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Background

Background

The category of finite-dimensional modules for the classical Lie
superalgebra g = gl(m|n) which are completely reducible over g0̄ is a
highest weight category (as observed by Brundan) but, unlike the
blocks of (parabolic) category O for a semisimple Lie algebra, there
are infinitely many simple modules. Projective resolutions can have
infinite length. Cohomology can be non-zero in infinitely many degrees
and can grow in dimension.

This motivates studying these categories cohomologically, with ideas
and tools from the modular representation theory of finite groups and
restricted Lie algebras.
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Background

At the third conference in this series, at Maresias in 2007, Dan Nakano
talked about our work using relative cohomology and supports to
measure certain combinatorial invariants, such as the defect of a
classical Lie superalgebra g and the atypicality of its finite-dimensional
irreducible representations.

Missing was a connection of the relative support theory to the notion of
complexity of a module. Also missing was a connection to the
“associated varieties” of Duflo-Serganova. Those are the topics of my
talk today.
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Background

Notation

Let g = g0̄ ⊕ g1̄ be a classical Lie superalgebra over C: this means that
g is a Z2-graded vector space with a bracket [ , ] which respects the
grading and satisfies graded versions of the usual Lie algebra
properties; and g0̄ = Lie(G0) for a connected reductive algebraic group
G0. (We do not assume g is simple!)

Let F be the full subcategory of g-modules which are finite-dimensional
and completely reducible over g0̄. This is an interesting category
because in general it is not semisimple, and indeed blocks often
contain infinitely many simple modules; it has enough projectives; and
if g is Type I then F is a highest weight category.
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Projective resolutions and complexity

Self-injectivity

A key property of F is that it is self-injective, in the following sense:

Proposition
A module M in F is projective if and only if it is injective.
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Projective resolutions and complexity

Complexity

Definition
Let V = {Vt | t ∈ N} = {V•} be a sequence of finite-dimensional
C-vector spaces. The rate of growth of V, r(V), is the smallest positive
integer c such that there exists a constant C > 0 with
dimC Vt ≤ C · tc−1 for all t . If no such integer exists then V is said to
have infinite rate of growth.

Following Alperin (1977), we make the

Definition
Let M ∈ F and P• � M be a minimal projective resolution for M. The
complexity of M, cF (M) = r({Pn | n = 0,1,2, . . . }).
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Projective resolutions and complexity

Projective Resolutions

Following Kumar, we have:

Proposition

U(g)⊗U(g0̄) Λ•sup(g/g0̄) � C

is a projective resolution of the trivial module in F .

Tensoring by any module M in F produces a projective resolution of M.
We easily deduce:

Theorem
For any module M in F , the complexity cF (M) ≤ dimC g1̄.
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Projective resolutions and complexity

Examples

1. Consider the Lie superalgebra of type q(1) =
{(

a b
b a

)
: a,b ∈ C

}
.

The projective cover P(C) of C has two composition factors, both ∼= C.
Therefore the minimal projective resolution of C is given by

· · · → P(C)→ P(C)→ P(C)→ C→ 0.

Thus cF (C) = 1 = Kr dim H•(g, g0̄; C).

2. For gl(1|1) the minimal projective resolution of C can be written

· · · → P(2 | − 2)⊕ P(0 | 0)⊕ P(−2 | 2)→ P(1 | − 1)⊕ P(−1 | 1)→ P(0 | 0)→ C→ 0,

where dim P(λ | − λ) = 4. Therefore, dimC Pn = 4(n + 1) and
cF (C) = 2 > 1 = Kr dim H•(g, g0̄; C).

Evidently the relative cohomology ring may not be large enough to
measure the complexity of modules in F .
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Projective resolutions and complexity

Projective and Periodic Modules

Proposition

Let M ∈ F . Then M is projective if and only if cF (M) = 0.

Necessity is obvious. Conversely, if M has a finite projective resolution
0→ Pn → Pn−1 → · · · → P0 → M → 0 then since Pn is also injective,
the resolution splits. It follows that M itself is projective.

A non-projective module is periodic if it admits a periodic projective
resolution. In the context of finite group representations, M is periodic
⇐⇒ ckG(M) = 1. In our setting, necessity holds but not sufficiency.
For example, if g = gl(1|1), the Kac module K (0|0) has minimal
projective resolution

· · · → P(2 | − 2)→ P(1 | − 1)→ P(0|0)→ K (0|0)→ 0.

Since dimC P(λ | − λ) = 4, cF (K (0|0)) = 1 even though the resolution
is not periodic.
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Type I Superalgebras

Kac Modules

From now on, assume that our classical superalgebra g is Type I,
meaning it has a consistent Z-grading of the form g = g−1 ⊕ g0 ⊕ g1.
This includes gl(m|n) and the simple Lie superalgebras of types
A(m,n), C(n), and P(n).

Put p+ = g0 ⊕ g1 and p− = g0 ⊕ g−1. If L0(λ) is a simple
finite-dimensional g0-module, let

K (λ) = U(g)⊗U(p+) L0(λ) and K−(λ) = HomU(p−) (U(g),L0(λ))

be the Kac module and the dual Kac module, respectively.

A module in F has a (dual) Kac filtration if it has a filtration with all
nonzero subquotients isomorphic to (dual) Kac modules. A tilting
module is one which admits both a Kac and a dual Kac filtration.
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Type I Superalgebras

Support Varieties

Given M ∈ F , define the g±1-support variety of M as

Vg±1(M) = {x ∈ g±1 | M is not projective as a U(〈x〉)-module} ∪ {0}.

These can also be defined cohomologically, as the maximal ideal
spectrum of the quotient of the cohomology ring of g±1 modulo the
annihilator of Ext•(M,M). The cohomological and rank variety
definitions agree because g±1 are abelian Lie superalgebras.

The operations Vg±1 satisfy the usual properties of a support variety
theory, such as the tensor product rule and detecting g±1-projectivity.
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Type I Superalgebras

Theorem
Let g be a Type I classical Lie superalgebra, and M ∈ F .

M has a Kac filtration ⇐⇒ Vg−1(M) = 0
M has a dual Kac filtration ⇐⇒ Vg1(M) = 0

Corollary

M is a tilting module if and only if Vg1(M) = Vg−1(M) = 0.
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Type I Superalgebras

Projectivity Test

Theorem
Let g be a Type I classical Lie superalgebra, and M ∈ F . Then M is
projective if and only if Vg1(M) = Vg−1(M) = 0.

The proof uses a tensor-product “trick” due to Cline-Parshall-Scott.

Corollary
M is a tilting module if and only if M is projective.

This result is implicit in the work of Jon Brundan (2004).
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Type I Superalgebras

Connection with Duflo-Serganova Associated Varieties

Consider the following subvariety of g1̄:

X = {x ∈ g1̄ | [x , x ] = 0} .

For M ∈ F , Duflo and Serganova (2005) define the associated variety

XM = {x ∈ X | M is not projective as a U(〈x〉)-module} ∪ {0}.

In Type I, g±1 ⊂ X since g±1 is abelian. It follows that
Vg±1(M) = XM ∩ g±1.
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Type I Superalgebras

Using our previous theorem, we can recover the following theorem of
Duflo-Serganova (in Type I):

Theorem (Duflo-Serganova)
Let g be a Type I classical Lie superalgebra, and M ∈ F . Then M is
projective if and only if XM = 0.

Our proof uses the fact that a projective module M is Z-graded. If there
were a nonzero element in XM , a limiting process produces a nonzero
element of either XM ∩ g1 = Vg1(M) or XM ∩ g−1 = Vg−1(M),
contradicting the projectivity of M.
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Type I Superalgebras

Refinement of the Projectivity Test

Recall the connected reductive algebraic group G0 with Lie(G0) = g0̄.
Let {xi | i ∈ I } (resp. {yj | j ∈ J }) be a set of orbit representatives for
the minimal orbits1 of the action of G0 on g1 (resp. on g−1).

Theorem
Let g be a Type I classical Lie superalgebra and M ∈ F . Then M is
projective if and only if M is projective on restriction to U(〈xi〉) for all
i ∈ I and to U(〈yj〉) for all j ∈ J.

A similar test detects the existence of a (dual) Kac filtration on M.

The point is that, since M is a g0̄-module, Vg±1(M) are closed
G0-stable varieties.

1By minimal orbit, we mean minimal non-zero orbit with respect to the partial order
on orbits given by containment in closures.
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Type I Superalgebras

Example: gl(m|n)

Consider g = gl(m|n). The action of G0
∼= GL(m)×GL(n) on g1 is

given by (A,B) · x = AxB−1 for A ∈ GL(m), B ∈ GL(n), x ∈ g1. The
orbits are

(g1)r = { x ∈ g1 | rank(x) = r }

for 0 ≤ r ≤ min(m,n). The closure of (g1)r is the determinantal variety

(g1)r = { x ∈ g1 | rank(x) ≤ r };

thus (g1)r ⊂ (g1)s if and only if r ≤ s. The situation for g−1 is
analogous. Thus to test for Kac filtrations, dual Kac filtrations, and
projectivity, it suffices to consider a single rank one element from g1
and/or g−1.

The same holds true for sl(m|n), psl(n|n), and the simple Lie
superalgebras of type C(n) and P(n).
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Type I Superalgebras

In fact, for g = gl(m|n) one can say even more. Because the orbit
closures form a simple chain, it follows that for any M ∈ F ,

Vg1(M) = (g1)r for some 0 ≤ r ≤ min(m,n),

and similarly for Vg−1(M). In particular, Vg±1(M) is an irreducible
variety.

When M = L(λ) is an irreducible module, it follows from the work of
Duflo-Serganova that

Vg±1(L(λ)) = (g±1)r where r = atyp(λ).
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Questions

Further Questions

1. By the self-injectivity result, given a simple module S ∈ F , its
projective cover is the injective envelope of some simple T ∈ F . What
is the relationship between S and T ? (For finite-dimensional
cocommutative Hopf algebras, the analogous answer is known.)

2. Can one construct a “support variety” for a module M ∈ F whose
dimension equals the complexity cF (M)? The gl(1|1) example shows
that we need something bigger than the relative support variety
V(g,g0̄)(M) defined in our earlier paper.
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