RIGHT COIDEAL SUBALGEBRAS IN $U_{q}^{+}\left(\mathfrak{s} 0_{2 n+1}\right)$ V. K. Kharchenko

Universidad Nacional Autónoma de México Facultad de Estudios Superiores Cuautitlán

QUANTUM GROUP $U_{q}^{+}\left(\mathfrak{s o}_{2 n+1}\right)$

It is generated by $x_{1}, x_{2}, \ldots, x_{n} ; g_{1}, g_{2}, \ldots, g_{n}$ with

$$
\begin{gathered}
\Delta\left(x_{i}\right)=x_{i} \otimes 1+g_{i} \otimes x_{i}, \Delta\left(g_{i}\right)=g_{i} \otimes g_{i} \\
g_{j}^{-1} x_{i} g_{j}=p_{i j} x_{i}
\end{gathered}
$$

where the parameters $p_{i j}$ satisfy the relations

$$
\begin{gathered}
p_{n n}=q, p_{i i}=q^{2}, \quad p_{i i+1} p_{i+1 i}=q^{-2}, 1 \leq i<n \\
p_{i j} p_{j i}=1,|i-j|>1
\end{gathered}
$$

while the generators are related by

$$
\begin{aligned}
& {\left[x_{i},\left[x_{i}, x_{i+1}\right]\right]=0,1 \leq i<n ;\left[x_{i}, x_{j}\right]=0,|i-j|>1} \\
& {\left[\left[x_{i}, x_{i+1}\right], x_{i+1}\right]=\left[\left[\left[x_{n-1}, x_{n}\right], x_{n}\right], x_{n}\right]=0,1 \leq i<n-1}
\end{aligned}
$$

Here the (skew)commutator is defined as follows

$$
\begin{gathered}
{[u, v]=u v-p(u, v) v u, p\left(x_{i}, x_{j}\right)=p_{i j}} \\
p(u v, w)=p(u, w) p(v, w), p(u, v w)=p(u, v) p(u, w)
\end{gathered}
$$

The Weyl basis of $\mathfrak{s} O_{2 n+1}^{+}$with the skew brackets in place of the Lie operation is a set of PBW-generators of $U_{q}^{+}\left(\mathfrak{s} O_{2 n+1}\right)$ over $\mathbf{k}[G]$:

$$
u[k, m]=\left[\ldots\left[\left[x_{k}, x_{k+1}\right], x_{k+2}\right], \ldots, x_{m}\right], \quad m \leq 2 n-k,
$$

where by definition $x_{i}=x_{2 n-i+1}$ for $i>n$.
Theorem 1. The coproduct on the PBW-generators has the following explicit form:

$$
\begin{gathered}
\Delta(u[k, m])=u[k, m] \otimes 1+g_{k} g_{k+1} \cdots g_{m} \otimes u[k, m] \\
+\sum_{i=k}^{m-1} \tau_{i}\left(1-q^{-2}\right) g_{k} g_{k+1} \cdots g_{i} u[i+1, m] \otimes u[k, i],
\end{gathered}
$$

where $\tau_{i}=1$ with only one exception being $\tau_{n}=q$.
The idea of the proof. First, we show that in the Shuffle representation we have

$$
u[k, m] \sim x_{m} \otimes x_{m-1} \otimes \cdots \otimes x_{k+1} \otimes x_{k} .
$$

Then, we use the definition of the braided coproduct in the Shuffle algebra. Next, using relation between coproduct and braided coproduct by routine calculations we find the coefficients.

Interestingly, this formula differs from that in $U_{q^{2}}^{+}\left(\mathfrak{s l} l_{2 n+1}\right)$ by just one term.

RIGHT COIDEAL SUBALGEBRAS

Right coideal is a subspace U such that

$$
\Delta(U) \subseteq U \otimes H
$$

1. A. Milinski, Actions of pointed Hopf algebras on prime algebras, Comm. Algebra, 23(1995), 313-333.
2. V.O. Ferreira, L.S.I. Murakami, and A. Paques, A Hopf-Galois correspondence for free algebras, J. Algebra, 276(2004), 407-416.
3. G. Letzter, Coideal subalgebras and quantum symmetric pairs, MSRI Publications, 43(2002), 117165. (Quantum symmetric pairs, quantum HarishChandra modules, and quantum symmetric spaces).
4. A.Masuoka, Freenes of Hopf algebras over coideal subalgebras, Comm. in Algebra, 20, N5(1992), 13531373.
5. S. Skryabin, Projectivity and freeness over comodule algebras, TAMS, 359, N6(2007), 2597-2623.
6. T.Yanai, Galois correspondence theorem for Hopf algebra actions, in: Algebraic structures and their representations, 393-411, Contemporary Mathematics, vol. 376, AMS, Providence, RI, 2005.

CLASSIFICATION

Theorem 2. There exists a bijection between all sequences $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right)$ such that

$$
0 \leq \theta_{i} \leq 2 n-2 i+1, \quad 1 \leq i \leq n
$$

and the set of all right coideal subalgebras of $U_{q}^{+}\left(\mathfrak{s o}_{2 n+1}\right)$ that contain the coradical.

Steps of the proof.
A. PBW-generators have the following form

$$
\Phi^{S}(k, m)=u[k, m]-\left(1-q^{2}\right) \sum_{i=1}^{r} \alpha_{i} \Phi^{S}\left(1+s_{i}, m\right) u\left[k, s_{i}\right],
$$

where $k \leq s_{1}<s_{2}<\ldots<s_{r}<m$,

$$
S \cap[k, m-1]=\left\{s_{1}, s_{2}, \ldots, s_{r}\right\} .
$$

The root sequence: $r(\mathbf{U})=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right)$. The number θ_{i} is the maximal m such that for some S the value of $\Phi^{S}(i, m)$ belongs to \mathbf{U}, while the degree $x_{i}+x_{i+1}+\ldots+x_{m}$ of $\Phi^{S}(i, m)$ is not a sum of other nonzero degrees of elements from \mathbf{U}.
We show that $r(\mathbf{U})$ uniquely defines \mathbf{U}.
B. To each sequence of integer numbers

$$
\theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right), \quad 0 \leq \theta_{i} \leq 2 n-2 i+1,
$$

we associate a r. c. s. \mathbf{U}_{θ} such that $r\left(\mathbf{U}_{\theta}\right)=\theta$.
B1. Subsets R_{k}, T_{k} and a binary predicate \mathbf{P}.
By definition $R_{k}=T_{k}=\emptyset$ if $k>n$. Suppose that $R_{i}, T_{i}, k<i \leq 2 n$ are already defined. We put

$$
\mathbf{P}(i, j) \rightleftharpoons j \in T_{i} \vee 2 n-i+1 \in T_{2 n-j+1} .
$$

If $\theta_{k}=0$, then we set $R_{k}=T_{k}=\emptyset$. If $\theta_{k} \neq 0$, then by definition R_{k} contains $\tilde{\theta}_{k}=k+\theta_{k}-1$ and all m satisfying the following three properties
a) $k \leq m<\tilde{\theta}_{k}$;
b) $\neg \mathbf{P}\left(m+1, \tilde{\theta}_{k}\right)$;
c) $\forall r(k \leq r<m) \mathbf{P}(r+1, m) \Longleftrightarrow \mathbf{P}\left(r+1, \tilde{\theta}_{k}\right)$. Further, we define an auxiliary set

$$
T_{k}^{\prime}=R_{k} \cup \bigcup_{s \in R_{k}}\{a \mid s<a \leq 2 n-k, \mathbf{P}(s+1, a)\},
$$

and put

$$
T_{k}= \begin{cases}T_{k}^{\prime}, & \text { if }\left(2 n-R_{k}\right) \cap T_{k}^{\prime}=\emptyset \\ T_{k}^{\prime} \cup\{2 n-k+1\}, & \text { otherwise }\end{cases}
$$

B2. The subalgebra \mathbf{U}_{θ} by definition is generated over $\mathbf{k}[G]$ by values in $U_{q}^{+}\left(\mathfrak{s o}_{2 n+1}\right)$ of the polynomials $\Phi^{T_{k}}(k, m), 1 \leq k \leq m$ with $m \in R_{k}$.

SOME PROPERTIES OF RIGHT C. SUBALGEBRAS

Denote by $\Sigma(U)$ the set of all (multi)degrees of elements from U.

Theorem 3. Each right coideal subalgebra $U \supset$ $\mathbf{k}[G]$ is uniquely defined by the set of degrees $\Sigma(U)$. More precisely

$$
U_{1} \subseteq U_{2} \text { if and only if } \Sigma\left(U_{1}\right) \subseteq \Sigma\left(U_{2}\right) .
$$

Corollary. Right coideal subalgebras are differentially closed in the following sense. Let f be a polynomial in $x_{1}, x_{2}, \ldots, x_{n}$, such that $\operatorname{Deg}(f) \in$ $\Sigma(U)$. If $\partial_{i}(f) \in U, 1 \leq i \leq n$, then $f \in U$.

DUALITY FOR MINIMAL PBW-GENERATORS

A PBW-generator is said to be minimal if it is not a polynomial in other PBW-generators.

$$
\Phi^{S}(k, m) \sim \Phi^{T}(\psi(m), \psi(k)) .
$$

Here $\psi(i)=n-i+1$, and T is complement of $\{\psi(s)-1 \mid s \in S\}$ with respect to the interval $[\psi(m), \psi(k))$.

ON CLASSIFICATION FOR $U_{q}\left(\mathfrak{s o}_{2 n+1}\right)$

A natural conjecture:

$$
\begin{equation*}
\mathbf{U}=U_{\theta^{\prime}} \otimes_{\mathbf{k}[F]} \mathbf{k}[H] \otimes_{\mathbf{k}[G]} U_{\theta} . \tag{1}
\end{equation*}
$$

To describe necessary conditions when (1) is a subalgebra we display the element $\Psi^{\mathbf{S}}(k, m)$ schematically:

Consider the minimal PBW-generators $\Psi^{T_{k}}(k, m)$ and $\Psi^{T_{i}}(i, j)$:

$$
\begin{array}{ccccccccc}
k_{-1} 1 & \ldots & { }^{i-1} & \bullet & \bullet & i+1 & \ldots & \bullet & \tag{2}\\
0 & \bullet & \cdots & \bullet & & j \\
& & \circ & \circ & \bullet & \cdots & \bullet & \cdots & \bullet
\end{array}
$$

We prove that if (1) is a subalgebra then for each pair of minimal PBW-generators one of the following two options is fulfilled:
a) No one of the possible four representations (2) has fragments of the form

b) One of the possible four representations (2) has the form

$$
\begin{array}{ccccccc}
k-1 & & & & & m \\
\circ & \cdots & \circ & \cdots & \bullet & \cdots & \bullet \\
\circ & \cdots & \bullet & \cdots & \circ & \cdots & \bullet
\end{array}
$$

where no one of the intermediate columns has points of the same color.

$$
\Phi^{S}(k, m) \sim \Phi^{T}(\psi(m), \psi(k))
$$

FURTHER HYPOTHESIS AND PROBLEMS

The total number of coideal subalgebras in $U_{q}^{+}\left(\mathfrak{s o}_{2 n+1}\right)$ over $\mathbf{k}[G]$ equals ($2 n$)!!, the order of the Weyl group.

Although there is no theoretical explanation why there appears the Weyl group, we state the following general hypothesis.

Conjecture 1. Let \mathfrak{g} be a simple Lie algebra defined by a finite root system R. The number of different right coideal subalgebras that contain the coradical in a quantum Borel algebra $U_{q}^{+}(\mathfrak{g})$ equals the order of the Weyl group defined by the root system R provided that q is not a root of 1 .

Yes: G_{2} (B.S. Pogorelsky), A_{n}, B_{n}.
?: $C_{n}, D_{n}, F_{4}, E_{6}, E_{7}, E_{8}$.
A general approach for Kac-Moody algebras.
α_{i} - a simple root \leftrightarrow a Weyl generator x_{i}.
$\alpha=\alpha_{i_{1}}+\alpha_{i_{2}}+\cdots+\alpha_{i_{m}}-$ a root
\leftrightarrow a basis element $\left[\ldots\left[\left[x_{i_{1}}, x_{i_{2}}\right], x_{i_{3}}\right], \ldots, x_{i_{m}}\right]$.
We may define in $U_{q}^{+}(\mathfrak{g})$ analogue of $\Phi^{S}(k, m)$:

$$
\Phi^{S}(\alpha)=\left[\ldots\left[x_{i_{5}},\left[\left[x_{i_{3}},\left[x_{i_{1}}, x_{i_{2}}\right]\right], x_{i_{4}}\right]\right], \ldots, x_{i_{m}}\right],
$$

where $i_{3}, i_{5}, \ldots \in S, i_{2}, i_{4}, \ldots, i_{m} \notin S$.
Conjecture 2. Every r.c.s of $U_{q}^{+}(\mathfrak{g})$ has a set of $P B W$ generators of the form $\Phi^{S}(\alpha)$.

