Answer Set Programming J

Pedro Cabalar

Depto. Computacién
University of Corunna, SPAIN

July 1, 2010

Pedro Cabalar ASP July 1, 2010 1/67

|
Outline

o Semantics

© Examples
e Extending the syntax: logical interpretation

0 A recent result: minimal logic programs

Pedro Cabalar ASP July 1, 2010 2/67

0 Semantics

Pedro Cabalar ASP July 1, 2010 3/67

Answer Set Programming

@ Answer set programming (ASP) [Gelfond & Lifschitz 88]: similar to
Prolog, but more declarative.

Pedro Cabalar ASP July 1, 2010 4/67

Answer Set Programming

@ Answer set programming (ASP) [Gelfond & Lifschitz 88]: similar to
Prolog, but more declarative.

@ (Propositional) rules with negation in the body.

p < L17 st Ln
~— ——
head body

n >0, pis an atom and L; are literals, that is, an atom q or its
default negation not g.

Pedro Cabalar ASP July 1, 2010 4/67

Answer Set Programming

@ The ordering is irrelevant. We can generally write the rule as:

P < Gi,--.,qm, N0t Gm1, ..., N0t Q. (1)

with n > m > 0. A logic program P is a set of rules like (1)

Pedro Cabalar ASP July 1, 2010 5/67

Answer Set Programming

@ The ordering is irrelevant. We can generally write the rule as:

P < Gi,--.,qm, N0t Gm1, ..., N0t Q. (1)
with n > m > 0. A logic program P is a set of rules like (1)

@ The rule is positive when m = n (no negations).

Pedro Cabalar ASP July 1, 2010 5/67

Answer Set Programming

@ The ordering is irrelevant. We can generally write the rule as:

P < G1,...,Qm, N0t Qm1, ..., NOL Q. (1)
with n > m > 0. A logic program P is a set of rules like (1)
@ The rule is positive when m = n (no negations).

@ When n = 0, the rule is called a fact, and we usually omit the <.

Pedro Cabalar ASP July 1, 2010 5/67

Positive programs

@ Positive programs can be easily computed by “rule application”
(deductive closure).

Pedro Cabalar ASP July 1, 2010 6/67

Positive programs
@ Positive programs can be easily computed by “rule application”
(deductive closure).

@ Given a program P, and a propositional interpretation / (set of
atoms) we define the direct consequences
operator Tp(/) as:

Tp(l) = {H|(H — B) € Pand | = B}

Pedro Cabalar ASP July 1, 2010 6/67

Positive programs

@ Positive programs can be easily computed by “rule application”
(deductive closure).

@ Given a program P, and a propositional interpretation / (set of
atoms) we define the direct consequences
operator Tp(/) as:

Tp(l):={H|(H— B) e Pand | = B}

That is, pick those rule heads H whose body B holds in /
(afact H can just be seen as H < T). Commas can be seen as A.

Pedro Cabalar ASP July 1, 2010 6/67

Positive programs
@ Positive programs can be easily computed by “rule application”
(deductive closure).

@ Given a program P, and a propositional interpretation / (set of
atoms) we define the direct consequences
operator Tp(/) as:

Tp(l) = {H|(H — B) € Pand | = B}

That is, pick those rule heads H whose body B holds in /
(afact H can just be seen as H < T). Commas can be seen as A.

@ Example: given P below, Tp({b,p,s}) = {p.q,r, a}

p s «— ¢ b «— s,a
qa a <« bp a «— ¢
r «— p,s

Pedro Cabalar ASP July 1, 2010 6/67

Positive programs

@ Exercise: prove that Tp is C-monotonic, i.e.,
if 1 C J,then Tp(/) C Tp(J).

Pedro Cabalar ASP July 1, 2010 7167

Positive programs

@ Exercise: prove that Tp is C-monotonic, i.e.,
if 1 C J,then Tp(/) C Tp(J).

@ By Knaster & Tarski’s theorem, Tp has a C-least fix point
I = Tp(I).

Pedro Cabalar ASP July 1, 2010 7167

Positive programs

@ Exercise: prove that Tp is C-monotonic, i.e.,
if 1 C J,then Tp(/) C Tp(J).

@ By Knaster & Tarski’s theorem, Tp has a C-least fix point
I = Tp(I).

@ Moreover, Tp is continuous and the |.f.p. can be computed by
iteration of Tp on Iy = () until reaching a point /i1 = Tp(/;) = I;.

Pedro Cabalar ASP July 1, 2010 7167

Positive programs

@ Exercise: prove that Tp is C-monotonic, i.e.,
if 1 C J,then Tp(/) C Tp(J).

@ By Knaster & Tarski’s theorem, Tp has a C-least fix point
I = Tp(I).
@ Moreover, Tp is continuous and the |.f.p. can be computed by
iteration of Tp on Iy = () until reaching a point /i1 = Tp(/;) = I;.
@ Back to the example

p

q
r «— p,s

v o
T
S99
jo]
®
T
o

Pedro Cabalar ASP July 1, 2010

7167

Positive programs

@ Exercise: prove that Tp is C-monotonic, i.e.,
if 1 C J,then Tp(/) C Tp(J).

@ By Knaster & Tarski’s theorem, Tp has a C-least fix point
I = Tp(I).
@ Moreover, Tp is continuous and the |.f.p. can be computed by
iteration of Tp on Iy = () until reaching a point /i1 = Tp(/;) = I;.
@ Back to the example

p

g s «— ¢ b «— sa
r— ps a «— bp a «— ¢
Tp(0) = {p.q}

Pedro Cabalar ASP July 1, 2010 7167

Positive programs

@ Exercise: prove that Tp is C-monotonic, i.e.,
if 1 C J,then Tp(/) C Tp(J).

@ By Knaster & Tarski’s theorem, Tp has a C-least fix point
I = Tp(I).

@ Moreover, Tp is continuous and the |.f.p. can be computed by

iteration of Tp on Iy = () until reaching a point /i1 = Tp(/;) = I;.

@ Back to the example

p

q
r «— p,s

Tp(0) = {p.q}, Te({p, q}) =

v o
T
&9
o
®
T
o

Pedro Cabalar ASP July 1, 2010

7167

Positive programs

@ Exercise: prove that Tp is C-monotonic, i.e.,
if 1 C J,then Tp(/) C Tp(J).

@ By Knaster & Tarski’s theorem, Tp has a C-least fix point
I = Tp(I).

@ Moreover, Tp is continuous and the |.f.p. can be computed by

iteration of Tp on Iy = () until reaching a point /i1 = Tp(/;) = I;.

@ Back to the example
p S < q :
qa a «— bp a «— ¢
r «— p,s

Te(0) = {p,q}, Te({p,q}) = {P.q, s}

Pedro Cabalar ASP July 1, 2010

7167

Positive programs

@ Exercise: prove that Tp is C-monotonic, i.e.,
if 1 C J,then Tp(/) C Tp(J).

@ By Knaster & Tarski’s theorem, Tp has a C-least fix point
I = Tp(I).

@ Moreover, Tp is continuous and the |.f.p. can be computed by

iteration of Tp on Iy = () until reaching a point /i1 = Tp(/;) = I;.

@ Back to the example
p S < q :
q a «— bp a «— ¢
r «— p,s

TP((D) - {p7 q}’ TP({p q}) - {p q, S}, TP({pv q, S}) -

Pedro Cabalar ASP July 1, 2010

7167

Positive programs

@ Exercise: prove that Tp is C-monotonic, i.e.,
if 1 C J,then Tp(/) C Tp(J).

@ By Knaster & Tarski’s theorem, Tp has a C-least fix point
I = Tp(I).

@ Moreover, Tp is continuous and the |.f.p. can be computed by
iteration of Tp on Iy = () until reaching a point /i1 = Tp(/;) = I;.
@ Back to the example
p s — g ,
qa a «— bp a «— ¢
r «— p,s

TP((D) - {p7 q}’ TP({p q}) - {p q, S}, TP({pv q, S}) - {pv q,s, r}

Pedro Cabalar ASP July 1, 2010 7167

Positive programs

@ Exercise: prove that Tp is C-monotonic, i.e.,
if 1 C J,then Tp(/) C Tp(J).

@ By Knaster & Tarski’s theorem, Tp has a C-least fix point
I = Tp(I).
@ Moreover, Tp is continuous and the |.f.p. can be computed by
iteration of Tp on Iy = () until reaching a point /i1 = Tp(/;) = I;.
@ Back to the example

g S «— ¢q ,
r— ps a «— bp a «— ¢

TP((D) - {p7 q}’ TP({p q}) - {p q, S}, TP({pv q, S}) - {pv q,Ss, r}s
TP({pv aq.s, r}) -

Pedro Cabalar ASP July 1, 2010 7167

Positive programs

@ Exercise: prove that Tp is C-monotonic, i.e.,
if 1 C J,then Tp(/) C Tp(J).

@ By Knaster & Tarski’s theorem, Tp has a C-least fix point
I = Tp(I).
@ Moreover, Tp is continuous and the |.f.p. can be computed by
iteration of Tp on Iy = () until reaching a point /i1 = Tp(/;) = I;.
@ Back to the example

g S «— ¢q ,
r— ps a «— bp a «— ¢

TP((D) - {p7 q}’ TP({p q}) - {p q, S}, TP({p7 q, S}) - {pv q,Ss, r}s
Te({p,q,s,r}) = {p,q,s, r} fixpoint.

Pedro Cabalar ASP July 1, 2010 7167

Positive programs

@ A set of atoms / is a model of a program P, | = P, when
l'=ag1N...QmA—=Qme1 N+ A —gn — pforany rule (1) in P.

Pedro Cabalar ASP July 1, 2010 8/67

Positive programs

@ A set of atoms / is a model of a program P, | = P, when
l'=ag1N...QmA—=Qme1 N+ A —gn — pforany rule (1) in P.

@ Main result by : a positive program P
has a least propositional model LM(P) that coincides with Tp least
fixpoint.

Pedro Cabalar ASP July 1, 2010 8/67

Positive programs

@ A set of atoms / is a model of a program P, | = P, when
l'=ag1N...QmA—=Qme1 N+ A —gn — pforany rule (1) in P.

@ Main result by : a positive program P
has a least propositional model LM(P) that coincides with Tp least
fixpoint.

@ In our example:

P s « q b — sa
qa a <« bp a «— ¢
r «— p,s

the models of P are {p,q.,r,s}, {p,q.r,s,a b}, {p,q,r,s ab,c}.

Pedro Cabalar ASP July 1, 2010 8/67

Positive programs

@ A set of atoms / is a model of a program P, | = P, when
l'=ag1N...QmA—=Qme1 N+ A —gn — pforany rule (1) in P.

@ Main result by : a positive program P
has a least propositional model LM(P) that coincides with Tp least
fixpoint.

@ In our example:

P s « q b — sa
qa a <« bp a «— ¢
r «— p,s

the models of P are {p,q.,r,s}, {p,q.r,s,a b}, {p,q,r,s ab,c}.

@ Exercise: prove it.

Pedro Cabalar ASP July 1, 2010 8/67

A semantics for default negation

@ Once negation is introduced, we don’t have a least Herbrand
model any more. We may have different minimal models.

Pedro Cabalar ASP July 1, 2010

9/67

A semantics for default negation

@ Once negation is introduced, we don’t have a least Herbrand
model any more. We may have different minimal models.

@ Take the simple program

p < not q

Pedro Cabalar ASP July 1, 2010

9/67

A semantics for default negation

@ Once negation is introduced, we don’t have a least Herbrand
model any more. We may have different minimal models.

@ Take the simple program
p < not q

Intuitively, as no information for g is available, we should conclude
model {p}, that is, g false and p true.

Pedro Cabalar ASP July 1, 2010 9/67

A semantics for default negation

@ Once negation is introduced, we don’t have a least Herbrand
model any more. We may have different minimal models.

@ Take the simple program
p < not q

Intuitively, as no information for g is available, we should conclude
model {p}, that is, g false and p true.

@ However, this rule is classically equivalent to g v p and has three
models: {p, q}, {p},{q}, being the last two minimal.

Pedro Cabalar ASP July 1, 2010 9/67

A semantics for default negation

@ Once negation is introduced, we don’t have a least Herbrand
model any more. We may have different minimal models.

@ Take the simple program
p < not q

Intuitively, as no information for g is available, we should conclude
model {p}, that is, g false and p true.

@ However, this rule is classically equivalent to g v p and has three
models: {p, q}, {p},{q}, being the last two minimal.

@ Furthermore, q Vv pis also equivalent (in classical logic) to:
q <— not p

whose “expected” behavior should be obviously different.

Pedro Cabalar ASP July 1, 2010 9/67

A semantics for default negation
@ The problem seems related to a kind of directionality in the
implication:

@ First: assume that g is false;
@ Second: conclude that p follows from your assumption, not q.

Pedro Cabalar ASP July 1, 2010

10/67

A semantics for default negation
@ The problem seems related to a kind of directionality in the
implication:

@ First: assume that g is false;
@ Second: conclude that p follows from your assumption, not q.

@ Idea: we could go assuming and concluding until all atoms have a
truth value.

Pedro Cabalar ASP July 1, 2010 10/67

A semantics for default negation

@ The problem seems related to a kind of directionality in the
implication:
@ First: assume that g is false;
@ Second: conclude that p follows from your assumption, not q.

@ Idea: we could go assuming and concluding until all atoms have a
truth value. Problem: we can sometimes get that an assumption
must be retracted.

Pedro Cabalar ASP July 1, 2010 10/67

A semantics for default negation
@ The problem seems related to a kind of directionality in the
implication:

@ First: assume that g is false;
@ Second: conclude that p follows from your assumption, not q.

@ Idea: we could go assuming and concluding until all atoms have a
truth value. Problem: we can sometimes get that an assumption
must be retracted.

@ Example:

p <« notq
qg <~ p
q < notp

Pedro Cabalar ASP July 1, 2010 10/67

A semantics for default negation
@ The problem seems related to a kind of directionality in the
implication:

@ First: assume that g is false;
@ Second: conclude that p follows from your assumption, not q.

@ Idea: we could go assuming and concluding until all atoms have a
truth value. Problem: we can sometimes get that an assumption
must be retracted.

@ Example:
p <« notq

qg < p
q < notp

Assume, say, not q

Pedro Cabalar ASP July 1, 2010 10/67

A semantics for default negation
@ The problem seems related to a kind of directionality in the
implication:

@ First: assume that g is false;
@ Second: conclude that p follows from your assumption, not q.

@ Idea: we could go assuming and concluding until all atoms have a
truth value. Problem: we can sometimes get that an assumption
must be retracted.

@ Example:
p < notq

qg < p
q < notp

Assume, say, not q

Pedro Cabalar ASP July 1, 2010 10/67

A semantics for default negation
@ The problem seems related to a kind of directionality in the
implication:

@ First: assume that g is false;
@ Second: conclude that p follows from your assumption, not q.

@ Idea: we could go assuming and concluding until all atoms have a
truth value. Problem: we can sometimes get that an assumption
must be retracted.

@ Example:
p < notq

qg < p
q < notp

Assume, say, not q

Pedro Cabalar ASP July 1, 2010 10/67

A semantics for default negation
@ The problem seems related to a kind of directionality in the
implication:

@ First: assume that g is false;
@ Second: conclude that p follows from your assumption, not q.

@ Idea: we could go assuming and concluding until all atoms have a
truth value. Problem: we can sometimes get that an assumption
must be retracted.

@ Example:
p < notq

q < p
q < notp

Assume, say, not q

Pedro Cabalar ASP July 1, 2010 10/67

A semantics for default negation
@ The problem seems related to a kind of directionality in the
implication:

@ First: assume that g is false;
@ Second: conclude that p follows from your assumption, not q.

@ Idea: we could go assuming and concluding until all atoms have a
truth value. Problem: we can sometimes get that an assumption
must be retracted.

@ Example:
p < notq

q < p
q < notp

Assume, say, not q

Pedro Cabalar ASP July 1, 2010 10/67

A semantics for default negation

@ The problem seems related to a kind of directionality in the
implication:
@ First: assume that g is false;
@ Second: conclude that p follows from your assumption, not q.

@ Idea: we could go assuming and concluding until all atoms have a

truth value. Problem: we can sometimes get that an assumption
must be retracted.

@ Example:
p < notq

q < p
q < notp

Assume, say, not q ... g, our assumption was inconsistent.

A semantics for default negation
@ The problem seems related to a kind of directionality in the
implication:

@ First: assume that g is false;
@ Second: conclude that p follows from your assumption, not q.

@ Idea: we could go assuming and concluding until all atoms have a
truth value. Problem: we can sometimes get that an assumption
must be retracted.

@ Example:

p <« notq
qg <~ p
q < notp

Pedro Cabalar ASP July 1, 2010 11/67

A semantics for default negation
@ The problem seems related to a kind of directionality in the
implication:

@ First: assume that g is false;
@ Second: conclude that p follows from your assumption, not q.

@ Idea: we could go assuming and concluding until all atoms have a
truth value. Problem: we can sometimes get that an assumption
must be retracted.

@ Example:
p <« notq

qg < p
q < notp

Assume now not p

Pedro Cabalar ASP July 1, 2010 11/67

A semantics for default negation
@ The problem seems related to a kind of directionality in the
implication:

@ First: assume that g is false;
@ Second: conclude that p follows from your assumption, not q.

@ Idea: we could go assuming and concluding until all atoms have a
truth value. Problem: we can sometimes get that an assumption
must be retracted.

@ Example:
p <« notq

qg <~ p
q < notp

Assume now not p

Pedro Cabalar ASP July 1, 2010 11/67

A semantics for default negation
@ The problem seems related to a kind of directionality in the
implication:

@ First: assume that g is false;
@ Second: conclude that p follows from your assumption, not q.

@ Idea: we could go assuming and concluding until all atoms have a
truth value. Problem: we can sometimes get that an assumption
must be retracted.

@ Example:
p <« notq

qg <~ p
q < notp

Assume now not p

Pedro Cabalar ASP July 1, 2010 11/67

A semantics for default negation
@ The problem seems related to a kind of directionality in the
implication:

@ First: assume that g is false;
@ Second: conclude that p follows from your assumption, not q.

@ Idea: we could go assuming and concluding until all atoms have a
truth value. Problem: we can sometimes get that an assumption
must be retracted.

@ Example:
p «— notq

qg <~ p
q < notp

Assume now not p ... g, and the first two rules become redundant.

Pedro Cabalar ASP July 1, 2010 11/67

Adding negation: stable models

@ Gelfond, M., and Lifschitz, V. 1988. The stable model semantics
for logic programming. In ICLP’88, 1070-1080.

Definition (program reduct)

We define the reduct of a program P with respect to an interpretation
(set of atoms) |, written P', as the set of rules:

dgf{ (quh"'aqm)

| (b Q1,...,9m, N0t G4, ..., N0t gn) € P and
qi ¢l forallj=m+1,....,n}

P/

Pedro Cabalar ASP July 1, 2010 12/67

Stable models

@ Observation: P is a positive program (it contains no negations),

so it has a least model, call it (/) % LM(P!).

Pedro Cabalar ASP July 1, 2010 13/67

Stable models

@ Observation: P is a positive program (it contains no negations),

so it has a least model, call it (/) % LM(P!).

Definition (stable model)
An interpretation | is a stable model of a program P iff
I=Tp(l)=LM(P")|. O

Pedro Cabalar ASP July 1, 2010 13/67

Stable models: some properties

Proposition (Stable models are models)
If I is a stable model of P then | |= P.

Pedro Cabalar ASP July 1, 2010

14 /67

Stable models: some properties

Proposition (Stable models are models)

If I is a stable model of P then | |= P. J
Proposition (Stable models are minimal models)

If I is a stable model of P then there is no J C | such that J = P. J

Pedro Cabalar ASP July 1, 2010 14 /67

Stable models: some properties

Proposition (Stable models are models)

If I is a stable model of P then | |= P. J
Proposition (Stable models are minimal models)

If I is a stable model of P then there is no J C | such that J = P. J

Exercise: prove the above theorems.

Pedro Cabalar ASP July 1, 2010 14 /67

Stable models

@ An example of default. Try this program:

flies <« bird, not ab
bird

Pedro Cabalar ASP

July 1, 2010

15/67

Stable models

@ An example of default. Try this program:

flies <« bird, not ab
bird

@ This program has these three models:
/ P! LM(P"
{bird, ab}

{bird, ab, flies}

{bird, flies}

Pedro Cabalar ASP July 1, 2010

15/67

Stable models

@ An example of default. Try this program:

flies <« bird, not ab
bird

@ This program has these three models:
/ P! LM(P"
{bird, ab} bird

{bird, ab, flies}

{bird, flies}

Pedro Cabalar ASP July 1, 2010

15/67

Stable models

@ An example of default. Try this program:

flies <« bird, not ab
bird

@ This program has these three models:

/ P! LM(P’)
)) {bird} # 1
{bird, ab} bird not stable

{bird, ab, flies}

{bird, flies}

Pedro Cabalar ASP July 1, 2010

15/67

Stable models

@ An example of default. Try this program:

flies <« bird, not ab
bird

@ This program has these three models:

/ P! LM(P"
. . {bird} # 1
{bird, ab} bird not stable
{bird} # 1

{bird, ab, flies} bird not stable

{bird, flies}

Pedro Cabalar ASP July 1, 2010

15/67

Semantics

Stable models

@ An example of default. Try this program:

@ This program has these three models:

flies <« bird, not ab
bird

/ P! LM(P')
' , {bird} # 1
{bird, ab} bird not stable
. ' . {bird} £ 1
{bird, ab, flies} bird not stable

{bird, flies}

Pedro Cabalar

flies «— bird
bird

ASP

July 1, 2010

15/67

Semantics

Stable models

@ An example of default. Try this program:

@ This program has these three models:

flies <« bird, not ab
bird

I p! LM(P')
(bird, ab} bird ff;’{ ‘Sjt}afl e’
(bird, ab, flies) bird ff;’{ ‘;’t}aé e’
oy | 1 | T
iy 1, 2010

Pedro Cabalar

ASP

15/67

Stable models

@ Adding new information:

flies <« bird, not ab
ab <« bird, penguin

Pedro Cabalar ASP

bird
penguin

July 1, 2010

16 /67

Stable models

@ Adding new information:

flies «— bird, not ab bird
ab «— bird, penguin penguin
@ Just two (classical) models now:
/ P! LM(P"
{bird,
penguin,
ab}
{bird,
penguin,
ab, flies}

Pedro Cabalar ASP

July 1, 2010

16/67

Stable models

@ Adding new information:

flies «— bird, not ab bird
ab «— bird, penguin penguin

@ Just two (classical) models now:
/ P! LM(P"
{bird, bird

penguin, ab < bird, penguin
ab} penguin

{bird,
penguin,
ab, flies}

Pedro Cabalar ASP July 1, 2010

16/67

Stable models

@ Adding new information:

flies «— bird, not ab bird
ab «— bird, penguin penguin

@ Just two (classical) models now:

/ P! LM(P"
{bird, bird iﬁ” g -
penguin, ab < bird, penguin P ag} ’
ab} penguin stable!
{bird,
penguin,
ab, flies}

Pedro Cabalar ASP July 1, 2010

16/67

Semantics

Stable models

@ Adding new information:

flies «— bird, not ab bird
ab «— bird, penguin penguin
@ Just two (classical) models now:

/ P! LM(P"
{bird, bird iﬁ” g .
penguin, ab < bird, penguin P ag} ’
ab} penguin stable!
(bird, bird iﬁ” ’
penguin, ab <« bird, penguin pa b}g £ /’
ab, flies} | penguin notstable

16/67

Stable models: some properties

@ A program may have several stable models. For instance, P;:

p < not q q < not p

Pedro Cabalar ASP July 1, 2010

17 /67

Stable models: some properties

@ A program may have several stable models. For instance, P;:

p < not q q < not p

@ A program may have no stable model at all. Example P-:

p <« notp

Pedro Cabalar ASP July 1, 2010 17 /67

Stable models: some properties

@ A program may have several stable models. For instance, P;:

p < not q q < not p

@ A program may have no stable model at all. Example P-:

p <« notp

@ Typically use: (1) generate multiple solutions (even cycles like P)
and (2) prune undesired models (odd cycles like P>).

Pedro Cabalar ASP July 1, 2010 17 /67

Stable models: some properties

@ A program may have several stable models. For instance, P;:

p < not q q < not p

@ A program may have no stable model at all. Example P-:

p <« notp

@ Typically use: (1) generate multiple solutions (even cycles like P)
and (2) prune undesired models (odd cycles like P>).

@ Constraints. Example: to avoid a model where p holds but g
doesn’t:

aux «— p, not q, not aux

where aux is a new fresh atom. Usually written: < p, not g

Pedro Cabalar ASP July 1, 2010 17 /67

Stable models vs Default Logic

@ Very close to Default Logic. A rule like:

pHQ1:~~-,Qman0tqm+1a'-~anOth

just corresponds to the default:

Pedro Cabalar ASP July 1, 2010

18/67

Stable models vs Default Logic

@ Very close to Default Logic. A rule like:

p% Q1:~'~:Qman0tqm+1a'-~7nOth
just corresponds to the default:

Q1/\"'/\Qm3ﬂQm+17--~:ﬁQn

@ So, it's like playing with defaults where we mostly deal with atoms.

Pedro Cabalar ASP July 1, 2010 18/67

Stable models vs answer sets

@ We can sometimes be interested in a second negation, strong or
explicit negation (originally called “classical”). Example:

Cross « not train

risky! we cross the railway tracks when no information on train
approaching is available. Compare to:

cross «— —train

we must have the fact that the train is not approaching.

Pedro Cabalar ASP July 1, 2010 19/67

Stable models vs answer sets

@ We can sometimes be interested in a second negation, strong or
explicit negation (originally called “classical”). Example:
cross < not train

risky! we cross the railway tracks when no information on train
approaching is available. Compare to:

cross «— —train
we must have the fact that the train is not approaching.
@ We may represent defaults like

—raining < summer, not rainning

Pedro Cabalar ASP July 1, 2010 19/67

Stable models vs answer sets
@ We can sometimes be interested in a second negation, strong or
explicit negation (originally called “classical”). Example:
cross < not train

risky! we cross the railway tracks when no information on train
approaching is available. Compare to:

cross «— —train
we must have the fact that the train is not approaching.
@ We may represent defaults like

—raining < summer, not rainning

@ Stable models with strong negation are called answer sets. We
just compute stable models and reject those where p, —p occur.

Pedro Cabalar ASP July 1, 2010 19/67

Well-founded model

@ Operator I'p is antimonotone (on set inclusion). This implies that
when applied twice, %, it becomes a monotonic operator.

Pedro Cabalar ASP July 1, 2010 20/67

Well-founded model

@ Operator I'p is antimonotone (on set inclusion). This implies that
when applied twice, %, it becomes a monotonic operator.

e It has a least fixpoint /fo(I'%) and a greatest fixpoint gfp(I'%) that
limit the fixpoints of I'p (i.e., the stable models) from below and
from above.

Pedro Cabalar ASP July 1, 2010 20/67

Well-founded model

@ Operator I'p is antimonotone (on set inclusion). This implies that
when applied twice, %, it becomes a monotonic operator.

e It has a least fixpoint /fo(I'%) and a greatest fixpoint gfp(I'%) that

limit the fixpoints of I'p (i.e., the stable models) from below and
from above.

@ The well-founded model (WFM) of P is a three-valued
interpretation such that:
e atoms in /fp(I'%) are called well-founded;

e atoms not in gfp(I'%) are called unfounded;
o the rest of atoms would be undefined.

Pedro Cabalar ASP

July 1, 2010 20/67

Well-founded model

@ Operator I'p is antimonotone (on set inclusion). This implies that
when applied twice, %, it becomes a monotonic operator.

@ It has a least fixpoint /fp(F%) and a greatest fixpoint gfp(F%) that
limit the fixpoints of I'p (i.e., the stable models) from below and
from above.

@ The well-founded model (WFM) of P is a three-valued
interpretation such that:

e atoms in /fp(I'%) are called well-founded;
e atoms not in gfp(I'%) are called unfounded;
o the rest of atoms would be undefined.

@ A. Van Gelder, K.A. Ross and J.S. Schlipf. The Well-Founded
Semantics for General Logic Programs. Journal of the ACM 38(3)
pp. 620—650, 1991.

Pedro Cabalar ASP July 1, 2010 20/67

Well-founded model

@ Why is the WFM interesting for stable models? ...

Pedro Cabalar ASP July 1, 2010 21/67

Well-founded model

@ Why is the WFM interesting for stable models? ...

Proposition

Any stable model | of P includes all well-founded atoms, and includes
no atom.

Pedro Cabalar ASP July 1, 2010 21/67

Well-founded model

@ Why is the WFM interesting for stable models? ...

Proposition
Any stable model | of P includes all well-founded atoms, and includes
no atom.

Corollary

If there are no undefined atoms, then Ifp(T'%) is the only stable model
of P.

Pedro Cabalar ASP July 1, 2010 21/67

Well-founded model

@ Why is the WFM interesting for stable models? ...

Proposition
Any stable model | of P includes all well-founded atoms, and includes
no atom.

Corollary

If there are no undefined atoms, then Ifp(T'%) is the only stable model
of P.

@ Checking whether P has a stable model is an NP-complete
problem [Eiter & Gottlob 93]. Computing WFM(P) takes
polynomial time (quadratic).

Pedro Cabalar ASP July 1, 2010 21/67

Well-founded model

@ Computing the WFM: when P is finite, we can just iterate I'% on 0.
Example: try with program P;

p < notq
r «— p,nots
S « notr

Pedro Cabalar ASP July 1, 2010 22/67

Semantics

Well-founded model

@ Computing the WFM: when P is finite, we can just iterate I'% on 0.
Example: try with program P;

and with program P,

Pedro Cabalar

nw =~ O

[

~ O =< O

[

not q
p, not s
not r

not q
p,s

r,not t

July 1, 2010

22/67

Computing WFM: rewritting approach

@ An alternative to compute the WFM is using a bottom-up rewritting
technique [Brass,Dix,Freitag,Zukowski 2001].

Pedro Cabalar ASP July 1, 2010 23/67

Computing WFM: rewritting approach

@ An alternative to compute the WFM is using a bottom-up rewritting
technique [Brass,Dix,Freitag,Zukowski 2001].

@ Rewritting rules:
1. Facts: for any fact p in the program remove p from positive bodies,
and remove rules containing not p in the body.

Pedro Cabalar ASP July 1, 2010 23/67

Computing WFM: rewritting approach

@ An alternative to compute the WFM is using a bottom-up rewritting
technique [Brass,Dix,Freitag,Zukowski 2001].

@ Rewritting rules:
1. Facts: for any fact p in the program remove p from positive bodies,
and remove rules containing not p in the body. We can also remove
the rest of rules with head p.

Pedro Cabalar ASP July 1, 2010 23/67

Computing WFM: rewritting approach

@ An alternative to compute the WFM is using a bottom-up rewritting
technique [Brass,Dix,Freitag,Zukowski 2001].
@ Rewritting rules:
1. Facts: for any fact p in the program remove p from positive bodies,

and remove rules containing not p in the body. We can also remove
the rest of rules with head p.

2. Non-heads: for any atom p not occurring as a rule head, remove all
not p from bodies and all rules containing p as positive body literal.

Pedro Cabalar ASP July 1, 2010 23/67

Computing WFM: rewritting approach

@ An alternative to compute the WFM is using a bottom-up rewritting
technique [Brass,Dix,Freitag,Zukowski 2001].
@ Rewritting rules:
1. Facts: for any fact p in the program remove p from positive bodies,

and remove rules containing not p in the body. We can also remove
the rest of rules with head p.

2. Non-heads: for any atom p not occurring as a rule head, remove all
not p from bodies and all rules containing p as positive body literal.

3. “Unreachable atoms” (or positive loop detection) : for any p ¢ 'p(0)
remove all rules containing p as positive body literal.

Pedro Cabalar ASP July 1, 2010 23/67

Computing WFM: rewritting approach

@ An alternative to compute the WFM is using a bottom-up rewritting
technique [Brass,Dix,Freitag,Zukowski 2001].

@ Rewritting rules:
1. Facts: for any fact p in the program remove p from positive bodies,
and remove rules containing not p in the body. We can also remove
the rest of rules with head p.

2. Non-heads: for any atom p not occurring as a rule head, remove all
not p from bodies and all rules containing p as positive body literal.

3. “Unreachable atoms” (or positive loop detection) : for any p ¢ 'p(0)
remove all rules containing p as positive body literal.

@ When we exhaust these rules, we get the program remainder.

Proposition

The facts of the program remainder are the well-founded atoms; the
non-head atoms are the unfounded atoms.

Pedro Cabalar ASP July 1, 2010 23/67

Computing WFM: rewritting approach

@ Transformations 1 and 2 (i.e. without loop detection) obtain the
so-called Fitting’s model.

Pedro Cabalar ASP July 1, 2010 24 /67

Computing WFM: rewritting approach

@ Transformations 1 and 2 (i.e. without loop detection) obtain the

so-called Fitting’s model.

@ Try the program Ps

a « notb,c d <« notg,e

g < notc
b «— nota e «— notg,d h oo
c f «— notd g

@ Fitting’s model=({c}, {g, h}). The final program remainder is:

a < notb c
b «— nota f

and so, WFM = ({c,f},{g,h,d, e}).

Pedro Cabalar ASP July 1, 2010

24/67

Computing WFM: rewritting approach

@ Transformations 1 and 2 (i.e. without loop detection) obtain the
so-called Fitting’s model.

@ Try the program Ps

a « notb,c d <« notg,e

g < notc
b < nota e «— notg,d h oo
c f — notd g

@ Fitting’s model=({c}, {g, h}). The final program remainder is:

a < notb c
b «— nota f

and so, WFM = ({c.f},{g. h,d, e}). Stable models {c, f, a} and
{c, 1, b}.

Pedro Cabalar ASP July 1, 2010 24 /67

Semantics

ASP

@ Most ASP solvers (DLV, smodels, clasp) alternate computation of
WFM and nondeterministic choice with backtracking.
1. Compute the WFM
2. If no undefined atoms: stable model found.
3. Else: select an undefined atom p (using some heuristics) and

branch: p; not p. Simplify the program accordingly to the choice
and go to 1.

Pedro Cabalar ASP July 1, 2010

25/67

Clark’s completion

@ Idea: the only way of making a predicate true is through its
defining rules.

Pedro Cabalar ASP July 1, 2010 26/67

Clark’s completion

@ Idea: the only way of making a predicate true is through its
defining rules.

@ Example:
P :— g, not r.
p :— s.

Pedro Cabalar ASP July 1, 2010 26/67

Clark’s completion

@ Idea: the only way of making a predicate true is through its
defining rules.

@ Example:
P :— g, not r.
p :— s.

This program classically implies p < (g A —r) V s.

Pedro Cabalar ASP July 1, 2010 26/67

Clark’s completion

@ Idea: the only way of making a predicate true is through its
defining rules.

@ Example:
P :— g, not r.
p :— s.

This program classically implies p < (g A —r) vV s. But atom p can
only be true when body g A —r or body s become true. That is we
complete the other direction of implication p — (g A —r) V s.

Pedro Cabalar ASP July 1, 2010 26/67

Clark’s completion

@ Idea: the only way of making a predicate true is through its
defining rules.

@ Example:
P :— g, not r.
p :— s.

This program classically implies p < (g A —r) V s. But atom p can
only be true when body g A —r or body s become true. That is we
complete the other direction of implication p — (g A —r) V s.

@ [K. L. Clark 1978] COMP|[P] is the classical theory consisting of:
p Amd B1 VeV Bn

for each atom p, and all rules p < B, in P.

Pedro Cabalar ASP July 1, 2010 26/67

Clark’s completion

@ Idea: the only way of making a predicate true is through its
defining rules.

@ Example:
P :— g, not r.
p :— s.

This program classically implies p < (g A —r) V s. But atom p can
only be true when body g A —r or body s become true. That is we
complete the other direction of implication p — (g A —r) V s.

@ [K. L. Clark 1978] COMP|[P] is the classical theory consisting of:
p Amd B1 VeV Bn

for each atom p, and all rules p < B, in P.
An empty disjunction is L.

Pedro Cabalar ASP July 1, 2010 26/67

Clark’s completion

@ Example: let P be the program

p :— d, not r.
p :— s.

t.

q :— t

Pedro Cabalar ASP

July 1, 2010

27/67

Semantics

Clark’s completion

@ Example: let P be the program

p :— d, not r.
p :— s.

t.

q :— t

COMP|[P] consists of the equivalences:

Pedro Cabalar

~ 0O =~ O T

r1r1v11

(QA-r)Vv
t

1
1
T

ASP July 1, 2010

27/67

Semantics

Clark’s completion

@ Example: let P be the program

p :— d, not r.
p :— s.

t.

q :— t

COMP|[P] consists of the equivalences:

~ 0O =~ O T

r1r1v11

(QA-r)Vv

t

4
4
T

whose only model is {p, g, t}.

Pedro Cabalar

ASP July 1, 2010

27/67

Clark’s completion

@ Semantic counterpart: supported models.

Definition (Supported model)
| is a supported model of P iff | = Tp(l).

Pedro Cabalar ASP July 1, 2010

28 /67

Clark’s completion

@ Semantic counterpart: supported models.

Definition (Supported model)
| is a supported model of P iff | = Tp(l).

@ Thatis /is a fixpoint of Tp, i.e.
I={p|(p— B)eP,I=B}

Pedro Cabalar ASP July 1, 2010

28 /67

Clark’s completion

@ Semantic counterpart: supported models.

Definition (Supported model)
| is a supported model of P iff | = Tp(l).

@ Thatis /is a fixpoint of Tp, i.e.
I={p|(p— B)eP,I=B}

@ In the example:

p :— g, not r.
P :— s.

t.

q :— t

Te({p,q,t}) = {p,q,t} (supported), whereas, for instance
Tp({p.s}) = {p, t} (non-supported).

Pedro Cabalar ASP July 1, 2010

28 /67

Clark’s completion

Theorem

| is a supported model of P iff | = COMP|[P].

@ Exercise: prove it.

Pedro Cabalar ASP

July 1, 2010

29/67

Clark’s completion

Theorem
| is a supported model of P iff | = COMP|[P]. J

@ Exercise: prove it.

@ In the previous example, {p. g, t} happens to be the only stable
model. What happens with these typical examples?

p «— not q
q <— not p

and

p <« notp

Pedro Cabalar ASP July 1, 2010 29/67

Clark’s completion

Theorem
| is a supported model of P iff | = COMP|[P].

@ Exercise: prove it.

@ In the previous example, {p. g, t} happens to be the only stable
model. What happens with these typical examples?

p «— not q
q <— not p

and

p <« notp

@ Yes, supported and stable models coincide! Is this general?

Pedro Cabalar ASP July 1, 2010

29/67

Clark’s completion

@ No: they differ in positive cycles. Consider this extremely simple
example:

p—p

Completion would be p <+ p which has two supported models, ()
and {p}. Only () is stable.

Pedro Cabalar ASP July 1, 2010 30/67

Clark’s completion

@ No: they differ in positive cycles. Consider this extremely simple
example:

p—pP

Completion would be p <+ p which has two supported models, ()
and {p}. Only () is stable.

Theorem
Any stable model is supported. J

@ Prove it.

Pedro Cabalar ASP July 1, 2010 30/67

Clark’s completion

@ No: they differ in positive cycles. Consider this extremely simple
example:

p—p

Completion would be p <+ p which has two supported models, ()
and {p}. Only () is stable.

Pedro Cabalar ASP July 1, 2010 31/67

Clark’s completion

@ No: they differ in positive cycles. Consider this extremely simple
example:

p—pP

Completion would be p <+ p which has two supported models, ()
and {p}. Only () is stable.

Theorem
Any stable model is supported. J

@ Prove it.

Pedro Cabalar ASP July 1, 2010 31/67

Clark’s completion

@ If we don’t have these positive cycles, we can define a quite
general class of programs where supported and stable coincide.

Pedro Cabalar ASP July 1, 2010 32/67

Clark’s completion

@ If we don’t have these positive cycles, we can define a quite
general class of programs where supported and stable coincide.
@ Tight programs [Fages 1994][Babovich, Erdem, Lifschitz 2000].

Definition (Tight programs)
P is tight on a set | of atoms if there is some partial ordinal mapping
A X — N such that all \(B;) < A\(H) for any rule in P like:

HHB1,...,Bn,notC1,...,notCm

Pedro Cabalar ASP July 1, 2010 32/67

Clark’s completion

@ If we don’t have these positive cycles, we can define a quite
general class of programs where supported and stable coincide.
@ Tight programs [Fages 1994][Babovich, Erdem, Lifschitz 2000].

Definition (Tight programs)
P is tight on a set | of atoms if there is some partial ordinal mapping
A X — N such that all \(B;) < A\(H) for any rule in P like:

HHB1,...,Bn,notC1,...,notCm

Theorem
If I is supported model of P and P tight on |, then | is stable model of P.

Pedro Cabalar ASP July 1, 2010 32/67

Clark’s completion

@ Example:
p <« not q q <— not p r—r p—r
the completion
p<—=qVvr q< p rer

has models {p}, {g} and {p, r}, but {p, r} is not tight - only the
first 2 ones are stable.

Pedro Cabalar ASP July 1, 2010 33/67

Loop formulas

@ We can strengthen completion to obtain stable models by adding
loop formulas [Lin , Zhao 2004].

Pedro Cabalar ASP July 1, 2010 34 /67

Loop formulas
@ We can strengthen completion to obtain stable models by adding
loop formulas [Lin , Zhao 2004].

@ We define a positive dependency graph G with vertices V = ©
and edges E, one (p, q) for each rule p < B with g in the positive
body.

Pedro Cabalar ASP July 1, 2010 34 /67

Loop formulas

@ We can strengthen completion to obtain stable models by adding
loop formulas [Lin , Zhao 2004].

@ We define a positive dependency graph G with vertices V = ©
and edges E, one (p, q) for each rule p < B with g in the positive
body.

@ Aloop L is a set of atoms forming a Strongly Connected
Component in G.

Pedro Cabalar ASP July 1, 2010 34 /67

Loop formulas

@ We can strengthen completion to obtain stable models by adding
loop formulas [Lin , Zhao 2004].

@ We define a positive dependency graph G with vertices V = ©
and edges E, one (p, q) for each rule p < B with g in the positive
body.

@ Aloop L is a set of atoms forming a Strongly Connected

Component in G.
@ Givenaloop L = {p1,...,pn} its loop formula LF(L) is defined as:

where BB,; is the disjunction By \/ - - - V By, of all bodies for rules in
P like

pi — B;
such that not atom in L occurs in the positive body of 5;.

Pedro Cabalar ASP July 1, 2010 34 /67

Semantics

Loop formulas

@ Example:

a—»b
c—d

Pedro Cabalar

b« a
d«—c

ASP

a«< notc
Cc < not a

July 1, 2010

35/67

Loop formulas

@ Example:

a—»b b~ a a« notc
c—d d«—c c <« not a

Completion COMPI[P] is:
a<—-cVvb b+ a c— -avd d—c

has 3 models {a, b}, {c,d}, {a,b,c,d}.

Pedro Cabalar ASP July 1, 2010

35/67

Loop formulas

@ Example:

a—»b b« a a« notc
c—d d«—c c <« not a

Completion COMPI[P] is:
a—-cvb b<a c—-avd d<c
has 3 models {a, b}, {c,d}, {a,b,c,d}.
@ Loops Ly = {a, b} and L, = {c, d}. Loop Formulas:
LF(Ly):c— —an—-b
LF(Ly):a— —cA—d

Adding them to COMP|[P] leaves {a, b} and {c, d} as only stable
models.

Pedro Cabalar ASP July 1, 2010 35/67

© Examples

Pedro Cabalar ASP July 1, 2010 36/67

Introducing variables

@ Programs with variables in ASP are understood as abbreviations
of their ground cases.

Pedro Cabalar ASP July 1, 2010 37/67

Introducing variables

@ Programs with variables in ASP are understood as abbreviations
of their ground cases.

@ Keypoint: use of functions was typically forbidden. The
introduction of a function f makes the Herbrand universe infinite

f(c), f(f(c)), f(f(f(c))), ...

Pedro Cabalar ASP July 1, 2010 37/67

Introducing variables

@ Programs with variables in ASP are understood as abbreviations
of their ground cases.

@ Keypoint: use of functions was typically forbidden. The
introduction of a function f makes the Herbrand universe infinite
f(c), f(f(c)), f(f(f(c))), - - --

@ This restriction is being overcome:

@ lparse allows functors, but their nesting is limited (no lists, for
instance).

Pedro Cabalar ASP July 1, 2010 37/67

Introducing variables

@ Programs with variables in ASP are understood as abbreviations
of their ground cases.

@ Keypoint: use of functions was typically forbidden. The
introduction of a function f makes the Herbrand universe infinite
f(c). f(£(c)), {(F(F(C))), .

@ This restriction is being overcome:

@ lparse allows functors, but their nesting is limited (no lists, for
instance).

e More recently, DLV complex allows functions (lists, sets, etc) for
finitely ground programs, a class of programs with finitely many
answer sets that are finite.

Pedro Cabalar ASP July 1, 2010 37/67

Introducing variables

@ A simple example: Hamiltonian circuits. Find a cyclic path that
visits once each node in a graph.

Pedro Cabalar ASP July 1, 2010 38/67

Introducing variables

@ A simple example: Hamiltonian circuits. Find a cyclic path that
visits once each node in a graph.

@ We have the extensional database describing the graph
node (0) . node (1) . node (2) . node (3) .
edge (0,1). edge(l,2). edge(l,3).
edge (2,0). edge(2,3). edge(3,2). edge(3,0).

s

T

W<— —

N

Pedro Cabalar ASP July 1, 2010

38/67

Introducing variables

@ Predicate in (X, Y) points out that and edge X — Y is in the cycle.

Pedro Cabalar ASP July 1, 2010 39/67

Introducing variables

@ Predicate in (X, Y) points out that and edge x — Y is in the cycle.
We generate arbitrary choices with an auxiliary predicate out.

in(X,Y) :- edge(X,Y), not out (X,Y).
out (X,Y) :— edge(X,Y), not in(X,Y).

Pedro Cabalar ASP July 1, 2010 39/67

Introducing variables

@ Predicate in (X, Y) points out that and edge x — Y is in the cycle.
We generate arbitrary choices with an auxiliary predicate out.

in(X,Y) :- edge(X,Y), not out (X,Y).
out (X,Y) :— edge(X,Y), not in(X,Y).
@ Only one outgoing node, only one incoming node:

- in(X,Y), in(X,2), Y!=Z.
:— in(X,2), in(Y,2), X!=Y.

Pedro Cabalar ASP July 1, 2010 39/67

Introducing variables

@ Predicate in (X, Y) points out that and edge x — Y is in the cycle.
We generate arbitrary choices with an auxiliary predicate out.

in(X,Y) :- edge(X,Y), not out (X,Y).
out (X,Y) :— edge(X,Y), not in(X,Y).
@ Only one outgoing node, only one incoming node:
:— in(X,Y), in(X,2), Y!=2.
:— in(X,Z2), in(Y,Z2), X!=Y.
@ Disregard disconnected cycles. We use a predicate reached (X)
meaning that x can be reached from an arbitrary fixed node, say 0.

reached (X) :— in(0,X).
reached (Y) :- reached(X), in(X,Y).

Pedro Cabalar ASP July 1, 2010 39/67

Introducing variables

@ Predicate in (X, Y) points out that and edge x — Y is in the cycle.
We generate arbitrary choices with an auxiliary predicate out.

in(X,Y) :- edge(X,Y), not out (X,Y).
out (X,Y) :— edge(X,Y), not in(X,Y).
@ Only one outgoing node, only one incoming node:

:— in(X,Y), in(X,2), Y!=Z.
:— in(X,Z2), in(Y,Z2), X!=Y.

@ Disregard disconnected cycles. We use a predicate reached (X)
meaning that x can be reached from an arbitrary fixed node, say 0.
reached (X) :— in(0,X).
reached (Y) :- reached(X), in(X,Y).
and we forbid unreached nodes:

:— node (X), not reached (X)

Pedro Cabalar ASP July 1, 2010 39/67

- LN
Introducing variables

@ Making the call:

lparse —n 0 hamilt.txt | smodels
We obtain two answers:
Answer: 1
Stable Model: in(0,1) in(3,0) in(2,3) in(1,2)
Answer: 2
Stable Model: in(0,1) in(3,2) in(2,0) in(1,3)
False

0O—1 0——>1

X L

v
2. 73 2 : ~3

Answer 1 Answer 2

Pedro Cabalar ASP July 1, 2010 40 /67

Reasoning about actions with ASP

@ An example of action domain.

Pedro Cabalar ASP July 1, 2010 41/67

Reasoning about actions with ASP

@ We begin with some “type declarations”.

time (0. .

pathlength) .

previoustime (0. .pathlength-1).
switch(1..3).

#domain
#domain
#domain
#domain

previoustime (I) .
time (J) .
switch (X) .
switch (Y).

Pedro Cabalar ASP July 1, 2010

42/67

Reasoning about actions with ASP

% Effect axioms

up (X, true, I+1) up (X, false,I), toggle(X,I).
up (X, false, I+1) :— up (X, true,I), toggle(X,I).
light (true, I+1) :— light (false,I), toggle(X,I).
light (false, I+1) light (true,I), toggle(X,I).

[}

% Inertia

up (X, true, I+1) :— up (X, true,I), not up (X, false,I+1).
up (X, false,I+1) :— up(X,false,I), not up(X,true,I+l).
light (true, I+1) :— light (true, I),

not light (false,I+1).
light (false, I+1) :- light (false,I),

not light (true,I+1).

Pedro Cabalar ASP July 1, 2010 43 /67

Reasoning about actions with ASP

[}

% Constraints: unique value

:— up (X, true,Jd), up (X, false,d).

:— light (true,J), light (false,J).
% Unique action

:— toggle(X,I), toggle(Y,I), X!=Y.

Pedro Cabalar ASP July 1, 2010

44 /67

Reasoning about actions with ASP

Prediction example

switches-predict.txt
Initial state
light (true, 0) . up (X, true, 0) .

)
°
%

[}

% Performed actions
toggle(1,0).

Calling Iparse/smodels with

lparse —-c pathlength=1 switches.txt
switches-predict.txt | smodels

we get ...

Answer: 1
Stable Model: up(l, false,1l) up(2,true,l) up(3,true,l)
light (false, 1)

Pedro Cabalar ASP July 1, 2010 45/67

Reasoning about actions with ASP

Postdiction example:

o\

switches-postdict.txt

o\

Actions generation

1 { toggle(Z,I) : switch(z) } 1.

% generate 1 toggle among all switches Z
% Completing facts about the initial situation
1 {up(X,true,0), up((X,false,0)} 1.
1 {light (true,0), light (false,0)} 1.
% Observations

up(3,true,0). light (true,0). toggle(3,1).
light (false,1). up(l,false,1l). up(3,true,l).

Pedro Cabalar ASP July 1, 2010

46/ 67

Reasoning about actions with ASP

Calling Iparse with

lparse -c pathlength=1 -n 0 switches.txt
switches-postdict.txt | smodels

we get 6 possible explanations. One of them:

Answer: 1
Stable Model: toggle(1l,0) up(2,false,0)
up (2, false, 1)

Pedro Cabalar ASP

up (1, true, 0)

July 1, 2010

47 /67

Reasoning about actions with ASP
Planning example

switches-plan.txt
Planning problem

o° o

o\

Actions generation
{ toggle(z,I) : switch(z) } 1.

=

o\°

Initial state
light (true,0) . up (X, true,0).

% Goal state
goal :- light (true,pathlength),up(l, false,pathlength),
up (2, true,pathlength), up(3, false,pathlength).

:— not goal.

Pedro Cabalar ASP July 1, 2010 48 /67

Reasoning about actions with ASP

Calling Iparse with

lparse —-c pathlength=1 -n 0 switches.txt
switches-plan.txt | smodels

We don’t get models. After increasing pathlength

lparse —-c pathlength=2 -n 0 switches.txt
switches-plan.txt | smodels

we get 2 possible plans

Answer: 1
Stable Model: toggle(l,0) toggle(3,1)
Answer: 2
Stable Model: toggle(3,0) toggle(l,1)

Pedro Cabalar ASP July 1, 2010 49/67

Extending the syntax: logical interpretation

e Extending the syntax: logical interpretation

Pedro Cabalar ASP July 1, 2010 50/ 67

Extending the syntax

@ Disjunctive programs: bodies B as before, but heads allow
disjunctions of atoms:

p1\/...\/anB

Pedro Cabalar ASP July 1, 2010 51/67

Extending the syntax

@ Disjunctive programs: bodies B as before, but heads allow
disjunctions of atoms:

p1\/...\/anB

@ The reduct is defined as before, but note that P/ does not have
now a least Herbrand model: only minimal ones.

Pedro Cabalar ASP July 1, 2010 51/67

Extending the syntax

@ Disjunctive programs: bodies B as before, but heads allow
disjunctions of atoms:

p1\/...\/anB

@ The reduct is defined as before, but note that P/ does not have
now a least Herbrand model: only minimal ones. Example:

pVvq«—tnots t — not q
Given | = {p, t}, P'is the program:
pvqg<—t [—

whose minimal models are {p, t} (stable) and {q, {} (non-stable).

Pedro Cabalar ASP July 1, 2010 51/67

Extending the syntax

@ The definition is adapted accordingly
Definition (stable model)

/'is a stable model of a disjunctive program P if it is a minimal model of
P

Pedro Cabalar ASP July 1, 2010

52/67

Extending the syntax

@ The definition is adapted accordingly
Definition (stable model)

/'is a stable model of a disjunctive program P if it is a minimal model of
P

@ Finding a stable model of a disjunctive program is slightly more
complex: ¥5-complete.

Pedro Cabalar ASP July 1, 2010

52/67

Extending the syntax

@ The definition is adapted accordingly
Definition (stable model)

/'is a stable model of a disjunctive program P if it is a minimal model of
P

@ Finding a stable model of a disjunctive program is slightly more
complex: ¥5-complete.

@ Tools for disjunctive ASP: DLV, GnT, cmodels.

Pedro Cabalar ASP July 1, 2010

52/67

Extending the syntax

@ Adding default negation in the head [Inoue & Sakama 98]. Rules
H «— B where:

@ Body B = conjunction of literals (as before).

Pedro Cabalar ASP July 1, 2010 53/67

Extending the syntax

@ Adding default negation in the head [Inoue & Sakama 98]. Rules
H «— B where:

@ Body B = conjunction of literals (as before). We define:

B=qgiAN---AgnAnot gniy A--- A not gnm

B+ B-

Pedro Cabalar ASP July 1, 2010 53 /67

Extending the syntax

@ Adding default negation in the head [Inoue & Sakama 98]. Rules
H «— B where:

@ Body B = conjunction of literals (as before). We define:

B=qgiAN---AgnAnot gniy A--- A not gnm

B+ B-

@ Head H = disjunction of literals.

Pedro Cabalar ASP July 1, 2010 53 /67

Extending the syntax

@ Adding default negation in the head [Inoue & Sakama 98]. Rules

H «— B where:
@ Body B = conjunction of literals (as before). We define:

B=qgiAN---AgnAnot gniy A--- A not gnm

B+ B-
@ Head H = disjunction of literals. We define:

H=piyV---VpxVnot pxiiV---V not ps

H+ H-

Pedro Cabalar ASP July 1, 2010

53/67

Extending the syntax

@ We adapt the definition of reduct as follows:

Pl ={Ht* — BT |IEB A-H}

Pedro Cabalar ASP July 1, 2010 54 /67

Extending the syntax

@ We adapt the definition of reduct as follows:

Pl ={Ht* — BT |IEB A-H}

@ Example: given / = {a, d, ¢} and program
bv notavnotd <« d,note, noth

B~ =-eAn-hand -H™ = —(-aV —~d) = (aA d).
As | = B~ A —H, its reduct would correspond to:

b «— h

Pedro Cabalar ASP July 1, 2010 54 /67

Extending the syntax

@ Stable models are defined as before: / minimal model of P'.

Pedro Cabalar ASP July 1, 2010 55/67

__________ Extending the syntax: logical interpretation |
Extending the syntax

@ Stable models are defined as before: / minimal model of P'.

@ Example: P is the program

pV-p
qg < —p
/ P! minimal models
0
{p}
{a}
{p.q}

Pedro Cabalar ASP July 1, 2010 55/67

__________ Extending the syntax: logical interpretation |
Extending the syntax

@ Stable models are defined as before: / minimal model of P'.

@ Example: P is the program

pV-p
qg <« P
/ P! minimal models
0 q {g} # I not stable
{p}
{q}
{p,q}

Pedro Cabalar ASP July 1, 2010 55/67

Extending the syntax

@ Stable models are defined as before: / minimal model of P'.

@ Example: P is the program

pV-p
g <~ —p
/ P! minimal models
0 q {g} # I'not stable
{p} p {p} # I stable!
{a}
{p.q}

Pedro Cabalar ASP July 1, 2010 55/67

Extending the syntax

@ Stable models are defined as before: / minimal model of P'.

@ Example: P is the program

pv-—p
q — -p
/ P! minimal models
0 q {g} # I not stable
{p} | P {p} # I stable!
{q} q {q} stable!
{p.q}

Pedro Cabalar ASP July 1, 2010 55/67

Extending the syntax: logical interpretation

Extending the syntax

@ Stable models are defined as before: / minimal model of P'.

@ Example: P is the program

/

pv-p

q

<——\p

minimal models

0

{g} # I'not stable

{p}

{p} # I stable!

{q}

{qg} stable!

{p,q}

Pedro Cabalar

T(Q|(T|Q

ASP

{p} not stable

July 1, 2010

55/67

Extending the syntax

@ Nested expressions [Lifschitz, Tang, Turner 99]:
H and B can be any combination of atoms with 1, T, A, V. not .

Pedro Cabalar ASP July 1, 2010 56 /67

Extending the syntax

@ Nested expressions [Lifschitz, Tang, Turner 99]:
H and B can be any combination of atoms with 1, T, A, V. not .

@ Several transformation rules (we’ll see later) allow reducing nested
expressions to disjunctive programs with negation in the head.

Pedro Cabalar ASP July 1, 2010 56 /67

Extending the syntax

@ Nested expressions [Lifschitz, Tang, Turner 99]:
H and B can be any combination of atoms with 1, T, A, V. not .

@ Several transformation rules (we’ll see later) allow reducing nested
expressions to disjunctive programs with negation in the head.

@ An example: the nested rule
av not (bAnotc)«— dvVnote
becomes the program:

avnotb «— dAnotc
avnotb < noteAnotc

Pedro Cabalar ASP July 1, 2010 56 /67

Extending the syntax

@ Nested expressions [Lifschitz, Tang, Turner 99]:
H and B can be any combination of atoms with 1, T, A, V. not .

@ Several transformation rules (we’ll see later) allow reducing nested
expressions to disjunctive programs with negation in the head.

@ An example: the nested rule
av not (bAnotc)«— dvVnote
becomes the program:
avnotb «— dAnotc

avnotb < noteAnotc

@ But, which is the semantics for not (a < b)ora« (b« c¢) ?

Pedro Cabalar ASP July 1, 2010 56 /67

Equilibrium Logic

@ Let us write rules like p < @, not r in standard logical notation
qQA-r—p

Pedro Cabalar ASP July 1, 2010 57 /67

Equilibrium Logic

@ Let us write rules like p < @, not r in standard logical notation
qQA-r—p

@ Equilibrium Logic [Pearce96]: generalises Answer Sets for
arbitrary propositional theories.

Pedro Cabalar ASP July 1, 2010 57/67

Equilibrium Logic

@ Let us write rules like p < @, not r in standard logical notation
qQA-r—p

@ Equilibrium Logic [Pearce96]: generalises Answer Sets for
arbitrary propositional theories.

@ Consists of:

@ A non-classical monotonic (intermediate) logic called
Here-and-There (HT)

Pedro Cabalar ASP July 1, 2010 57 /67

Equilibrium Logic

@ Let us write rules like p < @, not r in standard logical notation
qQA-r—p

@ Equilibrium Logic [Pearce96]: generalises Answer Sets for
arbitrary propositional theories.

@ Consists of:

@ A non-classical monotonic (intermediate) logic called
Here-and-There (HT)

@ A selection of (certain) minimal models that yields nonmonotonicity

Pedro Cabalar ASP July 1, 2010 57/67

Here-and-There

@ Interpretation = pairs (H, T) of sets ofatoms H C T

Pedro Cabalar ASP July 1, 2010 58/ 67

Here-and-There

@ Interpretation = pairs (H, T) of sets ofatoms H C T

@ Intuition: H= true atoms, T = non-false. When H = T we have a
classical model.

Pedro Cabalar ASP July 1, 2010 58/ 67

Here-and-There

@ Interpretation = pairs (H, T) of sets ofatoms H C T

@ Intuition: H= true atoms, T = non-false. When H = T we have a
classical model.

@ Satisfaction of formulas
o (HT)Epifpe H (for any atom p)
e A,V as always
o (H, T) = ¢ — v if both

@ (H,T) = ¢implies (H,T) =
@ (T, T) = pimplies (T, T) =4

Pedro Cabalar ASP July 1, 2010 58/ 67

Here-and-There

@ Interpretation = pairs (H, T) of sets ofatoms H C T

@ Intuition: H= true atoms, T = non-false. When H = T we have a
classical model.

@ Satisfaction of formulas
o (HT)Epifpe H (for any atom p)
e A,V as always
o (H, T) = ¢ — v if both

o (H,T) = gimplies (H,T) = v
@ (T,T)=wimplies (T, T) =1
This is the same than T = ¢ — 1 in classical logic.

o Negation —F is definedas F — |

Pedro Cabalar ASP July 1, 2010 58 /67

Here-and-There

Some properties
@ (T, T) =T isthesamethan T =T in classical logic.

Pedro Cabalar ASP July 1, 2010 59 /67

Here-and-There

Some properties
@ (T, T) =T isthesamethan T =T in classical logic.

@ (H, T) =T implies T =T.

Pedro Cabalar ASP July 1, 2010 59 /67

Here-and-There

Some properties
@ (T, T) =T isthesamethan T =T in classical logic.

@ (H, T) =T implies T =T.

@ (H, T) = —ypiff T £ ¢ in classical logic.

Pedro Cabalar ASP July 1, 2010 59 /67

Equilibrium Logic

@ Possible alternative description using 3-valued semantics (Gddel’s
logic Gg).

Pedro Cabalar ASP July 1, 2010 60/67

Equilibrium Logic

@ Possible alternative description using 3-valued semantics (Gddel’s
logic Gg).

@ Given M = (H, T), we can define a 3-valued mapping
M : Atoms — {0, 1,2} reading:

(p e H)=true

(p & T)=false

2
0
1 =(pe T\ H) =undefined

Pedro Cabalar ASP July 1, 2010 60/67

Equilibrium Logic

@ Possible alternative description using 3-valued semantics (Gddel’s
logic Gg).

@ Given M = (H, T), we can define a 3-valued mapping
M : Atoms — {0, 1,2} reading:

(p e H)=true

(p & T)=false

2
0
1 =(pe T\ H) =undefined

@ A returns minimum value, V returns maximum and M(¢ — 1) = 2
if M(¢) < M(v)) or returns M(¢)) otherwise.

Pedro Cabalar ASP July 1, 2010 60/67

Equilibrium models

Definition (Equilibrium model)

(T, T) is an equilibrium model of a theory T if:
(T, T) =T, and thereisno H C T such that (H, T) = T.

Pedro Cabalar ASP

July 1, 2010 61/67

Equilibrium Logic

@ Logical techniques available: e.g., methods from many-valued
semantics (tableaux, signed logics,. . .)

Pedro Cabalar ASP July 1, 2010 62/ 67

Equilibrium Logic

@ Logical techniques available: e.g., methods from many-valued
semantics (tableaux, signed logics,. . .)

@ Captures all previous syntax extensions, plus other
non-propositional constructions:

e weight constraints can be represented as nested expressions
[Ferraris, Lifschitz 2005];

@ aggregates represented by rules with embedded implications
[Ferraris 2004].

e ordered disjunction from [Brewka et al 2004] (LPOD) can also be
captured [Cabalar 2010].

Pedro Cabalar ASP July 1, 2010 62/67

Equilibrium logic

Other interesting features

@ In nonmonotonic reasoning, we talk about strong equivalence of
1,2 when, for any [:
1 Ul and I'» U I have the same (selected) models.

Pedro Cabalar ASP July 1, 2010 63/67

Equilibrium logic

Other interesting features

@ In nonmonotonic reasoning, we talk about strong equivalence of
1,2 when, for any [:
1 Ul and I'» U I have the same (selected) models.

@ 4,2 are strongly equivalent iff they are equivalent in HT [Lifschitz
et al 2001].

Pedro Cabalar ASP July 1, 2010 63/67

Equilibrium logic

Other interesting features

@ Disjunctive programs with negation in the head are a (conjunctive)
normal form (CNF) for Equilibrium Logic. [Cabalar & Ferraris
2007].

Theorem

The number of different logic programs (modulo strong equivalence)
that can be built for a finite signature of n atoms is:

With n = 2 we get 162, with n = 3 around 5 million.

Pedro Cabalar ASP July 1, 2010 64 /67

Equilibrium logic

Other interesting features

@ Disjunctive programs with negation in the head are a (conjunctive)
normal form (CNF) for Equilibrium Logic. [Cabalar & Ferraris
2007].

Theorem

The number of different logic programs (modulo strong equivalence)
that can be built for a finite signature of n atoms is:

With n = 2 we get 162, with n = 3 around 5 million.
@ Transformations into this CNF [Cabalar, Pearce & Valverde 2005].

Equilibrium logic

Other interesting features

@ Equilibrium Logic also covers full First Order Theories with
equality [Pearce & Valverde 2004].

Pedro Cabalar ASP July 1, 2010 65/67

Equilibrium logic

Other interesting features

@ Equilibrium Logic also covers full First Order Theories with
equality [Pearce & Valverde 2004].

@ Introduction of partial functions [Cabalar 2008].

Pedro Cabalar ASP July 1, 2010 65/67

Equilibrium logic

Other interesting features

@ Equilibrium Logic also covers full First Order Theories with
equality [Pearce & Valverde 2004].

@ Introduction of partial functions [Cabalar 2008].

@ Linear temporal equilibrium logic [Cabalar & Pérez 2007].

Pedro Cabalar ASP July 1, 2010 65/67

Equilibrium logic

Other interesting features

@ Equilibrium Logic also covers full First Order Theories with
equality [Pearce & Valverde 2004].

@ Introduction of partial functions [Cabalar 2008].
@ Linear temporal equilibrium logic [Cabalar & Pérez 2007].

@ Equivalent to the extension of reduct [Ferraris 2005] for arbitrary
propositional theories, and general stable model [Ferraris, Lee &
Lifschitz 2007] for first order theories.

Pedro Cabalar ASP July 1, 2010 65/67

A recent result: minimal logic programs

e A recent result: minimal logic programs

Pedro Cabalar ASP July 1, 2010 66 /67

Minimal logic programs

Pedro Cabalar ASP July 1, 2010 67 /67

	Semantics
	Examples
	Extending the syntax: logical interpretation
	A recent result: minimal logic programs

