Functional identities and their applications to graded algebras

Matej Brešar,

University of Ljubljana, University of Maribor, Slovenia

July 2009

Example 1

Example 1

R : a ring

Example 1

R : a ring
 $f: R \rightarrow R$

Example 1

R : a ring
 $f: R \rightarrow R$

$$
f(x) y=0 \quad \text { for all } x, y \in R
$$

Example 1

R : a ring
 $f: R \rightarrow R$

$$
f(x) y=0 \quad \text { for all } x, y \in R
$$

Example 1

R : a ring
 $f: R \rightarrow R$

$$
f(x) y=0 \quad \text { for all } x, y \in R
$$

$$
f=0
$$

Example 1

$R:$ a ring
$f: R \rightarrow R$

$$
f(x) y=0 \quad \text { for all } x, y \in R
$$

$f=0$ or R "very special"

Example 1

R : a ring
$f: R \rightarrow R$

$$
f(x) y=0 \quad \text { for all } x, y \in R
$$

$f=0$ or R "very special" (its left annihilator is nonzero: $a R=0$ with $a \neq 0$)

Example 2

Example 2

$$
\begin{aligned}
& R \text { prime }(I, J \text { ideals: } I J=0 \Longrightarrow I=0 \text { or } J=0) \\
& f, g: R \rightarrow R
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& R \text { prime }(I, J \text { ideals: } I J=0 \Longrightarrow I=0 \text { or } J=0) \\
& f, g: R \rightarrow R \\
& \qquad f(x) y+g(y) x=0 \quad \text { for all } x, y \in R
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& R \text { prime }(I, J \text { ideals: } I J=0 \Longrightarrow I=0 \text { or } J=0) \\
& f, g: R \rightarrow R \\
& \qquad f(x) y+g(y) x=0 \quad \text { for all } x, y \in R \\
&
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& R \text { prime }(I, J \text { ideals: } I J=0 \Longrightarrow I=0 \text { or } J=0) \\
& f, g: R \rightarrow R \\
& \qquad f(x) y+g(y) x=0 \quad \text { for all } x, y \in R \\
& \\
& f=g=0
\end{aligned}
$$

Example 2

R prime $(I, J$ ideals: $I J=0 \Longrightarrow I=0$ or $J=0)$
$f, g: R \rightarrow R$

$$
f(x) y+g(y) x=0 \quad \text { for all } x, y \in R
$$

$f=g=0$ or (note: $x y+(-y) x=0$ is an example)

Example 2

R prime $(I, J$ ideals: $I J=0 \Longrightarrow I=0$ or $J=0)$ $f, g: R \rightarrow R$

$$
f(x) y+g(y) x=0 \quad \text { for all } x, y \in R
$$

$f=g=0$ or (note: $x y+(-y) x=0$ is an example) R is commutative

Example 2

R prime $(I, J$ ideals: $I J=0 \Longrightarrow I=0$ or $J=0)$
$f, g: R \rightarrow R$

$$
f(x) y+g(y) x=0 \quad \text { for all } x, y \in R
$$

$f=g=0$ or (note: $x y+(-y) x=0$ is an example) R is
commutative
Proof.
$f(x)(y z) w=-g(y z) x w$

Example 2

R prime $(I, J$ ideals: $I J=0 \Longrightarrow I=0$ or $J=0)$
$f, g: R \rightarrow R$

$$
f(x) y+g(y) x=0 \quad \text { for all } x, y \in R
$$

$f=g=0$ or (note: $x y+(-y) x=0$ is an example) R is
commutative

Proof.

$f(x)(y z) w=-g(y z) x w=f(x w) y z=-g(y) x w z=$
$f(x) y w z$

Example 2

R prime $(I, J$ ideals: $I J=0 \Longrightarrow I=0$ or $J=0)$
$f, g: R \rightarrow R$

$$
f(x) y+g(y) x=0 \quad \text { for all } x, y \in R
$$

$f=g=0$ or (note: $x y+(-y) x=0$ is an example) R is
commutative

Proof.

$f(x)(y z) w=-g(y z) x w=f(x w) y z=-g(y) x w z=$
$f(x) y w z \Longrightarrow f(R) R[R, R]=0$

Example 2

R prime $(I, J$ ideals: $I J=0 \Longrightarrow I=0$ or $J=0)$
$f, g: R \rightarrow R$

$$
f(x) y+g(y) x=0 \quad \text { for all } x, y \in R
$$

$f=g=0$ or (note: $x y+(-y) x=0$ is an example) R is
commutative

Proof.

$f(x)(y z) w=-g(y z) x w=f(x w) y z=-g(y) x w z=$
$f(x) y w z \Longrightarrow f(R) R[R, R]=0 \Longrightarrow f=0$ or $[R, R]=0$.

Example 3

Example 3

Z : center of R, R prime

Example 3

Z : center of R, R prime $f, g: R \rightarrow R$

Example 3

Z : center of R, R prime

$f, g: R \rightarrow R$

$$
f(x) y+g(y) x \in Z \quad \text { for all } x, y \in R
$$

Example 3

Z : center of R, R prime

$f, g: R \rightarrow R$

$$
f(x) y+g(y) x \in Z \quad \text { for all } x, y \in R
$$

Example 3

$$
\begin{aligned}
& \text { Z: center of } R, R \text { prime } \\
& f, g: R \rightarrow R \\
& \qquad f(x) y+g(y) x \in Z \quad \text { for all } x, y \in R \\
& \\
& f=g=0
\end{aligned}
$$

Example 3

Z : center of R, R prime $f, g: R \rightarrow R$

$$
f(x) y+g(y) x \in Z \quad \text { for all } x, y \in R
$$

$f=g=0$ or (note: $x^{2}-\operatorname{tr}(x) x \in Z$ on $R=M_{2}(F)$,

Example 3

Z : center of R, R prime
$f, g: R \rightarrow R$

$$
f(x) y+g(y) x \in Z \quad \text { for all } x, y \in R
$$

$f=g=0$ or (note: $x^{2}-\operatorname{tr}(x) x \in Z$ on $R=M_{2}(F)$, hence $f(x) y+f(y) x \in Z$ with $f(x)=x-\operatorname{tr}(x))$

Example 3

Z : center of R, R prime
$f, g: R \rightarrow R$

$$
f(x) y+g(y) x \in Z \quad \text { for all } x, y \in R
$$

$f=g=0$ or (note: $x^{2}-\operatorname{tr}(x) x \in Z$ on $R=M_{2}(F)$, hence $f(x) y+f(y) x \in Z$ with $f(x)=x-\operatorname{tr}(x)) R$ embeds in $M_{2}(F)$

Example 3

Z : center of R, R prime
$f, g: R \rightarrow R$

$$
f(x) y+g(y) x \in Z \quad \text { for all } x, y \in R
$$

$f=g=0$ or (note: $x^{2}-\operatorname{tr}(x) x \in Z$ on $R=M_{2}(F)$, hence $f(x) y+f(y) x \in Z$ with $f(x)=x-\operatorname{tr}(x)) R$ embeds in $M_{2}(F)$

Proof:

Example 3

Z : center of R, R prime
$f, g: R \rightarrow R$

$$
f(x) y+g(y) x \in Z \quad \text { for all } x, y \in R
$$

$f=g=0$ or (note: $x^{2}-\operatorname{tr}(x) x \in Z$ on $R=M_{2}(F)$, hence $f(x) y+f(y) x \in Z$ with $f(x)=x-\operatorname{tr}(x)) R$ embeds in $M_{2}(F)$

Proof: Algebraic manipulations + structure theory of PI-rings

Example 4

Example 4

$f_{1}, f_{2}, \ldots, f_{n}: R^{n-1} \rightarrow R, R$ prime

Example 4

$f_{1}, f_{2}, \ldots, f_{n}: R^{n-1} \rightarrow R, R$ prime
$f_{1}\left(x_{2}, \ldots, x_{n}\right) x_{1}+f_{2}\left(x_{1}, x_{3} \ldots, x_{n}\right) x_{2}+\ldots+f_{n}\left(x_{1}, \ldots, x_{n-1}\right) x_{n} \in Z$

Example 4

$f_{1}, f_{2}, \ldots, f_{n}: R^{n-1} \rightarrow R, R$ prime
$f_{1}\left(x_{2}, \ldots, x_{n}\right) x_{1}+f_{2}\left(x_{1}, x_{3} \ldots, x_{n}\right) x_{2}+\ldots+f_{n}\left(x_{1}, \ldots, x_{n-1}\right) x_{n} \in Z$

Example 4

$f_{1}, f_{2}, \ldots, f_{n}: R^{n-1} \rightarrow R, R$ prime
$f_{1}\left(x_{2}, \ldots, x_{n}\right) x_{1}+f_{2}\left(x_{1}, x_{3} \ldots, x_{n}\right) x_{2}+\ldots+f_{n}\left(x_{1}, \ldots, x_{n-1}\right) x_{n} \in Z$
\qquad

$$
f_{1}=f_{2}=\ldots=f_{n}=0
$$

Example 4

$f_{1}, f_{2}, \ldots, f_{n}: R^{n-1} \rightarrow R, R$ prime
$f_{1}\left(x_{2}, \ldots, x_{n}\right) x_{1}+f_{2}\left(x_{1}, x_{3} \ldots, x_{n}\right) x_{2}+\ldots+f_{n}\left(x_{1}, \ldots, x_{n-1}\right) x_{n} \in Z$
\qquad
$f_{1}=f_{2}=\ldots=f_{n}=0 \quad$ or R embeds in $M_{n}(F)$

Example 4

$f_{1}, f_{2}, \ldots, f_{n}: R^{n-1} \rightarrow R, R$ prime
$f_{1}\left(x_{2}, \ldots, x_{n}\right) x_{1}+f_{2}\left(x_{1}, x_{3} \ldots, x_{n}\right) x_{2}+\ldots+f_{n}\left(x_{1}, \ldots, x_{n-1}\right) x_{n} \in Z$

$$
f_{1}=f_{2}=\ldots=f_{n}=0 \quad \text { or } R \text { embeds in } M_{n}(F)
$$

Note: A multilinear PI (polynomial identity) is such an FI with f_{i} "polynomials".

Example 4

$f_{1}, f_{2}, \ldots, f_{n}: R^{n-1} \rightarrow R, R$ prime
$f_{1}\left(x_{2}, \ldots, x_{n}\right) x_{1}+f_{2}\left(x_{1}, x_{3} \ldots, x_{n}\right) x_{2}+\ldots+f_{n}\left(x_{1}, \ldots, x_{n-1}\right) x_{n} \in Z$

$$
f_{1}=f_{2}=\ldots=f_{n}=0 \quad \text { or } R \text { embeds in } M_{n}(F)
$$

Note: A multilinear PI (polynomial identity) is such an FI with f_{i} "polynomials". FI theory

Example 4

$f_{1}, f_{2}, \ldots, f_{n}: R^{n-1} \rightarrow R, R$ prime
$f_{1}\left(x_{2}, \ldots, x_{n}\right) x_{1}+f_{2}\left(x_{1}, x_{3} \ldots, x_{n}\right) x_{2}+\ldots+f_{n}\left(x_{1}, \ldots, x_{n-1}\right) x_{n} \in Z$

$$
f_{1}=f_{2}=\ldots=f_{n}=0 \quad \text { or } R \text { embeds in } M_{n}(F)
$$

Note: A multilinear PI (polynomial identity) is such an FI with f_{i} "polynomials". FI theory: a complement to PI theory.

Example 5

Example 5

$$
f, g: R \rightarrow R
$$

Example 5

$$
f, g: R \rightarrow R
$$

$$
f(x) y=x g(y) \quad \text { for all } x, y \in R
$$

Example 5

$$
f, g: R \rightarrow R
$$

$$
f(x) y=x g(y) \quad \text { for all } x, y \in R
$$

Expected solution:

Example 5

$f, g: R \rightarrow R$

$$
f(x) y=x g(y) \quad \text { for all } x, y \in R
$$

Expected solution: $f(x)=x a, g(y)=$ ay for some $a \in R$.

Example 5

$f, g: R \rightarrow R$

$$
f(x) y=x g(y) \quad \text { for all } x, y \in R
$$

Expected solution: $f(x)=x a, g(y)=$ ay for some $a \in R$. If $1 \in R: a=f(1)=g(1)$.

Example 5

$f, g: R \rightarrow R$

$$
f(x) y=x g(y) \quad \text { for all } x, y \in R
$$

Expected solution: $f(x)=x a, g(y)=$ ay for some $a \in R$. If $1 \in R: a=f(1)=g(1)$.
Without 1?

Example 5

$f, g: R \rightarrow R$

$$
f(x) y=x g(y) \quad \text { for all } x, y \in R
$$

Expected solution: $f(x)=x a, g(y)=$ ay for some $a \in R$.
If $1 \in R$: $a=f(1)=g(1)$.
Without 1?E.g., R is an ideal of S :

Example 5

$f, g: R \rightarrow R$

$$
f(x) y=x g(y) \quad \text { for all } x, y \in R
$$

Expected solution: $f(x)=x a, g(y)=$ ay for some $a \in R$.
If $1 \in R$: $a=f(1)=g(1)$.
Without 1?E.g., R is an ideal of S : then a may belong to S.

Example 5

$f, g: R \rightarrow R$

$$
f(x) y=x g(y) \quad \text { for all } x, y \in R
$$

Expected solution: $f(x)=x a, g(y)=$ ay for some $a \in R$.
If $1 \in R: a=f(1)=g(1)$.
Without 1?E.g., R is an ideal of S : then a may belong to S.
In general:

Example 5

$f, g: R \rightarrow R$

$$
f(x) y=x g(y) \quad \text { for all } x, y \in R
$$

Expected solution: $f(x)=x a, g(y)=$ ay for some $a \in R$.
If $1 \in R: a=f(1)=g(1)$.
Without 1?E.g., R is an ideal of S : then a may belong to S.
In general: rings of quotients have to be involved.

Example 5

$f, g: R \rightarrow R$

$$
f(x) y=x g(y) \quad \text { for all } x, y \in R
$$

Expected solution: $f(x)=x a, g(y)=$ ay for some $a \in R$.
If $1 \in R: a=f(1)=g(1)$.
Without 1?E.g., R is an ideal of S : then a may belong to S.
In general: rings of quotients have to be involved.
In the context of prime rings,

Example 5

$f, g: R \rightarrow R$

$$
f(x) y=x g(y) \quad \text { for all } x, y \in R
$$

Expected solution: $f(x)=x a, g(y)=$ ay for some $a \in R$.
If $1 \in R: a=f(1)=g(1)$.
Without 1?E.g., R is an ideal of S : then a may belong to S.
In general: rings of quotients have to be involved.
In the context of prime rings, the maximal (left or right) ring of quotients is suitable.

Example 6

Example 6

$f: R \rightarrow R$

Example 6

$f: R \rightarrow R$ additive,

Example 6

$f: R \rightarrow R$ additive, R prime:

Example 6

$f: R \rightarrow R$ additive, R prime:

$$
f(x) x=x f(x) \quad \text { for all } x \in R
$$

Example 6

$f: R \rightarrow R$ additive, R prime:

$$
f(x) x=x f(x) \quad \text { for all } x \in R
$$

Example 6

$f: R \rightarrow R$ additive, R prime:

$$
f(x) x=x f(x) \quad \text { for all } x \in R
$$

$$
f(x)=\lambda x+\mu(x)
$$

Example 6

$f: R \rightarrow R$ additive, R prime:

$$
f(x) x=x f(x) \quad \text { for all } x \in R
$$

$$
f(x)=\lambda x+\mu(x)
$$

where $\lambda \in C$, the extended centroid of R,

Example 6

$f: R \rightarrow R$ additive, R prime:

$$
f(x) x=x f(x) \quad \text { for all } x \in R
$$

$$
f(x)=\lambda x+\mu(x)
$$

where $\lambda \in C$, the extended centroid of R, and $\mu: R \rightarrow C$.

Example 6

$f: R \rightarrow R$ additive, R prime:

$$
f(x) x=x f(x) \quad \text { for all } x \in R
$$

$$
f(x)=\lambda x+\mu(x)
$$

where $\lambda \in C$, the extended centroid of R, and $\mu: R \rightarrow C$. (M. B., 1990)

Example 7

Example 7

$f: R \times R \rightarrow R$

Example 7

$f: R \times R \rightarrow R$ biadditive,

Example 7

$f: R \times R \rightarrow R$ biadditive, R prime:

Example 7

$f: R \times R \rightarrow R$ biadditive, R prime:

$$
f(x, x) x=x f(x, x) \quad \text { for all } x \in R
$$

Example 7

$f: R \times R \rightarrow R$ biadditive, R prime:

$$
f(x, x) x=x f(x, x) \quad \text { for all } x \in R
$$

Example 7

$f: R \times R \rightarrow R$ biadditive, R prime:

$$
f(x, x) x=x f(x, x) \quad \text { for all } x \in R
$$

$$
f(x, x)=\lambda x^{2}+\mu(x) x+v(x),
$$

Example 7

$f: R \times R \rightarrow R$ biadditive, R prime:

$$
f(x, x) x=x f(x, x) \quad \text { for all } x \in R
$$

$$
f(x, x)=\lambda x^{2}+\mu(x) x+v(x)
$$

where $\lambda \in C$, and $\mu, v: R \rightarrow C$

Example 7

$f: R \times R \rightarrow R$ biadditive, R prime:

$$
f(x, x) x=x f(x, x) \quad \text { for all } x \in R
$$

$$
f(x, x)=\lambda x^{2}+\mu(x) x+v(x)
$$

where $\lambda \in C$, and $\mu, v: R \rightarrow C$ with μ additive.

Example 7

$f: R \times R \rightarrow R$ biadditive, R prime:

$$
f(x, x) x=x f(x, x) \quad \text { for all } x \in R
$$

$$
f(x, x)=\lambda x^{2}+\mu(x) x+v(x)
$$

where $\lambda \in C$, and $\mu, v: R \rightarrow C$ with μ additive.
(M. B., 1990)

Example 7

$f: R \times R \rightarrow R$ biadditive, R prime:

$$
f(x, x) x=x f(x, x) \quad \text { for all } x \in R
$$

$$
f(x, x)=\lambda x^{2}+\mu(x) x+v(x)
$$

where $\lambda \in C$, and $\mu, v: R \rightarrow C$ with μ additive.
(M. B., 1990)

Applications!

Example 7

$f: R \times R \rightarrow R$ biadditive, R prime:

$$
f(x, x) x=x f(x, x) \quad \text { for all } x \in R
$$

$$
f(x, x)=\lambda x^{2}+\mu(x) x+v(x)
$$

where $\lambda \in C$, and $\mu, v: R \rightarrow C$ with μ additive.
(M. B., 1990)

Applications! Hint: interprete $f(x, x) x=x f(x, x)$

Example 7

$f: R \times R \rightarrow R$ biadditive, R prime:

$$
f(x, x) x=x f(x, x) \quad \text { for all } x \in R
$$

$$
f(x, x)=\lambda x^{2}+\mu(x) x+v(x)
$$

where $\lambda \in C$, and $\mu, v: R \rightarrow C$ with μ additive.
(M. B., 1990)

Applications! Hint: interprete $f(x, x) x=x f(x, x)$ as

$$
(x * x) x=x(x * x)
$$

Example 7

$f: R \times R \rightarrow R$ biadditive, R prime:

$$
f(x, x) x=x f(x, x) \quad \text { for all } x \in R
$$

$$
f(x, x)=\lambda x^{2}+\mu(x) x+v(x)
$$

where $\lambda \in C$, and $\mu, v: R \rightarrow C$ with μ additive.
(M. B., 1990)

Applications! Hint: interprete $f(x, x) x=x f(x, x)$ as

$$
(x * x) x=x(x * x)
$$

where $*$ is another (nonassociative) product on R.

Defining d-free sets

Defining d-free sets

X : a subset of a ring Q with center C

Defining d-free sets

X : a subset of a ring Q with center C

 "Definition" (K. Beidar, M. Chebotar, 2000):
Defining d-free sets

X : a subset of a ring Q with center C "Definition" (K. Beidar, M. Chebotar, 2000): X is a d-free subset of Q if Fl's such as

Defining d-free sets

X : a subset of a ring Q with center C
"Definition" (K. Beidar, M. Chebotar, 2000):
X is a d-free subset of Q if Fl's such as
$\sum_{i=1}^{d} E_{i}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{d}\right) x_{i}+x_{i} F_{i}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{d}\right)=0$

Defining d-free sets

X : a subset of a ring Q with center C
"Definition" (K. Beidar, M. Chebotar, 2000):
X is a d-free subset of Q if Fl's such as
$\sum_{i=1}^{d} E_{i}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{d}\right) x_{i}+x_{i} F_{i}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{d}\right)=0$
have only standard solutions,

Defining d-free sets

X : a subset of a ring Q with center C
"Definition" (K. Beidar, M. Chebotar, 2000):
X is a d-free subset of Q if Fl's such as
$\sum_{i=1}^{d} E_{i}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{d}\right) x_{i}+x_{i} F_{i}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{d}\right)=0$
have only standard solutions, i.e.,

$$
E_{i}=\sum_{\substack{j=1 \\ j \neq i}}^{d} x_{j} p_{i j}+\lambda_{i}
$$

Defining d-free sets

X : a subset of a ring Q with center C
"Definition" (K. Beidar, M. Chebotar, 2000):
X is a d-free subset of Q if Fl^{\prime} s such as
$\sum_{i=1}^{d} E_{i}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{d}\right) x_{i}+x_{i} F_{i}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{d}\right)=0$
have only standard solutions, i.e.,

$$
E_{i}=\sum_{\substack{j=1 \\ j \neq i}}^{d} x_{j} p_{i j}+\lambda_{i}, \quad F_{j}=-\sum_{\substack{i=1 \\ i \neq j}}^{d} p_{i j} x_{i}-\lambda_{j},
$$

Defining d-free sets

X : a subset of a ring Q with center C
"Definition" (K. Beidar, M. Chebotar, 2000):
X is a d-free subset of Q if Fl's such as
$\sum_{i=1}^{d} E_{i}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{d}\right) x_{i}+x_{i} F_{i}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{d}\right)=0$
have only standard solutions, i.e.,

$$
E_{i}=\sum_{\substack{j=1 \\ j \neq i}}^{d} x_{j} p_{i j}+\lambda_{i}, \quad F_{j}=-\sum_{\substack{i=1 \\ i \neq j}}^{d} p_{i j} x_{i}-\lambda_{j},
$$

where

$$
\begin{array}{r}
p_{i j}=p_{i j}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{j-i}, x_{j+1}, \ldots, x_{d}\right) \in Q, \\
\lambda_{i}=\lambda_{i}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{d}\right) \in C .
\end{array}
$$

Defining d-free sets

X : a subset of a ring Q with center C
"Definition" (K. Beidar, M. Chebotar, 2000):
X is a d-free subset of Q if Fl^{\prime} s such as
$\sum_{i=1}^{d} E_{i}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{d}\right) x_{i}+x_{i} F_{i}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{d}\right)=0$
have only standard solutions, i.e.,

$$
E_{i}=\sum_{\substack{j=1 \\ j \neq i}}^{d} x_{j} p_{i j}+\lambda_{i}, \quad F_{j}=-\sum_{\substack{i=1 \\ i \neq j}}^{d} p_{i j} x_{i}-\lambda_{j},
$$

where

$$
\begin{array}{r}
p_{i j}=p_{i j}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{j-i}, x_{j+1}, \ldots, x_{d}\right) \in Q, \\
\lambda_{i}=\lambda_{i}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{d}\right) \in C .
\end{array}
$$

d-free sets exist!

d-free sets exist!

K. Beidar (1998): A prime ring R is a d-free subset of its maximal left ring of quotients Q

d-free sets exist!

K. Beidar (1998): A prime ring R is a d-free subset of its maximal left ring of quotients Q

R does not satisfy a PI of degree $2 d-2$ (i.e., R cannot be embedded in $\left.M_{d-1}(F)\right)$.

d-free sets exist!

K. Beidar (1998): A prime ring R is a d-free subset of its maximal left ring of quotients Q

R does not satisfy a PI of degree $2 d-2$ (i.e., R cannot be embedded in $\left.M_{d-1}(F)\right)$.

Other important examples of d-free sets:

d-free sets exist!

K. Beidar (1998): A prime ring R is a d-free subset of its maximal left ring of quotients Q

R does not satisfy a PI of degree $2 d-2$ (i.e., R cannot be embedded in $\left.M_{d-1}(F)\right)$.

Other important examples of d-free sets:

- Lie ideals of prime rings

d-free sets exist!

K. Beidar (1998): A prime ring R is a d-free subset of its maximal left ring of quotients Q
R does not satisfy a PI of degree $2 d-2$ (i.e., R cannot be embedded in $\left.M_{d-1}(F)\right)$.

Other important examples of d-free sets:

- Lie ideals of prime rings
- symmetric elements of prime rings with involution

d-free sets exist!

K. Beidar (1998): A prime ring R is a d-free subset of its maximal left ring of quotients Q
R does not satisfy a PI of degree $2 d-2$ (i.e., R cannot be embedded in $\left.M_{d-1}(F)\right)$.

Other important examples of d-free sets:

- Lie ideals of prime rings
- symmetric elements of prime rings with involution
- skew elements of prime rings with involution (and their Lie ideals)

d-free sets exist!

K. Beidar (1998): A prime ring R is a d-free subset of its maximal left ring of quotients Q
R does not satisfy a PI of degree $2 d-2$ (i.e., R cannot be embedded in $\left.M_{d-1}(F)\right)$.

Other important examples of d-free sets:

- Lie ideals of prime rings
- symmetric elements of prime rings with involution
- skew elements of prime rings with involution (and their Lie ideals)
- semiprime rings

d-free sets exist!

K. Beidar (1998): A prime ring R is a d-free subset of its maximal left ring of quotients Q
R does not satisfy a PI of degree $2 d-2$ (i.e., R cannot be embedded in $\left.M_{d-1}(F)\right)$.

Other important examples of d-free sets:

- Lie ideals of prime rings
- symmetric elements of prime rings with involution
- skew elements of prime rings with involution (and their Lie ideals)
- semiprime rings
- $M_{n}(B), B$ any unital ring

d-free sets exist!

K. Beidar (1998): A prime ring R is a d-free subset of its maximal left ring of quotients Q
R does not satisfy a PI of degree $2 d-2$ (i.e., R cannot be embedded in $\left.M_{d-1}(F)\right)$.

Other important examples of d-free sets:

- Lie ideals of prime rings
- symmetric elements of prime rings with involution
- skew elements of prime rings with involution (and their Lie ideals)
- semiprime rings
- $M_{n}(B), B$ any unital ring
- etc.

Fl's on d-free sets

Fl's on d-free sets

S an arbitrary set,

Fl's on d-free sets

S an arbitrary set,
$\alpha: S \rightarrow Q$ a (fixed) map such that $\alpha(S)$ is d-free;

Fl's on d-free sets

S an arbitrary set,
$\alpha: S \rightarrow Q$ a (fixed) map such that $\alpha(S)$ is d-free; then one can handle FI's such as

$$
\sum_{t} \alpha\left(x_{i_{1}}\right) \ldots \alpha\left(x_{i_{p}}\right) F_{t}\left(x_{j_{1}}, \ldots, x_{j_{q}}\right) \alpha\left(x_{k_{1}}\right) \ldots \alpha\left(x_{k_{r}}\right)=0 .
$$

Fl's on d-free sets

S an arbitrary set, $\alpha: S \rightarrow Q$ a (fixed) map such that $\alpha(S)$ is d-free; then one can handle Fl's such as

$$
\sum_{t} \alpha\left(x_{i_{1}}\right) \ldots \alpha\left(x_{i_{p}}\right) F_{t}\left(x_{j_{1}}, \ldots, x_{j_{q}}\right) \alpha\left(x_{k_{1}}\right) \ldots \alpha\left(x_{k_{r}}\right)=0 .
$$

M. Brešar, M. A. Chebotar, W. S. Martindale, Functional Identities, Birkhäuser Verlag, 2007.

Lie homomorphisms of associative rings

Lie homomorphisms of associative rings

S, R rings; $\alpha: S \rightarrow R$ is a Lie homomorphism if

$$
\alpha(x+y)=\alpha(x)+\alpha(y), \quad \alpha([x, y])=[\alpha(x), \alpha(y)] .
$$

Lie homomorphisms of associative rings

S, R rings; $\alpha: S \rightarrow R$ is a Lie homomorphism if

$$
\alpha(x+y)=\alpha(x)+\alpha(y), \quad \alpha([x, y])=[\alpha(x), \alpha(y)] .
$$

Here, $[x, y]=x y-y x$.

Lie homomorphisms of associative rings

S, R rings; $\alpha: S \rightarrow R$ is a Lie homomorphism if

$$
\alpha(x+y)=\alpha(x)+\alpha(y), \quad \alpha([x, y])=[\alpha(x), \alpha(y)] .
$$

Here, $[x, y]=x y-y x .((R,+,[]$.$) is a Lie ring.)$

Lie homomorphisms of associative rings

S, R rings; $\alpha: S \rightarrow R$ is a Lie homomorphism if

$$
\alpha(x+y)=\alpha(x)+\alpha(y), \quad \alpha([x, y])=[\alpha(x), \alpha(y)] .
$$

Here, $[x, y]=x y-y x .((R,+,[]$.$) is a Lie ring.)$

Examples:

Lie homomorphisms of associative rings

S, R rings; $\alpha: S \rightarrow R$ is a Lie homomorphism if

$$
\alpha(x+y)=\alpha(x)+\alpha(y), \quad \alpha([x, y])=[\alpha(x), \alpha(y)] .
$$

Here, $[x, y]=x y-y x .((R,+,[]$.$) is a Lie ring.)$

Examples:

- $\alpha=$ homomorphism

Lie homomorphisms of associative rings

S, R rings; $\alpha: S \rightarrow R$ is a Lie homomorphism if

$$
\alpha(x+y)=\alpha(x)+\alpha(y), \quad \alpha([x, y])=[\alpha(x), \alpha(y)] .
$$

Here, $[x, y]=x y-y x .((R,+,[]$.$) is a Lie ring.)$

Examples:

- $\alpha=$ homomorphism
- $\alpha=-$ antihomomorphism

Lie homomorphisms of associative rings

S, R rings; $\alpha: S \rightarrow R$ is a Lie homomorphism if

$$
\alpha(x+y)=\alpha(x)+\alpha(y), \quad \alpha([x, y])=[\alpha(x), \alpha(y)] .
$$

Here, $[x, y]=x y-y x .((R,+,[]$.$) is a Lie ring.)$

Examples:

- $\alpha=$ homomorphism
- $\alpha=-$ antihomomorphism
- $\alpha=\tau: S \rightarrow Z, \tau([S, S])=0$

Lie homomorphisms of associative rings

S, R rings; $\alpha: S \rightarrow R$ is a Lie homomorphism if

$$
\alpha(x+y)=\alpha(x)+\alpha(y), \quad \alpha([x, y])=[\alpha(x), \alpha(y)] .
$$

Here, $[x, y]=x y-y x .((R,+,[]$.$) is a Lie ring.)$
Examples:

- $\alpha=$ homomorphism
- $\alpha=-$ antihomomorphism
- $\alpha=\tau: S \rightarrow Z, \tau([S, S])=0$

Herstein's problem (1961): Is every Lie isomorphism α between prime rings of the form $\alpha=\varphi+\tau, \varphi$ a homomorphism or the negative of an antihomorphism?

Lie homomorphisms of associative rings

S, R rings; $\alpha: S \rightarrow R$ is a Lie homomorphism if

$$
\alpha(x+y)=\alpha(x)+\alpha(y), \quad \alpha([x, y])=[\alpha(x), \alpha(y)] .
$$

Here, $[x, y]=x y-y x .((R,+,[]$.$) is a Lie ring.)$
Examples:

- $\alpha=$ homomorphism
- $\alpha=-$ antihomomorphism
- $\alpha=\tau: S \rightarrow Z, \tau([S, S])=0$

Herstein's problem (1961): Is every Lie isomorphism α between prime rings of the form $\alpha=\varphi+\tau, \varphi$ a homomorphism or the negative of an antihomorphism?
M. B. (1990): Yes

Lie homomorphisms of associative rings

S, R rings; $\alpha: S \rightarrow R$ is a Lie homomorphism if

$$
\alpha(x+y)=\alpha(x)+\alpha(y), \quad \alpha([x, y])=[\alpha(x), \alpha(y)] .
$$

Here, $[x, y]=x y-y x .((R,+,[]$.$) is a Lie ring.)$
Examples:

- $\alpha=$ homomorphism
- $\alpha=-$ antihomomorphism
- $\alpha=\tau: S \rightarrow Z, \tau([S, S])=0$

Herstein's problem (1961): Is every Lie isomorphism α between prime rings of the form $\alpha=\varphi+\tau, \varphi$ a homomorphism or the negative of an antihomorphism?
M. B. (1990): Yes (modulo technicalities).

Idea of proof

Idea of proof

$$
\left[\alpha\left(y^{2}\right), \alpha(y)\right]=\alpha\left(\left[y^{2}, y\right]\right)=0
$$

Idea of proof

$$
\begin{gathered}
{\left[\alpha\left(y^{2}\right), \alpha(y)\right]=\alpha\left(\left[y^{2}, y\right]\right)=0} \\
x=\alpha(y) \Longrightarrow\left[\alpha\left(\alpha^{-1}(x)^{2}\right), x\right]=0
\end{gathered}
$$

Idea of proof

$$
\begin{gathered}
{\left[\alpha\left(y^{2}\right), \alpha(y)\right]=\alpha\left(\left[y^{2}, y\right]\right)=0} \\
x=\alpha(y) \Longrightarrow\left[\alpha\left(\alpha^{-1}(x)^{2}\right), x\right]=0
\end{gathered}
$$

i.e., $[f(x, x), x]=0$ as in Example 7

Idea of proof

$$
\begin{gathered}
{\left[\alpha\left(y^{2}\right), \alpha(y)\right]=\alpha\left(\left[y^{2}, y\right]\right)=0} \\
x=\alpha(y) \Longrightarrow\left[\alpha\left(\alpha^{-1}(x)^{2}\right), x\right]=0
\end{gathered}
$$

i.e., $[f(x, x), x]=0$ as in Example 7
$\Longrightarrow f(x, x)=\alpha\left(\alpha^{-1}(x)^{2}\right)=\lambda x^{2}+\mu(x) x+v(x)$

Idea of proof

$$
\begin{gathered}
{\left[\alpha\left(y^{2}\right), \alpha(y)\right]=\alpha\left(\left[y^{2}, y\right]\right)=0} \\
x=\alpha(y) \Longrightarrow\left[\alpha\left(\alpha^{-1}(x)^{2}\right), x\right]=0
\end{gathered}
$$

i.e., $[f(x, x), x]=0$ as in Example 7

$$
\begin{gathered}
\Longrightarrow f(x, x)=\alpha\left(\alpha^{-1}(x)^{2}\right)=\lambda x^{2}+\mu(x) x+v(x) \\
\Longrightarrow \alpha\left(y^{2}\right)=\lambda \alpha(y)^{2}+\mu^{\prime}(y) \alpha(y)+v^{\prime}(y) .
\end{gathered}
$$

Idea of proof

$$
\begin{gathered}
{\left[\alpha\left(y^{2}\right), \alpha(y)\right]=\alpha\left(\left[y^{2}, y\right]\right)=0} \\
x=\alpha(y) \Longrightarrow\left[\alpha\left(\alpha^{-1}(x)^{2}\right), x\right]=0
\end{gathered}
$$

i.e., $[f(x, x), x]=0$ as in Example 7

$$
\begin{gathered}
\Longrightarrow f(x, x)=\alpha\left(\alpha^{-1}(x)^{2}\right)=\lambda x^{2}+\mu(x) x+v(x) \\
\Longrightarrow \alpha\left(y^{2}\right)=\lambda \alpha(y)^{2}+\mu^{\prime}(y) \alpha(y)+v^{\prime}(y) .
\end{gathered}
$$

Lie homomorphisms of skew elements

Lie homomorphisms of skew elements

Other Herstein's questions on Lie homomorphisms

Lie homomorphisms of skew elements

Other Herstein's questions on Lie homomorphisms R a ring with involution *,

Lie homomorphisms of skew elements

Other Herstein's questions on Lie homomorphisms R a ring with involution $*$,

$$
K=\left\{x \in R \mid x^{*}=-x\right\}
$$

skew elements of R.

Lie homomorphisms of skew elements

Other Herstein's questions on Lie homomorphisms R a ring with involution *,

$$
K=\left\{x \in R \mid x^{*}=-x\right\}
$$

skew elements of R.
Can a Lie isomorphism $\alpha:[K, K] \rightarrow[K, K]$ be extended to a homomorphism?

Lie homomorphisms of skew elements

Other Herstein's questions on Lie homomorphisms R a ring with involution $*$,

$$
K=\left\{x \in R \mid x^{*}=-x\right\}
$$

skew elements of R.
Can a Lie isomorphism $\alpha:[K, K] \rightarrow[K, K]$ be extended to a homomorphism?
K. Beidar, M. Brešar, M. Chebotar, W. Martindale (series of papers 1994-2002): Yes, unless $R \subseteq M_{21}(F)$.

Lie homomorphisms of skew elements

Other Herstein's questions on Lie homomorphisms R a ring with involution $*$,

$$
K=\left\{x \in R \mid x^{*}=-x\right\}
$$

skew elements of R.
Can a Lie isomorphism $\alpha:[K, K] \rightarrow[K, K]$ be extended to a homomorphism?
K. Beidar, M. Brešar, M. Chebotar, W. Martindale (series of papers 1994-2002): Yes, unless $R \subseteq M_{21}(F)$.
A detailed analysis shows: $M_{n}(F)$ with $n=1,2,3,4,5,6,8$ must really be excluded.

Lie homomorphisms of skew elements

Other Herstein's questions on Lie homomorphisms R a ring with involution $*$,

$$
K=\left\{x \in R \mid x^{*}=-x\right\}
$$

skew elements of R.
Can a Lie isomorphism $\alpha:[K, K] \rightarrow[K, K]$ be extended to a homomorphism?
K. Beidar, M. Brešar, M. Chebotar, W. Martindale (series of papers 1994-2002): Yes, unless $R \subseteq M_{21}(F)$.
A detailed analysis shows: $M_{n}(F)$ with $n=1,2,3,4,5,6,8$ must really be excluded.
Here, R is simple

Lie homomorphisms of skew elements

Other Herstein's questions on Lie homomorphisms R a ring with involution $*$,

$$
K=\left\{x \in R \mid x^{*}=-x\right\}
$$

skew elements of R.
Can a Lie isomorphism $\alpha:[K, K] \rightarrow[K, K]$ be extended to a homomorphism?
K. Beidar, M. Brešar, M. Chebotar, W. Martindale (series of papers 1994-2002): Yes, unless $R \subseteq M_{21}(F)$.
A detailed analysis shows: $M_{n}(F)$ with $n=1,2,3,4,5,6,8$ must really be excluded.
Here, R is simple or even prime,

Lie homomorphisms of skew elements

Other Herstein's questions on Lie homomorphisms R a ring with involution *,

$$
K=\left\{x \in R \mid x^{*}=-x\right\}
$$

skew elements of R.
Can a Lie isomorphism $\alpha:[K, K] \rightarrow[K, K]$ be extended to a homomorphism?
K. Beidar, M. Brešar, M. Chebotar, W. Martindale (series of papers 1994-2002): Yes, unless $R \subseteq M_{21}(F)$.
A detailed analysis shows: $M_{n}(F)$ with $n=1,2,3,4,5,6,8$ must really be excluded.
Here, R is simple or even prime, or satisfies some abstract technical conditions.

Graded algebras

Graded algebras

G: abelian group

Graded algebras

G: abelian group
A (nonassociative) algebra R is G-graded if $R=\sum_{g \in G} R_{g}$ with $R_{g} R_{h} \subseteq R_{g h}$.

Graded algebras

G: abelian group
A (nonassociative) algebra R is G-graded if $R=\sum_{g \in G} R_{g}$ with $R_{g} R_{h} \subseteq R_{g h}$.
L : Lie algebra, J: Jordan algebra, A : associative algebra

Graded algebras

G: abelian group
A (nonassociative) algebra R is G-graded if $R=\sum_{g \in G} R_{g}$ with $R_{g} R_{h} \subseteq R_{g h}$.
L : Lie algebra, J: Jordan algebra, A : associative algebra
Problem: $L \subseteq A^{-}, L G$-graded.

Graded algebras

G: abelian group
A (nonassociative) algebra R is G-graded if $R=\sum_{g \in G} R_{g}$ with $R_{g} R_{h} \subseteq R_{g h}$.
L : Lie algebra, J : Jordan algebra, A : associative algebra
Problem: $L \subseteq A^{-}, L G$-graded. Is then $A G$-graded,
$A=\sum_{g \in G} A_{g}$, and $L_{g}=A_{g} \cap L$?

Graded algebras

G: abelian group
A (nonassociative) algebra R is G-graded if $R=\sum_{g \in G} R_{g}$ with $R_{g} R_{h} \subseteq R_{g h}$.
L : Lie algebra, J : Jordan algebra, A : associative algebra
Problem: $L \subseteq A^{-}, L G$-graded. Is then $A G$-graded,
$A=\sum_{g \in G} A_{g}$, and $L_{g}=A_{g} \cap L$?
Similar problem for $J \subseteq A^{+}$.

Graded algebras

G: abelian group
A (nonassociative) algebra R is G-graded if $R=\sum_{g \in G} R_{g}$ with $R_{g} R_{h} \subseteq R_{g h}$.
L : Lie algebra, J : Jordan algebra, A : associative algebra
Problem: $L \subseteq A^{-}, L G$-graded. Is then $A G$-graded,
$A=\sum_{g \in G} A_{g}$, and $L_{g}=A_{g} \cap L$?
Similar problem for $J \subseteq A^{+}$.
Example: A : algebra with involution, H : symmetric elements, K : skew elements, $G=\mathbb{Z}_{2}$.

Graded algebras

G: abelian group
A (nonassociative) algebra R is G-graded if $R=\sum_{g \in G} R_{g}$ with $R_{g} R_{h} \subseteq R_{g h}$.
L : Lie algebra, $J:$ Jordan algebra, A : associative algebra
Problem: $L \subseteq A^{-}, L G$-graded. Is then $A G$-graded,
$A=\sum_{g \in G} A_{g}$, and $L_{g}=A_{g} \cap L$?
Similar problem for $J \subseteq A^{+}$.
Example: A : algebra with involution, H : symmetric elements, K : skew elements, $G=\mathbb{Z}_{2} \cdot L=A^{-}$is G-graded with $L_{0}=K$,
$L_{1}=H:\left[L_{i}, L_{j}\right] \subseteq L_{i+j}$.

Graded algebras

G: abelian group
A (nonassociative) algebra R is G-graded if $R=\sum_{g \in G} R_{g}$ with $R_{g} R_{h} \subseteq R_{g h}$.
L : Lie algebra, J: Jordan algebra, A : associative algebra
Problem: $L \subseteq A^{-}, L G$-graded. Is then $A G$-graded,
$A=\sum_{g \in G} A_{g}$, and $L_{g}=A_{g} \cap L$?
Similar problem for $J \subseteq A^{+}$.
Example: A : algebra with involution, H : symmetric elements, K : skew elements, $G=\mathbb{Z}_{2} \cdot L=A^{-}$is G-graded with $L_{0}=K$,
$L_{1}=H:\left[L_{i}, L_{j}\right] \subseteq L_{i+j}$. But A is not G-graded!

Graded algebras

G: abelian group
A (nonassociative) algebra R is G-graded if $R=\sum_{g \in G} R_{g}$ with $R_{g} R_{h} \subseteq R_{g h}$.
L : Lie algebra, J: Jordan algebra, A : associative algebra
Problem: $L \subseteq A^{-}, L G$-graded. Is then $A G$-graded,
$A=\sum_{g \in G} A_{g}$, and $L_{g}=A_{g} \cap L$?
Similar problem for $J \subseteq A^{+}$.
Example: A : algebra with involution, H : symmetric elements, K : skew elements, $G=\mathbb{Z}_{2} \cdot L=A^{-}$is G-graded with $L_{0}=K$,
$L_{1}=H:\left[L_{i}, L_{j}\right] \subseteq L_{i+j}$. But A is not G-graded!
The "right" problem: There may be two possibilities:
$L_{g}=A_{g} \cap L$ or

Graded algebras

G: abelian group
A (nonassociative) algebra R is G-graded if $R=\sum_{g \in G} R_{g}$ with
$R_{g} R_{h} \subseteq R_{g h}$.
L : Lie algebra, $J:$ Jordan algebra, A : associative algebra
Problem: $L \subseteq A^{-}, L G$-graded. Is then $A G$-graded,
$A=\sum_{g \in G} A_{g}$, and $L_{g}=A_{g} \cap L$?
Similar problem for $J \subseteq A^{+}$.
Example: A : algebra with involution, H : symmetric elements, K : skew elements, $G=\mathbb{Z}_{2} \cdot L=A^{-}$is G-graded with $L_{0}=K$,
$L_{1}=H:\left[L_{i}, L_{j}\right] \subseteq L_{i+j}$. But A is not G-graded!
The "right" problem: There may be two possibilities:
$L_{g}=A_{g} \cap L$ or there exists $t \in G$ with $t^{2}=1$ such that:
$L_{g}=K\left(A_{g}, *\right) \cap L \oplus H\left(A_{t g}, *\right) \cap L$.

Results

Results

Series of papers by Bahturin, Kochetov, Montgomery, Shestakov, Zaicev....: classical finite dimensional Lie and Jordan algebras.

Results

Series of papers by Bahturin, Kochetov, Montgomery, Shestakov, Zaicev...: classical finite dimensional Lie and Jordan algebras. New proofs and generalizations to infinite dimensional algebras using Fl's:

Results

Series of papers by Bahturin, Kochetov, Montgomery, Shestakov, Zaicev...: classical finite dimensional Lie and Jordan algebras. New proofs and generalizations to infinite dimensional algebras using Fl's: Bahturin-Brešar (Lie algebras) and Bahturin-Brešar-Shestakov (Jordan algebras).

Results

Series of papers by Bahturin, Kochetov, Montgomery, Shestakov, Zaicev...: classical finite dimensional Lie and Jordan algebras. New proofs and generalizations to infinite dimensional algebras using Fl's: Bahturin-Brešar (Lie algebras) and Bahturin-Brešar-Shestakov (Jordan algebras). Result for a Lie ideal of skew elements K of a prime algebra A : only the first possibilty under very mild assumptions (e.g., $\operatorname{dim} A \geq 441$)

Results

Series of papers by Bahturin, Kochetov, Montgomery, Shestakov, Zaicev...: classical finite dimensional Lie and Jordan algebras. New proofs and generalizations to infinite dimensional algebras using Fl's: Bahturin-Brešar (Lie algebras) and Bahturin-Brešar-Shestakov (Jordan algebras). Result for a Lie ideal of skew elements K of a prime algebra A : only the first possibilty under very mild assumptions (e.g., $\operatorname{dim} A \geq 441$) Result for a prime algebra A : both possibilities, a technical assumption also on G

Results

Series of papers by Bahturin, Kochetov, Montgomery, Shestakov, Zaicev...: classical finite dimensional Lie and Jordan algebras. New proofs and generalizations to infinite dimensional algebras using Fl's: Bahturin-Brešar (Lie algebras) and Bahturin-Brešar-Shestakov (Jordan algebras). Result for a Lie ideal of skew elements K of a prime algebra A : only the first possibilty under very mild assumptions (e.g., $\operatorname{dim} A \geq 441$) Result for a prime algebra A : both possibilities, a technical assumption also on G
Jordan case: similar results, but less restrictions

Idea of proof

Idea of proof

A algebra over $F, L \subseteq A^{-}, L G$-graded,

Idea of proof

A algebra over $F, L \subseteq A^{-}, L G$-graded, $H=F G$ group algebra
$\rho: L \otimes H \rightarrow L \otimes H$

Idea of proof

A algebra over $F, L \subseteq A^{-}, L G$-graded, $H=F G$ group algebra
$\rho: L \otimes H \rightarrow L \otimes H$

$$
\rho\left(a_{g} \otimes h\right)=a_{g} \otimes g h
$$

Idea of proof

A algebra over $F, L \subseteq A^{-}, L G$-graded, $H=F G$ group algebra
$\rho: L \otimes H \rightarrow L \otimes H$

$$
\rho\left(a_{g} \otimes h\right)=a_{g} \otimes g h
$$

is a Lie isomorphism of $L \otimes H \subseteq A \otimes H$.

Idea of proof

A algebra over $F, L \subseteq A^{-}, L G$-graded, $H=F G$ group algebra
$\rho: L \otimes H \rightarrow L \otimes H$

$$
\rho\left(a_{g} \otimes h\right)=a_{g} \otimes g h
$$

is a Lie isomorphism of $L \otimes H \subseteq A \otimes H$.
$A \otimes H$ is not prime etc.,

Idea of proof

A algebra over $F, L \subseteq A^{-}, L G$-graded, $H=F G$ group algebra
$\rho: L \otimes H \rightarrow L \otimes H$

$$
\rho\left(a_{g} \otimes h\right)=a_{g} \otimes g h
$$

is a Lie isomorphism of $L \otimes H \subseteq A \otimes H$.
$A \otimes H$ is not prime etc., use deeper results.

Lie superhomomorphisms

Lie superhomomorphisms

$A=A_{0} \oplus A_{1}$: associative superalgebra

Lie superhomomorphisms

$A=A_{0} \oplus A_{1}$: associative superalgebra

$$
[a, b]_{s}=a b-(-1)^{|a||b|} b a
$$

($|a|=i$ if $a \in A_{i}$), A becomes a Lie superalgebra.

Lie superhomomorphisms

$A=A_{0} \oplus A_{1}$: associative superalgebra

$$
[a, b]_{s}=a b-(-1)^{|a||b|} b a
$$

($|a|=i$ if $a \in A_{i}$), A becomes a Lie superalgebra.
Lie superhomomorphism: preserves $[a, b]_{s}$.

Lie superhomomorphisms

$A=A_{0} \oplus A_{1}$: associative superalgebra

$$
[a, b]_{s}=a b-(-1)^{|a||b|} b a
$$

($|a|=i$ if $a \in A_{i}$), A becomes a Lie superalgebra.
Lie superhomomorphism: preserves $[a, b]_{s}$.
Problem: Describe it!

Lie superhomomorphisms

$A=A_{0} \oplus A_{1}$: associative superalgebra

$$
[a, b]_{s}=a b-(-1)^{|a||b|} b a
$$

($|a|=i$ if $a \in A_{i}$), A becomes a Lie superalgebra.
Lie superhomomorphism: preserves $[a, b]_{s}$.
Problem: Describe it!
Bahturin-Brešar: extending a Lie superhomomorphism to the Grassman envelope makes it possible to use Fl's.

