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Semantics

Answer Set Programming

Answer set programming (ASP) [Gelfond & Lifschitz 88]: similar to
Prolog, but more declarative.

(Propositional) rules with negation in the body.

p︸︷︷︸
head

← L1, . . . ,Ln︸ ︷︷ ︸
body

n ≥ 0, p is an atom and Li are literals, that is, an atom q or its
default negation not q.
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Semantics

Answer Set Programming

The ordering is irrelevant. We can generally write the rule as:

p ← q1, . . . ,qm,not qm+1, . . . ,not qn. (1)

with n ≥ m ≥ 0. A logic program P is a set of rules like (1)

The rule is positive when m = n (no negations).

When n = 0, the rule is called a fact, and we usually omit the←.
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Semantics

Positive programs

Positive programs can be easily computed by “rule application”
(deductive closure).

Given a program P, and a propositional interpretation I (set of
atoms) we define the direct consequences [van Endem &
Kowalski 76] operator TP(I) as:

TP(I) := {H | (H ← B) ∈ P and I |= B}

That is, pick those rule heads H whose body B holds in I
(a fact H can just be seen as H ← >). Commas can be seen as ∧.

Example: given P below, TP({b,p, s}) = {p,q, r ,a}

p
q
r ← p, s

s ← q
a ← b,p

b ← s,a
a ← c
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Semantics

Positive programs

Exercise: prove that TP is ⊆-monotonic, i.e.,
if I ⊆ J, then TP(I) ⊆ TP(J).

By Knaster & Tarski’s theorem, TP has a ⊆-least fix point
I = TP(I).

Moreover, TP is continuous and the l.f.p. can be computed by
iteration of TP on I0 = ∅ until reaching a point Ii+1 = TP(Ii) = Ii .
Back to the example

p
q
r ← p, s

s ← q
a ← b,p

b ← s,a
a ← c

TP(∅) = {p,q}, TP({p,q}) = {p,q, s}, TP({p,q, s}) = {p,q, s, r},
TP({p,q, s, r}) = {p,q, s, r} fixpoint.
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Semantics

Positive programs

A set of atoms I is a model of a program P, I |= P, when
I |= q1 ∧ . . . qm ∧ ¬qm+1 ∧ · · · ∧ ¬qn → p for any rule (1) in P.

Main result by [van Endem & Kowalski 76]: a positive program P
has a least propositional model LM(P) that coincides with TP least
fixpoint.

In our example:

p
q
r ← p, s

s ← q
a ← b,p

b ← s,a
a ← c

the models of P are {p,q, r , s}, {p,q, r , s,a,b}, {p,q, r , s,a,b, c}.

Exercise: prove it.
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Semantics

A semantics for default negation

Once negation is introduced, we don’t have a least Herbrand
model any more. We may have different minimal models.

Take the simple program

p ← not q

Intuitively, as no information for q is available, we should conclude
model {p}, that is, q false and p true.

However, this rule is classically equivalent to q ∨ p and has three
models: {p,q}, {p}, {q}, being the last two minimal.

Furthermore, q ∨ p is also equivalent (in classical logic) to:

q ← not p

whose “expected” behavior should be obviously different.
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Semantics

A semantics for default negation

The problem seems related to a kind of directionality in the
implication:

1 First: assume that q is false;
2 Second: conclude that p follows from your assumption, not q.

Idea: we could go assuming and concluding until all atoms have a
truth value. Problem: we can sometimes get that an assumption
must be retracted.

Example:

p ←
q ← p
q ← not p

Assume, say, not q . . . .
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p ← not q
q ← p
q ← not p

Assume, say, not q . . . .
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Example:

p ← not q
q ← p
q ← not p

Assume, say, not q . . . q, our assumption was inconsistent.
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2 Second: conclude that p follows from your assumption, not q.

Idea: we could go assuming and concluding until all atoms have a
truth value. Problem: we can sometimes get that an assumption
must be retracted.

Example:

p ← not q
q ← p
q ← not p

Assume now not p . . . q, and the first two rules become redundant.
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Semantics

Adding negation: stable models

Gelfond, M., and Lifschitz, V. 1988. The stable model semantics
for logic programming. In ICLP’88, 1070-1080.

Definition (program reduct)

We define the reduct of a program P with respect to an interpretation
(set of atoms) I, written P I , as the set of rules:

P I def
= { (p ← q1, . . . ,qm)

| (p ← q1, . . . ,qm,not qm+1, . . . ,not qn) ∈ P and
qj 6∈ I, for all j = m + 1, . . . ,n }
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Semantics

Stable models

Observation: P I is a positive program (it contains no negations),
so it has a least model, call it ΓP(I) def

= LM(P I).

Definition (stable model)
An interpretation I is a stable model of a program P iff

I = ΓP(I) = LM(P I) .
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Semantics

Stable models: some properties

Proposition (Stable models are models)

If I is a stable model of P then I |= P.

Proposition (Stable models are minimal models)

If I is a stable model of P then there is no J ⊂ I such that J |= P.

Exercise: prove the above theorems.
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Semantics

Stable models

An example of default. Try this program:

flies ← bird ,not ab
bird

This program has these three models:

I P I LM(P I)

{bird ,ab}

bird
{bird} 6= I
not stable

{bird ,ab, flies}

bird
{bird} 6= I
not stable

{bird , flies}

flies ← bird
bird

{bird , flies}
stable!
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Semantics

Stable models

Adding new information:

flies ← bird ,not ab bird
ab ← bird ,penguin penguin

Just two (classical) models now:

I P I LM(P I)

{bird ,
penguin,

ab}

bird
ab ← bird ,penguin

penguin

{bird ,
penguin,

ab}
stable!

{bird ,
penguin,
ab, flies}

bird
ab ← bird ,penguin

penguin

{bird ,
penguin,
ab} 6= I

notstable
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Semantics

Stable models: some properties

A program may have several stable models. For instance, P1:

p ← not q q ← not p

A program may have no stable model at all. Example P2:

p ← not p

Typically use: (1) generate multiple solutions (even cycles like P1)
and (2) prune undesired models (odd cycles like P2).

Constraints. Example: to avoid a model where p holds but q
doesn’t:

aux ← p,not q,not aux

where aux is a new fresh atom. Usually written: ← p,not q
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Semantics

Stable models vs Default Logic

Very close to Default Logic. A rule like:

p ← q1, . . . ,qm,not qm+1, . . . ,not qn

just corresponds to the default:

q1 ∧ · · · ∧ qm : ¬qm+1, . . . ,¬qn

p

So, it’s like playing with defaults where we mostly deal with atoms.
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Semantics

Stable models vs answer sets

We can sometimes be interested in a second negation, strong or
explicit negation (originally called “classical”). Example:

cross ← not train

risky! we cross the railway tracks when no information on train
approaching is available. Compare to:

cross ← −train

we must have the fact that the train is not approaching.

We may represent defaults like

−raining ← summer ,not rainning

Stable models with strong negation are called answer sets. We
just compute stable models and reject those where p,−p occur.
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Semantics

Well-founded model

Operator ΓP is antimonotone (on set inclusion). This implies that
when applied twice, Γ2

P , it becomes a monotonic operator.

It has a least fixpoint lfp(Γ2
P) and a greatest fixpoint gfp(Γ2

P) that
limit the fixpoints of ΓP (i.e., the stable models) from below and
from above.

The well-founded model (WFM) of P is a three-valued
interpretation such that:

atoms in lfp(Γ2
P) are called well-founded;

atoms not in gfp(Γ2
P) are called unfounded;

the rest of atoms would be undefined.

A. Van Gelder, K.A. Ross and J.S. Schlipf. The Well-Founded
Semantics for General Logic Programs. Journal of the ACM 38(3)
pp. 620—650, 1991.
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Semantics

Well-founded model

Why is the WFM interesting for stable models? . . .

Proposition
Any stable model I of P includes all well-founded atoms, and includes
no atom.

Corollary

If there are no undefined atoms, then lfp(Γ2
P) is the only stable model

of P.

Checking whether P has a stable model is an NP-complete
problem [Eiter & Gottlob 93]. Computing WFM(P) takes
polynomial time (quadratic).
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Semantics

Well-founded model

Computing the WFM: when P is finite, we can just iterate Γ2
P on ∅.

Example: try with program P3

p ← not q
r ← p,not s
s ← not r

and with program P4

p ← not q
r ← p, s
s ← r
t ← r ,not t
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Semantics

Computing WFM: rewritting approach

An alternative to compute the WFM is using a bottom-up rewritting
technique [Brass,Dix,Freitag,Zukowski 2001].

Rewritting rules:
1. Facts: for any fact p in the program remove p from positive bodies,

and remove rules containing not p in the body. We can also remove
the rest of rules with head p.

2. Non-heads: for any atom p not occurring as a rule head, remove all
not p from bodies and all rules containing p as positive body literal.

3. “Unreachable atoms” (or positive loop detection) : for any p 6∈ ΓP(∅)
remove all rules containing p as positive body literal.

When we exhaust these rules, we get the program remainder.

Proposition
The facts of the program remainder are the well-founded atoms; the
non-head atoms are the unfounded atoms.
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Semantics

Computing WFM: rewritting approach

Transformations 1 and 2 (i.e. without loop detection) obtain the
so-called Fitting’s model.

Try the program P5

a ← not b, c
b ← not a
c

d ← not g,e
e ← not g,d
f ← not d

g ← not c
h ← g

Fitting’s model=〈{c}, {g,h}〉. The final program remainder is:

a ← not b
b ← not a

c
f

and so, WFM = 〈{c, f}, {g,h,d ,e}〉. Stable models {c, f ,a} and
{c, f ,b}.
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Semantics

ASP

Most ASP solvers (DLV, smodels, clasp) alternate computation of
WFM and nondeterministic choice with backtracking.

1. Compute the WFM
2. If no undefined atoms: stable model found.
3. Else: select an undefined atom p (using some heuristics) and

branch: p; not p. Simplify the program accordingly to the choice
and go to 1.
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Semantics

Clark’s completion

Idea: the only way of making a predicate true is through its
defining rules.

Example:
p :- q, not r.
p :- s.
This program classically implies p ← (q ∧ ¬r) ∨ s. But atom p can
only be true when body q ∧ ¬r or body s become true. That is we
complete the other direction of implication p → (q ∧ ¬r) ∨ s.

[K. L. Clark 1978] COMP[P] is the classical theory consisting of:

p ↔ B1 ∨ · · · ∨ Bn

for each atom p, and all rules p ← Bi in P.
An empty disjunction is ⊥.
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Semantics

Clark’s completion

Example: let P be the program
p :- q, not r.
p :- s.
t.
q :- t

COMP[P] consists of the equivalences:

p ↔ (q ∧ ¬r) ∨ s
q ↔ t
r ↔ ⊥
s ↔ ⊥
t ↔ >

whose only model is {p,q, t}.
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Semantics

Clark’s completion

Semantic counterpart: supported models.

Definition (Supported model)

I is a supported model of P iff I = TP(I).

That is I is a fixpoint of TP , i.e.
I = {p | (p ← B) ∈ P, I |= B}

In the example:
p :- q, not r.
p :- s.
t.
q :- t

TP({p,q, t}) = {p,q, t} (supported), whereas, for instance
TP({p, s}) = {p, t} (non-supported).

Pedro Cabalar ( Depto. Computación University of Corunna, SPAIN )ASP July 1, 2010 28 / 67



Semantics

Clark’s completion

Semantic counterpart: supported models.

Definition (Supported model)

I is a supported model of P iff I = TP(I).

That is I is a fixpoint of TP , i.e.
I = {p | (p ← B) ∈ P, I |= B}

In the example:
p :- q, not r.
p :- s.
t.
q :- t

TP({p,q, t}) = {p,q, t} (supported), whereas, for instance
TP({p, s}) = {p, t} (non-supported).

Pedro Cabalar ( Depto. Computación University of Corunna, SPAIN )ASP July 1, 2010 28 / 67



Semantics

Clark’s completion

Semantic counterpart: supported models.

Definition (Supported model)

I is a supported model of P iff I = TP(I).

That is I is a fixpoint of TP , i.e.
I = {p | (p ← B) ∈ P, I |= B}

In the example:
p :- q, not r.
p :- s.
t.
q :- t

TP({p,q, t}) = {p,q, t} (supported), whereas, for instance
TP({p, s}) = {p, t} (non-supported).

Pedro Cabalar ( Depto. Computación University of Corunna, SPAIN )ASP July 1, 2010 28 / 67



Semantics

Clark’s completion

Theorem
I is a supported model of P iff I |= COMP[P].

Exercise: prove it.

In the previous example, {p,q, t} happens to be the only stable
model. What happens with these typical examples?

p ← not q
q ← not p

and

p ← not p

Yes, supported and stable models coincide! Is this general?
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Semantics

Clark’s completion

No: they differ in positive cycles. Consider this extremely simple
example:

p ← p

Completion would be p ↔ p which has two supported models, ∅
and {p}. Only ∅ is stable.

Theorem
Any stable model is supported.

Prove it.
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Semantics

Clark’s completion

If we don’t have these positive cycles, we can define a quite
general class of programs where supported and stable coincide.

Tight programs [Fages 1994][Babovich, Erdem, Lifschitz 2000].

Definition (Tight programs)

P is tight on a set I of atoms if there is some partial ordinal mapping
λ : X → N such that all λ(Bi) < λ(H) for any rule in P like:

H ← B1, . . . ,Bn,not C1, . . . ,not Cm

Theorem
If I is supported model of P and P tight on I, then I is stable model of P.
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Semantics

Clark’s completion

Example:

p ← not q q ← not p r ← r p ← r

the completion

p ↔ ¬q ∨ r q ↔ ¬p r ↔ r

has models {p}, {q} and {p, r}, but {p, r} is not tight - only the
first 2 ones are stable.
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Semantics

Loop formulas

We can strengthen completion to obtain stable models by adding
loop formulas [Lin , Zhao 2004].

We define a positive dependency graph G with vertices V = Σ
and edges E , one (p,q) for each rule p ← B with q in the positive
body.

A loop L is a set of atoms forming a Strongly Connected
Component in G.

Given a loop L = {p1, . . . ,pn} its loop formula LF (L) is defined as:

¬(BB1 ∨ · · · ∨ BBn)→ ¬p1 ∧ · · · ∧ ¬pn

where BBi is the disjunction B1 ∨ · · · ∨ Bmi of all bodies for rules in
P like

pi ← Bj

such that not atom in L occurs in the positive body of Bj .
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Semantics

Loop formulas

Example:

a← b b ← a a← not c
c ← d d ← c c ← not a

Completion COMP[P] is:

a↔ ¬c ∨ b b ↔ a c ↔ ¬a ∨ d d ↔ c

has 3 models {a,b}, {c,d}, {a,b, c,d}.

Loops L1 = {a,b} and L2 = {c,d}. Loop Formulas:

LF (L1) : c → ¬a ∧ ¬b
LF (L2) : a→ ¬c ∧ ¬d

Adding them to COMP[P] leaves {a,b} and {c,d} as only stable
models.
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2 Examples

3 Extending the syntax: logical interpretation

4 A recent result: minimal logic programs
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Examples

Introducing variables

Programs with variables in ASP are understood as abbreviations
of their ground cases.

Keypoint: use of functions was typically forbidden. The
introduction of a function f makes the Herbrand universe infinite
f (c), f (f (c)), f (f (f (c))), . . . .

This restriction is being overcome:
lparse allows functors, but their nesting is limited (no lists, for
instance).

More recently, DLV complex allows functions (lists, sets, etc) for
finitely ground programs, a class of programs with finitely many
answer sets that are finite.
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Examples

Introducing variables

A simple example: Hamiltonian circuits. Find a cyclic path that
visits once each node in a graph.

We have the extensional database describing the graph
node(0). node(1). node(2). node(3).
edge(0,1). edge(1,2). edge(1,3).
edge(2,0). edge(2,3). edge(3,2). edge(3,0).

0 // 1

�����������

2

OO

((
3hh

^^=======
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Examples

Introducing variables

Predicate in(X,Y) points out that and edge X→ Y is in the cycle.

We generate arbitrary choices with an auxiliary predicate out.
in(X,Y) :- edge(X,Y), not out(X,Y).
out(X,Y) :- edge(X,Y), not in(X,Y).

Only one outgoing node, only one incoming node:
:- in(X,Y), in(X,Z), Y!=Z.
:- in(X,Z), in(Y,Z), X!=Y.

Disregard disconnected cycles. We use a predicate reached(X)
meaning that X can be reached from an arbitrary fixed node, say 0.
reached(X) :- in(0,X).
reached(Y) :- reached(X), in(X,Y).

and we forbid unreached nodes:
:- node(X), not reached(X)
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Examples

Introducing variables

Making the call:
lparse -n 0 hamilt.txt | smodels
We obtain two answers:
Answer: 1
Stable Model: in(0,1) in(3,0) in(2,3) in(1,2)
Answer: 2
Stable Model: in(0,1) in(3,2) in(2,0) in(1,3)
False

0 // 1
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Answer 1 Answer 2
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Examples

Reasoning about actions with ASP

An example of action domain.

up1 up2 up3 up1 up2 up3 up1 up2 up3

light light light

toggle1 toggle3
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Examples

Reasoning about actions with ASP

We begin with some “type declarations”.

time(0..pathlength).
previoustime(0..pathlength-1).
switch(1..3).
#domain previoustime(I).
#domain time(J).
#domain switch(X).
#domain switch(Y).
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Examples

Reasoning about actions with ASP

% Effect axioms
up(X,true,I+1) :- up(X,false,I), toggle(X,I).
up(X,false,I+1) :- up(X,true,I), toggle(X,I).
light(true,I+1) :- light(false,I), toggle(X,I).
light(false,I+1) :- light(true,I), toggle(X,I).

% Inertia
up(X,true,I+1) :- up(X,true,I), not up(X,false,I+1).
up(X,false,I+1) :- up(X,false,I), not up(X,true,I+1).

light(true,I+1) :- light(true,I),
not light(false,I+1).

light(false,I+1) :- light(false,I),
not light(true,I+1).
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Examples

Reasoning about actions with ASP

% Constraints: unique value
:- up(X,true,J), up(X,false,J).
:- light(true,J), light(false,J).

% Unique action
:- toggle(X,I), toggle(Y,I), X!=Y.
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Examples

Reasoning about actions with ASP

Prediction example

% switches-predict.txt
% Initial state
light(true,0). up(X,true,0).

% Performed actions
toggle(1,0).

Calling lparse/smodels with

lparse -c pathlength=1 switches.txt
switches-predict.txt | smodels

we get . . .

Answer: 1
Stable Model: up(1,false,1) up(2,true,1) up(3,true,1)
light(false,1) ...
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Examples

Reasoning about actions with ASP

Postdiction example:

% switches-postdict.txt

% Actions generation
1 { toggle(Z,I) : switch(Z) } 1.

% generate 1 toggle among all switches Z

% Completing facts about the initial situation
1 {up(X,true,0), up(X,false,0)} 1.
1 {light(true,0), light(false,0)} 1.

% Observations
up(3,true,0). light(true,0). toggle(3,1).
light(false,1). up(1,false,1). up(3,true,1).
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Examples

Reasoning about actions with ASP

Calling lparse with

lparse -c pathlength=1 -n 0 switches.txt
switches-postdict.txt | smodels

we get 6 possible explanations. One of them:

Answer: 1
Stable Model: toggle(1,0) up(2,false,0) up(1,true,0)
up(2,false,1) ...
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Examples

Reasoning about actions with ASP

Planning example

% switches-plan.txt
% Planning problem

% Actions generation
1 { toggle(Z,I) : switch(Z) } 1.

% Initial state
light(true,0). up(X,true,0).

% Goal state
goal :- light(true,pathlength),up(1,false,pathlength),

up(2,true,pathlength), up(3,false,pathlength).

:- not goal.
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Examples

Reasoning about actions with ASP

Calling lparse with

lparse -c pathlength=1 -n 0 switches.txt
switches-plan.txt | smodels

We don’t get models. After increasing pathlength

lparse -c pathlength=2 -n 0 switches.txt
switches-plan.txt | smodels

we get 2 possible plans

Answer: 1
Stable Model: toggle(1,0) toggle(3,1) ...
Answer: 2
Stable Model: toggle(3,0) toggle(1,1) ...
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Extending the syntax: logical interpretation

1 Semantics

2 Examples

3 Extending the syntax: logical interpretation

4 A recent result: minimal logic programs
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Extending the syntax: logical interpretation

Extending the syntax

Disjunctive programs: bodies B as before, but heads allow
disjunctions of atoms:

p1 ∨ · · · ∨ pn ← B

The reduct is defined as before, but note that P I does not have
now a least Herbrand model: only minimal ones. Example:

p ∨ q ← t ,not s t ← not q

Given I = {p, t}, P I is the program:

p ∨ q ← t t ←

whose minimal models are {p, t} (stable) and {q, t} (non-stable).
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Extending the syntax: logical interpretation

Extending the syntax

The definition is adapted accordingly

Definition (stable model)
I is a stable model of a disjunctive program P if it is a minimal model of
P I .

Finding a stable model of a disjunctive program is slightly more
complex: ΣP

2 -complete.

Tools for disjunctive ASP: DLV, GnT, cmodels.
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Extending the syntax: logical interpretation

Extending the syntax

Adding default negation in the head [Inoue & Sakama 98]. Rules
H ← B where:

1 Body B = conjunction of literals (as before).

We define:

B = q1 ∧ · · · ∧ qn︸ ︷︷ ︸
B+

∧not qn+1 ∧ · · · ∧ not qm︸ ︷︷ ︸
B−

2 Head H = disjunction of literals. We define:

H = p1 ∨ · · · ∨ pk︸ ︷︷ ︸
H+

∨not pk+1 ∨ · · · ∨ not ps︸ ︷︷ ︸
H−
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Extending the syntax: logical interpretation

Extending the syntax

We adapt the definition of reduct as follows:

P I = {H+ ← B+ | I |= B− ∧ ¬H−}

Example: given I = {a,d , c} and program

b ∨ not a ∨ not d ← d ,not e,not h

B− = ¬e ∧ ¬h and ¬H− = ¬(¬a ∨ ¬d) = (a ∧ d).
As I |= B− ∧ ¬H−, its reduct would correspond to:

b ← h
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Extending the syntax: logical interpretation

Extending the syntax

Stable models are defined as before: I minimal model of P I .

Example: P is the program

p ∨ ¬p
q ← ¬p

I P I minimal models
∅

q {q} 6= I not stable

{p}

p {p} 6= I stable!

{q}

q {q} stable!

{p,q}

p {p} not stable
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Extending the syntax: logical interpretation

Extending the syntax

Nested expressions [Lifschitz, Tang, Turner 99]:
H and B can be any combination of atoms with ⊥,>,∧,∨,not .

Several transformation rules (we’ll see later) allow reducing nested
expressions to disjunctive programs with negation in the head.

An example: the nested rule

a ∨ not (b ∧ not c)← d ∨ not e

becomes the program:

a ∨ not b ← d ∧ not c
a ∨ not b ← not e ∧ not c

But, which is the semantics for not (a← b) or a← (b ← c) ?
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Extending the syntax: logical interpretation

Equilibrium Logic

Let us write rules like p ← q,not r in standard logical notation
q ∧ ¬r → p

Equilibrium Logic [Pearce96]: generalises Answer Sets for
arbitrary propositional theories.

Consists of:
1 A non-classical monotonic (intermediate) logic called

Here-and-There (HT)
2 A selection of (certain) minimal models that yields nonmonotonicity
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Extending the syntax: logical interpretation

Here-and-There

Interpretation = pairs 〈H,T 〉 of sets of atoms H ⊆ T

Intuition: H= true atoms, T = non-false. When H = T we have a
classical model.

Satisfaction of formulas
〈H,T 〉 |= p if p ∈ H (for any atom p)

∧,∨ as always

〈H,T 〉 |= ϕ→ ψ if both

〈H,T 〉 |= ϕ implies 〈H,T 〉 |= ψ
〈T ,T 〉 |= ϕ implies 〈T ,T 〉 |= ψ
This is the same than T |= ϕ→ ψ in classical logic.

Negation ¬F is defined as F → ⊥
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Negation ¬F is defined as F → ⊥
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Extending the syntax: logical interpretation

Here-and-There

Some properties
〈T ,T 〉 |= Γ is the same than T |= Γ in classical logic.

〈H,T 〉 |= Γ implies T |= Γ.

〈H,T 〉 |= ¬ϕ iff T 6|= ϕ in classical logic.
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Extending the syntax: logical interpretation

Equilibrium Logic

Possible alternative description using 3-valued semantics (Gödel’s
logic G3).

Given M = 〈H,T 〉, we can define a 3-valued mapping
M : Atoms 7→ {0,1,2} reading:

2 = (p ∈ H) = true
0 = (p 6∈ T ) = false
1 = (p ∈ T \ H) = undefined

∧ returns minimum value, ∨ returns maximum and M(φ→ ψ) = 2
if M(φ) ≤ M(ψ) or returns M(ψ) otherwise.
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Extending the syntax: logical interpretation

Equilibrium models

Definition (Equilibrium model)

〈T ,T 〉 is an equilibrium model of a theory Γ if:
〈T ,T 〉 |= Γ, and there is no H ⊂ T such that 〈H,T 〉 |= Γ.
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Extending the syntax: logical interpretation

Equilibrium Logic

Logical techniques available: e.g., methods from many-valued
semantics (tableaux, signed logics,. . . )

Captures all previous syntax extensions, plus other
non-propositional constructions:

weight constraints can be represented as nested expressions
[Ferraris, Lifschitz 2005];

aggregates represented by rules with embedded implications
[Ferraris 2004].

ordered disjunction from [Brewka et al 2004] (LPOD) can also be
captured [Cabalar 2010].

Pedro Cabalar ( Depto. Computación University of Corunna, SPAIN )ASP July 1, 2010 62 / 67



Extending the syntax: logical interpretation

Equilibrium Logic

Logical techniques available: e.g., methods from many-valued
semantics (tableaux, signed logics,. . . )

Captures all previous syntax extensions, plus other
non-propositional constructions:

weight constraints can be represented as nested expressions
[Ferraris, Lifschitz 2005];

aggregates represented by rules with embedded implications
[Ferraris 2004].

ordered disjunction from [Brewka et al 2004] (LPOD) can also be
captured [Cabalar 2010].

Pedro Cabalar ( Depto. Computación University of Corunna, SPAIN )ASP July 1, 2010 62 / 67



Extending the syntax: logical interpretation

Equilibrium logic

Other interesting features
In nonmonotonic reasoning, we talk about strong equivalence of
Γ1, Γ2 when, for any Π:
Γ1 ∪ Π and Γ2 ∪ Π have the same (selected) models.

Γ1, Γ2 are strongly equivalent iff they are equivalent in HT [Lifschitz
et al 2001].
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Extending the syntax: logical interpretation

Equilibrium logic

Other interesting features
Disjunctive programs with negation in the head are a (conjunctive)
normal form (CNF) for Equilibrium Logic. [Cabalar & Ferraris
2007].

Theorem
The number of different logic programs (modulo strong equivalence)
that can be built for a finite signature of n atoms is:

n∏
i=0

(
22i−1 + 1

)(n
i )

With n = 2 we get 162, with n = 3 around 5 million.

Transformations into this CNF [Cabalar, Pearce & Valverde 2005].
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Extending the syntax: logical interpretation

Equilibrium logic

Other interesting features
Equilibrium Logic also covers full First Order Theories with
equality [Pearce & Valverde 2004].

Introduction of partial functions [Cabalar 2008].

Linear temporal equilibrium logic [Cabalar & Pérez 2007].

Equivalent to the extension of reduct [Ferraris 2005] for arbitrary
propositional theories, and general stable model [Ferraris, Lee &
Lifschitz 2007] for first order theories.
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