Ivan P. Shestakov IME USP

Nonsupercommutative Jordan superalgebras of capacity $n \ge 2$

Alexandre P. Pozhidaev IM SB RAS Supported by FAPESP Proc. 2008/50142-8 • An analogue of K. McCrimmon's Coordinatization Theorem

• Simplicity of the symmetrized Jordan superalgebra of capacity n > 1 — an analog of R. Oehmke's theorem

 The problem of classification of the simple finite dimensional nonsupercommutative Jordan superalgebras Noncomm. J. a.: 1948: A. A. Albert; Noncomm. J. a. $\chi = 0$: R.D.Schafer; Flexible p.-a. a. $\chi \neq 2$: R.H.Oehmke; Noncom. J.a. cap. > 2: K.McCrimmon; capacity two: K.C.Smith; positive characteristic: L.Kokoris. The f.d. simple J. s.a. $(F = \overline{F}^0)$: V. G. Kac; I. Kantor; J. s.a. $\chi > 0$: I. Kaplansky; f.d. simple J. s.a. $\chi \neq 2$, s.s. even part: M. Racine and E. Zelmanov; the even part is not semisimple:

C. Martinez and E. Zelmanov.

Noncomm. J.a.

 $(x^2y)x = x^2(yx), (xy)x = x(yx)$ Examples: alternative; anticommutative $a \cdot_{\lambda} b = \lambda ab + (1 - \lambda)ba$ $A(\alpha_1, \dots, \alpha_n)$ — Cayley-Dickson Quadratic flexible • F.d. nil-s.s. possesses the unity, and it is the direct sum of simple • an analog of the Wedderburn theorem on nil-radical does not hold

1. Coordinatization Theorem

1. Defining identities. $U = U_{\overline{0}} \oplus U_{\overline{1}}$; L_x, R_x ; $(-1)^{xy} := (-1)^{p(x)p(y)}$; $(-1)^{x,y,z} := (-1)^{xy+xz+yz}$; $[x,y] = xy - (-1)^{xy}yx$; $x \circ y = xy + (-1)^{xy}yx$.

Nonsupercomm. Jordan superalgebra:

$$[R_{x \circ y}, L_z] + (-1)^{x(y+z)} [R_{y \circ z}, L_x] + (-1)^{z(x+y)} [R_{z \circ x}, L_y] = 0, [R_x, L_y] = [L_x, R_y].$$

The flexibility may be written as:

$$(-1)^{xy}L_{xy} - L_yL_x = R_{yx} - R_yR_x,$$

 $(x, y, z) = -(-1)^{x,y,z}(z, y, x),$

From the definition, we have in NJSA:

$$[E_{x \circ y}, F_z] + (-1)^{x(y+z)} [E_{y \circ z}, F_x] + (-1)^{z(x+y)} [E_{z \circ x}, F_y] = 0, [E_x, F_y] + (-1)^{xy} [E_y, F_x] = 0,$$

where $\{E, F\} = \{R, L\}$.

Lemma. In an arbitrary flexible s.a. *A* the following operator identities hold:

1)
$$L_{x \circ y} - L_x \circ L_y = R_{x \circ y} - R_x \circ R_y;$$

2) $[R_x \circ R_y, R_z] - [R_x, R_y \circ R_z] + (-1)^{yz} [R_x \circ R_z, R_y] = 0;$
3) $[L_x \circ L_y, R_z] - [R_x, L_y \circ L_z] + (-1)^{yz} [L_x \circ L_z, R_y] = 0;$
4) $[L_x \circ L_y, L_z] - [L_x, L_y \circ L_z] + (-1)^{yz} [L_x \circ L_z, L_y] = 0;$
5) $[R_x \circ R_y, L_z] - [L_x, R_y \circ R_z] + (-1)^{yz} [R_x \circ R_z, L_y] = 0.$

Moreover, 2) and 4) hold in every superalgebra.

Lemma. In an arbitrary NJSA U the following hold:

1) $[R_{x \circ y}, R_z] - [R_x, R_{y \circ z}] + (-1)^{yz} [R_{x \circ z}, R_y] = 0;$

2) $[L_{x \circ y}, L_z] - [L_x, L_{y \circ z}] + (-1)^{yz} [L_{x \circ z}, L_y] = 0.$

Denote by Γ the Grassman superalgebra on generators $1, \xi_i, i \in \mathcal{I}$; we admit $\mathcal{I} = \emptyset$. Lemma. U is a nonsupercommutative Jordan superalgebra iff U is a flexible superalgebra such that $U^{(+)}$ is a Jordan superalgebra.

```
(Pass to \Gamma(U); use \Gamma(U^{(+)}) = \Gamma(U)^{(+)})
```

2. Peirce decompositions. We have

$$R_{y(z \circ t)} + (-1)^{t(y+z)} (R_t + L_t) L_y L_z + (-1)^{yz} (R_z + L_z) L_y L_t = R_y R_{z \circ t} + (-1)^{t,y,z} (R_t + L_t) L_{zy} + (-1)^{y(z+t)} (R_z + L_z) L_{ty}.$$

If $e \in U$: $e^2 = e$, e is homog. $\Rightarrow e \in U_{\overline{0}}$, and $R_e + (R_e + L_e)L_e^2 = (R_e + L_e)L_e + R_e^2$. Also, $L_e - L_e^2 = R_e - R_e^2$. Therefore,

$$(R_e + L_e)(L_e - L_e^2) = (L_e - L_e^2).$$

Put $U_i = \{x : ex + xe = ix\}$ for i = 0, 1, 2.

 $U = U_0 \oplus U_1 \oplus U_2$

The spaces U_0, U_1 and U_2 satisfy:

$$U_i^2 \subseteq U_i, \ U_i U_1 + U_1 U_i \subseteq U_1, \ U_0 U_2 = 0,$$

$$x \in U_i \Rightarrow xe = ex = \frac{1}{2}ix, \ i = 0, 2,$$

$$x, y \in U_1 \Rightarrow x \circ y \in U_0 + U_2.$$

If $e = \sum_{i=1}^{n} e_i$ is the sum of orthogonal idempotents then we have the following Peirce decomposition:

$$U = \oplus_{i,j=0}^n U_{ij},$$

where

 $U_{00} = \{x \in U : e_i x = x e_i = 0 \text{ for all } i\},\$ $U_{ii} = \{x \in U : e_i x = x e_i = x, e_j x = x e_j = 0, j \neq i\},\$ $U_{i0} = \{x \in U : e_i x + x e_i = x, e_j x + x e_j = 0, j \neq i\} = U_{0i},\$ $U_{ij} = \{x \in U : e_i x + x e_i = e_j x + x e_j = x\} = U_{ji},\$ $x \in U_{ij} \Rightarrow e_i x = x e_j \text{ (even if } i = j \neq 0).$ As before, we have the associated projections P_{ij} on U_{ij} and the inclusions:

$$U_{ii}^2 \subseteq U_{ii}, \quad U_{ii}U_{ij} + U_{ij}U_{ii} \subseteq U_{ij}, U_{ij}U_{jk} + U_{jk}U_{ij} \subseteq U_{ik}, \quad U_{ij}^2 \subseteq U_{ii} + U_{ij} + U_{jj}$$

for the pairwise different indices (nonmentioned products are zero). Note that $U_{00} = U_{i0} = 0$ if e = 1. **Lemma.** $x, y \in U_0, u \in U_2, u_i \in U_i, i = 0, 2, z, w \in U_1 \Rightarrow$

$$e(z \circ y) = ez \circ y = zy, \quad (y \circ z)e = y \circ ze = yz;$$

$$e(u \circ z) = u \circ ez = uz, \quad (z \circ u)e = ze \circ u = zu;$$

$$P_2(ez \circ w) = P_2(z \circ we) = P_2(zw),$$

$$P_0(w \circ ez) = P_0(we \circ z) = P_0(wz);$$

$$P_1(zw) \circ u_i = P_1(z(w \circ u_i))$$

$$= (-1)^{wu_i} P_1((z \circ u_i)w)$$

Lemma. For $x, y \in U_i$, i = 0, 2, the following operator equalities hold on U_1 :

1)
$$L_{xy} = (-1)^{xy} L_y L_x + R_x L_y;$$

2) $R_{xy} = R_x R_y + (-1)^{xy} L_y R_x;$
3) $L_{xy} = (-1)^{xy} L_y L_x + L_x R_y;$
4) $R_{xy} = R_x R_y + (-1)^{xy} R_y L_x;$
5) $L_x R_y = R_x L_y;$ 6) $(R_x + L_x) R_e = R_x;$
7) $(R_x + L_x) L_e = L_x.$

Lemma. If $N_1 \subseteq U_1$ is such that $U_iN_1 + N_1U_i \subseteq N_1$ with i = 0, 2 then

 $N_i = P_i(U_1N_1 + N_1U_1) \leq U_i.$ Corollary. $N_1 = U_1 \Rightarrow B = N_0 + N_1 + N_2 \leq U.$ $\lambda \in \Phi : U_1^{[\lambda]} = \{x \in U_1 : L_e x = \lambda x\}$ Lemma. $U_i U_1^{[\lambda]} + U_1^{[\lambda]} U_i \subseteq U_1^{[\lambda]}$ for i = 0, 2. **3.** Algebras with connected idempotents. $\lambda \in \Phi, e \in U$: $S_1^{[\phi]}(e) = U_1^{[\lambda]}(e) + U_1^{[1-\lambda]}(e)$.

$$S_{ij}^{[\phi]} = S_1^{[\phi]}(e_i) \cap S_1^{[\phi]}(e_j)$$

 e_i and e_j : ($\exists \phi \in \Phi, v_{ij}, v_{ji} \in S_{ij}^{[\phi]}$) even-connected: $v_{ij}v_{ji} = v_{ji}v_{ij} = e_i + e_j$; odd-connected: $v_{ij}v_{ji} = -v_{ji}v_{ij} = e_i - e_j$; connected; ϕ : indicator of U_{ij} . Lemma. For all i, j, k such that $i \neq j$: $U_{jk}S_{ik}^{[\phi]} \subseteq S_{ij}^{[\phi]}$

Lemma \mathcal{IT} . Assume that $1 = \sum_{i=1}^{n} e_i$ is the sum of $n \ge 3$ connected orthogonal idempotents. Then all indicators have a common value ϕ and the following are valid:

1)
$$U_{ij} = S_{ij}^{[\phi]} \ (i \neq j);$$

2) $U_{ij} = U_{ik}U_{kj} + U_{kj}U_{ik} \ (\neq i, j, k);$
3) $U_{ii} = P_{ii}(U_{ik}^2) \ (i \neq k);$
4) $U_{ik}^2 \subseteq U_{ii} + U_{kk} \ (i \neq k).$
If $e = e_k$ then we have
5) $U_1 = S_1^{[\phi]};$
6) $U_i = P_i(U_1^2)(i = 0, 2);$
7) $U_1^2 \subseteq U_0 + U_2.$

The element $\phi \in \Phi$, which is uniquely determined by U, will be called the indicator of U. We say U is of indicator type ϕ if there is a $\phi \in \Phi$ such that 1)–7) of Lemma \mathcal{IT} hold for U. We say that a nonsupercomm. J. s.a. is of capacity k if it possesses k pairwise orthogonal idempotents, and U with unity of capacity k if this unity is decomposed into a sum of kprimitive orthogonal idempotents. **Lemma.** If U is of indicator type $\phi = \frac{1}{4}$ and U possesses unity of capacity ≥ 3 then U is supercommutative.

Lemma. If U is of indicator type $\phi = 0$ and of capacity ≥ 3 then U is associative.

3. Mutations. If $U = (U, \cdot)$ is a superalgebra and $\lambda \in \Phi$ then the λ -mutation of U is the superalgebra $U^{(\lambda)} = (U, \cdot_{\lambda})$, where

 $x \cdot_{\lambda} y = \lambda x \cdot y + (-1)^{xy} (1 - \lambda) y \cdot x.$

Note that $U^{(1/2)}$ is just the symmetrized superalgebra U^+ .

The mapping $\tau : \lambda \mapsto (\lambda + 1)/2$ is a 1-1 mapping of Φ onto itself with inverse τ^{-1} : $\lambda \mapsto 2\lambda - 1$, so in a natural way it carries the field $\Phi = (\Phi, +, \cdot)$ isomorphically onto a field $\tilde{\Phi} = (\Phi, \oplus, \odot)$, where

$$\lambda \oplus \mu = \lambda + \mu - \frac{1}{2},$$

 $\lambda \odot \mu = 2\lambda\mu - \lambda - \mu + 1.$

Consider the double mutation $(U^{(\lambda)})^{(\mu)}$;

 $(U^{(\lambda)})^{(\mu)} = U^{(\lambda \odot \mu)}.$

If $\lambda \neq \frac{1}{2}$ then λ has an inverse μ in $\tilde{\Phi}$, so we can recover U from $U^{(\lambda)}$: $U = U^{(1)} = U^{(\lambda \odot \mu)} = (U^{(\lambda)})^{(\mu)}$. However, if $\lambda = \frac{1}{2}$ we cannot easily recover U because all mutations have the same $U^{(+)}$. Thus we cannot so easily recover an associative s.a. U from the special J. s.a. $U^{(+)}$. Note that an ideal in U remains an ideal in $U^{(\lambda)}$, so if $\lambda \neq \frac{1}{2}$ ideals in U and $U^{(\lambda)}$ coincide. Since $L_x^{(\lambda)} = \lambda L_x + (1 - \lambda)R_x, R_x^{(\lambda)} = \lambda R_x + (1 - \lambda)L_x$, it is clear that a mutation of a nonsupercommutative Jordan superalgebra is again a nonsupercommutative Jordan superalgebra. As an example, a split quasi-associative s.a. is a mutation $\mathcal{D}^{(\lambda)}$ of an associative s.a. \mathcal{D} . Then U is quasi-associative if there is $\Omega \supset \Phi$: U_{Ω} is a split quasi-assoc. s.a. over Ω : $U_{\Omega} = \mathcal{D}^{(\lambda)}$ for $\lambda \in \Omega$.

We say that a Jordan s.a. U is strictly nonsupercomm. if there are some homogeneous $x, y \in U$: $xy \neq (-1)^{xy}yx$. Theorem. (Coordinatization Theorem) If Uis a strictly nonsupercommutative J. s.a. with $n \ge 3$ connected orthogonal idempotents then $U = \mathcal{D}_n^{(\lambda)}$ is a split quasiassociative s.a. determined by the s.a. \mathcal{D}_n of $n \times n$ matrices with entries in \mathcal{D} , where \mathcal{D} is associative.

2. Simple superalgebras

In what follows: $x \circ y = \frac{1}{2}(xy + (-1)^{xy}yx)$.

Lemma. Let (A, \cdot) be a flexible superalgebra. If $A^{(+)}$ possesses the unity $1 = \sum_{i=1}^{n} e_i$ for some orthogonal even idempotents e_i then the same holds for A.

Lemma. The mapping $d = [\cdot, x]$ is a superderivation in $U^{(+)}$ for every $x \in U$.

Lemma. If U is simple then $U^{(+)}$ is differentially simple.

Theorem. A f.d. central simple nonsupercomm. J. s.a. $\chi = 0$ is either (*a*) of capacity 1,

- (b) of capacity 2,
- (c) a quasi-associative superalgebra,
- (d) a Jordan superalgebra.

Proof. Since U is central $\Rightarrow U_{\Omega}$ is also simple for $\Omega = \overline{\Phi}$. It suffices to prove U_{Ω} is of type (a)-(d), so we assume $\Phi = \overline{\Phi}$. Since U^+ is a diff. simple J. s.a., by Kac-Cheng's Theorem, U^+ is the tensor product of a simple J. s.a. and a Grassman s.a. Classification of the simple f.d. J. s.a. Φ^0 implies $e \in U$. Thus, we may assume that U is of capacity n > 2. Then the same argument and Lemma above say that U contains the unity, which is a sum of n orth. idemp.: $1 = \sum_{i=1}^{n} e_i$. We see $B = N_0 + U_1 + N_2$ is an ideal; by simplicity B = U. Thus, $P_0(U_1^2) = U_0$, $P_2(U_1^2) = U_2$, which gives 6) and 2)-3) of Lemma \mathcal{IT} . 4) and 7) of Lemma \mathcal{IT} are proved as in Lemma \mathcal{IT} . Let $\phi \in \Phi$. For $i \neq j$ set

$$B_{ij} = S_{ij}^{[\phi]}, \ S_{ij} = U_{ij}B_{ij} + B_{ij}U_{ij},$$
$$B_{ii} = \sum_{i \neq j} P_{ii}(S_{ij}), \ B = \oplus B_{ij}.$$

B is an ideal. Since $\Phi = \overline{\Phi}$, L_{e_i} has a nonzero eigenvector in U_{ik} , so we may find ϕ : $S_{ik}^{[\phi]} \neq 0$, and $B \neq 0$. By simplicity, B = U, and $U_{ij} = B_{ij} = S_{ij}^{[\phi]}$.

Thus, U is of indicator type ϕ and with unity of capacity ≥ 3 . We may assume that $\phi \neq \frac{1}{4}$ and pass to the μ -mutation of U, where μ is the inverse for ϕ in $\tilde{\Phi}$. Moreover, $U^{(\mu)}$ is a central simple nonsupercomm. J. s.a. (Φ^0) with unity of capacity ≥ 3 . The same argument gives: $U^{(\mu)}$ is of indicator type 0. Then $U^{(\mu)}$ is associative, and we arrive at (c). **Corollary.** Let U be a f.d. simple central nonsupercomm. J. s.a. over Φ^0 and of capacity ≥ 3 . Then the symmetrized Jordan superalgebra $U^{(+)}$ is simple.

Proof. We assume U quasi-associative. Then $U = A^{(\mu)}$ for an associative A. It is easy to see that $(A^{(\mu)})^{(+)} = A^{(+)}$. We may assume $\Phi = \overline{\Phi}$. Since A is simple f.d. associative s.a., $A^{(+)}$ is simple J. s.a.

3. An analog of R. Oehmke's Theorem

Let U be a nonsupercomm. J. s.a., e be an idempotent in U, and $U = \bigoplus U_i$ be the Peirce decomposition of U. Fix $i \in \{0, 2\}$. Define $\nu(x) = \overline{R}_x + \overline{L}_x$ for $x \in U_i$, where $\overline{R}_x, \overline{L}_x$ are the restr. of R_x, L_x on U_1 . Then

 $\nu(xy) = \nu(x)\nu(y)\bar{R}_e + (-1)^{xy}\nu(y)\nu(x)\bar{L}_e.$

Denote by Γ_1 the subalgebra in Γ generated by ξ_i , $i \in \mathcal{I}$. Let $(x, y, z)^+$ be the associator in $U^{(+)}$.

Proposition. Let U be a nonsupercomm. J. s.a., $U \cong J \otimes \Gamma$ for some J. s.a. J, and let $U = \bigoplus_{i=0}^{2} U_i$ be the Peirce decomposition of U relative to an idempotent e. Assume that for every $x \in U_1$ the mapping $y \mapsto x \circ y$ is injective on U_i and $(U_i, U_1, U_i)^+ = 0$ for i = 0, 2. Then $I := \bigoplus_{i=0}^{2} (J_i \otimes \Gamma_1) \leq U$. J(V, f): Let $V = V_0 + V_1$ be a Z_2 -graded vector space with a nondeg. superform f, which is symm. on V_0 and skew-symm. on V_1 , $f(V_1, V_0) = f(V_0, V_1) = 0$. Consider $J = \Phi \oplus V$. Let 1 be the unity in Φ . Define: $(\alpha + v)(\beta + w) = (\alpha\beta + f(v, w)) + (\alpha w + \beta v)$. Then $J_0 = \Phi + V_0$, $J_1 = V_1$. We may assume J(V, f) has capacity two: $1 = e_1 + e_2$. Lemma. Let U be a simple nonsupercomm. J. s.a., J be a J. s.a.: $U^{(+)} \cong J \otimes \Gamma$. If $J \cong J(V, f), K_3, K_{10}, D_t$ then U is under condition of Proposition. In particular, $U^{(+)}$ is a simple J. s.a.

Remark. Note that the unity in K_{10} is the sum of three orthogonal idempotents. Since K_{10} is not special, Theorem says that $U \cong K_{10}$ if $U^{(+)} \cong K_{10}$. Consider the associative superalgebra Q(n), which is a subsuperalgebra in $M_{2n}(\Phi)$:

$$Q(n)_{\overline{0}} = \left\langle \left(\begin{array}{cc} A & 0 \\ 0 & A \end{array} \right), A \in M_n(\Phi) \right\rangle,$$
$$Q(n)_{\overline{1}} = \left\langle \left(\begin{array}{cc} 0 & B \\ B & 0 \end{array} \right), B \in M_n(\Phi) \right\rangle.$$

Lemma. Let $J = Q(2)^{(+)}$ and $U = J \otimes \Gamma$. Then for all $a \in U_1, \overline{x} = x \otimes f, \overline{y} = y \otimes g, x, y \in J_i, f, g \in \Gamma, i = 0, 2$, holds

$$(a\bar{x})\bar{y} = (-1)^{xy+\bar{x}\bar{y}}(a\bar{y})\bar{x};$$

and $\nu : U_i \mapsto End(U_1, U_1)$ is injective.

Lemma. Let U be a nonsupercommutative J. s.a.: $U^{(+)} \cong Q(2)^{(+)} \otimes \Gamma$. Then $U^{(+)}$ is simple. Theorem. Let U be a simple finite dimensional nonsupercommutative Jordan superalgebra of characteristic 0 and capacity > 1. Then $U^{(+)}$ is simple.

4. Simple nonsupercommutative Jordan superalgebras of capacity 2

Lemma. For every fixed $i \in \{0, 2\}$ and for all $x, y, z \in U_1$, the following relations hold:

$$P_i(x \circ P_1(yz)) = P_i(P_1(xy) \circ z)$$

= $(-1)^{x(y+z)} P_i(y \circ P_1(zx)).$

The case D_t . $\alpha, t \in \Phi$. Define $U = D_t(\alpha)$: $U = U_{\bar{0}} \oplus U_{\bar{1}}, \ U_{\bar{0}} = \langle e_1, e_2 \rangle, \ U_{\bar{1}} = \langle x, y \rangle,$ $e_i^2 = e_i, \ e_1 e_2 = 0, \ e_1 x = \alpha x = x e_2,$ $x e_1 = (1 - \alpha) x = e_2 x, e_1 y = (1 - \alpha) y = y e_2,$ $e_2 y = \alpha y = y e_1, xy = 2(\alpha e_1 + (1 - \alpha) t e_2),$ $y x = -2((1 - \alpha) e_1 + \alpha t e_2), \ x^2 = y^2 = 0.$ **Lemma.** The superalgebra $D_t(\alpha)$ is flexible; $D_t(\alpha)$ is simple $\Leftrightarrow t \neq 0$.

Lemma. Let U be a nonsupercommutative Jordan superalgebra such that $U^{(+)} \cong D_t$, $t \neq 0$. Then $U \cong D_t(\alpha)$ for some $\alpha \in \Phi$ (after a possible quadratic ext. of Φ).

Remark. Note: $D_t(\alpha)$ is not quasi-associative, since otherwise $D_t \cong A^{(+)}$ for some associative A, which is impossible.

The case $Q(2)^{(+)}$.

Lemma. Let U be a nonsupercommutative Jordan superalgebra such that $U^{(+)} \cong Q(2)^{(+)}$. Then U is a split quasiassociative superalgebra. The case J(V, f). Here U is a nonsupercomm J. s.a. $J := U^{(+)} \cong J(V, f)$. Then $J = \Phi + V$; fix u: $f(u, u) = \frac{1}{4}$. Then $e_1 = (\frac{1}{2}, u)$ and $e_2 = (\frac{1}{2}, -u)$ are orthog.: $1 = e_1 + e_2$. W.r.t. e_1 :

$$J_0 = \langle e_2 \rangle = U_0, \ J_2 = \langle e_1 \rangle = U_2,$$
$$J_1 = \langle (0, w) : f(u, w) = 0 \rangle = U_1.$$

The s.a. J induces a multiplication on V:

$$x \times y = P_1((0, x)(0, y)).$$

Lemma. If *U* is a nonsupercomm. J. s.a.: $J := U^{(+)} = \Phi \oplus V$ is a J. s.a. J(V, f) then the multiplication in *U* is given by

 $(\alpha, x)(\beta, y) = (\alpha\beta + f(x, y), \alpha y + \beta x + x \star y),$

where \star is an antisupercomm. product on V and f: $f(x \star y, z) = f(x, y \star z)$.

The case K_3 . $U^{(+)} \cong K_3$ (K_3 of cap. 1).

Define s.a. $K_3(\alpha, \beta, \gamma)$. Put $K_3(\alpha, \beta, \gamma) := U_{\overline{0}} \oplus U_{\overline{1}}, U_{\overline{0}} = \langle e \rangle, U_{\overline{1}} = \langle z, w \rangle$. Product:

	e	z	w
e	e	$\alpha z + \beta w$	$\gamma z + (1 - \alpha)w$
\overline{z}	(1-lpha)z - eta w	-2eta e	$2\alpha e$
igwedge w	$lpha w - \gamma z$	-2(1-lpha)e	$2\gamma e$

Lemma. $K_3(\alpha, \beta, \gamma)$ is a simple flexible s.a.

Lemma. Let *U* be a nonsupercomm. J. s.a.: $U^{(+)} \cong K_3$. Then $U \cong K_3(\alpha, \beta, \gamma)$.

 $\Gamma(n)$ stands for the simple J. s.a. of Poisson Grassmann brackets.

Theorem. Let U be a f.d. central simple nonsupercomm. J. s.a. over Φ^0 , which is neither quasi-associative nor supercomm. Then, either U is isomorphic to one of: *i*) $U \cong K_3(\alpha, \beta, \gamma)$; *ii*) $U^{(+)} \cong \Gamma(n) \otimes \Gamma$; or $\exists P \supset \Phi$ (deg 1 or 2): $U \otimes_{\Phi} P \cong$ as a s.a. over P to one of: *iii*) $D_t(\alpha)$; *iv*) $U(V, f, \star)$. K. McCrimmon, Structure and repr. of noncomm. J.a., Trans. Amer. Math. Soc. 121 (1966), 187–199.

R. H. Oehmke, On flexible algebras, Ann. of Math. (2) 68 (1958), 221–230.

S-J. Cheng, Diff. simple Lie s.a. and repr. of semisimple Lie s.a, J. of Alg. 173 (1995), 1–43.