x) p(y)} ;(-1)^{x, y, z}:=(-1)^{x y+x z+y z}$;
$[x, y]=x y-(-1)^{x y} y x ; x \circ y=x y+(-1)^{x y} y x$.
Nonsupercomm. Jordan superalgebra:

$$
\begin{aligned}
{\left[R_{x \circ y}, L_{z}\right] } & +(-1)^{x(y+z)}\left[R_{y \circ z}, L_{x}\right] \\
& +(-1)^{z(x+y)}\left[R_{z \circ x}, L_{y}\right]=0, \\
{\left[R_{x}, L_{y}\right] } & =\left[L_{x}, R_{y}\right] .
\end{aligned}
$$

The flexibility may be written as:

$$
\begin{aligned}
& (-1)^{x y} L_{x y}-L_{y} L_{x}=R_{y x}-R_{y} R_{x}, \\
& (x, y, z)=-(-1)^{x, y, z}(z, y, x),
\end{aligned}
$$

From the definition, we have in NJSA:

$$
\begin{gathered}
{\left[E_{x \circ y}, F_{z}\right]+(-1)^{x(y+z)}\left[E_{y \circ z}, F_{x}\right]} \\
+(-1)^{z(x+y)}\left[E_{z \circ x}, F_{y}\right]=0, \\
{\left[E_{x}, F_{y}\right]+(-1)^{x y}\left[E_{y}, F_{x}\right]=0,}
\end{gathered}
$$

where $\{E, F\}=\{R, L\}$.

Lemma. In an arbitrary flexible s.a. A the following operator identities hold:

1) $L_{x \circ y}-L_{x} \circ L_{y}=R_{x \circ y}-R_{x} \circ R_{y}$;
2) $\left[R_{x} \circ R_{y}, R_{z}\right]-\left[R_{x}, R_{y} \circ R_{z}\right]+(-1)^{y z}\left[R_{x} \circ R_{z}, R_{y}\right]=0$;
3) $\left[L_{x} \circ L_{y}, R_{z}\right]-\left[R_{x}, L_{y} \circ L_{z}\right]+(-1)^{y z}\left[L_{x} \circ L_{z}, R_{y}\right]=0$;
4) $\left[L_{x} \circ L_{y}, L_{z}\right]-\left[L_{x}, L_{y} \circ L_{z}\right]+(-1)^{y z}\left[L_{x} \circ L_{z}, L_{y}\right]=0$;
5) $\left[R_{x} \circ R_{y}, L_{z}\right]-\left[L_{x}, R_{y} \circ R_{z}\right]+(-1)^{y z}\left[R_{x} \circ R_{z}, L_{y}\right]=0$.

Moreover, 2) and 4) hold in every superalgebra.

Lemma. In an arbitrary NJSA U the following hold:

1) $\left[R_{x \circ y}, R_{z}\right]-\left[R_{x}, R_{y \circ z}\right]+(-1)^{y z}\left[R_{x \circ z}, R_{y}\right]=0$;
2) $\left[L_{x \circ y}, L_{z}\right]-\left[L_{x}, L_{y \circ z}\right]+(-1)^{y z}\left[L_{x \circ z}, L_{y}\right]=0$.

Denote by Γ the Grassman superalgebra on generators $1, \xi_{i}, i \in \mathcal{I}$; we admit $\mathcal{I}=\varnothing$.

Lemma. U is a nonsupercommutative Jordan superalgebra iff U is a flexible superalgebra such that $U^{(+)}$is a Jordan superalgebra.
(Pass to $\Gamma(U)$; use $\Gamma\left(U^{(+)}\right)=\Gamma(U)^{(+)}$)
2. Peirce decompositions. We have

$$
\begin{gathered}
R_{y(z o t)}+(-1)^{t(y+z)}\left(R_{t}+L_{t}\right) L_{y} L_{z} \\
+(-1)^{y z}\left(R_{z}+L_{z}\right) L_{y} L_{t}= \\
R_{y} R_{z \circ t}+(-1)^{t, y, z}\left(R_{t}+L_{t}\right) L_{z y} \\
+(-1)^{y(z+t)}\left(R_{z}+L_{z}\right) L_{t y} .
\end{gathered}
$$

If $e \in U: e^{2}=e, e$ is homos. $\Rightarrow e \in U_{\overline{0}}$, and $R_{e}+\left(R_{e}+L_{e}\right) L_{e}^{2}=\left(R_{e}+L_{e}\right) L_{e}+R_{e}^{2}$.
Also, $L_{e}-L_{e}^{2}=R_{e}-R_{e}^{2}$. Therefore,

$$
\left(R_{e}+L_{e}\right)\left(L_{e}-L_{e}^{2}\right)=\left(L_{e}-L_{e}^{2}\right)
$$

Put $U_{i}=\{x: e x+x e=i x\}$ for $i=0,1,2$.

$$
U=U_{0} \oplus U_{1} \oplus U_{2}
$$

The spaces U_{0}, U_{1} and U_{2} satisfy:

$$
\begin{aligned}
& U_{i}^{2} \subseteq U_{i}, U_{i} U_{1}+U_{1} U_{i} \subseteq U_{1}, U_{0} U_{2}=0, \\
& x \in U_{i} \Rightarrow x e=e x=\frac{1}{2} i x, i=0,2, \\
& x, y \in U_{1} \Rightarrow x \circ y \in U_{0}+U_{2} .
\end{aligned}
$$

If $e=\sum_{i=1}^{n} e_{i}$ is the sum of orthogonal idempotents then we have the following Peirce decomposition:

$$
U=\oplus_{i, j=0}^{n} U_{i j},
$$

where

$$
\begin{aligned}
& U_{00}=\left\{x \in U: e_{i} x=x e_{i}=0 \text { for all } i\right\}, \\
& U_{i i}=\left\{x \in U: e_{i} x=x e_{i}=x, e_{j} x=x e_{j}=0, j \neq i\right\}, \\
& U_{i 0}=\left\{x \in U: e_{i} x+x e_{i}=x, e_{j} x+x e_{j}=0, j \neq i\right\}=U_{0 i}, \\
& U_{i j}=\left\{x \in U: e_{i} x+x e_{i}=e_{j} x+x e_{j}=x\right\}=U_{j i}, \\
& \left.x \in U_{i j} \Rightarrow e_{i} x=x e_{j} \text { (even if } i=j \neq 0\right) .
\end{aligned}
$$

As before, we have the associated projections $P_{i j}$ on $U_{i j}$ and the inclusions:

$$
\begin{aligned}
& U_{i i}^{2} \subseteq U_{i i}, U_{i i} U_{i j}+U_{i j} U_{i i} \subseteq U_{i j} \\
& U_{i j} U_{j k}+U_{j k} U_{i j} \subseteq U_{i k}, U_{i j}^{2} \subseteq U_{i i}+U_{i j}+U_{j j}
\end{aligned}
$$

for the pairwise different indices (nonmentioned products are zero).
Note that $U_{00}=U_{i 0}=0$ if $e=1$.

Lemma. $x, y \in U_{0}, u \in U_{2}, u_{i} \in U_{i}, i=0,2, z, w \in U_{1} \Rightarrow$

$$
\begin{aligned}
& e(z \circ y)=e z \circ y=z y, \quad(y \circ z) e=y \circ z e=y z ; \\
& e(u \circ z)=u \circ e z=u z, \quad(z \circ u) e=z e \circ u=z u ; \\
& P_{2}(e z \circ w)=P_{2}(z \circ w e)=P_{2}(z w) \\
& P_{0}(w \circ e z)=P_{0}(w e \circ z)=P_{0}(w z) \\
& P_{1}(z w) \circ u_{i}=P_{1}\left(z\left(w \circ u_{i}\right)\right) \\
& \quad=(-1)^{w u_{i}} P_{1}\left(\left(z \circ u_{i}\right) w\right)
\end{aligned}
$$

Lemma. For $x, y \in U_{i}, i=0,2$, the following operator equalities hold on U_{1} :

1) $L_{x y}=(-1)^{x y} L_{y} L_{x}+R_{x} L_{y}$;
2) $R_{x y}=R_{x} R_{y}+(-1)^{x y} L_{y} R_{x}$;
3) $L_{x y}=(-1)^{x y} L_{y} L_{x}+L_{x} R_{y}$;
4) $R_{x y}=R_{x} R_{y}+(-1)^{x y} R_{y} L_{x}$;
5) $L_{x} R_{y}=R_{x} L_{y}$; 6) $\left(R_{x}+L_{x}\right) R_{e}=R_{x}$;
6) $\left(R_{x}+L_{x}\right) L_{e}=L_{x}$.

Lemma. If $N_{1} \subseteq U_{1}$ is such that $U_{i} N_{1}+$ $N_{1} U_{i} \subseteq N_{1}$ with $i=0,2$ then

$$
N_{i}=P_{i}\left(U_{1} N_{1}+N_{1} U_{1}\right) \unlhd U_{i}
$$

Corollary. $N_{1}=U_{1} \Rightarrow B=N_{0}+N_{1}+N_{2} \unlhd U$.

$$
\lambda \in \Phi: U_{1}^{[\lambda]}=\left\{x \in U_{1}: L_{e} x=\lambda x\right\}
$$

Lemma. $U_{i} U_{1}^{[\lambda]}+U_{1}^{[\lambda]} U_{i} \subseteq U_{1}^{[\lambda]}$ for $i=0,2$.
3. Algebras with connected idempotents.
$\lambda \in \Phi, e \in U: S_{1}^{[\phi]}(e)=U_{1}^{[\lambda]}(e)+U_{1}^{[1-\lambda]}(e)$.

$$
S_{i j}^{[\phi]}=S_{1}^{[\phi]}\left(e_{i}\right) \cap S_{1}^{[\phi]}\left(e_{j}\right)
$$

e_{i} and $e_{j}:\left(\exists \phi \in \Phi, v_{i j}, v_{j i} \in S_{i j}^{[\phi]}\right)$ even-connected: $v_{i j} v_{j i}=v_{j i} v_{i j}=e_{i}+e_{j}$; odd-connected: $v_{i j} v_{j i}=-v_{j i} v_{i j}=e_{i}-e_{j}$; connected; ϕ : indicator of $U_{i j}$.

Lemma. For all i, j, k such that $i \neq j$:

$$
U_{j k} S_{i k}^{[\phi]} \subseteq S_{i j}^{[\phi]}
$$

Lemma $\mathcal{I T}$. Assume that $1=\sum_{i=1}^{n} e_{i}$ is the sum of $n \geq 3$ connected orthogonal idempotents. Then all indicators have a common value ϕ and the following are valid:

1) $U_{i j}=S_{i j}^{[\phi]}(i \neq j)$;
2) $U_{i j}=U_{i k} U_{k j}+U_{k j} U_{i k}(\neq i, j, k)$;
3) $U_{i i}=P_{i i}\left(U_{i k}^{2}\right)(i \neq k)$;
4) $U_{i k}^{2} \subseteq U_{i i}+U_{k k}(i \neq k)$.

If $e=e_{k}$ then we have
5) $U_{1}=S_{1}^{[\phi]}$;
6) $U_{i}=P_{i}\left(U_{1}^{2}\right)(i=0,2)$;
7) $U_{1}^{2} \subseteq U_{0}+U_{2}$.

The element $\phi \in \Phi$, which is uniquely determined by U, will be called the indicator of U. We say U is of indicator type ϕ if there is a $\phi \in \Phi$ such that 1)-7) of Lemma $\mathcal{I T}$ hold for U. We say that a nonsupercomm. J. s.a. is of capacity k if it possesses k pairwise orthogonal idempotents, and U with unity of capacity k if this unity is decomposed into a sum of k primitive orthogonal idempotents.

Lemma. If U is of indicator type $\phi=\frac{1}{4}$ and U possesses unity of capacity ≥ 3 then U is supercommutative.

Lemma. If U is of indicator type $\phi=0$ and of capacity ≥ 3 then U is associative.
3. Mutations. If $U=(U, \cdot)$ is a superalgebra and $\lambda \in \Phi$ then the λ-mutation of U is the superalgebra $U^{(\lambda)}=\left(U, \cdot{ }_{\lambda}\right)$, where

$$
x \cdot{ }_{\lambda} y=\lambda x \cdot y+(-1)^{x y}(1-\lambda) y \cdot x .
$$

Note that $U^{(1 / 2)}$ is just the symmetrized superalgebra U^{+}.

The mapping $\tau: \lambda \mapsto(\lambda+1) / 2$ is a $\mathbf{1 - 1}$ mapping of Φ onto itself with inverse τ^{-1} : $\lambda \mapsto 2 \lambda-1$, so in a natural way it carries the field $\Phi=(\Phi,+, \cdot)$ isomorphically onto a field $\widetilde{\Phi}=(\Phi, \oplus, \odot)$, where

$$
\begin{aligned}
& \lambda \oplus \mu=\lambda+\mu-\frac{1}{2}, \\
& \lambda \odot \mu=2 \lambda \mu-\lambda-\mu+1 .
\end{aligned}
$$

Consider the double mutation $\left(U^{(\lambda)}\right)^{(\mu)}$;

$$
\left(U^{(\lambda)}\right)^{(\mu)}=U^{(\lambda \odot \mu)}
$$

If $\lambda \neq \frac{1}{2}$ then λ has an inverse μ in $\tilde{\Phi}$, so we can recover U from $U^{(\lambda)}$: $U=U^{(1)}=$ $U^{(\lambda \odot \mu)}=\left(U^{(\lambda)}\right)^{(\mu)}$. However, if $\lambda=\frac{1}{2}$ we cannot easily recover U because all mutations have the same $U^{(+)}$. Thus we cannot so easily recover an associative s.a. U from the special J. s.a. $U^{(+)}$.

Note that an ideal in U remains an ideal in $U^{(\lambda)}$, so if $\lambda \neq \frac{1}{2}$ ideals in U and $U^{(\lambda)}$ coincide. Since $L_{x}^{(\lambda)}=\lambda L_{x}+(1-\lambda) R_{x}, R_{x}^{(\lambda)}=$ $\lambda R_{x}+(1-\lambda) L_{x}$, it is clear that a mutation of a nonsupercommutative Jordan superalgebra is again a nonsupercommutative Jordan superalgebra.

As an example, a split quasi-associative s.a. is a mutation $\mathcal{D}^{(\lambda)}$ of an associative s.a. \mathcal{D}. Then U is quasi-associative if there is $\Omega \supset \Phi: U_{\Omega}$ is a split quasi-assoc. s.a. over Ω : $U_{\Omega}=\mathcal{D}^{(\lambda)}$ for $\lambda \in \Omega$. We say that a Jordan s.a. U is strictly nonsupercomm. if there are some homogeneous $x, y \in U$: $x y \neq(-1)^{x y} y x$.

Theorem. (Coordinatization Theorem) If U is a strictly nonsupercommutative J. s.a. with $n \geq 3$ connected orthogonal idempotents then $U=\mathcal{D}_{n}^{(\lambda)}$ is a split quasiassociative s.a. determined by the s.a. \mathcal{D}_{n} of $n \times n$ matrices with entries in \mathcal{D}, where \mathcal{D} is associative.

2. Simple superalgebras

In what follows: $x \circ y=\frac{1}{2}\left(x y+(-1)^{x y} y x\right)$. Lemma. Let (A, \cdot) be a flexible superalgebra. If $A^{(+)}$possesses the unity $1=$ $\sum_{i=1}^{n} e_{i}$ for some orthogonal even idempotents e_{i} then the same holds for A.

Lemma. The mapping $d=[\cdot, x]$ is a superderivation in $U^{(+)}$for every $x \in U$.

Lemma. If U is simple then $U^{(+)}$is differentially simple.

Theorem. A f.d. central simple nonsupercomm. J. s.a. $\chi=0$ is either
(a) of capacity 1 ,
(b) of capacity 2 ,
(c) a quasi-associative superalgebra,
(d) a Jordan superalgebra.

Proof. Since U is central $\Rightarrow U_{\Omega}$ is also simple for $\Omega=\bar{\Phi}$. It suffices to prove U_{Ω} is of type $(a)-(d)$, so we assume $\Phi=\bar{\Phi}$. Since U^{+}is a diff. simple J. s.a., by KacCheng's Theorem, U^{+}is the tensor product of a simple J. s.a. and a Grassman s.a. Classification of the simple f.d. J. s.a. Φ^{0} implies $e \in U$.

Thus, we may assume that U is of capacity $n>2$. Then the same argument and Lemma above say that U contains the unity, which is a sum of n orth. idemp.: $1=\sum_{i=1}^{n} e_{i}$. We see $B=N_{0}+U_{1}+N_{2}$ is an ideal; by simplicity $B=U$. Thus, $P_{0}\left(U_{1}^{2}\right)=U_{0}, P_{2}\left(U_{1}^{2}\right)=U_{2}$, which gives 6) and 2)-3) of Lemma $\mathcal{I T}$. 4) and 7) of Lemma $\mathcal{I T}$ are proved as in Lemma $\mathcal{I T}$.

Let $\phi \in \Phi$. For $i \neq j$ set

$$
\begin{gathered}
B_{i j}=S_{i j}^{[\phi]}, \quad S_{i j}=U_{i j} B_{i j}+B_{i j} U_{i j} \\
B_{i i}=\sum_{i \neq j} P_{i i}\left(S_{i j}\right), \quad B=\oplus B_{i j}
\end{gathered}
$$

B is an ideal. Since $\Phi=\bar{\Phi}, L_{e_{i}}$ has a nonzero eigenvector in $U_{i k}$, so we may find $\phi: S_{i k}^{[\phi]} \neq 0$, and $B \neq 0$. By simplicity, $B=U$, and $U_{i j}=B_{i j}=S_{i j}^{[\phi]}$.

Thus, U is of indicator type ϕ and with unity of capacity ≥ 3. We may assume that $\phi \neq \frac{1}{4}$ and pass to the μ-mutation of U, where μ is the inverse for ϕ in $\tilde{\Phi}$. Moreover, $U^{(\mu)}$ is a central simple nonsupercomm. J. s.a. (Φ^{0}) with unity of capacity ≥ 3. The same argument gives: $U^{(\mu)}$ is of indicator type 0 . Then $U^{(\mu)}$ is associative, and we arrive at (c).

Corollary. Let U be a f.d. simple central nonsupercomm. J. s.a. over Φ^{0} and of capacity ≥ 3. Then the symmetrized Jordan superalgebra $U^{(+)}$is simple.

Proof. We assume U quasi-associative. Then $U=A^{(\mu)}$ for an associative A. It is easy to see that $\left(A^{(\mu)}\right)^{(+)}=A^{(+)}$. We may assume $\Phi=\Phi$. Since A is simple \mathbf{f}.d. associative s.a., $A^{(+)}$is simple J. s.a.
3. An analog of R. Oehmke's Theorem

Let U be a nonsupercomm. J. s.a., e be an idempotent in U, and $U=\oplus U_{i}$ be the Peirce decomposition of U. Fix $i \in\{0,2\}$. Define $\nu(x)=\bar{R}_{x}+\bar{L}_{x}$ for $x \in U_{i}$, where \bar{R}_{x}, \bar{L}_{x} are the restr. of R_{x}, L_{x} on U_{1}. Then

$$
\nu(x y)=\nu(x) \nu(y) \bar{R}_{e}+(-1)^{x y} \nu(y) \nu(x) \bar{L}_{e} .
$$

Denote by Γ_{1} the subalgebra in Γ generated by $\xi_{i}, \quad i \in \mathcal{I}$. Let $(x, y, z)^{+}$be the associator in $U^{(+)}$.

Proposition. Let U be a nonsupercomm. J. s.a., $U \cong J \otimes \Gamma$ for some J. s.a. J, and let $U=\oplus_{i=0}^{2} U_{i}$ be the Peirce decomposition of U relative to an idempotent e. Assume that for every $x \in U_{1}$ the mapping $y \mapsto x \circ y$ is injective on U_{i} and $\left(U_{i}, U_{1}, U_{i}\right)^{+}=0$ for $i=0,2$. Then $I:=\oplus_{i=0}^{2}\left(J_{i} \otimes \Gamma_{1}\right) \unlhd U$.
$J(V, f)$: Let $V=V_{0}+V_{1}$ be a Z_{2}-graded vector space with a nondeg. superform f, which is symm. on V_{0} and skew-symm. on $V_{1}, f\left(V_{1}, V_{0}\right)=f\left(V_{0}, V_{1}\right)=0$. Consider $J=\Phi \oplus V$. Let 1 be the unity in Φ. Define: $(\alpha+v)(\beta+w)=(\alpha \beta+f(v, w))+(\alpha w+\beta v)$.
Then $J_{0}=\Phi+V_{0}, J_{1}=V_{1}$. We may assume $J(V, f)$ has capacity two: $1=e_{1}+e_{2}$.

Lemma. Let U be a simple nonsupercomm. J. s.a., J be a J.s.a.: $U^{(+)} \cong J \otimes \Gamma$. If $J \cong J(V, f), K_{3}, K_{10}, D_{t}$ then U is under condition of Proposition. In particular, $U^{(+)}$is a simple J. s.a.

Remark. Note that the unity in K_{10} is the sum of three orthogonal idempotents. Since K_{10} is not special, Theorem says that $U \cong K_{10}$ if $U^{(+)} \cong K_{10}$.

Consider the associative superalgebra $Q(n)$, which is a subsuperalgebra in $M_{2 n}(\Phi)$:

$$
\begin{aligned}
& Q(n)_{\overline{0}}=\left\langle\left(\begin{array}{cc}
A & 0 \\
0 & A
\end{array}\right), A \in M_{n}(\Phi)\right\rangle \\
& Q(n)_{\overline{1}}=\left\langle\left(\begin{array}{cc}
0 & B \\
B & 0
\end{array}\right), B \in M_{n}(\Phi)\right\rangle
\end{aligned}
$$

Lemma. Let $J=Q(2)^{(+)}$and $U=J \otimes \Gamma$. Then for all $a \in U_{1}, \bar{x}=x \otimes f, \bar{y}=y \otimes g, x, y \in$ $J_{i}, f, g \in \Gamma, i=0,2$, holds

$$
(a \bar{x}) \bar{y}=(-1)^{x y+\bar{x} \bar{y}}(a \bar{y}) \bar{x}
$$

and $\nu: U_{i} \mapsto \operatorname{End}\left(U_{1}, U_{1}\right)$ is injective.

Lemma. Let U be a nonsupercommutative J. s.a.: $U^{(+)} \cong Q(2)^{(+)} \otimes \Gamma$. Then $U^{(+)}$is simple.

Theorem. Let U be a simple finite dimensional nonsupercommutative Jordan superalgebra of characteristic 0 and capacity >1. Then $U^{(+)}$is simple.

4. Simple nonsupercommutative Jordan superalgebras of capacity 2

Lemma. For every fixed $i \in\{0,2\}$ and for all $x, y, z \in U_{1}$, the following relations hold:

$$
\begin{aligned}
& P_{i}\left(x \circ P_{1}(y z)\right)=P_{i}\left(P_{1}(x y) \circ z\right) \\
& =(-1)^{x(y+z)} P_{i}\left(y \circ P_{1}(z x)\right) .
\end{aligned}
$$

The case $D_{t} . \alpha, t \in \Phi$. Define $U=D_{t}(\alpha)$:

$$
\begin{gathered}
U=U_{\overline{0}} \oplus U_{\overline{1}}, U_{\overline{0}}=\left\langle e_{1}, e_{2}\right\rangle, U_{\overline{1}}=\langle x, y\rangle, \\
e_{i}^{2}=e_{i}, e_{1} e_{2}=0, e_{1} x=\alpha x=x e_{2}, \\
x e_{1}=(1-\alpha) x=e_{2} x, e_{1} y=(1-\alpha) y=y e_{2}, \\
e_{2} y=\alpha y=y e_{1}, x y=2\left(\alpha e_{1}+(1-\alpha) t e_{2}\right), \\
y x=-2\left((1-\alpha) e_{1}+\alpha t e_{2}\right), x^{2}=y^{2}=0
\end{gathered}
$$

Lemma. The superalgebra $D_{t}(\alpha)$ is flexible; $D_{t}(\alpha)$ is simple $\Leftrightarrow t \neq 0$.

Lemma. Let U be a nonsupercommutative Jordan superalgebra such that $U^{(+)} \cong$ $D_{t}, t \neq 0$. Then $U \cong D_{t}(\alpha)$ for some $\alpha \in \Phi$ (after a possible quadratic ext. of Φ).

Remark. Note: $D_{t}(\alpha)$ is not quasi-associative, since otherwise $D_{t} \cong A^{(+)}$for some associative A, which is impossible.

The case $Q(2)^{(+)}$.

Lemma. Let U be a nonsupercommutative Jordan superalgebra such that $U^{(+)} \cong$ $Q(2)^{(+)}$. Then U is a split quasiassociative superalgebra.

The case $J(V, f)$. Here U is a nonsupercomm J. s.a. $J:=U^{(+)} \cong J(V, f)$. Then $J=\Phi+V$; fix $u: \quad f(u, u)=\frac{1}{4}$. Then $e_{1}=\left(\frac{1}{2}, u\right)$ and $e_{2}=\left(\frac{1}{2},-u\right)$ are orthog.: $1=e_{1}+e_{2}$. W.r.t. e_{1} :

$$
\begin{aligned}
& J_{0}=\left\langle e_{2}\right\rangle=U_{0}, \quad J_{2}=\left\langle e_{1}\right\rangle=U_{2}, \\
& J_{1}=\langle(0, w): f(u, w)=0\rangle=U_{1} .
\end{aligned}
$$

The s.a. J induces a multiplication on V :

$$
x \times y=P_{1}((0, x)(0, y)) .
$$

Lemma. If U is a nonsupercomm. J. s.a.: $J:=U^{(+)}=\Phi \oplus V$ is a J. s.a. $J(V, f)$ then the multiplication in U is given by

$$
(\alpha, x)(\beta, y)=(\alpha \beta+f(x, y), \alpha y+\beta x+x \star y),
$$

where \star is an antisupercomm. product on V and $f: f(x \star y, z)=f(x, y \star z)$.

The case $K_{3} . U^{(+)} \cong K_{3}$ (K_{3} of cap. 1).
Define sa. $K_{3}(\alpha, \beta, \gamma)$. Put $K_{3}(\alpha, \beta, \gamma):=$ $U_{\overline{0}} \oplus U_{\overline{1}}, U_{\overline{0}}=\langle e\rangle, U_{\overline{1}}=\langle z, w\rangle$. Product:

	e	z	w
e	e	$\alpha z+\beta w$	$\gamma z+(1-\alpha) w$
z	$(1-\alpha) z-\beta w$	$-2 \beta e$	$2 \alpha e$
w	$\alpha w-\gamma z$	$-2(1-\alpha) e$	$2 \gamma e$

Lemma. $K_{3}(\alpha, \beta, \gamma)$ is a simple flexible s.a.

Lemma. Let U be a nonsupercomm. J. s.a.: $U^{(+)} \cong K_{3}$. Then $U \cong K_{3}(\alpha, \beta, \gamma)$.
$\Gamma(n)$ stands for the simple J. s.a. of Poisson Grassmann brackets.

Theorem. Let U be a f.d. central simple nonsupercomm. J. s.a. over Φ^{0}, which is neither quasi-associative nor supercomm. Then, either U is isomorphic to one of:
i) $U \cong K_{3}(\alpha, \beta, \gamma)$;
ii) $U^{(+)} \cong \Gamma(n) \otimes \Gamma$; or $\exists P \supset \Phi$ (deg 1 or 2): $U \otimes_{\Phi} P \cong$ as a s.a. over P to one of:
iii) $D_{t}(\alpha)$;
iv) $U(V, f, \star)$.
K. McCrimmon, Structure and repr. of noncomm. J.a., Trans. Amer. Math. Soc. 121 (1966), 187-199.
R. H. Oehmke, On flexible algebras, Ann. of Math. (2) 68 (1958), 221-230.

S-J. Cheng, Diff. simple Lie s.a. and repr. of semisimple Lie s.a, J. of Alg. 173 (1995), 1-43.

