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Jordan subgroups

Definition (Alekseevskĭı 1974)

Given a simple Lie algebra g and a complex Lie group G with
Int(g) ≤ G ≤ Aut(g), an abelian subgroup A of G is a Jordan subgroup if:

(i) its normalizer NG (A) is finite,

(ii) A is a minimal normal subgroup of its normalizer, and

(iii) its normalizer is maximal among the normalizers of those abelian
subgroups satisfying (i) and (ii).
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Jordan gradings

The Jordan subgroups are elementary (Zp × · · · × Zp for some prime
number p), and they induce gradings, called Jordan gradings, in the Lie
algebra g.

The classification of Jordan subgroups by Alekseevskĭı splits in two types:
classical and exceptional.
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classical and exceptional.

Alberto Elduque (Universidad de Zaragoza) Exceptional Jordan gradings July 2009 5 / 32



Jordan gradings

The Jordan subgroups are elementary (Zp × · · · × Zp for some prime
number p), and they induce gradings, called Jordan gradings, in the Lie
algebra g.

The classification of Jordan subgroups by Alekseevskĭı splits in two types:
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Jordan subgroups: classical cases

g A

Apn−1 Z2n
p

Bn (n ≥ 3) Z2n
2

C2n−1 (n ≥ 2) Z2n
2

Dn+1 (n ≥ 3) Z2n
2

D2n−1 (n ≥ 3) Z2n
2

The dimension of all nonzero homogeneous spaces is always 1 in these
classical cases, which are well-known.
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Jordan subgroups: exceptional cases

g A dim gα (α 6= 0)

G2 Z3
2 2

F4 Z3
3 2

E8 Z3
5 2

D4 Z3
2 4

E8 Z5
2 8

E6 Z3
3 3

Models of these gradings?
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Composition algebras

Definition

A composition algebra over a field F is a triple (C , ·, n) where

C is a vector space over F,

x · y is a bilinear multiplication C × C → C ,

n : C → F is a multiplicative nondegenerate quadratic form:

its polar n(x , y) = n(x + y)− n(x)− n(y) is nondegenerate,
n(x · y) = n(x)n(y) ∀x , y ∈ C .

The unital composition algebras will be called Hurwitz algebras.
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Hurwitz algebras

Hurwitz algebras form a class of degree two algebras:

x ·2 − n(x , 1)x + n(x)1 = 0

for any x .
They are endowed with an antiautomorphism, the standard conjugation:

x̄ = n(x , 1)1− x ,

satisfying

¯̄x = x , x + x̄ = n(x , 1)1, x · x̄ = x̄ · x = n(x)1.
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Cayley-Dickson doubling process

Let (B, ·, n) be an associative Hurwitz algebra, and let λ be a nonzero
scalar in the ground field F. Consider the direct sum of two copies of B:

C = B ⊕ Bu,

with the following multiplication and nondegenerate quadratic form that
extend those on B:

(a + bu) · (c + du) = (a · c + λd̄ · b) + (d · a + b · c̄)u,

n(a + bu) = n(a)− λn(b).

Then (C , ·, n) is again a Hurwitz algebra, which is denoted by CD(B, λ)

Notation: CD(A, µ, λ) := CD
(
CD(A, µ), λ

)
.
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Generalized Hurwitz Theorem

Theorem

Every Hurwitz algebra over a field F is isomorphic to one of the following:

(i) The ground field F if its characteristic is 6= 2.

(ii) A quadratic commutative and associative separable algebra
K (µ) = F1 + Fv, with v2 = v + µ and 4µ + 1 6= 0. The norm is
given by its generic norm.

(iii) A quaternion algebra Q(µ, β) = CD(K (µ), β). (These four
dimensional algebras are associative but not commutative.)

(iv) A Cayley algebra C (µ, β, γ) = CD(K (µ), β, γ). (These eight
dimensional algebras are alternative, but not associative.)
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Z3
2-gradings on Cayley algebras

The Cayley-Dickson doubling process induces a Z2-grading on the
resulting algebra.

Hence if the characteristic of the ground field F is 6= 2, any Cayley algebra
appears as

C = CD(F, α, β, γ) = Q ⊕ Qz

= (K ⊕ Ky)⊕ (K ⊕ Ky)z

= (F⊕ Fx)⊕ (F⊕ Fx)y

⊕
(
(F⊕ Fx)⊕ (F⊕ Fx)y

)
z ,

and it is naturally graded over Z3
2, with

C(1̄,0̄,0̄) = Fx , C(0̄,1̄,0̄) = Fy , C(0̄,0̄,1̄) = Fz .
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Symmetric composition algebras

Definition

A composition algebra (S , ∗, n) is said to be symmetric if the polar form of
its norm is associative:

n(x ∗ y , z) = n(x , y ∗ z),

for any x , y , z ∈ S .

This is equivalent to the condition:

(x ∗ y) ∗ x = n(x)y = x ∗ (y ∗ x),

for any x , y ∈ S .
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Examples

Para-Hurwitz algebras: Given a Hurwitz algebra (C , ·, n), its
para-Hurwitz counterpart is the composition algebra (C , •, n), where

x • y = x̄ · ȳ .

This algebra will be denoted by C̄ for short.

Okubo algebras: Assume char F 6= 3 and ∃ω 6= 1 = ω3 in F.
Consider the algebra A0 of zero trace elements in a central simple
degree 3 associative algebra with multiplication

x ∗ y = ωxy − ω2yx − ω − ω2

3
tr(xy)1,

and norm n(x) = −1
2 tr(x2).

(There is a more general definition valid over arbitrary fields.)
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Classification

Theorem (E.-Myung 93, E. 97)

Any symmetric composition algebra is either:

a para-Hurwitz algebra,

a form of a two-dimensional para-Hurwitz algebra without idempotent
elements (with a precise description),

an Okubo algebra.
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Gradings on para-Hurwitz algebras

Theorem

Gradings on para-Hurwitz algebras of dimension 4 or 8

l

Gradings on their Hurwitz counterparts.

Therefore, any para-Cayley algebra over a field of characteristic 6= 2 is
endowed with a Z3

2-grading.
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Gradings on Okubo algebras

Assuming F is a field of characteristic 6= 3 containing a primitive third root
ω of 1, then the matrix algebra Mat3(F) is generated by the order 3
matrices:

x =

1 0 0
0 ω 0
0 0 ω2

 , y =

0 0 1
1 0 0
0 1 0

 ,

and the assignment

deg(x) = (1̄, 0̄), deg(y) = (0̄, 1̄),

gives a Z2
3-grading of Mat3(F), which is inherited by the Okubo algebra(

sl3(F), ∗, n
)
.

Over algebraically closed fields, any grading on an Okubo algebra is a
coarsening of either the natural Z2-grading (Cartan grading) or this
Z2

3-grading.
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Triality Lie algebra

Assume from now on that char F 6= 2, 3 and ω ∈ F.

Let (S , ∗, n) be any symmetric composition algebra and consider the
corresponding orthogonal Lie algebra:

o(S , n) = {d ∈ EndF(S) : n
(
d(x), y

)
+ n
(
x , d(y)

)
= 0 ∀x , y ∈ S},

and the subalgebra of o(S , n)3 (with componentwise multiplication):

tri(S , ∗, n) = {(d0, d1, d2) ∈ o(S , n)3 : d0(x∗y) = d1(x)∗y+x∗d2(y) ∀x , y}

This is the triality Lie algebra.

The map: θ : tri(S , ∗, n) → tri(S , ∗, n), (d0, d1, d2) 7→ (d2, d0, d1) is an
automorphism of order 3.
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Principle of Local Triality

Theorem (Principle of Local Triality)

Let (S , ∗, n) be an eight dimensional symmetric composition algebra.
Then the projection

π0 : tri(S , ∗, n) −→ o(S , n)

(d0, d1, d2) 7→ d0,

is an isomorphism of Lie algebras.

Alberto Elduque (Universidad de Zaragoza) Exceptional Jordan gradings July 2009 21 / 32



Principle of Local Triality

Theorem (Principle of Local Triality)

Let (S , ∗, n) be an eight dimensional symmetric composition algebra.
Then the projection

π0 : tri(S , ∗, n) −→ o(S , n)

(d0, d1, d2) 7→ d0,

is an isomorphism of Lie algebras.

Alberto Elduque (Universidad de Zaragoza) Exceptional Jordan gradings July 2009 21 / 32



Gradings on D4

By taking together gradings on a symmetric composition algebra and the
order 3 automorphism given by triality, one obtains the following gradings
on D4:

Theorem

A Z3
2-grading of a para-Cayley algebra (C̄ , •, n) induces a

Z3
2 × Z3-grading of the orthogonal Lie algebra o(C , n) of type (14, 7).

The standard Z2
3-grading on an Okubo algebra (O, ∗, n) induces a

Z3
3-grading on the orthogonal Lie algebra o(O, n) of type (24, 2).

Remark

A Z3
2-grading of a para-Cayley algebra (C̄ , •, n) also induces a Z3

2-grading
of its Lie algebra of derivations (which is an exceptional simple Lie algebra
of type G2). The type of this grading is (0, 7).
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2 × Z3-grading of the orthogonal Lie algebra o(C , n) of type (14, 7).

The standard Z2
3-grading on an Okubo algebra (O, ∗, n) induces a

Z3
3-grading on the orthogonal Lie algebra o(O, n) of type (24, 2).

Remark

A Z3
2-grading of a para-Cayley algebra (C̄ , •, n) also induces a Z3

2-grading
of its Lie algebra of derivations (which is an exceptional simple Lie algebra
of type G2). The type of this grading is (0, 7).
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Freudenthal Magic Square

Let (S , ∗, n) and (S ′, ?, n′) be two symmetric composition algebras. One
can construct a Lie algebra as follows:

g = g(S ,S ′) =
(
tri(S)⊕ tri(S ′)

)
⊕
(
⊕2

i=0ιi (S ⊗ S ′)
)
,

with bracket given by:

the Lie bracket in tri(S)⊕ tri(S ′), which thus becomes a Lie
subalgebra of g,

[(d0, d1, d2), ιi (x ⊗ x ′)] = ιi
(
di (x)⊗ x ′),

[(d ′
0, d

′
1, d

′
2), ιi (x ⊗ x ′)] = ιi

(
x ⊗ d ′

i (x
′)
)
,

[ιi (x ⊗ x ′), ιi+1(y ⊗ y ′)] = ιi+2

(
(x ∗ y)⊗ (x ′ ? y ′)

)
(indices modulo 3),

[ιi (x ⊗ x ′), ιi (y ⊗ y ′)] = n′(x ′, y ′)θi (tx ,y ) + n(x , y)θ′i (t ′x ′,y ′),
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Freudenthal Magic Square

dim S ′

g(S ,S ′) 1 2 4 8

1 A1 A2 C3 F4

2 A2 A2 ⊕ A2 A5 E6
dim S

4 C3 A5 D6 E7

8 F4 E6 E7 E8
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Gradings on the Freudenthal Magic Square

The Lie algebra g(S ,S ′) is naturally Z2 × Z2-graded with

g(0̄,0̄) = tri(S)⊕ tri(S ′),

g(1̄,0̄) = ι0(S ⊗ S ′), g(0̄,1̄) = ι1(S ⊗ S ′), g(1̄,1̄) = ι2(S ⊗ S ′).

Also, the order 3 automorphisms θ and θ′ extend to an order 3
automorphism Θ of g(S ,S ′). The eigenspaces of Θ constitute a
Z3-grading of g(S ,S ′).

Alberto Elduque (Universidad de Zaragoza) Exceptional Jordan gradings July 2009 25 / 32



Gradings on the Freudenthal Magic Square

The Lie algebra g(S ,S ′) is naturally Z2 × Z2-graded with

g(0̄,0̄) = tri(S)⊕ tri(S ′),

g(1̄,0̄) = ι0(S ⊗ S ′), g(0̄,1̄) = ι1(S ⊗ S ′), g(1̄,1̄) = ι2(S ⊗ S ′).

Also, the order 3 automorphisms θ and θ′ extend to an order 3
automorphism Θ of g(S ,S ′). The eigenspaces of Θ constitute a
Z3-grading of g(S ,S ′).

Alberto Elduque (Universidad de Zaragoza) Exceptional Jordan gradings July 2009 25 / 32



Gradings on the Freudenthal Magic Square

The Lie algebra g(S ,S ′) is naturally Z2 × Z2-graded with

g(0̄,0̄) = tri(S)⊕ tri(S ′),

g(1̄,0̄) = ι0(S ⊗ S ′), g(0̄,1̄) = ι1(S ⊗ S ′), g(1̄,1̄) = ι2(S ⊗ S ′).

Also, the order 3 automorphisms θ and θ′ extend to an order 3
automorphism Θ of g(S ,S ′). The eigenspaces of Θ constitute a
Z3-grading of g(S ,S ′).

Alberto Elduque (Universidad de Zaragoza) Exceptional Jordan gradings July 2009 25 / 32



1 Jordan subgroups

2 Composition algebras

3 Freudenthal Magic Square

4 Exceptional Jordan gradings

Alberto Elduque (Universidad de Zaragoza) Exceptional Jordan gradings July 2009 26 / 32



Induced gradings

(From now on, assume that our ground field F is algebraically closed of
characteristic 0.)

The previous Z2
2 and Z3-gradings on the Lie algebras g(S ,S ′) can be

complemented with gradings on the symmetric composition algebras S
and S ′ in several ways.

The Z2
3-grading on the Okubo algebra O induces a Z3

3-grading on
both the simple Lie algebra g(F,O) of type F4 and the simple Lie
algebra g(S ,O) (for the two-dimensional para-Hurwitz algebra S) of
type E6.
In both cases g0 = 0 and gα ⊕ g−α is a Cartan subalgebra of g for any
0 6= α ∈ Z3

3.

The Z3
2-grading on a para-Cayley algebra C̄ induces a Z5

2-grading on
the simple Lie algebra g(C̄ , C̄ ) of type E8.
Moreover, g0 = 0 and gα is a Cartan subalgebra of g for any
0 6= α ∈ Z5

2.
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Exceptional Jordan gradings

Theorem

The previous gradings:

1 a Z3
2-grading on the simple Lie algebra of type G2 induced by the

Z3
2-grading of the Cayley algebra,

2 a Z3
2-grading on the simple Lie algebra of type D4 induced by the

Z3
2-grading of the Cayley algebra,

3 a Z3
3-grading on the simple Lie algebra of type F4 induced by the

Z2
3-grading of the Okubo algebra,

4 a Z3
3-grading on the simple Lie algebra of type E6 induced by the

Z2
3-grading of the Okubo algebra,

5 a Z5
2-grading on the simple Lie algebra of type E8 induced by the

Z3
2-grading of the Cayley algebra,

are exceptional Jordan gradings.
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The missing exceptional Jordan grading

Only one exceptional Jordan grading does not fit in the Theorem above:
the Z3

5-grading on E8.

Let V1 and V2 be two vector spaces over F of dimension 5, and consider
the Z5-graded vector space

g = ⊕4
i=0gı̄,

where

g0̄ = sl(V1)⊕ sl(V2),

g1̄ = V1 ⊗
∧2V2,

g2̄ =
∧2V1 ⊗

∧4V2,

g3̄ =
∧3V1 ⊗ V2,

g4̄ =
∧4V1 ⊗

∧3V2.

This is a Z5-graded Lie algebra in a unique way: the exceptional simple Lie
algebra of type E8.
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The missing exceptional Jordan grading

Up to conjugation in Aut g, there is a unique order 5 automorphism of the
simple Lie algebra g of type E8 such that the dimension of the subalgebra
of fixed elements is 48.

b b b b b b b br b
1 2 3 4 5 6 4 2

3

The uniqueness shows us that, up to conjugation, this is the
automorphism of g such that its restriction to gı̄ is ξi times the identity,
where ξ is a fixed primitive fifth root of unity.
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The missing exceptional Jordan grading

Consider the following automorphisms σ1, σ2, σ3 of g:

σ1(x) = ξix for any x ∈ gı̄ and 0 ≤ i ≤ 4,

σ2|g1̄
= b1 ⊗ ∧2b2,

σ3|g1̄
= c1 ⊗ ∧2c2,

where on fixed bases of V1 and V2, the coordinate matrices of b1, c1, b2, c2

are:

b1 ↔

1 0 0 0 0
0 ξ 0 0 0

0 0 ξ2 0 0

0 0 0 ξ3 0

0 0 0 0 ξ4

, c1 ↔

(
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

)
,

b2 ↔

1 0 0 0 0

0 ξ2 0 0 0

0 0 ξ4 0 0
0 0 0 ξ 0

0 0 0 0 ξ3

, c2 ↔

(
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

)
.
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are:

b1 ↔

1 0 0 0 0
0 ξ 0 0 0

0 0 ξ2 0 0

0 0 0 ξ3 0

0 0 0 0 ξ4

, c1 ↔

(
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

)
,

b2 ↔
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0 ξ2 0 0 0

0 0 ξ4 0 0
0 0 0 ξ 0

0 0 0 0 ξ3
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0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
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The missing exceptional Jordan grading

Theorem

The grading of E8 induced by the order 5 commuting automorphisms
σ1, σ2, σ3 is the Jordan grading over Z3

5.

∀0 6= α ∈ Z3
5, ⊕4

i=1giα is a Cartan subalgebra of g.

There are models of the Jordan gradings of F4 and E6 over Z3
3 constructed

along the same lines.

That’s all. Thanks
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