Título: Solutions for Hard and Soft Constraints Using Optimized Probabilistic Satisfiability Palestrante: Marcelo Finger Abstract: Practical problems often combine real-world hard constraints with soft constraints involving preferences, uncertainties or flexible requirements. A probability distribution over the models that meet the hard constraints is an answer to such problems that is in the spirit of incorporating soft constraints. We propose a method using SAT-based reasoning, probabilistic reasoning and linear programming that computes such a distribution when soft constraints are interpreted as constraints whose violation is bound by a given probability. The method, called Optimized Probabilistic Satisfiability (oPSAT), consists of a two-phase computation of a probability distribution over the set of valuations of a SAT formula. Algorithms for both phases are presented and their complexity is discussed. We also describe an application of the oPSAT technique to the problem of combinatorial materials discovery.