Jordan gradings on exceptional simple Lie algebras

Alberto Elduque

Universidad de Zaragoza

July 2009

Jordan subgroups

2 Composition algebras

3 Freudenthal Magic Square

Composition algebras

3 Freudenthal Magic Square

Jordan subgroups

Definition (Alekseevskii 1974)

Given a simple Lie algebra \mathfrak{g} and a complex Lie group G with $Int(\mathfrak{g}) \leq G \leq Aut(\mathfrak{g})$, an abelian subgroup A of G is a *Jordan subgroup* if:

- (i) its normalizer $N_G(A)$ is finite,
- (ii) A is a minimal normal subgroup of its normalizer, and
- (iii) its normalizer is maximal among the normalizers of those abelian subgroups satisfying (i) and (ii).

Jordan gradings

The Jordan subgroups are elementary $(\mathbb{Z}_p \times \cdots \times \mathbb{Z}_p$ for some prime number p), and they induce gradings, called *Jordan gradings*, in the Lie algebra \mathfrak{g} .

The Jordan subgroups are elementary $(\mathbb{Z}_p \times \cdots \times \mathbb{Z}_p$ for some prime number p), and they induce gradings, called *Jordan gradings*, in the Lie algebra \mathfrak{g} .

The classification of Jordan subgroups by Alekseevskiĭ splits in two types: classical and exceptional.

Alberto Elduque (Universidad de Zaragoza) Exceptional Jordan gradings

Jordan subgroups: classical cases

g	A
A_{p^n-1}	\mathbb{Z}_p^{2n}
$B_n \ (n \ge 3)$	\mathbb{Z}_2^{2n}
$C_{2^{n-1}}$ ($n \ge 2$)	\mathbb{Z}_2^{2n}
$D_{n+1} \ (n \ge 3)$	\mathbb{Z}_2^{2n}
$D_{2^{n-1}}$ ($n \ge 3$)	\mathbb{Z}_2^{2n}

Jordan subgroups: classical cases

g	А
A_{p^n-1}	\mathbb{Z}_p^{2n}
$B_n \ (n \ge 3)$	\mathbb{Z}_2^{2n}
$C_{2^{n-1}}$ ($n \ge 2$)	\mathbb{Z}_2^{2n}
$D_{n+1} \ (n \ge 3)$	\mathbb{Z}_2^{2n}
$D_{2^{n-1}}$ ($n \ge 3$)	\mathbb{Z}_2^{2n}

The dimension of all nonzero homogeneous spaces is always 1 in these classical cases, which are well-known.

Jordan subgroups: exceptional cases

Jordan subgroups: exceptional cases

g	A	$\dim\mathfrak{g}_{\alpha}\ (\alpha\neq0)$
G ₂	\mathbb{Z}_2^3	2
F ₄	\mathbb{Z}_3^3	2
E ₈	\mathbb{Z}_5^3	2
<i>D</i> ₄	\mathbb{Z}_2^3	4
E ₈	\mathbb{Z}_2^5	8
E ₆	\mathbb{Z}_3^3	3

Jordan subgroups: exceptional cases

g	A	$\dim\mathfrak{g}_{\alpha}\;(\alpha\neq0)$
G ₂	\mathbb{Z}_2^3	2
F ₄	\mathbb{Z}_3^3	2
E ₈	\mathbb{Z}_5^3	2
D ₄	\mathbb{Z}_2^3	4
E ₈	\mathbb{Z}_2^5	8
E ₆	\mathbb{Z}_3^3	3

Models of these gradings?

Alberto Elduque (Universidad de Zaragoza)

Exceptional Jordan gradings

July 2009 7 / 32

lordan subgroups

2 Composition algebras

3 Freudenthal Magic Square

Composition algebras

Definition

A composition algebra over a field \mathbb{F} is a triple (C, \cdot, n) where

- C is a vector space over \mathbb{F} ,
- $x \cdot y$ is a bilinear multiplication $C \times C \rightarrow C$,
- $n: C \to \mathbb{F}$ is a multiplicative nondegenerate quadratic form:
 - its polar n(x, y) = n(x + y) n(x) n(y) is nondegenerate,
 - $n(x \cdot y) = n(x)n(y) \ \forall x, y \in C.$

Definition

A composition algebra over a field \mathbb{F} is a triple (C, \cdot, n) where

- C is a vector space over \mathbb{F} ,
- $x \cdot y$ is a bilinear multiplication $C \times C \rightarrow C$,
- $n: C \to \mathbb{F}$ is a multiplicative nondegenerate quadratic form:
 - its polar n(x, y) = n(x + y) n(x) n(y) is nondegenerate,
 - $n(x \cdot y) = n(x)n(y) \ \forall x, y \in C.$

The unital composition algebras will be called Hurwitz algebras.

Hurwitz algebras form a class of degree two algebras:

$$x^{\cdot 2} - n(x,1)x + n(x)1 = 0$$

for any x.

They are endowed with an antiautomorphism, the *standard conjugation*:

$$\bar{x} = n(x,1)1 - x,$$

satisfying

$$\overline{\overline{x}} = x$$
, $x + \overline{x} = n(x, 1)1$, $x \cdot \overline{x} = \overline{x} \cdot x = n(x)1$.

Cayley-Dickson doubling process

Let (B, \cdot, n) be an associative Hurwitz algebra, and let λ be a nonzero scalar in the ground field \mathbb{F} . Consider the direct sum of two copies of B:

$$C = B \oplus Bu$$
,

with the following multiplication and nondegenerate quadratic form that extend those on B:

$$(a + bu) \cdot (c + du) = (a \cdot c + \lambda \overline{d} \cdot b) + (d \cdot a + b \cdot \overline{c})u,$$

$$n(a + bu) = n(a) - \lambda n(b).$$

Then (C, \cdot, n) is again a Hurwitz algebra, which is denoted by $CD(B, \lambda)$

Let (B, \cdot, n) be an associative Hurwitz algebra, and let λ be a nonzero scalar in the ground field \mathbb{F} . Consider the direct sum of two copies of B:

$$C = B \oplus Bu$$
,

with the following multiplication and nondegenerate quadratic form that extend those on B:

$$(a + bu) \cdot (c + du) = (a \cdot c + \lambda \overline{d} \cdot b) + (d \cdot a + b \cdot \overline{c})u,$$

$$n(a + bu) = n(a) - \lambda n(b).$$

Then (C, \cdot, n) is again a Hurwitz algebra, which is denoted by $CD(B, \lambda)$

Notation:
$$CD(A, \mu, \lambda) := CD(CD(A, \mu), \lambda).$$

Generalized Hurwitz Theorem

Theorem

Every Hurwitz algebra over a field \mathbb{F} is isomorphic to one of the following:

- (i) The ground field \mathbb{F} if its characteristic is $\neq 2$.
- (ii) A quadratic commutative and associative separable algebra $K(\mu) = \mathbb{F}1 + \mathbb{F}v$, with $v^2 = v + \mu$ and $4\mu + 1 \neq 0$. The norm is given by its generic norm.
- (iii) A quaternion algebra $Q(\mu, \beta) = CD(K(\mu), \beta)$. (These four dimensional algebras are associative but not commutative.)
- (iv) A Cayley algebra $C(\mu, \beta, \gamma) = CD(K(\mu), \beta, \gamma)$. (These eight dimensional algebras are alternative, but not associative.)

\mathbb{Z}_2^3 -gradings on Cayley algebras

\mathbb{Z}_2^3 -gradings on Cayley algebras

The Cayley-Dickson doubling process induces a $\mathbb{Z}_2\text{-}\mathsf{grading}$ on the resulting algebra.

$\mathbb{Z}_2^3\text{-}\mathsf{gradings}$ on Cayley algebras

The Cayley-Dickson doubling process induces a $\mathbb{Z}_2\text{-}\mathsf{grading}$ on the resulting algebra.

Hence if the characteristic of the ground field $\mathbb F$ is \neq 2, any Cayley algebra appears as

$$C = CD(\mathbb{F}, \alpha, \beta, \gamma) = Q \oplus Qz$$

= $(K \oplus Ky) \oplus (K \oplus Ky)z$
= $(\mathbb{F} \oplus \mathbb{F}x) \oplus (\mathbb{F} \oplus \mathbb{F}x)y$
 $\oplus ((\mathbb{F} \oplus \mathbb{F}x) \oplus (\mathbb{F} \oplus \mathbb{F}x)y)z,$

\mathbb{Z}_2^3 -gradings on Cayley algebras

The Cayley-Dickson doubling process induces a $\mathbb{Z}_2\text{-}\mathsf{grading}$ on the resulting algebra.

Hence if the characteristic of the ground field $\mathbb F$ is \neq 2, any Cayley algebra appears as

$$C = CD(\mathbb{F}, \alpha, \beta, \gamma) = Q \oplus Qz$$

= $(K \oplus Ky) \oplus (K \oplus Ky)z$
= $(\mathbb{F} \oplus \mathbb{F}x) \oplus (\mathbb{F} \oplus \mathbb{F}x)y$
 $\oplus ((\mathbb{F} \oplus \mathbb{F}x) \oplus (\mathbb{F} \oplus \mathbb{F}x)y)z,$

and it is naturally graded over \mathbb{Z}_2^3 , with

$$C_{(\bar{1},\bar{0},\bar{0})} = \mathbb{F}x, \quad C_{(\bar{0},\bar{1},\bar{0})} = \mathbb{F}y, \quad C_{(\bar{0},\bar{0},\bar{1})} = \mathbb{F}z.$$

Symmetric composition algebras

Definition

A composition algebra (S, *, n) is said to be *symmetric* if the polar form of its norm is associative:

$$n(x*y,z)=n(x,y*z),$$

for any $x, y, z \in S$.

This is equivalent to the condition:

$$(x * y) * x = n(x)y = x * (y * x),$$

for any $x, y \in S$.

Examples

Examples

• Para-Hurwitz algebras: Given a Hurwitz algebra (C, \cdot, n) , its para-Hurwitz counterpart is the composition algebra (C, \bullet, n) , where

$$x \bullet y = \bar{x} \cdot \bar{y}.$$

This algebra will be denoted by \overline{C} for short.

Examples

• Para-Hurwitz algebras: Given a Hurwitz algebra (C, \cdot, n) , its para-Hurwitz counterpart is the composition algebra (C, \bullet, n) , where

$$x \bullet y = \bar{x} \cdot \bar{y}.$$

This algebra will be denoted by \overline{C} for short.

Okubo algebras: Assume char F ≠ 3 and ∃ω ≠ 1 = ω³ in F.
Consider the algebra A₀ of zero trace elements in a central simple degree 3 associative algebra with multiplication

$$x * y = \omega xy - \omega^2 yx - \frac{\omega - \omega^2}{3} \operatorname{tr}(xy)\mathbf{1},$$

and norm $n(x) = -\frac{1}{2} \operatorname{tr}(x^2)$. (There is a more general definition valid over arbitrary fields.)

Classification

Theorem (E.-Myung 93, E. 97)

Any symmetric composition algebra is either:

- a para-Hurwitz algebra,
- a form of a two-dimensional para-Hurwitz algebra without idempotent elements (with a precise description),
- an Okubo algebra.
Gradings on para-Hurwitz algebras

Theorem

Gradings on para-Hurwitz algebras of dimension 4 or 8

Gradings on their Hurwitz counterparts.

Theorem

Therefore, any para-Cayley algebra over a field of characteristic $\neq 2$ is endowed with a \mathbb{Z}_2^3 -grading.

Gradings on Okubo algebras

Gradings on Okubo algebras

Assuming \mathbb{F} is a field of characteristic $\neq 3$ containing a primitive third root ω of 1, then the matrix algebra $Mat_3(\mathbb{F})$ is generated by the order 3 matrices:

$$x = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}, \qquad y = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix},$$

and the assignment

$$\deg(x) = (\bar{1}, \bar{0}), \qquad \deg(y) = (\bar{0}, \bar{1}),$$

gives a \mathbb{Z}_3^2 -grading of $Mat_3(\mathbb{F})$, which is inherited by the Okubo algebra $(\mathfrak{sl}_3(\mathbb{F}), *, n)$.

Gradings on Okubo algebras

Assuming \mathbb{F} is a field of characteristic $\neq 3$ containing a primitive third root ω of 1, then the matrix algebra $Mat_3(\mathbb{F})$ is generated by the order 3 matrices:

$$x = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}, \qquad y = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix},$$

and the assignment

$$\deg(x) = (\bar{1}, \bar{0}), \qquad \deg(y) = (\bar{0}, \bar{1}),$$

gives a \mathbb{Z}_3^2 -grading of Mat₃(\mathbb{F}), which is inherited by the Okubo algebra $(\mathfrak{sl}_3(\mathbb{F}), *, n)$.

Over algebraically closed fields, any grading on an Okubo algebra is a coarsening of either the natural \mathbb{Z}^2 -grading (Cartan grading) or this \mathbb{Z}^2_3 -grading.

lordan subgroups

Composition algebras

Triality Lie algebra

Assume from now on that char $\mathbb{F} \neq 2,3$ and $\omega \in \mathbb{F}$.

Let (S, *, n) be any symmetric composition algebra and consider the corresponding orthogonal Lie algebra:

$$\mathfrak{o}(S,n) = \{ d \in \operatorname{End}_{\mathbb{F}}(S) : n(d(x), y) + n(x, d(y)) = 0 \ \forall x, y \in S \},\$$

and the subalgebra of $o(S, n)^3$ (with componentwise multiplication):

$$\mathfrak{tri}(S,*,n) = \{(d_0,d_1,d_2) \in \mathfrak{o}(S,n)^3 : d_0(x*y) = d_1(x)*y + x*d_2(y) \ \forall x,y\}$$

This is the *triality Lie algebra*.

Assume from now on that char $\mathbb{F} \neq 2,3$ and $\omega \in \mathbb{F}$.

Let (S, *, n) be any symmetric composition algebra and consider the corresponding orthogonal Lie algebra:

$$\mathfrak{o}(S,n) = \{ d \in \operatorname{End}_{\mathbb{F}}(S) : n(d(x), y) + n(x, d(y)) = 0 \,\,\forall x, y \in S \},\$$

and the subalgebra of $o(S, n)^3$ (with componentwise multiplication):

$$\mathfrak{tri}(S,*,n) = \{(d_0,d_1,d_2) \in \mathfrak{o}(S,n)^3 : d_0(x*y) = d_1(x)*y + x*d_2(y) \ \forall x,y\}$$

This is the *triality Lie algebra*.

The map: θ : $\mathfrak{tri}(S, *, n) \rightarrow \mathfrak{tri}(S, *, n)$, $(d_0, d_1, d_2) \mapsto (d_2, d_0, d_1)$ is an automorphism of order 3.

Principle of Local Triality

Theorem (Principle of Local Triality)

Let (S, *, n) be an eight dimensional symmetric composition algebra. Then the projection

$$\pi_0: \mathfrak{tri}(S, *, n) \longrightarrow \mathfrak{o}(S, n) \ (d_0, d_1, d_2) \mapsto d_0,$$

is an isomorphism of Lie algebras.

By taking together gradings on a symmetric composition algebra and the order 3 automorphism given by triality, one obtains the following gradings on D_4 :

By taking together gradings on a symmetric composition algebra and the order 3 automorphism given by triality, one obtains the following gradings on D_4 :

Theorem

- A Z³₂-grading of a para-Cayley algebra (C

 , •, n) induces a Z³₂ × Z₃-grading of the orthogonal Lie algebra o(C, n) of type (14,7).
- The standard \mathbb{Z}_{3}^{2} -grading on an Okubo algebra ($\mathcal{O}, *, n$) induces a \mathbb{Z}_{3}^{3} -grading on the orthogonal Lie algebra $\mathfrak{o}(\mathcal{O}, n)$ of type (24, 2).

By taking together gradings on a symmetric composition algebra and the order 3 automorphism given by triality, one obtains the following gradings on D_4 :

Theorem

- A Z³₂-grading of a para-Cayley algebra (C

 , •, n) induces a Z³₂ × Z₃-grading of the orthogonal Lie algebra o(C, n) of type (14,7).
- The standard \mathbb{Z}_{3}^{2} -grading on an Okubo algebra ($\mathcal{O}, *, n$) induces a \mathbb{Z}_{3}^{3} -grading on the orthogonal Lie algebra $\mathfrak{o}(\mathcal{O}, n)$ of type (24,2).

Remark

A \mathbb{Z}_2^3 -grading of a para-Cayley algebra (\bar{C}, \bullet, n) also induces a \mathbb{Z}_2^3 -grading of its Lie algebra of derivations (which is an exceptional simple Lie algebra of type G_2). The type of this grading is (0,7).

Freudenthal Magic Square

Let (S, *, n) and (S', \star, n') be two symmetric composition algebras. One can construct a Lie algebra as follows:

$$\mathfrak{g} = \mathfrak{g}(S,S') = (\mathfrak{tri}(S) \oplus \mathfrak{tri}(S')) \oplus (\oplus_{i=0}^{2} \iota_{i}(S \otimes S')),$$

with bracket given by:

 the Lie bracket in tri(S) ⊕ tri(S'), which thus becomes a Lie subalgebra of g,

•
$$[(d_0, d_1, d_2), \iota_i(x \otimes x')] = \iota_i(d_i(x) \otimes x'),$$

- $[(d'_0, d'_1, d'_2), \iota_i(x \otimes x')] = \iota_i(x \otimes d'_i(x')),$
- $[\iota_i(x \otimes x'), \iota_{i+1}(y \otimes y')] = \iota_{i+2}((x * y) \otimes (x' * y'))$ (indices modulo 3),
- $[\iota_i(x\otimes x'),\iota_i(y\otimes y')]=n'(x',y')\theta^i(t_{x,y})+n(x,y)\theta'^i(t'_{x',y'}),$

Freudenthal Magic Square

		dim S'			
$\mathfrak{g}(S,S')$		1	2	4	8
dim S	1	A_1	A_2	<i>C</i> ₃	F_4
	2	<i>A</i> ₂	$A_2 \oplus A_2$	A_5	E_6
	4	<i>C</i> ₃	A_5	D_6	E ₇
	8	F ₄	E_6	E7	E ₈

Gradings on the Freudenthal Magic Square

The Lie algebra $\mathfrak{g}(S,S')$ is naturally $\mathbb{Z}_2 imes \mathbb{Z}_2$ -graded with

$$\mathfrak{g}_{(\bar{0},\bar{0})} = \mathfrak{tri}(S) \oplus \mathfrak{tri}(S'),$$

$$\mathfrak{g}_{(ar{1},ar{0})} = \iota_0(S\otimes S'), \qquad \mathfrak{g}_{(ar{0},ar{1})} = \iota_1(S\otimes S'), \qquad \mathfrak{g}_{(ar{1},ar{1})} = \iota_2(S\otimes S').$$

The Lie algebra $\mathfrak{g}(S,S')$ is naturally $\mathbb{Z}_2 imes \mathbb{Z}_2$ -graded with

$$\mathfrak{g}_{(\bar{1},\bar{0})} = \iota_0(S\otimes S'), \qquad \mathfrak{g}_{(\bar{0},\bar{1})} = \iota_1(S\otimes S'), \qquad \mathfrak{g}_{(\bar{1},\bar{1})} = \iota_2(S\otimes S').$$

 $\mathfrak{q}_{(\bar{\mathfrak{a}},\bar{\mathfrak{a}})} = \operatorname{tri}(S) \oplus \operatorname{tri}(S').$

Also, the order 3 automorphisms θ and θ' extend to an order 3 automorphism Θ of $\mathfrak{g}(S, S')$. The eigenspaces of Θ constitute a \mathbb{Z}_3 -grading of $\mathfrak{g}(S, S')$.

 \mathfrak{g}

Jordan subgroups

2 Composition algebras

3 Freudenthal Magic Square

(From now on, assume that our ground field ${\mathbb F}$ is algebraically closed of characteristic 0.)

(From now on, assume that our ground field $\mathbb F$ is algebraically closed of characteristic 0.)

The previous \mathbb{Z}_2^2 and \mathbb{Z}_3 -gradings on the Lie algebras $\mathfrak{g}(S, S')$ can be complemented with gradings on the symmetric composition algebras S and S' in several ways.

(From now on, assume that our ground field ${\mathbb F}$ is algebraically closed of characteristic 0.)

The previous \mathbb{Z}_2^2 and \mathbb{Z}_3 -gradings on the Lie algebras $\mathfrak{g}(S, S')$ can be complemented with gradings on the symmetric composition algebras S and S' in several ways.

The Z²₃-grading on the Okubo algebra O induces a Z³₃-grading on both the simple Lie algebra g(F, O) of type F₄ and the simple Lie algebra g(S, O) (for the two-dimensional para-Hurwitz algebra S) of type E₆.
In both cases g₀ = 0 and g_α ⊕ g_{-α} is a Cartan subalgebra of g for any 0 ≠ α ∈ Z³₃.

(From now on, assume that our ground field ${\mathbb F}$ is algebraically closed of characteristic 0.)

The previous \mathbb{Z}_2^2 and \mathbb{Z}_3 -gradings on the Lie algebras $\mathfrak{g}(S, S')$ can be complemented with gradings on the symmetric composition algebras S and S' in several ways.

- The Z²₃-grading on the Okubo algebra O induces a Z³₃-grading on both the simple Lie algebra g(F, O) of type F₄ and the simple Lie algebra g(S, O) (for the two-dimensional para-Hurwitz algebra S) of type E₆.
 In both cases g₀ = 0 and g_α ⊕ g_{-α} is a Cartan subalgebra of g for any 0 ≠ α ∈ Z³₃.
- The Z₂³-grading on a para-Cayley algebra C̄ induces a Z₂⁵-grading on the simple Lie algebra g(C̄, C̄) of type E₈.
 Moreover, g₀ = 0 and g_α is a Cartan subalgebra of g for any 0 ≠ α ∈ Z₂⁵.

Theorem

Theorem

The previous gradings:

• a \mathbb{Z}_2^3 -grading on the simple Lie algebra of type G_2 induced by the \mathbb{Z}_2^3 -grading of the Cayley algebra,

Theorem

- a Z₂³-grading on the simple Lie algebra of type G₂ induced by the Z₂³-grading of the Cayley algebra,
- a Z₂³-grading on the simple Lie algebra of type D₄ induced by the Z₂³-grading of the Cayley algebra,

Theorem

- a Z₂³-grading on the simple Lie algebra of type G₂ induced by the Z₂³-grading of the Cayley algebra,
- a Z₂³-grading on the simple Lie algebra of type D₄ induced by the Z₂³-grading of the Cayley algebra,
- a Z₃³-grading on the simple Lie algebra of type F₄ induced by the Z₃²-grading of the Okubo algebra,

Theorem

- a Z₂³-grading on the simple Lie algebra of type G₂ induced by the Z₂³-grading of the Cayley algebra,
- a Z₂³-grading on the simple Lie algebra of type D₄ induced by the Z₂³-grading of the Cayley algebra,
- a Z₃³-grading on the simple Lie algebra of type F₄ induced by the Z₃²-grading of the Okubo algebra,
- a Z₃³-grading on the simple Lie algebra of type E₆ induced by the Z₃²-grading of the Okubo algebra,

Theorem

- a Z₂³-grading on the simple Lie algebra of type G₂ induced by the Z₂³-grading of the Cayley algebra,
- a Z₂³-grading on the simple Lie algebra of type D₄ induced by the Z₂³-grading of the Cayley algebra,
- a \mathbb{Z}_3^3 -grading on the simple Lie algebra of type F_4 induced by the \mathbb{Z}_3^2 -grading of the Okubo algebra,
- a Z₃³-grading on the simple Lie algebra of type E₆ induced by the Z₃²-grading of the Okubo algebra,
- a Z₂⁵-grading on the simple Lie algebra of type E₈ induced by the Z₂³-grading of the Cayley algebra,
Exceptional Jordan gradings

Theorem

The previous gradings:

- a Z₂³-grading on the simple Lie algebra of type G₂ induced by the Z₂³-grading of the Cayley algebra,
- a Z₂³-grading on the simple Lie algebra of type D₄ induced by the Z₂³-grading of the Cayley algebra,
- a \mathbb{Z}_3^3 -grading on the simple Lie algebra of type F_4 induced by the \mathbb{Z}_3^2 -grading of the Okubo algebra,
- a Z₃³-grading on the simple Lie algebra of type E₆ induced by the Z₃²-grading of the Okubo algebra,
- a Z₂⁵-grading on the simple Lie algebra of type E₈ induced by the Z₂³-grading of the Cayley algebra,

Exceptional Jordan gradings

Theorem

The previous gradings:

- a Z₂³-grading on the simple Lie algebra of type G₂ induced by the Z₂³-grading of the Cayley algebra,
- a Z₂³-grading on the simple Lie algebra of type D₄ induced by the Z₂³-grading of the Cayley algebra,
- **3** a \mathbb{Z}_3^3 -grading on the simple Lie algebra of type F_4 induced by the \mathbb{Z}_3^2 -grading of the Okubo algebra,
- a Z₃³-grading on the simple Lie algebra of type E₆ induced by the Z₃²-grading of the Okubo algebra,
- a Z₂⁵-grading on the simple Lie algebra of type E₈ induced by the Z₂³-grading of the Cayley algebra,

are exceptional Jordan gradings.

Only one exceptional Jordan grading does not fit in the Theorem above: the \mathbb{Z}_5^3 -grading on E_8 .

Only one exceptional Jordan grading does not fit in the Theorem above: the \mathbb{Z}_5^3 -grading on E_8 .

Let V_1 and V_2 be two vector spaces over \mathbb{F} of dimension 5, and consider the \mathbb{Z}_5 -graded vector space

$$\mathfrak{g} = \oplus_{i=0}^4 \mathfrak{g}_{\overline{\imath}},$$

where

$$\begin{split} \mathfrak{g}_{\bar{0}} &= \mathfrak{sl}(V_1) \oplus \mathfrak{sl}(V_2), \\ \mathfrak{g}_{\bar{1}} &= V_1 \otimes \bigwedge^2 V_2, \\ \mathfrak{g}_{\bar{2}} &= \bigwedge^2 V_1 \otimes \bigwedge^4 V_2, \\ \mathfrak{g}_{\bar{3}} &= \bigwedge^3 V_1 \otimes V_2, \\ \mathfrak{g}_{\bar{4}} &= \bigwedge^4 V_1 \otimes \bigwedge^3 V_2. \end{split}$$

This is a \mathbb{Z}_5 -graded Lie algebra in a unique way: the exceptional simple Lie algebra of type E_8 .

Up to conjugation in Aut g, there is a unique order 5 automorphism of the simple Lie algebra g of type E_8 such that the dimension of the subalgebra of fixed elements is 48.

Up to conjugation in Aut g, there is a unique order 5 automorphism of the simple Lie algebra g of type E_8 such that the dimension of the subalgebra of fixed elements is 48.

Up to conjugation in Aut g, there is a unique order 5 automorphism of the simple Lie algebra g of type E_8 such that the dimension of the subalgebra of fixed elements is 48.

The uniqueness shows us that, up to conjugation, this is the automorphism of \mathfrak{g} such that its restriction to $\mathfrak{g}_{\overline{\imath}}$ is ξ^i times the identity, where ξ is a fixed primitive fifth root of unity.

Consider the following automorphisms $\sigma_1, \sigma_2, \sigma_3$ of \mathfrak{g} :

$$egin{aligned} &\sigma_1(x)=\xi^i x \quad ext{for any } x\in \mathfrak{g}_{\overline{\imath}} ext{ and } 0\leq i\leq 4, \ &\sigma_2|_{\mathfrak{g}_{\overline{1}}}=b_1\otimes\wedge^2 b_2, \ &\sigma_3|_{\mathfrak{g}_{\overline{1}}}=c_1\otimes\wedge^2 c_2, \end{aligned}$$

Consider the following automorphisms $\sigma_1, \sigma_2, \sigma_3$ of \mathfrak{g} :

$$egin{aligned} &\sigma_1(x)=\xi^i x \quad ext{for any } x\in \mathfrak{g}_{\overline{\imath}} ext{ and } 0\leq i\leq 4, \ &\sigma_2|_{\mathfrak{g}_{\overline{1}}}=b_1\otimes\wedge^2 b_2, \ &\sigma_3|_{\mathfrak{g}_{\overline{1}}}=c_1\otimes\wedge^2 c_2, \end{aligned}$$

where on fixed bases of V_1 and V_2 , the coordinate matrices of b_1, c_1, b_2, c_2 are:

$$b_1 \leftrightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \xi & 0 & 0 & 0 & 0 \\ 0 & 0 & \xi^2 & 0 & 0 \\ 0 & 0 & 0 & 0 & \xi^3 & 0 \\ 0 & 0 & 0 & 0 & \xi^4 \end{pmatrix}, \quad c_1 \leftrightarrow \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \xi^4 & 0 & 0 \\ 0 & 0 & 0 & \xi^4 & 0 & 0 \\ 0 & 0 & 0 & \xi & 0 \\ 0 & 0 & 0 & \xi & 0 \\ 0 & 0 & 0 & 0 & \xi^3 \end{pmatrix}, \quad c_2 \leftrightarrow \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ \end{pmatrix}.$$

The grading of E_8 induced by the order 5 commuting automorphisms $\sigma_1, \sigma_2, \sigma_3$ is the Jordan grading over \mathbb{Z}_5^3 .

The grading of E_8 induced by the order 5 commuting automorphisms $\sigma_1, \sigma_2, \sigma_3$ is the Jordan grading over \mathbb{Z}_5^3 .

 $\forall 0 \neq \alpha \in \mathbb{Z}_5^3$, $\oplus_{i=1}^4 \mathfrak{g}_{i\alpha}$ is a Cartan subalgebra of \mathfrak{g} .

The grading of E_8 induced by the order 5 commuting automorphisms $\sigma_1, \sigma_2, \sigma_3$ is the Jordan grading over \mathbb{Z}_5^3 .

$$\forall 0 \neq \alpha \in \mathbb{Z}_5^3$$
, $\oplus_{i=1}^4 \mathfrak{g}_{i\alpha}$ is a Cartan subalgebra of \mathfrak{g} .

There are models of the Jordan gradings of F_4 and E_6 over \mathbb{Z}_3^3 constructed along the same lines.

The grading of E_8 induced by the order 5 commuting automorphisms $\sigma_1, \sigma_2, \sigma_3$ is the Jordan grading over \mathbb{Z}_5^3 .

$$\forall 0 \neq \alpha \in \mathbb{Z}_5^3$$
, $\oplus_{i=1}^4 \mathfrak{g}_{i\alpha}$ is a Cartan subalgebra of \mathfrak{g} .

There are models of the Jordan gradings of F_4 and E_6 over \mathbb{Z}_3^3 constructed along the same lines.

That's all. Thanks