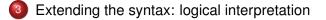
Pedro Cabalar

Depto. Computación University of Corunna, SPAIN

July 1, 2010

July 1, 2010

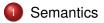
Outline



A recent result: minimal logic programs

A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A

July 1, 2010



3) Extending the syntax: logical interpretation

A recent result: minimal logic programs

• • • • • • • • • • • • •

July 1, 2010

• Answer set programming (ASP) [Gelfond & Lifschitz 88]: similar to Prolog, but more declarative.

.⊒...>

July 1, 2010

- Answer set programming (ASP) [Gelfond & Lifschitz 88]: similar to Prolog, but more declarative.
- (Propositional) rules with negation in the body.

$$\underbrace{p}_{head} \leftarrow \underbrace{L_1, \ldots, L_n}_{body}$$

 $n \ge 0$, *p* is an atom and L_i are literals, that is, an atom *q* or its default negation *not q*.

July 1, 2010

• The ordering is irrelevant. We can generally write the rule as:

 $p \leftarrow q_1, \ldots, q_m, not \ q_{m+1}, \ldots, not \ q_n.$ (1)

• • • • • • • • • • • •

July 1, 2010

5/67

with $n \ge m \ge 0$. A logic program *P* is a set of rules like (1)

• The ordering is irrelevant. We can generally write the rule as:

 $p \leftarrow q_1, \ldots, q_m, not \ q_{m+1}, \ldots, not \ q_n.$

• • • • • • • • • • • • •

July 1, 2010

(1)

5/67

with $n \ge m \ge 0$. A logic program *P* is a set of rules like (1)

• The rule is positive when m = n (no negations).

• The ordering is irrelevant. We can generally write the rule as:

 $p \leftarrow q_1, \ldots, q_m, not \ q_{m+1}, \ldots, not \ q_n.$ (1)

< □ > < 同 > < 回 > < 回

July 1, 2010

5/67

with $n \ge m \ge 0$. A logic program *P* is a set of rules like (1)

- The rule is positive when m = n (no negations).
- When n = 0, the rule is called a fact, and we usually omit the \leftarrow .

 Positive programs can be easily computed by "rule application" (deductive closure).

→ Ξ → +

July 1, 2010

- Positive programs can be easily computed by "rule application" (deductive closure).
- Given a program *P*, and a propositional interpretation *I* (set of atoms) we define the direct consequences [van Endem & Kowalski 76] operator *T_P(I*) as:

 $T_P(I) := \{H \mid (H \leftarrow B) \in P \text{ and } I \models B\}$

< □ > < 同 > < 回 > < 回

- Positive programs can be easily computed by "rule application" (deductive closure).
- Given a program *P*, and a propositional interpretation *I* (set of atoms) we define the direct consequences [van Endem & Kowalski 76] operator *T_P(I*) as:

 $T_P(I) := \{H \mid (H \leftarrow B) \in P \text{ and } I \models B\}$

That is, pick those rule heads *H* whose body *B* holds in *I* (a fact *H* can just be seen as $H \leftarrow \top$). Commas can be seen as \land .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

July 1, 2010

- Positive programs can be easily computed by "rule application" (deductive closure).
- Given a program *P*, and a propositional interpretation *I* (set of atoms) we define the direct consequences [van Endem & Kowalski 76] operator *T_P(I*) as:

$$T_P(I) := \{H \mid (H \leftarrow B) \in P \text{ and } I \models B\}$$

That is, pick those rule heads *H* whose body *B* holds in *I* (a fact *H* can just be seen as $H \leftarrow \top$). Commas can be seen as \land .

• Example: given *P* below, $T_P(\{b, p, s\}) = \{p, q, r, a\}$

• Exercise: prove that T_P is \subseteq -monotonic, i.e., if $I \subseteq J$, then $T_P(I) \subseteq T_P(J)$.

ъ

• • • • • • • • • • • • •

- Exercise: prove that T_P is \subseteq -monotonic, i.e., if $I \subseteq J$, then $T_P(I) \subseteq T_P(J)$.
- By Knaster & Tarski's theorem, T_P has a \subseteq -least fix point $I = T_P(I)$.

・ロト ・ 日 ト ・ ヨ ト ・

July 1, 2010

- Exercise: prove that T_P is \subseteq -monotonic, i.e., if $I \subseteq J$, then $T_P(I) \subseteq T_P(J)$.
- By Knaster & Tarski's theorem, T_P has a \subseteq -least fix point $I = T_P(I)$.
- Moreover, *T_P* is continuous and the l.f.p. can be computed by iteration of *T_P* on *I*₀ = ∅ until reaching a point *I_{i+1}* = *T_P(I_i)* = *I_i*.

• • • • • • • • • • • •

July 1, 2010

- Exercise: prove that T_P is \subseteq -monotonic, i.e., if $I \subseteq J$, then $T_P(I) \subseteq T_P(J)$.
- By Knaster & Tarski's theorem, T_P has a \subseteq -least fix point $l = T_P(l)$.
- Moreover, *T_P* is continuous and the l.f.p. can be computed by iteration of *T_P* on *I*₀ = ∅ until reaching a point *I_{i+1}* = *T_P(I_i)* = *I_i*.
- Back to the example

n

• • • • • • • • • • • •

- Exercise: prove that T_P is \subseteq -monotonic, i.e., if $I \subseteq J$, then $T_P(I) \subseteq T_P(J)$.
- By Knaster & Tarski's theorem, T_P has a \subseteq -least fix point $l = T_P(l)$.
- Moreover, *T_P* is continuous and the l.f.p. can be computed by iteration of *T_P* on *I*₀ = ∅ until reaching a point *I_{i+1}* = *T_P(I_i)* = *I_i*.
- Back to the example

n

$$egin{array}{cccccccc} & \rho & s &\leftarrow q & b &\leftarrow s,a \ & q &\leftarrow b,p & a &\leftarrow c \ & r &\leftarrow p,s & & a &\leftarrow b,p & & a &\leftarrow c \end{array} \ T_P(\emptyset) = \{p,q\} \end{array}$$

< □ > < 同 > < 回 > < 回

- Exercise: prove that T_P is \subseteq -monotonic, i.e., if $I \subseteq J$, then $T_P(I) \subseteq T_P(J)$.
- By Knaster & Tarski's theorem, T_P has a \subseteq -least fix point $l = T_P(l)$.
- Moreover, *T_P* is continuous and the l.f.p. can be computed by iteration of *T_P* on *I*₀ = ∅ until reaching a point *I_{i+1}* = *T_P(I_i)* = *I_i*.
- Back to the example

n

$$egin{array}{ccccc} & p & s & \leftarrow & q & b & \leftarrow & s, a \ & q & \leftarrow & b, p & a & \leftarrow & c \ & r & \leftarrow & p, s & a & \leftarrow & b, p & a & \leftarrow & c \ & T_P(\emptyset) = \{p,q\}, \ T_P(\{p,q\}) = \end{array}$$

• • • • • • • • • • • • •

July 1, 2010

- Exercise: prove that T_P is \subseteq -monotonic, i.e., if $I \subseteq J$, then $T_P(I) \subseteq T_P(J)$.
- By Knaster & Tarski's theorem, T_P has a \subseteq -least fix point $l = T_P(l)$.
- Moreover, *T_P* is continuous and the l.f.p. can be computed by iteration of *T_P* on *I*₀ = ∅ until reaching a point *I_{i+1}* = *T_P(I_i)* = *I_i*.
- Back to the example

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Exercise: prove that T_P is \subseteq -monotonic, i.e., if $I \subseteq J$, then $T_P(I) \subseteq T_P(J)$.
- By Knaster & Tarski's theorem, T_P has a \subseteq -least fix point $l = T_P(l)$.
- Moreover, *T_P* is continuous and the l.f.p. can be computed by iteration of *T_P* on *I*₀ = ∅ until reaching a point *I_{i+1}* = *T_P(I_i)* = *I_i*.
- Back to the example

 $T_P(\emptyset) = \{p,q\}, T_P(\{p,q\}) = \{p,q,s\}, T_P(\{p,q,s\}) =$

• • • • • • • • • • • • • •

- Exercise: prove that T_P is \subseteq -monotonic, i.e., if $I \subseteq J$, then $T_P(I) \subseteq T_P(J)$.
- By Knaster & Tarski's theorem, T_P has a \subseteq -least fix point $l = T_P(l)$.
- Moreover, *T_P* is continuous and the l.f.p. can be computed by iteration of *T_P* on *I*₀ = ∅ until reaching a point *I_{i+1}* = *T_P(I_i)* = *I_i*.
- Back to the example

 $egin{array}{cccc} p & s \leftarrow q & b \leftarrow s, a \ q & r \leftarrow p, s & a \leftarrow b, p & a \leftarrow c \end{array} \ T_P(\emptyset) = \{p,q\}, \ T_P(\{p,q\}) = \{p,q,s\}, \ T_P(\{p,q,s\}) = \{p,q,s,r\} \end{array}$

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

- Exercise: prove that T_P is \subseteq -monotonic, i.e., if $I \subseteq J$, then $T_P(I) \subseteq T_P(J)$.
- By Knaster & Tarski's theorem, T_P has a \subseteq -least fix point $l = T_P(l)$.
- Moreover, *T_P* is continuous and the l.f.p. can be computed by iteration of *T_P* on *I*₀ = ∅ until reaching a point *I_{i+1}* = *T_P(I_i)* = *I_i*.
- Back to the example

July 1, 2010

- Exercise: prove that T_P is \subseteq -monotonic, i.e., if $I \subseteq J$, then $T_P(I) \subseteq T_P(J)$.
- By Knaster & Tarski's theorem, T_P has a \subseteq -least fix point $l = T_P(l)$.
- Moreover, *T_P* is continuous and the l.f.p. can be computed by iteration of *T_P* on *I*₀ = ∅ until reaching a point *I_{i+1}* = *T_P(I_i)* = *I_i*.
- Back to the example

July 1, 2010

• A set of atoms *I* is a model of a program *P*, $I \models P$, when $I \models q_1 \land \ldots q_m \land \neg q_{m+1} \land \cdots \land \neg q_n \rightarrow p$ for any rule (1) in *P*.

イロト イヨト イヨト イヨト

- A set of atoms *I* is a model of a program *P*, $I \models P$, when $I \models q_1 \land \ldots q_m \land \neg q_{m+1} \land \cdots \land \neg q_n \rightarrow p$ for any rule (1) in *P*.
- Main result by [van Endem & Kowalski 76]: a positive program P has a least propositional model LM(P) that coincides with T_P least fixpoint.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- A set of atoms *I* is a model of a program *P*, $I \models P$, when $I \models q_1 \land \ldots q_m \land \neg q_{m+1} \land \cdots \land \neg q_n \rightarrow p$ for any rule (1) in *P*.
- Main result by [van Endem & Kowalski 76]: a positive program P has a least propositional model LM(P) that coincides with T_P least fixpoint.
- In our example:

the models of *P* are $\{p, q, r, s\}$, $\{p, q, r, s, a, b\}$, $\{p, q, r, s, a, b, c\}$.

- A set of atoms *I* is a model of a program *P*, $I \models P$, when $I \models q_1 \land \ldots q_m \land \neg q_{m+1} \land \cdots \land \neg q_n \rightarrow p$ for any rule (1) in *P*.
- Main result by [van Endem & Kowalski 76]: a positive program P has a least propositional model LM(P) that coincides with T_P least fixpoint.
- In our example:

 $egin{array}{ccccccccc} p & & s &\leftarrow q & b &\leftarrow s, a \ q & & a &\leftarrow b, p & a &\leftarrow c \ r &\leftarrow p, s & & a &\leftarrow b, p & & a &\leftarrow c \end{array}$

the models of *P* are $\{p, q, r, s\}, \{p, q, r, s, a, b\}, \{p, q, r, s, a, b, c\}$.

• Exercise: prove it.

• Once negation is introduced, we don't have a least Herbrand model any more. We may have different minimal models.

- Once negation is introduced, we don't have a least Herbrand model any more. We may have different minimal models.
- Take the simple program

 $p \leftarrow not q$

July 1, 2010

- Once negation is introduced, we don't have a least Herbrand model any more. We may have different minimal models.
- Take the simple program

 $p \leftarrow not q$

Intuitively, as no information for q is available, we should conclude model $\{p\}$, that is, q false and p true.

July 1, 2010

- Once negation is introduced, we don't have a least Herbrand model any more. We may have different minimal models.
- Take the simple program

 $p \leftarrow not q$

Intuitively, as no information for q is available, we should conclude model $\{p\}$, that is, q false and p true.

However, this rule is classically equivalent to *q* ∨ *p* and has three models: {*p*, *q*}, {*p*}, {*q*}, being the last two minimal.

July 1, 2010

- Once negation is introduced, we don't have a least Herbrand model any more. We may have different minimal models.
- Take the simple program

 $p \leftarrow not q$

Intuitively, as no information for q is available, we should conclude model $\{p\}$, that is, q false and p true.

- However, this rule is classically equivalent to q ∨ p and has three models: {p, q}, {p}, {q}, being the last two minimal.
- Furthermore, $q \lor p$ is also equivalent (in classical logic) to:

 $q \leftarrow not p$

whose "expected" behavior should be obviously different.

- The problem seems related to a kind of directionality in the implication:
 - First: assume that q is false;
 - Second: conclude that p follows from your assumption, not q.

- The problem seems related to a kind of directionality in the implication:
 - First: assume that q is false;
 - Second: conclude that *p* follows from your assumption, *not q*.
- Idea: we could go assuming and concluding until all atoms have a truth value.

- The problem seems related to a kind of directionality in the implication:
 - First: assume that q is false;
 - Second: conclude that *p* follows from your assumption, *not q*.
- Idea: we could go assuming and concluding until all atoms have a truth value. Problem: we can sometimes get that an assumption must be retracted.

July 1, 2010

- The problem seems related to a kind of directionality in the implication:
 - First: assume that q is false;
 - Second: conclude that p follows from your assumption, not q.
- Idea: we could go assuming and concluding until all atoms have a truth value. Problem: we can sometimes get that an assumption must be retracted.
- Example:

 $p \leftarrow not q$ $q \leftarrow p$ $q \leftarrow not p$

- The problem seems related to a kind of directionality in the implication:
 - First: assume that q is false;
 - Second: conclude that p follows from your assumption, not q.
- Idea: we could go assuming and concluding until all atoms have a truth value. Problem: we can sometimes get that an assumption must be retracted.

• Example:

 $p \leftarrow not q$ $q \leftarrow p$ $q \leftarrow not p$

Assume, say, not q

- The problem seems related to a kind of directionality in the implication:
 - First: assume that q is false;
 - Second: conclude that p follows from your assumption, not q.
- Idea: we could go assuming and concluding until all atoms have a truth value. Problem: we can sometimes get that an assumption must be retracted.
- Example:

$$p \leftarrow not q$$

 $q \leftarrow p$
 $q \leftarrow not p$

July 1, 2010

10/67

- The problem seems related to a kind of directionality in the implication:
 - First: assume that q is false;
 - Second: conclude that p follows from your assumption, not q.
- Idea: we could go assuming and concluding until all atoms have a truth value. Problem: we can sometimes get that an assumption must be retracted.
- Example:

 $p \leftarrow not q$ $q \leftarrow p$ $q \leftarrow not p$

July 1, 2010

10/67

- The problem seems related to a kind of directionality in the implication:
 - First: assume that q is false;
 - Second: conclude that p follows from your assumption, not q.
- Idea: we could go assuming and concluding until all atoms have a truth value. Problem: we can sometimes get that an assumption must be retracted.
- Example:

 $p \leftarrow not q$ $q \leftarrow p$ $q \leftarrow not p$

July 1, 2010

10/67

- The problem seems related to a kind of directionality in the implication:
 - First: assume that q is false;
 - Second: conclude that p follows from your assumption, not q.
- Idea: we could go assuming and concluding until all atoms have a truth value. Problem: we can sometimes get that an assumption must be retracted.
- Example:

 $p \leftarrow not q$ $q \leftarrow p$ $q \leftarrow not p$

July 1, 2010

10/67

- The problem seems related to a kind of directionality in the implication:
 - First: assume that q is false;
 - Second: conclude that p follows from your assumption, not q.
- Idea: we could go assuming and concluding until all atoms have a truth value. Problem: we can sometimes get that an assumption must be retracted.
- Example:

 $p \leftarrow not q$ $q \leftarrow p$ $q \leftarrow not p$

July 1, 2010

10/67

4 A N

Assume, say, not q ... q, our assumption was inconsistent.

- The problem seems related to a kind of directionality in the implication:
 - First: assume that q is false;
 - Second: conclude that p follows from your assumption, not q.
- Idea: we could go assuming and concluding until all atoms have a truth value. Problem: we can sometimes get that an assumption must be retracted.
- Example:

 $p \leftarrow not q$ $q \leftarrow p$ $q \leftarrow not p$

- The problem seems related to a kind of directionality in the implication:
 - First: assume that q is false;
 - Second: conclude that p follows from your assumption, not q.
- Idea: we could go assuming and concluding until all atoms have a truth value. Problem: we can sometimes get that an assumption must be retracted.
- Example:

 $p \leftarrow not q$ $q \leftarrow p$ $q \leftarrow not p$

Assume now not p

- The problem seems related to a kind of directionality in the implication:
 - First: assume that q is false;
 - Second: conclude that p follows from your assumption, not q.
- Idea: we could go assuming and concluding until all atoms have a truth value. Problem: we can sometimes get that an assumption must be retracted.
- Example:

 $p \leftarrow not q$ $q \leftarrow p$ $q \leftarrow not p$

Assume now not p

- The problem seems related to a kind of directionality in the implication:
 - First: assume that q is false;
 - Second: conclude that p follows from your assumption, not q.
- Idea: we could go assuming and concluding until all atoms have a truth value. Problem: we can sometimes get that an assumption must be retracted.
- Example:

 $p \leftarrow not q$ $q \leftarrow p$ $q \leftarrow not p$

Assume now *not p*

- The problem seems related to a kind of directionality in the implication:
 - First: assume that q is false;
 - Second: conclude that p follows from your assumption, not q.
- Idea: we could go assuming and concluding until all atoms have a truth value. Problem: we can sometimes get that an assumption must be retracted.
- Example:

$$p \leftarrow not q$$
$$q \leftarrow p$$
$$q \leftarrow not p$$

Assume now *not* $p \dots q$, and the first two rules become redundant.

Adding negation: stable models

• Gelfond, M., and Lifschitz, V. 1988. The stable model semantics for logic programming. In ICLP'88, 1070-1080.

Definition (program reduct)

We define the reduct of a program P with respect to an interpretation (set of atoms) I, written P^{I} , as the set of rules:

$$\begin{array}{ll} \mathcal{P}^{l} & \stackrel{\text{def}}{=} \{ & (p \leftarrow q_1, \dots, q_m) \\ & \mid (p \leftarrow q_1, \dots, q_m, \textit{not } q_{m+1}, \dots, \textit{not } q_n) \in \mathcal{P} \textit{ and} \\ & q_j \notin l, \textit{ for all } j = m+1, \dots, n \, \} \end{array}$$

 Observation: P^I is a positive program (it contains no negations), so it has a least model, call it Γ_P(I) ^{def} = LM(P^I).

 Observation: P^I is a positive program (it contains no negations), so it has a least model, call it Γ_P(I) ^{def} = LM(P^I).

Definition (stable model)

An interpretation I is a stable model of a program P iff

 $I = \Gamma_P(I) = LM(P').$

July 1, 2010

Proposition (Stable models are models)

If I is a stable model of P then $I \models P$.

Proposition (Stable models are models)

If I is a stable model of P then $I \models P$.

Proposition (Stable models are minimal models)

If I is a stable model of P then there is no $J \subset I$ such that $J \models P$.

July 1, 2010

Proposition (Stable models are models)

If I is a stable model of P then $I \models P$.

Proposition (Stable models are minimal models)

If I is a stable model of P then there is no $J \subset I$ such that $J \models P$.

Exercise: prove the above theorems.

July 1, 2010

• An example of default. Try this program:

flies ← bird, not ab bird

э

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

• An example of default. Try this program:

flies ← bird, not ab bird

• This program has these three models:

/	P^{I}	LM(P')
$\{bird, ab\}$		
$\{bird, ab, flies\}$		
{bird, flies}		
		- イロト イヨト イヨト イヨト

July 1, 2010 15 / 67

• An example of default. Try this program:

flies ← bird, not ab bird

• This program has these three models:

/	P ^I	LM(P')
$\{bird, ab\}$	bird	
$\{bird, ab, flies\}$		
{bird, flies}		

July 1, 2010 15 / 67

A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A

• An example of default. Try this program:

flies ← bird, not ab bird

• This program has these three models:

1	P^{I}	LM(P')
$\{bird, ab\}$	bird	$\{bird\} \neq I$ not stable
$\{\textit{bird},\textit{ab},\textit{flies}\}$		
{bird, flies}		

July 1, 2010 15 / 67

• An example of default. Try this program:

flies ← bird, not ab bird

• This program has these three models:

1	P'	LM(P')
{bird, ab}	bird	$\{bird\} \neq I$ not stable
$\{bird, ab, flies\}$	bird	$\{bird\} \neq I$ not stable
$\{\textit{bird},\textit{flies}\}$		

July 1, 2010 15 / 67

• An example of default. Try this program:

flies ← bird, not ab bird

• This program has these three models:

1	P'	LM(P')
{bird, ab}	bird	$\{bird\} \neq I$ not stable
{bird, ab, flies}	bird	$\{bird\} \neq I$ not stable
{bird, flies}	flies ← bird bird	
·		·

• An example of default. Try this program:

flies ← bird, not ab bird

• This program has these three models:

Ι	P'	LM(P')
{bird, ab}	bird	$\{bird\} \neq I$ not stable
(bird ab flice)	bird	$\{bird\} \neq I$
{bird, ab, flies}		not stable
$\{\textit{bird},\textit{flies}\}$	flies ← bird bird	{bird, flies} stable!

• Adding new information:

 $\begin{array}{rcl} \textit{flies} & \leftarrow & \textit{bird}, \textit{not ab} & & \textit{bird} \\ \textit{ab} & \leftarrow & \textit{bird}, \textit{penguin} & & \textit{penguin} \end{array}$

э

イロト イポト イヨト イヨト

• Adding new information:

 $\begin{array}{rcl} \textit{flies} & \leftarrow & \textit{bird}, \textit{not ab} & & \textit{bird} \\ \textit{ab} & \leftarrow & \textit{bird}, \textit{penguin} & & \textit{penguin} \end{array}$

• Just two (classical) models now:

	1	P^{\prime}	LN	M(P')	_	
	{bird, penguin, ab}					
	{bird, penguin, ab,flies}	4	<	코가 《코가		୬୯୯
Pedro Cabalar		ASP		July 1, 201	0	16/67

• Adding new information:

flies *←* bird, not ab bird penguin

Just two (classical) models now:

1	P^{I}	LM(P')
{bird, penguin, ab}	bird ab ← bird, pengu penguin	in
{bird, penguin, ab, flies}		< 四> < 图> < 注> < 注> < 注> < 注
ar	ASP	July 1, 2010

• Adding new information:

 $\begin{array}{rcl} \textit{flies} & \leftarrow & \textit{bird}, \textit{not ab} & & \textit{bird} \\ \textit{ab} & \leftarrow & \textit{bird}, \textit{penguin} & & \textit{penguin} \end{array}$

• Just two (classical) models now:

1			P'		LM((P ¹)	
{birc pengu ab}	in,	bird ab enguin	← bird,	penguin	{bi peng ab stal	guin, p}	-
{birc pengu ab, flie	in,			4		▶ < Ē ▶	

July 1, 2010

• Adding new information:

 $\begin{array}{rcl} \textit{flies} & \leftarrow & \textit{bird}, \textit{not ab} & & \textit{bird} \\ \textit{ab} & \leftarrow & \textit{bird}, \textit{penguin} & & \textit{penguin} \end{array}$

• Just two (classical) models now:

	-	•			
	1		P'	LM(P')	
_	{bird, penguin, ab}	bird ab penguin	← bird, penguin	{bird, penguin, ab} stable!	
_	{bird, penguin, ab,flies}	bird ab penguin	← bird, penguin	$\begin{cases} bird, \\ penguin, \\ ab \} \neq I \\ notstable \end{cases}$	C
Pedro Cabalar			ASP	July 1, 2010 16 / 6	

• A program may have several stable models. For instance, P₁:

 $p \leftarrow not q$ $q \leftarrow not p$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• A program may have several stable models. For instance, *P*₁:

 $p \leftarrow not q \qquad q \leftarrow not p$

• A program may have no stable model at all. Example P₂:

 $p \leftarrow not p$

イロト イポト イヨト イヨト 二日

July 1, 2010

• A program may have several stable models. For instance, *P*₁:

 $p \leftarrow not q \qquad q \leftarrow not p$

• A program may have no stable model at all. Example *P*₂:

 $p \leftarrow not p$

 Typically use: (1) generate multiple solutions (even cycles like P₁) and (2) prune undesired models (odd cycles like P₂).

イロト イポト イヨト イヨト 一日

July 1, 2010

• A program may have several stable models. For instance, *P*₁:

 $p \leftarrow not q \qquad q \leftarrow not p$

• A program may have no stable model at all. Example *P*₂:

 $p \leftarrow not p$

- Typically use: (1) generate multiple solutions (even cycles like P₁) and (2) prune undesired models (odd cycles like P₂).
- Constraints. Example: to avoid a model where p holds but q doesn't:

 $aux \leftarrow p, not q, not aux$

where *aux* is a new fresh atom. Usually written: $\leftarrow p$, *not* q

Stable models vs Default Logic

• Very close to Default Logic. A rule like:

 $p \leftarrow q_1, \ldots, q_m, not \ q_{m+1}, \ldots, not \ q_n$

just corresponds to the default:

• • • • • • • • • • • •

July 1, 2010

Stable models vs Default Logic

• Very close to Default Logic. A rule like:

 $p \leftarrow q_1, \ldots, q_m, not \ q_{m+1}, \ldots, not \ q_n$

just corresponds to the default:

$$\frac{q_1 \wedge \cdots \wedge q_m : \neg q_{m+1}, \dots, \neg q_n}{p}$$

• So, it's like playing with defaults where we mostly deal with atoms.

• • • • • • • • • • • •

July 1, 2010

Stable models vs answer sets

• We can sometimes be interested in a second negation, strong or explicit negation (originally called "classical"). Example:

 $cross \leftarrow not train$

risky! we cross the railway tracks when no information on train approaching is available. Compare to:

 $cross \leftarrow -train$

we must have the fact that the train is not approaching.

July 1, 2010

Stable models vs answer sets

• We can sometimes be interested in a second negation, strong or explicit negation (originally called "classical"). Example:

 $cross \leftarrow not train$

risky! we cross the railway tracks when no information on train approaching is available. Compare to:

 $cross \leftarrow -train$

we must have the fact that the train is not approaching.

We may represent defaults like

−raining ← *summer*, *not rainning*

July 1, 2010

Stable models vs answer sets

• We can sometimes be interested in a second negation, strong or explicit negation (originally called "classical"). Example:

 $cross \leftarrow not train$

risky! we cross the railway tracks when no information on train approaching is available. Compare to:

 $cross \leftarrow -train$

we must have the fact that the train is not approaching.

• We may represent defaults like

−raining ← *summer*, *not rainning*

 Stable models with strong negation are called answer sets. We just compute stable models and reject those where p, -p occur.

 Operator Γ_P is antimonotone (on set inclusion). This implies that when applied twice, Γ²_P, it becomes a monotonic operator.

• • • • • • • • • •

- Operator Γ_P is antimonotone (on set inclusion). This implies that when applied twice, Γ²_P, it becomes a monotonic operator.
- It has a least fixpoint $Ifp(\Gamma_P^2)$ and a greatest fixpoint $gfp(\Gamma_P^2)$ that limit the fixpoints of Γ_P (i.e., the stable models) from below and from above.

- Operator Γ_P is antimonotone (on set inclusion). This implies that when applied twice, Γ²_P, it becomes a monotonic operator.
- It has a least fixpoint $lfp(\Gamma_P^2)$ and a greatest fixpoint $gfp(\Gamma_P^2)$ that limit the fixpoints of Γ_P (i.e., the stable models) from below and from above.
- The well-founded model (WFM) of *P* is a three-valued interpretation such that:
 - atoms in $lfp(\Gamma_P^2)$ are called well-founded;
 - atoms not in $gfp(\Gamma_P^2)$ are called unfounded;
 - the rest of atoms would be undefined.

July 1, 2010

- Operator Γ_P is antimonotone (on set inclusion). This implies that when applied twice, Γ²_P, it becomes a monotonic operator.
- It has a least fixpoint $Ifp(\Gamma_P^2)$ and a greatest fixpoint $gfp(\Gamma_P^2)$ that limit the fixpoints of Γ_P (i.e., the stable models) from below and from above.
- The well-founded model (WFM) of *P* is a three-valued interpretation such that:
 - atoms in $lfp(\Gamma_P^2)$ are called well-founded;
 - atoms not in $gfp(\Gamma_P^2)$ are called unfounded;
 - the rest of atoms would be undefined.
- A. Van Gelder, K.A. Ross and J.S. Schlipf. The Well-Founded Semantics for General Logic Programs. Journal of the ACM 38(3) pp. 620—650, 1991.

< □ > < 同 > < 回 > < 回

• Why is the WFM interesting for stable models?

• Why is the WFM interesting for stable models?

Proposition

Any stable model I of P includes all well-founded atoms, and includes no atom.

• Why is the WFM interesting for stable models? ...

Proposition

Any stable model I of P includes all well-founded atoms, and includes no atom.

Corollary

If there are no undefined atoms, then $lfp(\Gamma_P^2)$ is the only stable model of *P*.

July 1, 2010

• Why is the WFM interesting for stable models? ...

Proposition

Any stable model I of P includes all well-founded atoms, and includes no atom.

Corollary

If there are no undefined atoms, then $lfp(\Gamma_P^2)$ is the only stable model of P.

 Checking whether *P* has a stable model is an *NP*-complete problem [Eiter & Gottlob 93]. Computing *WFM(P)* takes polynomial time (quadratic).

July 1, 2010

- Computing the WFM: when *P* is finite, we can just iterate Γ²_P on Ø.
 Example: try with program *P*₃
 - $p \leftarrow not q$ $r \leftarrow p, not s$ $s \leftarrow not r$

Computing the WFM: when *P* is finite, we can just iterate Γ²_P on Ø.
 Example: try with program *P*₃

$$p \leftarrow not q$$

 $r \leftarrow p, not s$
 $s \leftarrow not r$

and with program P_4

$$p \leftarrow not q$$

$$r \leftarrow p, s$$

$$s \leftarrow r$$

$$t \leftarrow r, not t$$

• • • • • • • • • •

• An alternative to compute the WFM is using a bottom-up rewritting technique [Brass,Dix,Freitag,Zukowski 2001].

• • • • • • • • • • • • •

- An alternative to compute the WFM is using a bottom-up rewritting technique [Brass,Dix,Freitag,Zukowski 2001].
- Rewritting rules:
 - 1. Facts: for any fact *p* in the program remove *p* from positive bodies, and remove rules containing *not p* in the body.

• • • • • • • • • • • • •

- An alternative to compute the WFM is using a bottom-up rewritting technique [Brass,Dix,Freitag,Zukowski 2001].
- Rewritting rules:
 - Facts: for any fact *p* in the program remove *p* from positive bodies, and remove rules containing *not p* in the body. We can also remove the rest of rules with head *p*.

- An alternative to compute the WFM is using a bottom-up rewritting technique [Brass,Dix,Freitag,Zukowski 2001].
- Rewritting rules:
 - Facts: for any fact *p* in the program remove *p* from positive bodies, and remove rules containing *not p* in the body. We can also remove the rest of rules with head *p*.
 - 2. Non-heads: for any atom *p* not occurring as a rule head, remove all *not p* from bodies and all rules containing *p* as positive body literal.

July 1, 2010

- An alternative to compute the WFM is using a bottom-up rewritting technique [Brass,Dix,Freitag,Zukowski 2001].
- Rewritting rules:
 - Facts: for any fact *p* in the program remove *p* from positive bodies, and remove rules containing *not p* in the body. We can also remove the rest of rules with head *p*.
 - 2. Non-heads: for any atom *p* not occurring as a rule head, remove all *not p* from bodies and all rules containing *p* as positive body literal.
 - 3. "Unreachable atoms" (or positive loop detection) : for any $p \notin \Gamma_P(\emptyset)$ remove all rules containing *p* as positive body literal.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

July 1, 2010

- An alternative to compute the WFM is using a bottom-up rewritting technique [Brass,Dix,Freitag,Zukowski 2001].
- Rewritting rules:
 - Facts: for any fact *p* in the program remove *p* from positive bodies, and remove rules containing *not p* in the body. We can also remove the rest of rules with head *p*.
 - 2. Non-heads: for any atom *p* not occurring as a rule head, remove all *not p* from bodies and all rules containing *p* as positive body literal.
 - 3. "Unreachable atoms" (or positive loop detection) : for any $p \notin \Gamma_P(\emptyset)$ remove all rules containing *p* as positive body literal.
- When we exhaust these rules, we get the program remainder.

Proposition

The facts of the program remainder are the well-founded atoms; the non-head atoms are the unfounded atoms.

• Transformations 1 and 2 (i.e. without loop detection) obtain the so-called Fitting's model.

July 1, 2010

- Transformations 1 and 2 (i.e. without loop detection) obtain the so-called Fitting's model.
- Try the program P₅

а	\leftarrow	not b, c	d	\leftarrow	not g, e	a	,	not c
b	\leftarrow	not a	е	\leftarrow	not g, d	, i		
С			f	\leftarrow	not d	11	\leftarrow	g

• Fitting's model= $\langle \{c\}, \{g, h\} \rangle$. The final program remainder is:

$$a \leftarrow not b c$$

 $b \leftarrow not a f$

and so, $WFM = \langle \{c, f\}, \{g, h, d, e\} \rangle$.

• • • • • • • • • • • • •

- Transformations 1 and 2 (i.e. without loop detection) obtain the so-called Fitting's model.
- Try the program P₅

а	\leftarrow	not b, c	d	\leftarrow	not g, e	a	,	not c
b	\leftarrow	not a	е	\leftarrow	not g, d	, i		
С			f	\leftarrow	not d	11	\leftarrow	g

• Fitting's model= $\langle \{c\}, \{g, h\} \rangle$. The final program remainder is:

$$a \leftarrow not b c$$

 $b \leftarrow not a f$

and so, $WFM = \langle \{c, f\}, \{g, h, d, e\} \rangle$. Stable models $\{c, f, a\}$ and $\{c, f, b\}$.

ASP

- Most ASP solvers (DLV, smodels, clasp) alternate computation of WFM and nondeterministic choice with backtracking.
 - 1. Compute the WFM
 - 2. If no undefined atoms: stable model found.
 - Else: select an undefined atom *p* (using some heuristics) and branch: *p*; *not p*. Simplify the program accordingly to the choice and go to 1.

 Idea: the only way of making a predicate true is through its defining rules.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

July 1, 2010

- Idea: the only way of making a predicate true is through its defining rules.
- Example:
 - p :- q, not r.
 - p :- s.

3

< □ > < 同 > < 回 > < 回

- Idea: the only way of making a predicate true is through its defining rules.
- Example:

p := q, not r. p := s. This program classically implies $p \leftarrow (q \land \neg r) \lor s$.

イロト イヨト イヨト イヨト

- Idea: the only way of making a predicate true is through its defining rules.
- Example:
 - p :- q, not r.
 - p :- s.

This program classically implies $p \leftarrow (q \land \neg r) \lor s$. But atom p can only be true when body $q \land \neg r$ or body *s* become true. That is we complete the other direction of implication $p \rightarrow (q \land \neg r) \lor s$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

July 1, 2010

- Idea: the only way of making a predicate true is through its defining rules.
- Example:
 - p :- q, not r.
 - p :- s.

This program classically implies $p \leftarrow (q \land \neg r) \lor s$. But atom p can only be true when body $q \land \neg r$ or body *s* become true. That is we complete the other direction of implication $p \rightarrow (q \land \neg r) \lor s$.

• [K. L. Clark 1978] COMP[P] is the classical theory consisting of:

 $p \leftrightarrow B_1 \lor \cdots \lor B_n$

for each atom p, and all rules $p \leftarrow B_i$ in P.

イロト イポト イヨト イヨト 二日

- Idea: the only way of making a predicate true is through its defining rules.
- Example:
 - p :- q, not r.
 - p :- s.

This program classically implies $p \leftarrow (q \land \neg r) \lor s$. But atom p can only be true when body $q \land \neg r$ or body *s* become true. That is we complete the other direction of implication $p \rightarrow (q \land \neg r) \lor s$.

• [K. L. Clark 1978] COMP[P] is the classical theory consisting of:

 $p \leftrightarrow B_1 \lor \cdots \lor B_n$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- 3

26/67

July 1, 2010

for each atom p, and all rules $p \leftarrow B_i$ in P. An empty disjunction is \perp .

• Example: let *P* be the program

```
p :- q, not r.
p :- s.
t.
q :- t
```

2

イロト イヨト イヨト イヨト

• Example: let *P* be the program

COMP[*P*] consists of the equivalences:

$$p \leftrightarrow (q \land \neg r) \lor s$$

$$q \leftrightarrow t$$

$$r \leftrightarrow \bot$$

$$s \leftrightarrow \bot$$

$$t \leftrightarrow \top$$

• Example: let *P* be the program

COMP[*P*] consists of the equivalences:

$$p \leftrightarrow (q \wedge \neg r) \lor s$$

 $q \leftrightarrow t$
 $r \leftrightarrow \bot$
 $s \leftrightarrow \bot$
 $t \leftrightarrow \top$

whose only model is $\{p, q, t\}$.

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Semantic counterpart: supported models.

Definition (Supported model)

I is a supported model of *P* iff $I = T_P(I)$.

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Semantic counterpart: supported models.

Definition (Supported model) *I* is a supported model of *P* iff $I = T_P(I)$.

• That is *I* is a fixpoint of T_P , i.e. $I = \{p \mid (p \leftarrow B) \in P, I \models B\}$

• • • • • • • • • • • •

• Semantic counterpart: supported models.

Definition (Supported model)

I is a supported model of *P* iff $I = T_P(I)$.

- That is *I* is a fixpoint of T_P , i.e. $I = \{p \mid (p \leftarrow B) \in P, I \models B\}$
- In the example:
 - $\begin{array}{l} p := q, \mbox{ not } r.\\ p := s.\\ t.\\ q := t\\ T_P(\{p,q,t\}) = \{p,q,t\} \mbox{ (supported), whereas, for instance}\\ T_P(\{p,s\}) = \{p,t\} \mbox{ (non-supported).} \end{array}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

July 1, 2010

Theorem

I is a supported model of *P* iff $I \models COMP[P]$.

• Exercise: prove it.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Theorem

I is a supported model of *P* iff $I \models COMP[P]$.

- Exercise: prove it.
- In the previous example, {p, q, t} happens to be the only stable model. What happens with these typical examples?

 $p \leftarrow not q$ $q \leftarrow not p$

and

 $p \leftarrow not p$

• • • • • • • • • • • •

July 1, 2010

Theorem

I is a supported model of *P* iff $I \models COMP[P]$.

- Exercise: prove it.
- In the previous example, {p, q, t} happens to be the only stable model. What happens with these typical examples?

 $p \leftarrow not q$ $q \leftarrow not p$

and

 $p \leftarrow not p$

• Yes, supported and stable models coincide! Is this general?

July 1, 2010

• No: they differ in positive cycles. Consider this extremely simple example:

 $p \leftarrow p$

Completion would be $p \leftrightarrow p$ which has two supported models, \emptyset and $\{p\}$. Only \emptyset is stable.

• • • • • • • • • • • •

July 1, 2010

 No: they differ in positive cycles. Consider this extremely simple example:

 $p \leftarrow p$

Completion would be $p \leftrightarrow p$ which has two supported models, \emptyset and $\{p\}$. Only \emptyset is stable.

Theorem

Any stable model is supported.

Prove it.

• • • • • • • • • • • •

July 1, 2010

• No: they differ in positive cycles. Consider this extremely simple example:

 $p \leftarrow p$

Completion would be $p \leftrightarrow p$ which has two supported models, \emptyset and $\{p\}$. Only \emptyset is stable.

• • • • • • • • • • • •

July 1, 2010

 No: they differ in positive cycles. Consider this extremely simple example:

 $p \leftarrow p$

Completion would be $p \leftrightarrow p$ which has two supported models, \emptyset and $\{p\}$. Only \emptyset is stable.

Theorem

Any stable model is supported.

Prove it.

• • • • • • • • • • • •

July 1, 2010

• If we don't have these positive cycles, we can define a quite general class of programs where supported and stable coincide.

- If we don't have these positive cycles, we can define a quite general class of programs where supported and stable coincide.
- Tight programs [Fages 1994][Babovich, Erdem, Lifschitz 2000].

Definition (Tight programs)

P is tight on a set *I* of atoms if there is some partial ordinal mapping $\lambda : X \to N$ such that all $\lambda(B_i) < \lambda(H)$ for any rule in *P* like:

$$H \leftarrow B_1, \ldots, B_n, not \ C_1, \ldots, not \ C_m$$

July 1, 2010

- If we don't have these positive cycles, we can define a quite general class of programs where supported and stable coincide.
- Tight programs [Fages 1994][Babovich, Erdem, Lifschitz 2000].

Definition (Tight programs)

P is tight on a set *I* of atoms if there is some partial ordinal mapping $\lambda : X \to N$ such that all $\lambda(B_i) < \lambda(H)$ for any rule in *P* like:

$$H \leftarrow B_1, \ldots, B_n, not \ C_1, \ldots, not \ C_m$$

Theorem

If I is supported model of P and P tight on I, then I is stable model of P.

• Example:

 $p \leftarrow not \ q$ $q \leftarrow not \ p$ $r \leftarrow r$ $p \leftarrow r$ the completion

 $p \leftrightarrow \neg q \lor r$ $q \leftrightarrow \neg p$ $r \leftrightarrow r$

has models $\{p\}$, $\{q\}$ and $\{p, r\}$, but $\{p, r\}$ is not tight - only the first 2 ones are stable.

July 1, 2010

• We can strengthen completion to obtain stable models by adding loop formulas [Lin , Zhao 2004].

• • • • • • • • • • • •

- We can strengthen completion to obtain stable models by adding loop formulas [Lin , Zhao 2004].
- We define a positive dependency graph G with vertices V = Σ and edges E, one (p, q) for each rule p ← B with q in the positive body.

< □ > < 同 > < 回 > < 回

- We can strengthen completion to obtain stable models by adding loop formulas [Lin , Zhao 2004].
- We define a positive dependency graph *G* with vertices *V* = Σ and edges *E*, one (*p*, *q*) for each rule *p* ← *B* with *q* in the positive body.
- A loop *L* is a set of atoms forming a Strongly Connected Component in *G*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- We can strengthen completion to obtain stable models by adding loop formulas [Lin , Zhao 2004].
- We define a positive dependency graph G with vertices V = Σ and edges E, one (p, q) for each rule p ← B with q in the positive body.
- A loop *L* is a set of atoms forming a Strongly Connected Component in *G*.
- Given a loop $L = \{p_1, \dots, p_n\}$ its loop formula LF(L) is defined as: $\neg (BB_1 \lor \dots \lor BB_n) \rightarrow \neg p_1 \land \dots \land \neg p_n$

where BB_i is the disjunction $B_1 \vee \cdots \vee B_{m_i}$ of all bodies for rules in P like

$$p_i \leftarrow B_j$$

such that not atom in *L* occurs in the positive body of B_i .

• Example:

 $a \leftarrow b$ $b \leftarrow a$ $a \leftarrow not c$ $c \leftarrow d$ $d \leftarrow c$ $c \leftarrow not a$

<ロ> <四> <四> <四> <四> <四> <四</p>

• Example:

 $a \leftarrow b$ $b \leftarrow a$ $a \leftarrow not c$ $c \leftarrow d$ $d \leftarrow c$ $c \leftarrow not a$

Completion COMP[P] is:

 $a \leftrightarrow \neg c \lor b$ $b \leftrightarrow a$ $c \leftrightarrow \neg a \lor d$ $d \leftrightarrow c$

has 3 models $\{a, b\}, \{c, d\}, \{a, b, c, d\}$.

July 1, 2010

• Example:

 $a \leftarrow b$ $b \leftarrow a$ $a \leftarrow not c$ $c \leftarrow d$ $d \leftarrow c$ $c \leftarrow not a$

Completion COMP[P] is:

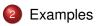
 $a \leftrightarrow \neg c \lor b$ $b \leftrightarrow a$ $c \leftrightarrow \neg a \lor d$ $d \leftrightarrow c$

has 3 models $\{a, b\}, \{c, d\}, \{a, b, c, d\}$.

• Loops $L_1 = \{a, b\}$ and $L_2 = \{c, d\}$. Loop Formulas:

$$LF(L_1): c \to \neg a \land \neg b$$
$$LF(L_2): a \to \neg c \land \neg d$$

Adding them to COMP[P] leaves $\{a, b\}$ and $\{c, d\}$ as only stable models.



Extending the syntax: logical interpretation

A recent result: minimal logic programs

• • • • • • • • • • • •

July 1, 2010

 Programs with variables in ASP are understood as abbreviations of their ground cases.

- Programs with variables in ASP are understood as abbreviations of their ground cases.
- Keypoint: use of functions was typically forbidden. The introduction of a function *f* makes the Herbrand universe infinite *f*(*c*), *f*(*f*(*c*)), *f*(*f*(*f*(*c*))),

July 1, 2010

- Programs with variables in ASP are understood as abbreviations of their ground cases.
- Keypoint: use of functions was typically forbidden. The introduction of a function f makes the Herbrand universe infinite $f(c), f(f(c)), f(f(f(c))), \ldots$
- This restriction is being overcome:
 - lparse allows functors, but their nesting is limited (no lists, for instance).

July 1, 2010

- Programs with variables in ASP are understood as abbreviations of their ground cases.
- Keypoint: use of functions was typically forbidden. The introduction of a function *f* makes the Herbrand universe infinite f(c), f(f(c)), f(f(f(c))),
- This restriction is being overcome:
 - lparse allows functors, but their nesting is limited (no lists, for instance).
 - More recently, DLV complex allows functions (lists, sets, etc) for finitely ground programs, a class of programs with finitely many answer sets that are finite.

July 1, 2010

• A simple example: Hamiltonian circuits. Find a cyclic path that visits once each node in a graph.

-

July 1, 2010

- A simple example: Hamiltonian circuits. Find a cyclic path that visits once each node in a graph.
- We have the extensional database describing the graph node(0). node(1). node(2). node(3). edge(0,1). edge(1,2). edge(1,3). edge(2,0). edge(2,3). edge(3,2). edge(3,0).

< □ > < □ > < □ > < □ >

July 1, 2010

• Predicate in (X, Y) points out that and edge $X \rightarrow Y$ is in the cycle.

• • • • • • • • • • •

Predicate in (X, Y) points out that and edge X → Y is in the cycle.
 We generate arbitrary choices with an auxiliary predicate out.

```
in(X,Y) :- edge(X,Y), not out(X,Y).
out(X,Y) :- edge(X,Y), not in(X,Y).
```

イロト イポト イヨト イヨト 二日

Predicate in (X, Y) points out that and edge X → Y is in the cycle.
 We generate arbitrary choices with an auxiliary predicate out.

```
in(X,Y) :- edge(X,Y), not out(X,Y).
out(X,Y) :- edge(X,Y), not in(X,Y).
```

- Only one outgoing node, only one incoming node:
 - :- in(X, Y), in(X, Z), Y!=Z.
 - :- in(X,Z), in(Y,Z), X!=Y.

July 1, 2010

Predicate in (X, Y) points out that and edge X → Y is in the cycle.
 We generate arbitrary choices with an auxiliary predicate out.

```
in(X,Y) :- edge(X,Y), not out(X,Y).
out(X,Y) :- edge(X,Y), not in(X,Y).
```

• Only one outgoing node, only one incoming node:

```
:- in(X, Y), in(X, Z), Y!=Z.
```

- :- in(X,Z), in(Y,Z), X!=Y.
- Disregard disconnected cycles. We use a predicate reached (X) meaning that x can be reached from an arbitrary fixed node, say 0.

```
reached(X) :- in(0,X).
reached(Y) :- reached(X), in(X,Y).
```

Predicate in (X, Y) points out that and edge X → Y is in the cycle.
 We generate arbitrary choices with an auxiliary predicate out.

```
in(X,Y) :- edge(X,Y), not out(X,Y).
out(X,Y) :- edge(X,Y), not in(X,Y).
```

• Only one outgoing node, only one incoming node:

```
:- in(X, Y), in(X, Z), Y!=Z.
```

- :- in(X,Z), in(Y,Z), X!=Y.
- Disregard disconnected cycles. We use a predicate reached (X) meaning that X can be reached from an arbitrary fixed node, say 0.

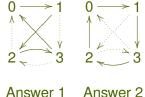
```
reached(X) :- in(0,X).
reached(Y) :- reached(X), in(X,Y).
```

and we forbid unreached nodes:

```
:- node(X), not reached(X)
```

July 1, 2010

- Making the call: lparse -n 0 hamilt.txt | smodels We obtain two answers: Answer: 1
 - Stable Model: in(0,1) in(3,0) in(2,3) in(1,2) Answer: 2
 - Stable Model: in(0,1) in(3,2) in(2,0) in(1,3) False

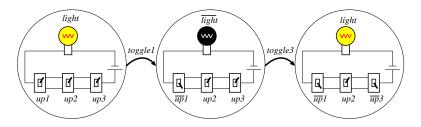


A (1) > A (2) > A

Examples

Reasoning about actions with ASP

• An example of action domain.



э

・ロト ・日下・ ・ ヨト・

• We begin with some "type declarations".

```
time(0..pathlength).
previoustime(0..pathlength-1).
switch(1..3).
#domain previoustime(I).
#domain time(J).
#domain switch(X).
#domain switch(Y).
```

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

July 1, 2010

```
% Effect axioms
                 :- up(X,false,I), toggle(X,I).
up(X,true,I+1)
up(X,false,I+1)
                 :- up(X,true,I), toggle(X,I).
light(true,I+1)
                 :- light(false, I), toggle(X, I).
light(false,I+1) :- light(true,I), toggle(X,I).
% Inertia
up(X,true,I+1) := up(X,true,I), not up(X,false,I+1).
up(X,false,I+1) :- up(X,false,I), not up(X,true,I+1).
light(true,I+1)
               :- light(true,I),
                    not light(false, I+1).
light(false,I+1) :- light(false,I),
                    not light(true, I+1).
```

- % Constraints: unique value
- :- up(X,true,J), up(X,false,J).
- :- light(true,J), light(false,J).

% Unique action

:- toggle(X,I), toggle(Y,I), X!=Y.

イロト イポト イヨト イヨト 二日

July 1, 2010

Prediction example

```
% switches-predict.txt
% Initial state
light(true,0). up(X,true,0).
```

```
% Performed actions
toggle(1,0).
```

Calling lparse/smodels with

```
lparse -c pathlength=1 switches.txt
    switches-predict.txt | smodels
```

we get ...

```
Answer: 1
Stable Model: up(1,false,1) up(2,true,1) up(3,true,1)
light(false,1) ...
```

July 1, 2010

Postdiction example:

- % switches-postdict.txt
- % Actions generation
- % Completing facts about the initial situation
- 1 {up(X,true,0), up(X,false,0)} 1.
- 1 {light(true,0), light(false,0)} 1.

% Observations
up(3,true,0). light(true,0). toggle(3,1).
light(false,1). up(1,false,1). up(3,true,1).

July 1, 2010

Calling lparse with

```
lparse -c pathlength=1 -n 0 switches.txt
    switches-postdict.txt | smodels
```

we get 6 possible explanations. One of them:

```
Answer: 1
Stable Model: toggle(1,0) up(2,false,0) up(1,true,0)
up(2,false,1) ...
```

July 1, 2010

Reasoning about actions with ASP

Planning example

- % switches-plan.txt
- % Planning problem
- % Actions generation
- 1 { toggle(Z,I) : switch(Z) } 1.

```
% Initial state
light(true,0). up(X,true,0).
```

:- not goal.

Reasoning about actions with ASP

Calling lparse with

```
lparse -c pathlength=1 -n 0 switches.txt
   switches-plan.txt | smodels
```

We don't get models. After increasing pathlength

```
lparse -c pathlength=2 -n 0 switches.txt
   switches-plan.txt | smodels
```

we get 2 possible plans

```
Answer: 1
Stable Model: toggle(1,0) toggle(3,1) ...
Answer: 2
Stable Model: toggle(3,0) toggle(1,1) ...
```

July 1, 2010

Extending the syntax: logical interpretation

A recent result: minimal logic programs

4 A N

July 1, 2010

• Disjunctive programs: bodies *B* as before, but heads allow disjunctions of atoms:

 $p_1 \lor \cdots \lor p_n \leftarrow B$

イロト イヨト イヨト イヨト

July 1, 2010

• Disjunctive programs: bodies *B* as before, but heads allow disjunctions of atoms:

 $p_1 \vee \cdots \vee p_n \leftarrow B$

• The reduct is defined as before, but note that *P^I* does not have now a least Herbrand model: only minimal ones.

• • • • • • • • • • • •

July 1, 2010

• Disjunctive programs: bodies *B* as before, but heads allow disjunctions of atoms:

 $p_1 \vee \cdots \vee p_n \leftarrow B$

• The reduct is defined as before, but note that *P^I* does not have now a least Herbrand model: only minimal ones. Example:

 $p \lor q \leftarrow t, not s$ $t \leftarrow not q$

Given $I = \{p, t\}, P'$ is the program:

```
p \lor q \leftarrow t \qquad t \leftarrow
```

whose minimal models are $\{p, t\}$ (stable) and $\{q, t\}$ (non-stable).

• The definition is adapted accordingly

Definition (stable model)

I is a stable model of a disjunctive program *P* if it is a minimal model of P^{I} .

July 1, 2010

• The definition is adapted accordingly

Definition (stable model)

I is a stable model of a disjunctive program *P* if it is a minimal model of P^{I} .

 Finding a stable model of a disjunctive program is slightly more complex: Σ^P₂-complete.

July 1, 2010

• The definition is adapted accordingly

Definition (stable model)

I is a stable model of a disjunctive program *P* if it is a minimal model of P^{I} .

- Finding a stable model of a disjunctive program is slightly more complex: Σ^P₂-complete.
- Tools for disjunctive ASP: DLV, GnT, cmodels.

July 1, 2010

- Adding default negation in the head [Inoue & Sakama 98]. Rules *H* ← *B* where:
 - **O** Body B = conjunction of literals (as before).

• • • • • • • • • • • •

July 1, 2010

- Adding default negation in the head [Inoue & Sakama 98]. Rules *H* ← *B* where:
 - **O** Body B = conjunction of literals (as before). We define:

$$B = \underbrace{q_1 \wedge \cdots \wedge q_n}_{B^+} \wedge \underbrace{\operatorname{not} \, q_{n+1} \wedge \cdots \wedge \operatorname{not} \, q_m}_{B^-}$$

• • • • • • • • • • • • •

July 1, 2010

- Adding default negation in the head [Inoue & Sakama 98]. Rules *H* ← *B* where:
 - **O** Body B = conjunction of literals (as before). We define:

$$B = \underbrace{q_1 \wedge \cdots \wedge q_n}_{B^+} \wedge \underbrace{\operatorname{not} \, q_{n+1} \wedge \cdots \wedge \operatorname{not} \, q_m}_{B^-}$$

2 Head H = disjunction of literals.

July 1, 2010

- Adding default negation in the head [Inoue & Sakama 98]. Rules *H* ← *B* where:
 - **O** Body B = conjunction of literals (as before). We define:

$$B = \underbrace{q_1 \wedge \cdots \wedge q_n}_{B^+} \wedge \underbrace{\operatorname{not} \, q_{n+1} \wedge \cdots \wedge \operatorname{not} \, q_m}_{B^-}$$

Provide the advantage of the advantag

$$H = \underbrace{p_1 \vee \cdots \vee p_k}_{H^+} \vee \underbrace{not \ p_{k+1} \vee \cdots \vee not \ p_s}_{H^-}$$

• • • • • • • • • • • •

July 1, 2010

• We adapt the definition of reduct as follows:

$$P^{I} = \{H^{+} \leftarrow B^{+} \mid I \models B^{-} \land \neg H^{-}\}$$

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

• We adapt the definition of reduct as follows:

 $P^{I} = \{H^{+} \leftarrow B^{+} \mid I \models B^{-} \land \neg H^{-}\}$

• Example: given $I = \{a, d, c\}$ and program

 $b \lor not \ a \lor not \ d \ \leftarrow \ d, not \ e, not \ h$

 $B^- = \neg e \land \neg h$ and $\neg H^- = \neg(\neg a \lor \neg d) = (a \land d)$. As $I \models B^- \land \neg H^-$, its reduct would correspond to:

 $b \leftarrow h$

July 1, 2010

• Stable models are defined as before: *I* minimal model of *P*^{*I*}.

• • • • • • • • • • • •

July 1, 2010

- Stable models are defined as before: *I* minimal model of *P*^{*I*}.
- Example: *P* is the program

 $p \lor \neg p$ $q \leftarrow \neg p$

1	P'	minimal models
Ø		
{ p }		
{ q }		
{ p , q }		

ъ

• • • • • • • • • • • • •

- Stable models are defined as before: *I* minimal model of *P*^{*I*}.
- Example: *P* is the program

 $p \lor \neg p$ $q \leftarrow \neg p$

1	P'	minimal models
Ø	q	$\{q\} \neq I$ not stable
{ p }		
{ q }		
{ p , q }		

July 1, 2010 55 / 67

- Stable models are defined as before: *I* minimal model of *P*^{*I*}.
- Example: *P* is the program

 $p \lor \neg p$ $q \leftarrow \neg p$

1	P'	minimal models
Ø	q	$\{q\} \neq I$ not stable
{ p }	р	$\{p\} \neq I$ stable!
{ q }		
{ p , q }		

3

- Stable models are defined as before: *I* minimal model of *P*^{*I*}.
- Example: *P* is the program

 $p \lor \neg p$ $q \leftarrow \neg p$

1	P'	minimal models
Ø	q	$\{q\} \neq I$ not stable
{ p }	р	$\{p\} \neq I$ stable!
{ q }	q	$\{q\}$ stable!
{ p , q }		

э

- Stable models are defined as before: *I* minimal model of *P*^{*I*}.
- Example: *P* is the program

 $p \lor \neg p$ $q \leftarrow \neg p$

1	P'	minimal models
Ø	q	$\{q\} \neq I$ not stable
{ p }	р	$\{p\} \neq I$ stable!
{ q }	q	$\{q\}$ stable!
{ p , q }	р	<pre>{p} not stable</pre>

э

- Nested expressions [Lifschitz, Tang, Turner 99]:
 - *H* and *B* can be any combination of atoms with $\bot, \top, \land, \lor,$ *not* .

A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A

July 1, 2010

- Nested expressions [Lifschitz, Tang, Turner 99]: *H* and *B* can be any combination of atoms with $\bot, \top, \land, \lor, not$.
- Several transformation rules (we'll see later) allow reducing nested expressions to disjunctive programs with negation in the head.

- Nested expressions [Lifschitz, Tang, Turner 99]:
 H and *B* can be any combination of atoms with ⊥, ⊤, ∧, ∨, not.
- Several transformation rules (we'll see later) allow reducing nested expressions to disjunctive programs with negation in the head.
- An example: the nested rule

 $a \lor not (b \land not c) \leftarrow d \lor not e$

becomes the program:

 $a \lor not b \leftarrow d \land not c$ $a \lor not b \leftarrow not e \land not c$

イロト イポト イヨト イヨト

- Nested expressions [Lifschitz, Tang, Turner 99]:
 H and *B* can be any combination of atoms with ⊥, ⊤, ∧, ∨, not.
- Several transformation rules (we'll see later) allow reducing nested expressions to disjunctive programs with negation in the head.
- An example: the nested rule

 $a \lor not (b \land not c) \leftarrow d \lor not e$

becomes the program:

 $a \lor not b \leftarrow d \land not c$ $a \lor not b \leftarrow not e \land not c$

• But, which is the semantics for *not* $(a \leftarrow b)$ or $a \leftarrow (b \leftarrow c)$?

 Let us write rules like p ← q, not r in standard logical notation q ∧ ¬r → p

イロト イヨト イヨト イヨト

э

57/67

July 1, 2010

- Let us write rules like p ← q, not r in standard logical notation q ∧ ¬r → p
- Equilibrium Logic [Pearce96]: generalises Answer Sets for arbitrary propositional theories.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

July 1, 2010

- Let us write rules like p ← q, not r in standard logical notation q ∧ ¬r → p
- Equilibrium Logic [Pearce96]: generalises Answer Sets for arbitrary propositional theories.
- Consists of:
 - A non-classical monotonic (intermediate) logic called Here-and-There (HT)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

July 1, 2010

- Let us write rules like p ← q, not r in standard logical notation q ∧ ¬r → p
- Equilibrium Logic [Pearce96]: generalises Answer Sets for arbitrary propositional theories.
- Consists of:
 - A non-classical monotonic (intermediate) logic called Here-and-There (HT)
 - 2 A selection of (certain) minimal models that yields nonmonotonicity

イロト イポト イヨト イヨト 二日

July 1, 2010

• Interpretation = pairs $\langle H, T \rangle$ of sets of atoms $H \subseteq T$

・ロト ・ 日 ト ・ ヨ ト ・

July 1, 2010

- Interpretation = pairs $\langle H, T \rangle$ of sets of atoms $H \subseteq T$
- Intuition: H= true atoms, T = non-false. When H = T we have a classical model.

• • • • • • • • • • • •

- Interpretation = pairs $\langle H, T \rangle$ of sets of atoms $H \subseteq T$
- Intuition: H= true atoms, T = non-false. When H = T we have a classical model.
- Satisfaction of formulas
 - $\langle H, T \rangle \models p$ if $p \in H$ (for any atom p)
 - \land, \lor as always
 - $\langle H, T \rangle \models \varphi \rightarrow \psi$ if both
 - $\langle H, T \rangle \models \varphi$ implies $\langle H, T \rangle \models \psi$
 - $\langle T, T \rangle \models \varphi$ implies $\langle T, T \rangle \models \psi$

イロト イポト イヨト イヨト 二日

July 1, 2010

- Interpretation = pairs $\langle H, T \rangle$ of sets of atoms $H \subseteq T$
- Intuition: H= true atoms, T = non-false. When H = T we have a classical model.
- Satisfaction of formulas
 - $\langle H, T \rangle \models p$ if $p \in H$ (for any atom p)
 - \land, \lor as always
 - $\langle H, T \rangle \models \varphi \rightarrow \psi$ if both
 - $\langle H, T \rangle \models \varphi$ implies $\langle H, T \rangle \models \psi$
 - $\langle T, T \rangle \models \varphi$ implies $\langle T, T \rangle \models \psi$

This is the same than $\mathcal{T} \models \varphi \rightarrow \psi$ in classical logic.

• Negation $\neg F$ is defined as $F \rightarrow \bot$

July 1, 2010

Some properties

• $\langle T, T \rangle \models \Gamma$ is the same than $T \models \Gamma$ in classical logic.

Some properties

- $\langle T, T \rangle \models \Gamma$ is the same than $T \models \Gamma$ in classical logic.
- $\langle H, T \rangle \models \Gamma$ implies $T \models \Gamma$.

イロン 不聞 とくきとくきとうき

July 1, 2010

Some properties

- $\langle T, T \rangle \models \Gamma$ is the same than $T \models \Gamma$ in classical logic.
- $\langle H, T \rangle \models \Gamma$ implies $T \models \Gamma$.
- $\langle H, T \rangle \models \neg \varphi$ iff $T \not\models \varphi$ in classical logic.

July 1, 2010

Possible alternative description using 3-valued semantics (Gödel's logic G₃).

July 1, 2010

- Possible alternative description using 3-valued semantics (Gödel's logic G₃).
- Given M = ⟨H, T⟩, we can define a 3-valued mapping M : Atoms → {0, 1, 2} reading:

2 =
$$(p \in H)$$
 = true
0 = $(p \notin T)$ = false
1 = $(p \in T \setminus H)$ = undefined

• • • • • • • • • • • • •

- Possible alternative description using 3-valued semantics (Gödel's logic G₃).
- Given M = ⟨H, T⟩, we can define a 3-valued mapping M : Atoms → {0, 1, 2} reading:
 - 2 = $(p \in H)$ = true 0 = $(p \notin T)$ = false 1 = $(p \in T \setminus H)$ = undefined
- ∧ returns minimum value, ∨ returns maximum and M(φ → ψ) = 2 if M(φ) ≤ M(ψ) or returns M(ψ) otherwise.

イロト イポト イヨト イヨト 二日

July 1, 2010

Equilibrium models

Definition (Equilibrium model)

 $\langle T, T \rangle$ is an equilibrium model of a theory Γ if: $\langle T, T \rangle \models \Gamma$, and there is no $H \subset T$ such that $\langle H, T \rangle \models \Gamma$.

• • • • • • • • • • • • •

July 1, 2010

• Logical techniques available: e.g., methods from many-valued semantics (tableaux, signed logics,...)

• • • • • • • • • • • • •

July 1, 2010

- Logical techniques available: e.g., methods from many-valued semantics (tableaux, signed logics,...)
- Captures all previous syntax extensions, plus other non-propositional constructions:
 - weight constraints can be represented as nested expressions [Ferraris, Lifschitz 2005];
 - aggregates represented by rules with embedded implications [Ferraris 2004].
 - ordered disjunction from [Brewka et al 2004] (LPOD) can also be captured [Cabalar 2010].

July 1, 2010

Other interesting features

- In nonmonotonic reasoning, we talk about strong equivalence of Γ_1, Γ_2 when, for any Π :
 - $\Gamma_1 \cup \Pi$ and $\Gamma_2 \cup \Pi$ have the same (selected) models.

July 1, 2010

Other interesting features

- In nonmonotonic reasoning, we talk about strong equivalence of Γ_1, Γ_2 when, for any Π :
 - $\Gamma_1 \cup \Pi$ and $\Gamma_2 \cup \Pi$ have the same (selected) models.
- Γ₁, Γ₂ are strongly equivalent iff they are equivalent in HT [Lifschitz et al 2001].

• • • • • • • • • • • •

July 1, 2010

Other interesting features

• Disjunctive programs with negation in the head are a (conjunctive) normal form (CNF) for Equilibrium Logic. [Cabalar & Ferraris 2007].

Theorem

The number of different logic programs (modulo strong equivalence) that can be built for a finite signature of n atoms is:

$$\prod_{i=0}^{n} \left(2^{2^{i}-1} + 1 \right)^{\binom{n}{i}}$$

With n = 2 we get 162, with n = 3 around 5 million.

• • • • • • • • • • •

July 1, 2010

Other interesting features

• Disjunctive programs with negation in the head are a (conjunctive) normal form (CNF) for Equilibrium Logic. [Cabalar & Ferraris 2007].

Theorem

The number of different logic programs (modulo strong equivalence) that can be built for a finite signature of n atoms is:

$$\prod_{i=0}^{n} \left(2^{2^{i}-1} + 1 \right)^{\binom{n}{i}}$$

With n = 2 we get 162, with n = 3 around 5 million.

• Transformations into this CNF [Cabalar, Pearce & Valverde 2005].

Other interesting features

• Equilibrium Logic also covers full First Order Theories with equality [Pearce & Valverde 2004].

• • • • • • • • • • • • •

July 1, 2010

Other interesting features

- Equilibrium Logic also covers full First Order Theories with equality [Pearce & Valverde 2004].
- Introduction of partial functions [Cabalar 2008].

July 1, 2010

Other interesting features

- Equilibrium Logic also covers full First Order Theories with equality [Pearce & Valverde 2004].
- Introduction of partial functions [Cabalar 2008].
- Linear temporal equilibrium logic [Cabalar & Pérez 2007].

• • • • • • • • • • • •

July 1, 2010

Other interesting features

- Equilibrium Logic also covers full First Order Theories with equality [Pearce & Valverde 2004].
- Introduction of partial functions [Cabalar 2008].
- Linear temporal equilibrium logic [Cabalar & Pérez 2007].
- Equivalent to the extension of reduct [Ferraris 2005] for arbitrary propositional theories, and general stable model [Ferraris, Lee & Lifschitz 2007] for first order theories.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

July 1, 2010

4 A recent result: minimal logic programs

-

July 1, 2010

Minimal logic programs

2

• • • • • • • • • •