On the interaction between partial projective representations of groups and twisted partial actions

Authors: M. Dokuchaev, B. Nóvikov

Let K be field, K^{*} group of inv. ele-ts, $\mathrm{Mat}_{n} K$ mult. semigrp. of $\forall n \times n$-matrices over K.

Define equivalence λ on $\operatorname{Mat}_{n} K$: for $A, B \in \operatorname{Mat}_{n} K$

$$
A \lambda B \Longleftrightarrow A=c B, \text { some } c \in K^{*}
$$

Remark: λ is congruence of Mat $_{n} K$.

Define

$$
\operatorname{PMat}_{n} K=\operatorname{Mat}_{n} K / \lambda
$$

semigroup of projective $n \times n$-matrices.

Definition 1 K-semigroup is a semigrp T with 0 and with

$$
K \times T \rightarrow T
$$

such that

$$
\begin{gathered}
\alpha(\beta x)=(\alpha \beta) x, \alpha(x y)=(\alpha x) y=x(\alpha y) \\
1 x=x, 0 x=0
\end{gathered}
$$

$\forall \alpha, \beta \in K, x, y \in T$. Call $T \underline{K-c a n c e l l a t i v e ~ i f: ~}$

$$
\alpha x=\beta x \Longrightarrow \alpha=\beta
$$

$\forall \alpha, \beta \in K, 0 \neq x \in T$.
Observe: $\mathrm{Mat}_{n} K$ is K-cancellative, $\mathrm{PMat}_{n} K$ is not.
For a K-cancel. monoid M define congruence λ as above: for $x, y \in M$

$$
x \lambda y \Longleftrightarrow x=\alpha y \text { some } \alpha \in K^{*} .
$$

Set

$$
\operatorname{Proj} M=M / \lambda
$$

Let ξ the natural $\xi: M \rightarrow \operatorname{Proj} M$.

Let G grp., S mond. A map $\varphi: G \rightarrow S$ is a (unital) partial homomorphism if $\forall x, y \in G$

$$
\begin{aligned}
& \varphi(1)=1 \\
& \varphi\left(x^{-1}\right) \varphi(x) \varphi(y)=\varphi\left(x^{-1}\right) \varphi(x y), \\
& \varphi(x) \varphi(y) \varphi\left(y^{-1}\right)=\varphi(x y) \varphi\left(y^{-1}\right) .
\end{aligned}
$$

Definition 2 Let M-cancel. mond., G grp. A partial projective representation of G in M is

$$
\Gamma: G \rightarrow M
$$

such that

$$
\xi \Gamma: G \rightarrow \operatorname{Proj} M
$$

is a partial homomorphism.

Theorem 1 Let M a K-cancel. mond. If $\Gamma: G \rightarrow$ M is a par. proj. repr. of G then there is a (unique) partially defined map $\sigma: G \times G \rightarrow K^{*}$ such that

$$
\operatorname{dom} \sigma=\{(x, y) \mid \Gamma(x) \Gamma(y) \neq 0\}
$$

and $\forall(x, y) \in \operatorname{dom} \sigma$

$$
\begin{aligned}
\Gamma\left(x^{-1}\right) \Gamma(x) \Gamma(y) & =\Gamma\left(x^{-1}\right) \Gamma(x y) \sigma(x, y), \\
\Gamma(x) \Gamma(y) \Gamma\left(y^{-1}\right) & =\Gamma(x y) \Gamma\left(y^{-1}\right) \sigma(x, y) .
\end{aligned}
$$

Definition 3 A partial action θ of G on semigrp S consists of $S_{x} \triangleleft \overline{S(x \in G) \text { and iso-s } \theta_{x}: S_{x^{-1}} \rightarrow S_{x}, ~}$ such that $\forall x, y \in G$:
(i) $S_{1}=S, \theta_{1}=\mathrm{Id}_{S}$;
(ii) $\theta_{x}\left(S_{x^{-1}} \cap S_{y}\right)=S_{x} \cap S_{x y}$;
(iii) $\theta_{x} \circ \theta_{y}(a)=\theta_{x y}(a) \forall a \in S_{y^{-1}} \cap S_{y^{-1} x^{-1}}$.

Definition 4 Let S a K-mond., θ a par. action of G on S such that $\forall x \in G \exists 1_{x} \in S_{x}$ and $\forall \theta_{x}$ is K-map. A K-valued twisting of θ is a function $\sigma: G \times G \rightarrow K:$
(i) $\sigma(x, y)=0 \Longleftrightarrow S_{x} \cap S_{x y}=0 \quad(x, y \in G)$;
(ii) $\sigma(x, 1)=\sigma(1, x)=1 \quad \forall x \in G$;
(iii) $S_{x} \cap S_{x y} \cap S_{x y z} \neq 0 \Longrightarrow$

$$
\sigma(x, y) \sigma(x y, z)=\sigma(y, z) \sigma(x, y z)
$$

$x, y, z \in G$.

Given (θ, σ) of G on S, define the crossed product $S *_{\theta, \sigma} G$ as follows. Let

$$
L=\left\{a u_{x}: a \in S_{x}, x \in G\right\} .
$$

Multiplication on L given by

$$
a u_{x} \cdot b u_{y}=\theta_{x}\left(\theta_{x}^{-1}(a) b\right) \sigma(x, y) u_{x y},
$$

which is associative. Set

$$
S *_{\theta, \sigma} G=L / I
$$

where

$$
I=\left\{0 u_{x}: x \in G\right\} .
$$

Observe:
S is K-cancelative $\Longrightarrow S *_{\theta, \sigma} G$ is K-cancelative.

Let G grp., K field, $M K$-cancel. mond. and Γ : $G \rightarrow M$ a par. proj. repr. with factor set $\sigma: G \times G \rightarrow$ K. Set

$$
e_{x}= \begin{cases}\Gamma(x) \Gamma\left(x^{-1}\right) \sigma\left(x^{-1}, x\right)^{-1} & \text { if } \Gamma(x) \neq 0 \\ 0 & \text { if } \Gamma(x)=0\end{cases}
$$

Then the e_{x} 's are pairwise commuting idempotents.

Let

$$
\begin{gathered}
\Gamma(G)=\langle\alpha \Gamma(x) \mid \alpha \in K, x \in G\rangle \subseteq M \\
S=\left\langle\alpha e_{x}, \alpha \in K, x \in G\right\rangle \subseteq \Gamma(G)
\end{gathered}
$$

Set $S_{x}=S e_{x}$.

Recall

Theorem 2 [2] The maps $\theta_{x}: S_{x^{-1}} \rightarrow S_{x}(x \in G)$

$$
\theta_{x}(a)= \begin{cases}\Gamma(x) a \Gamma\left(x^{-1}\right) \sigma\left(x^{-1}, x\right)^{-1} & \text { if } S_{x^{-1}} \neq 0 \\ 0 & \text { if } S_{x^{-1}}=0\end{cases}
$$

form a par. action $\theta=\theta^{\Gamma}$ of G on S, the factor set σ is twisting for θ and

$$
\psi: S *_{\theta, \sigma} G \ni a u_{x} \mapsto a \Gamma(x) \in \Gamma(G)
$$

is an epimorphism.
Let θ be a twisted par. ac. of G on a K-cancel. mond. T with twisting σ. Thus each ideal $\forall T_{x}=T 1_{x}$. Have:

Theorem 3 [2] The map $\Gamma_{\theta}: G \rightarrow T *_{\theta, \sigma} G$, defined by $\Gamma_{\theta}(x)=1_{x} u_{x}$, is a proj. par. repr. whose factor set is σ.

Theorem 2, Theorem $3 \Longrightarrow \forall \Gamma: G \rightarrow M$ the following triangle is commutative:

where $\theta=\theta^{\Gamma}$.

Definition 5 Let $\Gamma: G \rightarrow M$ and $\Gamma^{\prime}: G \rightarrow M^{\prime}$ be par. proj. repr-s. A morphism from Γ to Γ^{\prime} is a homomorphism of K-monoids $\varphi: M \rightarrow M^{\prime}$ with

commutative.

Observe:

$$
\begin{equation*}
\sigma(x, y)=\sigma^{\prime}(x, y) \quad \forall(x, y) \in \operatorname{dom} \sigma^{\prime} \tag{1}
\end{equation*}
$$

in particular dom $\sigma^{\prime} \subseteq \operatorname{dom} \sigma$.

Consider the category $\mathbf{P p r} G$ of par. proj. repr.-s of G into K-cancel. monoids and their morphisms.

A par. proj. repr. $\Gamma: G \rightarrow M$ shall be called $a d-$ justed if $M=\Gamma(M)$. They (and morphisms) form a full subcategory $\mathbf{A d j P} \mathbf{p r} G$.

The par. proj. repr. $\Gamma_{\theta}: G \rightarrow T *_{\theta, \sigma} G$ from Theorem 3 satisfies:

$$
S_{x} \Gamma(x) \cap S_{y} \Gamma(y)=0 \quad \text { for any } x, y \in G, x \neq y
$$

Such par. proj. repr-s called strongly injective. They (with morhisms) form a full subcategory SiPpr G.

Also denote
$\operatorname{AdjSiPpr} G=\{$ adj. str. inj. par. proj. repr-s and morphisms $\}$.

Similarly define the category $\mathbf{P a}_{G}$ of the partial actions of G on K-cancel. monoids and their morphisms:

Definition 6 Let $\theta=\left\{\theta_{x}: T_{x^{-1}} \rightarrow T_{x}(x \in G)\right\}$ and $\theta^{\prime}=\left\{\theta_{x}^{\prime}: T_{x^{-1}}^{\prime} \rightarrow T_{x}^{\prime}(x \in G)\right\}$ be par. ac.-s of G on T and T^{\prime} respectively. A morphism from $\theta \rightarrow \theta^{\prime}$ is a homomorphism of K-monoids

$$
\varphi: T \rightarrow T^{\prime}
$$

such that

$$
\varphi\left(T_{x}\right) \subseteq T_{x}^{\prime}
$$

$\forall x \in G$ and

$$
\begin{array}{lll}
T_{x^{-1}} & \theta_{x} & T_{x} \\
\mid \varphi & & \mid \varphi \\
\stackrel{\varphi}{T_{x}^{-1}} & \theta_{x}^{\prime} & \stackrel{T_{x}^{\prime}}{\prime}
\end{array}
$$

is commutative.
Also consider the category $\mathbf{T w P a}_{G}$ of twisted partial actions of grps on K-cancel. monoids in which the morphisms are defined as follows:

Definition 7 A morphism of tw. par. actions

$$
\varphi:(\theta, \sigma) \rightarrow\left(\theta^{\prime}, \sigma^{\prime}\right)
$$

with $\theta=\left\{\theta_{x}: T_{x^{-1}} \rightarrow T_{x}(x \in G)\right\}$ and $\theta^{\prime}=\left\{\theta_{x}^{\prime}:\right.$ $\left.T_{x^{-1}}^{\prime} \rightarrow T_{x}^{\prime}(x \in G)\right\}$, is a morphism of par. ac.-s

$$
\varphi: \theta \rightarrow \theta^{\prime}
$$

such that \forall restriction

$$
\varphi: T_{x} \rightarrow T_{x}^{\prime} \quad(x \in G)
$$

is homom. of monds and

$$
\varphi\left(T_{x} \cap T_{x y}\right) \neq 0 \Longrightarrow \sigma(x, y)=\sigma^{\prime}(x, y) \quad(\forall x, y \in G)
$$

A tw. par. action of G on T is called adjusted if T is generated by $\alpha 1_{x}(\alpha \in K, x \in G)$. They (and morphisms) form a subcategory $\mathbf{A d j} \mathbf{T w P a}{ }_{G}$.

Describe the interaction:

Theorem 4 (i) \exists a functor $\operatorname{Ppr} G \rightarrow$ AdjTwPa $_{G}$ which takes $\Gamma \mapsto \theta^{\Gamma}$.
(ii) \exists a functor $\mathbf{T w P a} \mathbf{T}_{G} \rightarrow \mathbf{S i P p r} G$ which takes $\theta \mapsto \Gamma_{\theta}$. Moreover, Γ_{θ} is adjusted if θ is adjusted.
(iii) $\forall \Gamma \in \mathrm{Ob} \operatorname{Ppr} G \exists$ morphism $\Gamma_{\theta \Gamma} \rightarrow \Gamma$
which is \cong if $\Gamma \in$ Ob AdjSiPpr G.
(iv) $\forall \theta \in \mathrm{Ob} \mathrm{TwPa}_{G} \exists$ mono.

$$
\theta^{\Gamma_{\theta}} \rightarrow \theta
$$

which is \cong if θ is adjusted.
(v) Functors from (i) and (ii) give

AdjSiPpr $G \sim \operatorname{AdjTwPa}{ }_{G}$.

(vi) The restriction

$$
\text { AdjPpr } G \rightarrow \mathbf{A d j T w P a}{ }_{G}
$$

is right adjoint to restriction
AdjTwPa $_{G} \rightarrow \mathbf{A d j P p r} G$.

References

[1] M. Dokuchaev, R. Exel, Associativity of crossed products by partial actions, enveloping actions and partial representations, Trans. Amer. Math. Soc., 357, (5), (2005), 1931-1952.
[2] M. Dokuchaev, B. Novikov, Partial projective representations and partial actions, J. Pure Appl. Algebra (to appear).
[3] R. Exel, Partial actions of groups and actions of semigroups, Proc. Amer. Math. Soc., 126, (12), (1998), 3481-3494.
[4] B. V. Novikov, On projective representations of semigroups, Dopovidi AN USSR, 1979, N6, 472475 (in Russian). [MR 80i:20041]

