
Answer Set Programming

Pedro Cabalar

Depto. Computación
University of Corunna, SPAIN

July 1, 2010

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 1 / 67

Outline

1 Semantics

2 Examples

3 Extending the syntax: logical interpretation

4 A recent result: minimal logic programs

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 2 / 67

Semantics

1 Semantics

2 Examples

3 Extending the syntax: logical interpretation

4 A recent result: minimal logic programs

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 3 / 67

Semantics

Answer Set Programming

Answer set programming (ASP) [Gelfond & Lifschitz 88]: similar to
Prolog, but more declarative.

(Propositional) rules with negation in the body.

p︸︷︷︸
head

← L1, . . . ,Ln︸ ︷︷ ︸
body

n ≥ 0, p is an atom and Li are literals, that is, an atom q or its
default negation not q.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 4 / 67

Semantics

Answer Set Programming

Answer set programming (ASP) [Gelfond & Lifschitz 88]: similar to
Prolog, but more declarative.

(Propositional) rules with negation in the body.

p︸︷︷︸
head

← L1, . . . ,Ln︸ ︷︷ ︸
body

n ≥ 0, p is an atom and Li are literals, that is, an atom q or its
default negation not q.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 4 / 67

Semantics

Answer Set Programming

The ordering is irrelevant. We can generally write the rule as:

p ← q1, . . . ,qm,not qm+1, . . . ,not qn. (1)

with n ≥ m ≥ 0. A logic program P is a set of rules like (1)

The rule is positive when m = n (no negations).

When n = 0, the rule is called a fact, and we usually omit the←.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 5 / 67

Semantics

Answer Set Programming

The ordering is irrelevant. We can generally write the rule as:

p ← q1, . . . ,qm,not qm+1, . . . ,not qn. (1)

with n ≥ m ≥ 0. A logic program P is a set of rules like (1)

The rule is positive when m = n (no negations).

When n = 0, the rule is called a fact, and we usually omit the←.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 5 / 67

Semantics

Answer Set Programming

The ordering is irrelevant. We can generally write the rule as:

p ← q1, . . . ,qm,not qm+1, . . . ,not qn. (1)

with n ≥ m ≥ 0. A logic program P is a set of rules like (1)

The rule is positive when m = n (no negations).

When n = 0, the rule is called a fact, and we usually omit the←.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 5 / 67

Semantics

Positive programs

Positive programs can be easily computed by “rule application”
(deductive closure).

Given a program P, and a propositional interpretation I (set of
atoms) we define the direct consequences [van Endem &
Kowalski 76] operator TP(I) as:

TP(I) := {H | (H ← B) ∈ P and I |= B}

That is, pick those rule heads H whose body B holds in I
(a fact H can just be seen as H ← >). Commas can be seen as ∧.

Example: given P below, TP({b,p, s}) = {p,q, r ,a}

p
q
r ← p, s

s ← q
a ← b,p

b ← s,a
a ← c

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 6 / 67

Semantics

Positive programs

Positive programs can be easily computed by “rule application”
(deductive closure).

Given a program P, and a propositional interpretation I (set of
atoms) we define the direct consequences [van Endem &
Kowalski 76] operator TP(I) as:

TP(I) := {H | (H ← B) ∈ P and I |= B}

That is, pick those rule heads H whose body B holds in I
(a fact H can just be seen as H ← >). Commas can be seen as ∧.

Example: given P below, TP({b,p, s}) = {p,q, r ,a}

p
q
r ← p, s

s ← q
a ← b,p

b ← s,a
a ← c

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 6 / 67

Semantics

Positive programs

Positive programs can be easily computed by “rule application”
(deductive closure).

Given a program P, and a propositional interpretation I (set of
atoms) we define the direct consequences [van Endem &
Kowalski 76] operator TP(I) as:

TP(I) := {H | (H ← B) ∈ P and I |= B}

That is, pick those rule heads H whose body B holds in I
(a fact H can just be seen as H ← >). Commas can be seen as ∧.

Example: given P below, TP({b,p, s}) = {p,q, r ,a}

p
q
r ← p, s

s ← q
a ← b,p

b ← s,a
a ← c

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 6 / 67

Semantics

Positive programs

Positive programs can be easily computed by “rule application”
(deductive closure).

Given a program P, and a propositional interpretation I (set of
atoms) we define the direct consequences [van Endem &
Kowalski 76] operator TP(I) as:

TP(I) := {H | (H ← B) ∈ P and I |= B}

That is, pick those rule heads H whose body B holds in I
(a fact H can just be seen as H ← >). Commas can be seen as ∧.

Example: given P below, TP({b,p, s}) = {p,q, r ,a}

p
q
r ← p, s

s ← q
a ← b,p

b ← s,a
a ← c

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 6 / 67

Semantics

Positive programs

Exercise: prove that TP is ⊆-monotonic, i.e.,
if I ⊆ J, then TP(I) ⊆ TP(J).

By Knaster & Tarski’s theorem, TP has a ⊆-least fix point
I = TP(I).

Moreover, TP is continuous and the l.f.p. can be computed by
iteration of TP on I0 = ∅ until reaching a point Ii+1 = TP(Ii) = Ii .
Back to the example

p
q
r ← p, s

s ← q
a ← b,p

b ← s,a
a ← c

TP(∅) = {p,q}, TP({p,q}) = {p,q, s}, TP({p,q, s}) = {p,q, s, r},
TP({p,q, s, r}) = {p,q, s, r} fixpoint.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 7 / 67

Semantics

Positive programs

Exercise: prove that TP is ⊆-monotonic, i.e.,
if I ⊆ J, then TP(I) ⊆ TP(J).

By Knaster & Tarski’s theorem, TP has a ⊆-least fix point
I = TP(I).

Moreover, TP is continuous and the l.f.p. can be computed by
iteration of TP on I0 = ∅ until reaching a point Ii+1 = TP(Ii) = Ii .
Back to the example

p
q
r ← p, s

s ← q
a ← b,p

b ← s,a
a ← c

TP(∅) = {p,q}, TP({p,q}) = {p,q, s}, TP({p,q, s}) = {p,q, s, r},
TP({p,q, s, r}) = {p,q, s, r} fixpoint.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 7 / 67

Semantics

Positive programs

Exercise: prove that TP is ⊆-monotonic, i.e.,
if I ⊆ J, then TP(I) ⊆ TP(J).

By Knaster & Tarski’s theorem, TP has a ⊆-least fix point
I = TP(I).

Moreover, TP is continuous and the l.f.p. can be computed by
iteration of TP on I0 = ∅ until reaching a point Ii+1 = TP(Ii) = Ii .

Back to the example

p
q
r ← p, s

s ← q
a ← b,p

b ← s,a
a ← c

TP(∅) = {p,q}, TP({p,q}) = {p,q, s}, TP({p,q, s}) = {p,q, s, r},
TP({p,q, s, r}) = {p,q, s, r} fixpoint.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 7 / 67

Semantics

Positive programs

Exercise: prove that TP is ⊆-monotonic, i.e.,
if I ⊆ J, then TP(I) ⊆ TP(J).

By Knaster & Tarski’s theorem, TP has a ⊆-least fix point
I = TP(I).

Moreover, TP is continuous and the l.f.p. can be computed by
iteration of TP on I0 = ∅ until reaching a point Ii+1 = TP(Ii) = Ii .
Back to the example

p
q
r ← p, s

s ← q
a ← b,p

b ← s,a
a ← c

TP(∅) = {p,q}, TP({p,q}) = {p,q, s}, TP({p,q, s}) = {p,q, s, r},
TP({p,q, s, r}) = {p,q, s, r} fixpoint.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 7 / 67

Semantics

Positive programs

Exercise: prove that TP is ⊆-monotonic, i.e.,
if I ⊆ J, then TP(I) ⊆ TP(J).

By Knaster & Tarski’s theorem, TP has a ⊆-least fix point
I = TP(I).

Moreover, TP is continuous and the l.f.p. can be computed by
iteration of TP on I0 = ∅ until reaching a point Ii+1 = TP(Ii) = Ii .
Back to the example

p
q
r ← p, s

s ← q
a ← b,p

b ← s,a
a ← c

TP(∅) = {p,q}

, TP({p,q}) = {p,q, s}, TP({p,q, s}) = {p,q, s, r},
TP({p,q, s, r}) = {p,q, s, r} fixpoint.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 7 / 67

Semantics

Positive programs

Exercise: prove that TP is ⊆-monotonic, i.e.,
if I ⊆ J, then TP(I) ⊆ TP(J).

By Knaster & Tarski’s theorem, TP has a ⊆-least fix point
I = TP(I).

Moreover, TP is continuous and the l.f.p. can be computed by
iteration of TP on I0 = ∅ until reaching a point Ii+1 = TP(Ii) = Ii .
Back to the example

p
q
r ← p, s

s ← q
a ← b,p

b ← s,a
a ← c

TP(∅) = {p,q}, TP({p,q}) =

{p,q, s}, TP({p,q, s}) = {p,q, s, r},
TP({p,q, s, r}) = {p,q, s, r} fixpoint.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 7 / 67

Semantics

Positive programs

Exercise: prove that TP is ⊆-monotonic, i.e.,
if I ⊆ J, then TP(I) ⊆ TP(J).

By Knaster & Tarski’s theorem, TP has a ⊆-least fix point
I = TP(I).

Moreover, TP is continuous and the l.f.p. can be computed by
iteration of TP on I0 = ∅ until reaching a point Ii+1 = TP(Ii) = Ii .
Back to the example

p
q
r ← p, s

s ← q
a ← b,p

b ← s,a
a ← c

TP(∅) = {p,q}, TP({p,q}) = {p,q, s}

, TP({p,q, s}) = {p,q, s, r},
TP({p,q, s, r}) = {p,q, s, r} fixpoint.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 7 / 67

Semantics

Positive programs

Exercise: prove that TP is ⊆-monotonic, i.e.,
if I ⊆ J, then TP(I) ⊆ TP(J).

By Knaster & Tarski’s theorem, TP has a ⊆-least fix point
I = TP(I).

Moreover, TP is continuous and the l.f.p. can be computed by
iteration of TP on I0 = ∅ until reaching a point Ii+1 = TP(Ii) = Ii .
Back to the example

p
q
r ← p, s

s ← q
a ← b,p

b ← s,a
a ← c

TP(∅) = {p,q}, TP({p,q}) = {p,q, s}, TP({p,q, s}) =

{p,q, s, r},
TP({p,q, s, r}) = {p,q, s, r} fixpoint.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 7 / 67

Semantics

Positive programs

Exercise: prove that TP is ⊆-monotonic, i.e.,
if I ⊆ J, then TP(I) ⊆ TP(J).

By Knaster & Tarski’s theorem, TP has a ⊆-least fix point
I = TP(I).

Moreover, TP is continuous and the l.f.p. can be computed by
iteration of TP on I0 = ∅ until reaching a point Ii+1 = TP(Ii) = Ii .
Back to the example

p
q
r ← p, s

s ← q
a ← b,p

b ← s,a
a ← c

TP(∅) = {p,q}, TP({p,q}) = {p,q, s}, TP({p,q, s}) = {p,q, s, r}

,
TP({p,q, s, r}) = {p,q, s, r} fixpoint.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 7 / 67

Semantics

Positive programs

Exercise: prove that TP is ⊆-monotonic, i.e.,
if I ⊆ J, then TP(I) ⊆ TP(J).

By Knaster & Tarski’s theorem, TP has a ⊆-least fix point
I = TP(I).

Moreover, TP is continuous and the l.f.p. can be computed by
iteration of TP on I0 = ∅ until reaching a point Ii+1 = TP(Ii) = Ii .
Back to the example

p
q
r ← p, s

s ← q
a ← b,p

b ← s,a
a ← c

TP(∅) = {p,q}, TP({p,q}) = {p,q, s}, TP({p,q, s}) = {p,q, s, r},
TP({p,q, s, r}) =

{p,q, s, r} fixpoint.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 7 / 67

Semantics

Positive programs

Exercise: prove that TP is ⊆-monotonic, i.e.,
if I ⊆ J, then TP(I) ⊆ TP(J).

By Knaster & Tarski’s theorem, TP has a ⊆-least fix point
I = TP(I).

Moreover, TP is continuous and the l.f.p. can be computed by
iteration of TP on I0 = ∅ until reaching a point Ii+1 = TP(Ii) = Ii .
Back to the example

p
q
r ← p, s

s ← q
a ← b,p

b ← s,a
a ← c

TP(∅) = {p,q}, TP({p,q}) = {p,q, s}, TP({p,q, s}) = {p,q, s, r},
TP({p,q, s, r}) = {p,q, s, r} fixpoint.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 7 / 67

Semantics

Positive programs

A set of atoms I is a model of a program P, I |= P, when
I |= q1 ∧ . . . qm ∧ ¬qm+1 ∧ · · · ∧ ¬qn → p for any rule (1) in P.

Main result by [van Endem & Kowalski 76]: a positive program P
has a least propositional model LM(P) that coincides with TP least
fixpoint.

In our example:

p
q
r ← p, s

s ← q
a ← b,p

b ← s,a
a ← c

the models of P are {p,q, r , s}, {p,q, r , s,a,b}, {p,q, r , s,a,b, c}.

Exercise: prove it.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 8 / 67

Semantics

Positive programs

A set of atoms I is a model of a program P, I |= P, when
I |= q1 ∧ . . . qm ∧ ¬qm+1 ∧ · · · ∧ ¬qn → p for any rule (1) in P.

Main result by [van Endem & Kowalski 76]: a positive program P
has a least propositional model LM(P) that coincides with TP least
fixpoint.

In our example:

p
q
r ← p, s

s ← q
a ← b,p

b ← s,a
a ← c

the models of P are {p,q, r , s}, {p,q, r , s,a,b}, {p,q, r , s,a,b, c}.

Exercise: prove it.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 8 / 67

Semantics

Positive programs

A set of atoms I is a model of a program P, I |= P, when
I |= q1 ∧ . . . qm ∧ ¬qm+1 ∧ · · · ∧ ¬qn → p for any rule (1) in P.

Main result by [van Endem & Kowalski 76]: a positive program P
has a least propositional model LM(P) that coincides with TP least
fixpoint.

In our example:

p
q
r ← p, s

s ← q
a ← b,p

b ← s,a
a ← c

the models of P are {p,q, r , s}, {p,q, r , s,a,b}, {p,q, r , s,a,b, c}.

Exercise: prove it.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 8 / 67

Semantics

Positive programs

A set of atoms I is a model of a program P, I |= P, when
I |= q1 ∧ . . . qm ∧ ¬qm+1 ∧ · · · ∧ ¬qn → p for any rule (1) in P.

Main result by [van Endem & Kowalski 76]: a positive program P
has a least propositional model LM(P) that coincides with TP least
fixpoint.

In our example:

p
q
r ← p, s

s ← q
a ← b,p

b ← s,a
a ← c

the models of P are {p,q, r , s}, {p,q, r , s,a,b}, {p,q, r , s,a,b, c}.

Exercise: prove it.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 8 / 67

Semantics

A semantics for default negation

Once negation is introduced, we don’t have a least Herbrand
model any more. We may have different minimal models.

Take the simple program

p ← not q

Intuitively, as no information for q is available, we should conclude
model {p}, that is, q false and p true.

However, this rule is classically equivalent to q ∨ p and has three
models: {p,q}, {p}, {q}, being the last two minimal.

Furthermore, q ∨ p is also equivalent (in classical logic) to:

q ← not p

whose “expected” behavior should be obviously different.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 9 / 67

Semantics

A semantics for default negation

Once negation is introduced, we don’t have a least Herbrand
model any more. We may have different minimal models.

Take the simple program

p ← not q

Intuitively, as no information for q is available, we should conclude
model {p}, that is, q false and p true.

However, this rule is classically equivalent to q ∨ p and has three
models: {p,q}, {p}, {q}, being the last two minimal.

Furthermore, q ∨ p is also equivalent (in classical logic) to:

q ← not p

whose “expected” behavior should be obviously different.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 9 / 67

Semantics

A semantics for default negation

Once negation is introduced, we don’t have a least Herbrand
model any more. We may have different minimal models.

Take the simple program

p ← not q

Intuitively, as no information for q is available, we should conclude
model {p}, that is, q false and p true.

However, this rule is classically equivalent to q ∨ p and has three
models: {p,q}, {p}, {q}, being the last two minimal.

Furthermore, q ∨ p is also equivalent (in classical logic) to:

q ← not p

whose “expected” behavior should be obviously different.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 9 / 67

Semantics

A semantics for default negation

Once negation is introduced, we don’t have a least Herbrand
model any more. We may have different minimal models.

Take the simple program

p ← not q

Intuitively, as no information for q is available, we should conclude
model {p}, that is, q false and p true.

However, this rule is classically equivalent to q ∨ p and has three
models: {p,q}, {p}, {q}, being the last two minimal.

Furthermore, q ∨ p is also equivalent (in classical logic) to:

q ← not p

whose “expected” behavior should be obviously different.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 9 / 67

Semantics

A semantics for default negation

Once negation is introduced, we don’t have a least Herbrand
model any more. We may have different minimal models.

Take the simple program

p ← not q

Intuitively, as no information for q is available, we should conclude
model {p}, that is, q false and p true.

However, this rule is classically equivalent to q ∨ p and has three
models: {p,q}, {p}, {q}, being the last two minimal.

Furthermore, q ∨ p is also equivalent (in classical logic) to:

q ← not p

whose “expected” behavior should be obviously different.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 9 / 67

Semantics

A semantics for default negation

The problem seems related to a kind of directionality in the
implication:

1 First: assume that q is false;
2 Second: conclude that p follows from your assumption, not q.

Idea: we could go assuming and concluding until all atoms have a
truth value. Problem: we can sometimes get that an assumption
must be retracted.

Example:

p ←
q ← p
q ← not p

Assume, say, not q

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 10 / 67

Semantics

A semantics for default negation

The problem seems related to a kind of directionality in the
implication:

1 First: assume that q is false;
2 Second: conclude that p follows from your assumption, not q.

Idea: we could go assuming and concluding until all atoms have a
truth value.

Problem: we can sometimes get that an assumption
must be retracted.

Example:

p ←
q ← p
q ← not p

Assume, say, not q

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 10 / 67

Semantics

A semantics for default negation

The problem seems related to a kind of directionality in the
implication:

1 First: assume that q is false;
2 Second: conclude that p follows from your assumption, not q.

Idea: we could go assuming and concluding until all atoms have a
truth value. Problem: we can sometimes get that an assumption
must be retracted.

Example:

p ←
q ← p
q ← not p

Assume, say, not q

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 10 / 67

Semantics

A semantics for default negation

The problem seems related to a kind of directionality in the
implication:

1 First: assume that q is false;
2 Second: conclude that p follows from your assumption, not q.

Idea: we could go assuming and concluding until all atoms have a
truth value. Problem: we can sometimes get that an assumption
must be retracted.

Example:

p ← not q
q ← p
q ← not p

Assume, say, not q

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 10 / 67

Semantics

A semantics for default negation

The problem seems related to a kind of directionality in the
implication:

1 First: assume that q is false;
2 Second: conclude that p follows from your assumption, not q.

Idea: we could go assuming and concluding until all atoms have a
truth value. Problem: we can sometimes get that an assumption
must be retracted.

Example:

p ← not q
q ← p
q ← not p

Assume, say, not q

. . . .

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 10 / 67

Semantics

A semantics for default negation

The problem seems related to a kind of directionality in the
implication:

1 First: assume that q is false;
2 Second: conclude that p follows from your assumption, not q.

Idea: we could go assuming and concluding until all atoms have a
truth value. Problem: we can sometimes get that an assumption
must be retracted.

Example:

p ← not q
q ← p
q ← not p

Assume, say, not q

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 10 / 67

Semantics

A semantics for default negation

The problem seems related to a kind of directionality in the
implication:

1 First: assume that q is false;
2 Second: conclude that p follows from your assumption, not q.

Idea: we could go assuming and concluding until all atoms have a
truth value. Problem: we can sometimes get that an assumption
must be retracted.

Example:

p ← not q
q ← p
q ← not p

Assume, say, not q

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 10 / 67

Semantics

A semantics for default negation

The problem seems related to a kind of directionality in the
implication:

1 First: assume that q is false;
2 Second: conclude that p follows from your assumption, not q.

Idea: we could go assuming and concluding until all atoms have a
truth value. Problem: we can sometimes get that an assumption
must be retracted.

Example:

p ← not q
q ← p
q ← not p

Assume, say, not q

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 10 / 67

Semantics

A semantics for default negation

The problem seems related to a kind of directionality in the
implication:

1 First: assume that q is false;
2 Second: conclude that p follows from your assumption, not q.

Idea: we could go assuming and concluding until all atoms have a
truth value. Problem: we can sometimes get that an assumption
must be retracted.

Example:

p ← not q
q ← p
q ← not p

Assume, say, not q

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 10 / 67

Semantics

A semantics for default negation

The problem seems related to a kind of directionality in the
implication:

1 First: assume that q is false;
2 Second: conclude that p follows from your assumption, not q.

Idea: we could go assuming and concluding until all atoms have a
truth value. Problem: we can sometimes get that an assumption
must be retracted.

Example:

p ← not q
q ← p
q ← not p

Assume, say, not q . . . q, our assumption was inconsistent.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 10 / 67

Semantics

A semantics for default negation

The problem seems related to a kind of directionality in the
implication:

1 First: assume that q is false;
2 Second: conclude that p follows from your assumption, not q.

Idea: we could go assuming and concluding until all atoms have a
truth value. Problem: we can sometimes get that an assumption
must be retracted.

Example:

p ← not q
q ← p
q ← not p

Assume now not p

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 11 / 67

Semantics

A semantics for default negation

The problem seems related to a kind of directionality in the
implication:

1 First: assume that q is false;
2 Second: conclude that p follows from your assumption, not q.

Idea: we could go assuming and concluding until all atoms have a
truth value. Problem: we can sometimes get that an assumption
must be retracted.

Example:

p ← not q
q ← p
q ← not p

Assume now not p

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 11 / 67

Semantics

A semantics for default negation

The problem seems related to a kind of directionality in the
implication:

1 First: assume that q is false;
2 Second: conclude that p follows from your assumption, not q.

Idea: we could go assuming and concluding until all atoms have a
truth value. Problem: we can sometimes get that an assumption
must be retracted.

Example:

p ← not q
q ← p
q ← not p

Assume now not p

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 11 / 67

Semantics

A semantics for default negation

The problem seems related to a kind of directionality in the
implication:

1 First: assume that q is false;
2 Second: conclude that p follows from your assumption, not q.

Idea: we could go assuming and concluding until all atoms have a
truth value. Problem: we can sometimes get that an assumption
must be retracted.

Example:

p ← not q
q ← p
q ← not p

Assume now not p

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 11 / 67

Semantics

A semantics for default negation

The problem seems related to a kind of directionality in the
implication:

1 First: assume that q is false;
2 Second: conclude that p follows from your assumption, not q.

Idea: we could go assuming and concluding until all atoms have a
truth value. Problem: we can sometimes get that an assumption
must be retracted.

Example:

p ← not q
q ← p
q ← not p

Assume now not p . . . q, and the first two rules become redundant.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 11 / 67

Semantics

Adding negation: stable models

Gelfond, M., and Lifschitz, V. 1988. The stable model semantics
for logic programming. In ICLP’88, 1070-1080.

Definition (program reduct)

We define the reduct of a program P with respect to an interpretation
(set of atoms) I, written P I , as the set of rules:

P I def
= { (p ← q1, . . . ,qm)

| (p ← q1, . . . ,qm,not qm+1, . . . ,not qn) ∈ P and
qj 6∈ I, for all j = m + 1, . . . ,n }

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 12 / 67

Semantics

Stable models

Observation: P I is a positive program (it contains no negations),
so it has a least model, call it ΓP(I) def

= LM(P I).

Definition (stable model)
An interpretation I is a stable model of a program P iff

I = ΓP(I) = LM(P I) .

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 13 / 67

Semantics

Stable models

Observation: P I is a positive program (it contains no negations),
so it has a least model, call it ΓP(I) def

= LM(P I).

Definition (stable model)
An interpretation I is a stable model of a program P iff

I = ΓP(I) = LM(P I) .

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 13 / 67

Semantics

Stable models: some properties

Proposition (Stable models are models)

If I is a stable model of P then I |= P.

Proposition (Stable models are minimal models)

If I is a stable model of P then there is no J ⊂ I such that J |= P.

Exercise: prove the above theorems.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 14 / 67

Semantics

Stable models: some properties

Proposition (Stable models are models)

If I is a stable model of P then I |= P.

Proposition (Stable models are minimal models)

If I is a stable model of P then there is no J ⊂ I such that J |= P.

Exercise: prove the above theorems.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 14 / 67

Semantics

Stable models: some properties

Proposition (Stable models are models)

If I is a stable model of P then I |= P.

Proposition (Stable models are minimal models)

If I is a stable model of P then there is no J ⊂ I such that J |= P.

Exercise: prove the above theorems.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 14 / 67

Semantics

Stable models

An example of default. Try this program:

flies ← bird ,not ab
bird

This program has these three models:

I P I LM(P I)

{bird ,ab}

bird
{bird} 6= I
not stable

{bird ,ab, flies}

bird
{bird} 6= I
not stable

{bird , flies}

flies ← bird
bird

{bird , flies}
stable!

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 15 / 67

Semantics

Stable models

An example of default. Try this program:

flies ← bird ,not ab
bird

This program has these three models:

I P I LM(P I)

{bird ,ab}

bird
{bird} 6= I
not stable

{bird ,ab, flies}

bird
{bird} 6= I
not stable

{bird , flies}

flies ← bird
bird

{bird , flies}
stable!

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 15 / 67

Semantics

Stable models

An example of default. Try this program:

flies ← bird ,not ab
bird

This program has these three models:

I P I LM(P I)

{bird ,ab} bird

{bird} 6= I
not stable

{bird ,ab, flies}

bird
{bird} 6= I
not stable

{bird , flies}

flies ← bird
bird

{bird , flies}
stable!

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 15 / 67

Semantics

Stable models

An example of default. Try this program:

flies ← bird ,not ab
bird

This program has these three models:

I P I LM(P I)

{bird ,ab} bird
{bird} 6= I
not stable

{bird ,ab, flies}

bird
{bird} 6= I
not stable

{bird , flies}

flies ← bird
bird

{bird , flies}
stable!

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 15 / 67

Semantics

Stable models

An example of default. Try this program:

flies ← bird ,not ab
bird

This program has these three models:

I P I LM(P I)

{bird ,ab} bird
{bird} 6= I
not stable

{bird ,ab, flies} bird
{bird} 6= I
not stable

{bird , flies}

flies ← bird
bird

{bird , flies}
stable!

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 15 / 67

Semantics

Stable models

An example of default. Try this program:

flies ← bird ,not ab
bird

This program has these three models:

I P I LM(P I)

{bird ,ab} bird
{bird} 6= I
not stable

{bird ,ab, flies} bird
{bird} 6= I
not stable

{bird , flies} flies ← bird
bird

{bird , flies}
stable!

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 15 / 67

Semantics

Stable models

An example of default. Try this program:

flies ← bird ,not ab
bird

This program has these three models:

I P I LM(P I)

{bird ,ab} bird
{bird} 6= I
not stable

{bird ,ab, flies} bird
{bird} 6= I
not stable

{bird , flies} flies ← bird
bird

{bird , flies}
stable!

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 15 / 67

Semantics

Stable models

Adding new information:

flies ← bird ,not ab bird
ab ← bird ,penguin penguin

Just two (classical) models now:

I P I LM(P I)

{bird ,
penguin,

ab}

bird
ab ← bird ,penguin

penguin

{bird ,
penguin,

ab}
stable!

{bird ,
penguin,
ab, flies}

bird
ab ← bird ,penguin

penguin

{bird ,
penguin,
ab} 6= I

notstable

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 16 / 67

Semantics

Stable models

Adding new information:

flies ← bird ,not ab bird
ab ← bird ,penguin penguin

Just two (classical) models now:

I P I LM(P I)

{bird ,
penguin,

ab}

bird
ab ← bird ,penguin

penguin

{bird ,
penguin,

ab}
stable!

{bird ,
penguin,
ab, flies}

bird
ab ← bird ,penguin

penguin

{bird ,
penguin,
ab} 6= I

notstable

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 16 / 67

Semantics

Stable models

Adding new information:

flies ← bird ,not ab bird
ab ← bird ,penguin penguin

Just two (classical) models now:

I P I LM(P I)

{bird ,
penguin,

ab}

bird
ab ← bird ,penguin

penguin

{bird ,
penguin,

ab}
stable!

{bird ,
penguin,
ab, flies}

bird
ab ← bird ,penguin

penguin

{bird ,
penguin,
ab} 6= I

notstable

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 16 / 67

Semantics

Stable models

Adding new information:

flies ← bird ,not ab bird
ab ← bird ,penguin penguin

Just two (classical) models now:

I P I LM(P I)

{bird ,
penguin,

ab}

bird
ab ← bird ,penguin

penguin

{bird ,
penguin,

ab}
stable!

{bird ,
penguin,
ab, flies}

bird
ab ← bird ,penguin

penguin

{bird ,
penguin,
ab} 6= I

notstable

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 16 / 67

Semantics

Stable models

Adding new information:

flies ← bird ,not ab bird
ab ← bird ,penguin penguin

Just two (classical) models now:

I P I LM(P I)

{bird ,
penguin,

ab}

bird
ab ← bird ,penguin

penguin

{bird ,
penguin,

ab}
stable!

{bird ,
penguin,
ab, flies}

bird
ab ← bird ,penguin

penguin

{bird ,
penguin,
ab} 6= I

notstable

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 16 / 67

Semantics

Stable models: some properties

A program may have several stable models. For instance, P1:

p ← not q q ← not p

A program may have no stable model at all. Example P2:

p ← not p

Typically use: (1) generate multiple solutions (even cycles like P1)
and (2) prune undesired models (odd cycles like P2).

Constraints. Example: to avoid a model where p holds but q
doesn’t:

aux ← p,not q,not aux

where aux is a new fresh atom. Usually written: ← p,not q

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 17 / 67

Semantics

Stable models: some properties

A program may have several stable models. For instance, P1:

p ← not q q ← not p

A program may have no stable model at all. Example P2:

p ← not p

Typically use: (1) generate multiple solutions (even cycles like P1)
and (2) prune undesired models (odd cycles like P2).

Constraints. Example: to avoid a model where p holds but q
doesn’t:

aux ← p,not q,not aux

where aux is a new fresh atom. Usually written: ← p,not q

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 17 / 67

Semantics

Stable models: some properties

A program may have several stable models. For instance, P1:

p ← not q q ← not p

A program may have no stable model at all. Example P2:

p ← not p

Typically use: (1) generate multiple solutions (even cycles like P1)
and (2) prune undesired models (odd cycles like P2).

Constraints. Example: to avoid a model where p holds but q
doesn’t:

aux ← p,not q,not aux

where aux is a new fresh atom. Usually written: ← p,not q

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 17 / 67

Semantics

Stable models: some properties

A program may have several stable models. For instance, P1:

p ← not q q ← not p

A program may have no stable model at all. Example P2:

p ← not p

Typically use: (1) generate multiple solutions (even cycles like P1)
and (2) prune undesired models (odd cycles like P2).

Constraints. Example: to avoid a model where p holds but q
doesn’t:

aux ← p,not q,not aux

where aux is a new fresh atom. Usually written: ← p,not q
Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 17 / 67

Semantics

Stable models vs Default Logic

Very close to Default Logic. A rule like:

p ← q1, . . . ,qm,not qm+1, . . . ,not qn

just corresponds to the default:

q1 ∧ · · · ∧ qm : ¬qm+1, . . . ,¬qn

p

So, it’s like playing with defaults where we mostly deal with atoms.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 18 / 67

Semantics

Stable models vs Default Logic

Very close to Default Logic. A rule like:

p ← q1, . . . ,qm,not qm+1, . . . ,not qn

just corresponds to the default:

q1 ∧ · · · ∧ qm : ¬qm+1, . . . ,¬qn

p

So, it’s like playing with defaults where we mostly deal with atoms.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 18 / 67

Semantics

Stable models vs answer sets

We can sometimes be interested in a second negation, strong or
explicit negation (originally called “classical”). Example:

cross ← not train

risky! we cross the railway tracks when no information on train
approaching is available. Compare to:

cross ← −train

we must have the fact that the train is not approaching.

We may represent defaults like

−raining ← summer ,not rainning

Stable models with strong negation are called answer sets. We
just compute stable models and reject those where p,−p occur.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 19 / 67

Semantics

Stable models vs answer sets

We can sometimes be interested in a second negation, strong or
explicit negation (originally called “classical”). Example:

cross ← not train

risky! we cross the railway tracks when no information on train
approaching is available. Compare to:

cross ← −train

we must have the fact that the train is not approaching.

We may represent defaults like

−raining ← summer ,not rainning

Stable models with strong negation are called answer sets. We
just compute stable models and reject those where p,−p occur.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 19 / 67

Semantics

Stable models vs answer sets

We can sometimes be interested in a second negation, strong or
explicit negation (originally called “classical”). Example:

cross ← not train

risky! we cross the railway tracks when no information on train
approaching is available. Compare to:

cross ← −train

we must have the fact that the train is not approaching.

We may represent defaults like

−raining ← summer ,not rainning

Stable models with strong negation are called answer sets. We
just compute stable models and reject those where p,−p occur.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 19 / 67

Semantics

Well-founded model

Operator ΓP is antimonotone (on set inclusion). This implies that
when applied twice, Γ2

P , it becomes a monotonic operator.

It has a least fixpoint lfp(Γ2
P) and a greatest fixpoint gfp(Γ2

P) that
limit the fixpoints of ΓP (i.e., the stable models) from below and
from above.

The well-founded model (WFM) of P is a three-valued
interpretation such that:

atoms in lfp(Γ2
P) are called well-founded;

atoms not in gfp(Γ2
P) are called unfounded;

the rest of atoms would be undefined.

A. Van Gelder, K.A. Ross and J.S. Schlipf. The Well-Founded
Semantics for General Logic Programs. Journal of the ACM 38(3)
pp. 620—650, 1991.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 20 / 67

Semantics

Well-founded model

Operator ΓP is antimonotone (on set inclusion). This implies that
when applied twice, Γ2

P , it becomes a monotonic operator.

It has a least fixpoint lfp(Γ2
P) and a greatest fixpoint gfp(Γ2

P) that
limit the fixpoints of ΓP (i.e., the stable models) from below and
from above.

The well-founded model (WFM) of P is a three-valued
interpretation such that:

atoms in lfp(Γ2
P) are called well-founded;

atoms not in gfp(Γ2
P) are called unfounded;

the rest of atoms would be undefined.

A. Van Gelder, K.A. Ross and J.S. Schlipf. The Well-Founded
Semantics for General Logic Programs. Journal of the ACM 38(3)
pp. 620—650, 1991.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 20 / 67

Semantics

Well-founded model

Operator ΓP is antimonotone (on set inclusion). This implies that
when applied twice, Γ2

P , it becomes a monotonic operator.

It has a least fixpoint lfp(Γ2
P) and a greatest fixpoint gfp(Γ2

P) that
limit the fixpoints of ΓP (i.e., the stable models) from below and
from above.

The well-founded model (WFM) of P is a three-valued
interpretation such that:

atoms in lfp(Γ2
P) are called well-founded;

atoms not in gfp(Γ2
P) are called unfounded;

the rest of atoms would be undefined.

A. Van Gelder, K.A. Ross and J.S. Schlipf. The Well-Founded
Semantics for General Logic Programs. Journal of the ACM 38(3)
pp. 620—650, 1991.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 20 / 67

Semantics

Well-founded model

Operator ΓP is antimonotone (on set inclusion). This implies that
when applied twice, Γ2

P , it becomes a monotonic operator.

It has a least fixpoint lfp(Γ2
P) and a greatest fixpoint gfp(Γ2

P) that
limit the fixpoints of ΓP (i.e., the stable models) from below and
from above.

The well-founded model (WFM) of P is a three-valued
interpretation such that:

atoms in lfp(Γ2
P) are called well-founded;

atoms not in gfp(Γ2
P) are called unfounded;

the rest of atoms would be undefined.

A. Van Gelder, K.A. Ross and J.S. Schlipf. The Well-Founded
Semantics for General Logic Programs. Journal of the ACM 38(3)
pp. 620—650, 1991.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 20 / 67

Semantics

Well-founded model

Why is the WFM interesting for stable models? . . .

Proposition
Any stable model I of P includes all well-founded atoms, and includes
no atom.

Corollary

If there are no undefined atoms, then lfp(Γ2
P) is the only stable model

of P.

Checking whether P has a stable model is an NP-complete
problem [Eiter & Gottlob 93]. Computing WFM(P) takes
polynomial time (quadratic).

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 21 / 67

Semantics

Well-founded model

Why is the WFM interesting for stable models? . . .

Proposition
Any stable model I of P includes all well-founded atoms, and includes
no atom.

Corollary

If there are no undefined atoms, then lfp(Γ2
P) is the only stable model

of P.

Checking whether P has a stable model is an NP-complete
problem [Eiter & Gottlob 93]. Computing WFM(P) takes
polynomial time (quadratic).

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 21 / 67

Semantics

Well-founded model

Why is the WFM interesting for stable models? . . .

Proposition
Any stable model I of P includes all well-founded atoms, and includes
no atom.

Corollary

If there are no undefined atoms, then lfp(Γ2
P) is the only stable model

of P.

Checking whether P has a stable model is an NP-complete
problem [Eiter & Gottlob 93]. Computing WFM(P) takes
polynomial time (quadratic).

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 21 / 67

Semantics

Well-founded model

Why is the WFM interesting for stable models? . . .

Proposition
Any stable model I of P includes all well-founded atoms, and includes
no atom.

Corollary

If there are no undefined atoms, then lfp(Γ2
P) is the only stable model

of P.

Checking whether P has a stable model is an NP-complete
problem [Eiter & Gottlob 93]. Computing WFM(P) takes
polynomial time (quadratic).

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 21 / 67

Semantics

Well-founded model

Computing the WFM: when P is finite, we can just iterate Γ2
P on ∅.

Example: try with program P3

p ← not q
r ← p,not s
s ← not r

and with program P4

p ← not q
r ← p, s
s ← r
t ← r ,not t

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 22 / 67

Semantics

Well-founded model

Computing the WFM: when P is finite, we can just iterate Γ2
P on ∅.

Example: try with program P3

p ← not q
r ← p,not s
s ← not r

and with program P4

p ← not q
r ← p, s
s ← r
t ← r ,not t

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 22 / 67

Semantics

Computing WFM: rewritting approach

An alternative to compute the WFM is using a bottom-up rewritting
technique [Brass,Dix,Freitag,Zukowski 2001].

Rewritting rules:
1. Facts: for any fact p in the program remove p from positive bodies,

and remove rules containing not p in the body. We can also remove
the rest of rules with head p.

2. Non-heads: for any atom p not occurring as a rule head, remove all
not p from bodies and all rules containing p as positive body literal.

3. “Unreachable atoms” (or positive loop detection) : for any p 6∈ ΓP(∅)
remove all rules containing p as positive body literal.

When we exhaust these rules, we get the program remainder.

Proposition
The facts of the program remainder are the well-founded atoms; the
non-head atoms are the unfounded atoms.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 23 / 67

Semantics

Computing WFM: rewritting approach

An alternative to compute the WFM is using a bottom-up rewritting
technique [Brass,Dix,Freitag,Zukowski 2001].

Rewritting rules:
1. Facts: for any fact p in the program remove p from positive bodies,

and remove rules containing not p in the body.

We can also remove
the rest of rules with head p.

2. Non-heads: for any atom p not occurring as a rule head, remove all
not p from bodies and all rules containing p as positive body literal.

3. “Unreachable atoms” (or positive loop detection) : for any p 6∈ ΓP(∅)
remove all rules containing p as positive body literal.

When we exhaust these rules, we get the program remainder.

Proposition
The facts of the program remainder are the well-founded atoms; the
non-head atoms are the unfounded atoms.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 23 / 67

Semantics

Computing WFM: rewritting approach

An alternative to compute the WFM is using a bottom-up rewritting
technique [Brass,Dix,Freitag,Zukowski 2001].

Rewritting rules:
1. Facts: for any fact p in the program remove p from positive bodies,

and remove rules containing not p in the body. We can also remove
the rest of rules with head p.

2. Non-heads: for any atom p not occurring as a rule head, remove all
not p from bodies and all rules containing p as positive body literal.

3. “Unreachable atoms” (or positive loop detection) : for any p 6∈ ΓP(∅)
remove all rules containing p as positive body literal.

When we exhaust these rules, we get the program remainder.

Proposition
The facts of the program remainder are the well-founded atoms; the
non-head atoms are the unfounded atoms.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 23 / 67

Semantics

Computing WFM: rewritting approach

An alternative to compute the WFM is using a bottom-up rewritting
technique [Brass,Dix,Freitag,Zukowski 2001].

Rewritting rules:
1. Facts: for any fact p in the program remove p from positive bodies,

and remove rules containing not p in the body. We can also remove
the rest of rules with head p.

2. Non-heads: for any atom p not occurring as a rule head, remove all
not p from bodies and all rules containing p as positive body literal.

3. “Unreachable atoms” (or positive loop detection) : for any p 6∈ ΓP(∅)
remove all rules containing p as positive body literal.

When we exhaust these rules, we get the program remainder.

Proposition
The facts of the program remainder are the well-founded atoms; the
non-head atoms are the unfounded atoms.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 23 / 67

Semantics

Computing WFM: rewritting approach

An alternative to compute the WFM is using a bottom-up rewritting
technique [Brass,Dix,Freitag,Zukowski 2001].

Rewritting rules:
1. Facts: for any fact p in the program remove p from positive bodies,

and remove rules containing not p in the body. We can also remove
the rest of rules with head p.

2. Non-heads: for any atom p not occurring as a rule head, remove all
not p from bodies and all rules containing p as positive body literal.

3. “Unreachable atoms” (or positive loop detection) : for any p 6∈ ΓP(∅)
remove all rules containing p as positive body literal.

When we exhaust these rules, we get the program remainder.

Proposition
The facts of the program remainder are the well-founded atoms; the
non-head atoms are the unfounded atoms.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 23 / 67

Semantics

Computing WFM: rewritting approach

An alternative to compute the WFM is using a bottom-up rewritting
technique [Brass,Dix,Freitag,Zukowski 2001].

Rewritting rules:
1. Facts: for any fact p in the program remove p from positive bodies,

and remove rules containing not p in the body. We can also remove
the rest of rules with head p.

2. Non-heads: for any atom p not occurring as a rule head, remove all
not p from bodies and all rules containing p as positive body literal.

3. “Unreachable atoms” (or positive loop detection) : for any p 6∈ ΓP(∅)
remove all rules containing p as positive body literal.

When we exhaust these rules, we get the program remainder.

Proposition
The facts of the program remainder are the well-founded atoms; the
non-head atoms are the unfounded atoms.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 23 / 67

Semantics

Computing WFM: rewritting approach

Transformations 1 and 2 (i.e. without loop detection) obtain the
so-called Fitting’s model.

Try the program P5

a ← not b, c
b ← not a
c

d ← not g,e
e ← not g,d
f ← not d

g ← not c
h ← g

Fitting’s model=〈{c}, {g,h}〉. The final program remainder is:

a ← not b
b ← not a

c
f

and so, WFM = 〈{c, f}, {g,h,d ,e}〉. Stable models {c, f ,a} and
{c, f ,b}.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 24 / 67

Semantics

Computing WFM: rewritting approach

Transformations 1 and 2 (i.e. without loop detection) obtain the
so-called Fitting’s model.

Try the program P5

a ← not b, c
b ← not a
c

d ← not g,e
e ← not g,d
f ← not d

g ← not c
h ← g

Fitting’s model=〈{c}, {g,h}〉. The final program remainder is:

a ← not b
b ← not a

c
f

and so, WFM = 〈{c, f}, {g,h,d ,e}〉.

Stable models {c, f ,a} and
{c, f ,b}.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 24 / 67

Semantics

Computing WFM: rewritting approach

Transformations 1 and 2 (i.e. without loop detection) obtain the
so-called Fitting’s model.

Try the program P5

a ← not b, c
b ← not a
c

d ← not g,e
e ← not g,d
f ← not d

g ← not c
h ← g

Fitting’s model=〈{c}, {g,h}〉. The final program remainder is:

a ← not b
b ← not a

c
f

and so, WFM = 〈{c, f}, {g,h,d ,e}〉. Stable models {c, f ,a} and
{c, f ,b}.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 24 / 67

Semantics

ASP

Most ASP solvers (DLV, smodels, clasp) alternate computation of
WFM and nondeterministic choice with backtracking.

1. Compute the WFM
2. If no undefined atoms: stable model found.
3. Else: select an undefined atom p (using some heuristics) and

branch: p; not p. Simplify the program accordingly to the choice
and go to 1.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 25 / 67

Semantics

Clark’s completion

Idea: the only way of making a predicate true is through its
defining rules.

Example:
p :- q, not r.
p :- s.
This program classically implies p ← (q ∧ ¬r) ∨ s. But atom p can
only be true when body q ∧ ¬r or body s become true. That is we
complete the other direction of implication p → (q ∧ ¬r) ∨ s.

[K. L. Clark 1978] COMP[P] is the classical theory consisting of:

p ↔ B1 ∨ · · · ∨ Bn

for each atom p, and all rules p ← Bi in P.
An empty disjunction is ⊥.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 26 / 67

Semantics

Clark’s completion

Idea: the only way of making a predicate true is through its
defining rules.

Example:
p :- q, not r.
p :- s.

This program classically implies p ← (q ∧ ¬r) ∨ s. But atom p can
only be true when body q ∧ ¬r or body s become true. That is we
complete the other direction of implication p → (q ∧ ¬r) ∨ s.

[K. L. Clark 1978] COMP[P] is the classical theory consisting of:

p ↔ B1 ∨ · · · ∨ Bn

for each atom p, and all rules p ← Bi in P.
An empty disjunction is ⊥.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 26 / 67

Semantics

Clark’s completion

Idea: the only way of making a predicate true is through its
defining rules.

Example:
p :- q, not r.
p :- s.
This program classically implies p ← (q ∧ ¬r) ∨ s.

But atom p can
only be true when body q ∧ ¬r or body s become true. That is we
complete the other direction of implication p → (q ∧ ¬r) ∨ s.

[K. L. Clark 1978] COMP[P] is the classical theory consisting of:

p ↔ B1 ∨ · · · ∨ Bn

for each atom p, and all rules p ← Bi in P.
An empty disjunction is ⊥.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 26 / 67

Semantics

Clark’s completion

Idea: the only way of making a predicate true is through its
defining rules.

Example:
p :- q, not r.
p :- s.
This program classically implies p ← (q ∧ ¬r) ∨ s. But atom p can
only be true when body q ∧ ¬r or body s become true. That is we
complete the other direction of implication p → (q ∧ ¬r) ∨ s.

[K. L. Clark 1978] COMP[P] is the classical theory consisting of:

p ↔ B1 ∨ · · · ∨ Bn

for each atom p, and all rules p ← Bi in P.
An empty disjunction is ⊥.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 26 / 67

Semantics

Clark’s completion

Idea: the only way of making a predicate true is through its
defining rules.

Example:
p :- q, not r.
p :- s.
This program classically implies p ← (q ∧ ¬r) ∨ s. But atom p can
only be true when body q ∧ ¬r or body s become true. That is we
complete the other direction of implication p → (q ∧ ¬r) ∨ s.

[K. L. Clark 1978] COMP[P] is the classical theory consisting of:

p ↔ B1 ∨ · · · ∨ Bn

for each atom p, and all rules p ← Bi in P.

An empty disjunction is ⊥.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 26 / 67

Semantics

Clark’s completion

Idea: the only way of making a predicate true is through its
defining rules.

Example:
p :- q, not r.
p :- s.
This program classically implies p ← (q ∧ ¬r) ∨ s. But atom p can
only be true when body q ∧ ¬r or body s become true. That is we
complete the other direction of implication p → (q ∧ ¬r) ∨ s.

[K. L. Clark 1978] COMP[P] is the classical theory consisting of:

p ↔ B1 ∨ · · · ∨ Bn

for each atom p, and all rules p ← Bi in P.
An empty disjunction is ⊥.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 26 / 67

Semantics

Clark’s completion

Example: let P be the program
p :- q, not r.
p :- s.
t.
q :- t

COMP[P] consists of the equivalences:

p ↔ (q ∧ ¬r) ∨ s
q ↔ t
r ↔ ⊥
s ↔ ⊥
t ↔ >

whose only model is {p,q, t}.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 27 / 67

Semantics

Clark’s completion

Example: let P be the program
p :- q, not r.
p :- s.
t.
q :- t

COMP[P] consists of the equivalences:

p ↔ (q ∧ ¬r) ∨ s
q ↔ t
r ↔ ⊥
s ↔ ⊥
t ↔ >

whose only model is {p,q, t}.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 27 / 67

Semantics

Clark’s completion

Example: let P be the program
p :- q, not r.
p :- s.
t.
q :- t

COMP[P] consists of the equivalences:

p ↔ (q ∧ ¬r) ∨ s
q ↔ t
r ↔ ⊥
s ↔ ⊥
t ↔ >

whose only model is {p,q, t}.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 27 / 67

Semantics

Clark’s completion

Semantic counterpart: supported models.

Definition (Supported model)

I is a supported model of P iff I = TP(I).

That is I is a fixpoint of TP , i.e.
I = {p | (p ← B) ∈ P, I |= B}

In the example:
p :- q, not r.
p :- s.
t.
q :- t

TP({p,q, t}) = {p,q, t} (supported), whereas, for instance
TP({p, s}) = {p, t} (non-supported).

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 28 / 67

Semantics

Clark’s completion

Semantic counterpart: supported models.

Definition (Supported model)

I is a supported model of P iff I = TP(I).

That is I is a fixpoint of TP , i.e.
I = {p | (p ← B) ∈ P, I |= B}

In the example:
p :- q, not r.
p :- s.
t.
q :- t

TP({p,q, t}) = {p,q, t} (supported), whereas, for instance
TP({p, s}) = {p, t} (non-supported).

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 28 / 67

Semantics

Clark’s completion

Semantic counterpart: supported models.

Definition (Supported model)

I is a supported model of P iff I = TP(I).

That is I is a fixpoint of TP , i.e.
I = {p | (p ← B) ∈ P, I |= B}

In the example:
p :- q, not r.
p :- s.
t.
q :- t

TP({p,q, t}) = {p,q, t} (supported), whereas, for instance
TP({p, s}) = {p, t} (non-supported).

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 28 / 67

Semantics

Clark’s completion

Theorem
I is a supported model of P iff I |= COMP[P].

Exercise: prove it.

In the previous example, {p,q, t} happens to be the only stable
model. What happens with these typical examples?

p ← not q
q ← not p

and

p ← not p

Yes, supported and stable models coincide! Is this general?

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 29 / 67

Semantics

Clark’s completion

Theorem
I is a supported model of P iff I |= COMP[P].

Exercise: prove it.

In the previous example, {p,q, t} happens to be the only stable
model. What happens with these typical examples?

p ← not q
q ← not p

and

p ← not p

Yes, supported and stable models coincide! Is this general?

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 29 / 67

Semantics

Clark’s completion

Theorem
I is a supported model of P iff I |= COMP[P].

Exercise: prove it.

In the previous example, {p,q, t} happens to be the only stable
model. What happens with these typical examples?

p ← not q
q ← not p

and

p ← not p

Yes, supported and stable models coincide! Is this general?

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 29 / 67

Semantics

Clark’s completion

No: they differ in positive cycles. Consider this extremely simple
example:

p ← p

Completion would be p ↔ p which has two supported models, ∅
and {p}. Only ∅ is stable.

Theorem
Any stable model is supported.

Prove it.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 30 / 67

Semantics

Clark’s completion

No: they differ in positive cycles. Consider this extremely simple
example:

p ← p

Completion would be p ↔ p which has two supported models, ∅
and {p}. Only ∅ is stable.

Theorem
Any stable model is supported.

Prove it.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 30 / 67

Semantics

Clark’s completion

No: they differ in positive cycles. Consider this extremely simple
example:

p ← p

Completion would be p ↔ p which has two supported models, ∅
and {p}. Only ∅ is stable.

Theorem
Any stable model is supported.

Prove it.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 31 / 67

Semantics

Clark’s completion

No: they differ in positive cycles. Consider this extremely simple
example:

p ← p

Completion would be p ↔ p which has two supported models, ∅
and {p}. Only ∅ is stable.

Theorem
Any stable model is supported.

Prove it.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 31 / 67

Semantics

Clark’s completion

If we don’t have these positive cycles, we can define a quite
general class of programs where supported and stable coincide.

Tight programs [Fages 1994][Babovich, Erdem, Lifschitz 2000].

Definition (Tight programs)

P is tight on a set I of atoms if there is some partial ordinal mapping
λ : X → N such that all λ(Bi) < λ(H) for any rule in P like:

H ← B1, . . . ,Bn,not C1, . . . ,not Cm

Theorem
If I is supported model of P and P tight on I, then I is stable model of P.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 32 / 67

Semantics

Clark’s completion

If we don’t have these positive cycles, we can define a quite
general class of programs where supported and stable coincide.

Tight programs [Fages 1994][Babovich, Erdem, Lifschitz 2000].

Definition (Tight programs)

P is tight on a set I of atoms if there is some partial ordinal mapping
λ : X → N such that all λ(Bi) < λ(H) for any rule in P like:

H ← B1, . . . ,Bn,not C1, . . . ,not Cm

Theorem
If I is supported model of P and P tight on I, then I is stable model of P.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 32 / 67

Semantics

Clark’s completion

If we don’t have these positive cycles, we can define a quite
general class of programs where supported and stable coincide.

Tight programs [Fages 1994][Babovich, Erdem, Lifschitz 2000].

Definition (Tight programs)

P is tight on a set I of atoms if there is some partial ordinal mapping
λ : X → N such that all λ(Bi) < λ(H) for any rule in P like:

H ← B1, . . . ,Bn,not C1, . . . ,not Cm

Theorem
If I is supported model of P and P tight on I, then I is stable model of P.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 32 / 67

Semantics

Clark’s completion

Example:

p ← not q q ← not p r ← r p ← r

the completion

p ↔ ¬q ∨ r q ↔ ¬p r ↔ r

has models {p}, {q} and {p, r}, but {p, r} is not tight - only the
first 2 ones are stable.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 33 / 67

Semantics

Loop formulas

We can strengthen completion to obtain stable models by adding
loop formulas [Lin , Zhao 2004].

We define a positive dependency graph G with vertices V = Σ
and edges E , one (p,q) for each rule p ← B with q in the positive
body.

A loop L is a set of atoms forming a Strongly Connected
Component in G.

Given a loop L = {p1, . . . ,pn} its loop formula LF (L) is defined as:

¬(BB1 ∨ · · · ∨ BBn)→ ¬p1 ∧ · · · ∧ ¬pn

where BBi is the disjunction B1 ∨ · · · ∨ Bmi of all bodies for rules in
P like

pi ← Bj

such that not atom in L occurs in the positive body of Bj .

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 34 / 67

Semantics

Loop formulas

We can strengthen completion to obtain stable models by adding
loop formulas [Lin , Zhao 2004].

We define a positive dependency graph G with vertices V = Σ
and edges E , one (p,q) for each rule p ← B with q in the positive
body.

A loop L is a set of atoms forming a Strongly Connected
Component in G.

Given a loop L = {p1, . . . ,pn} its loop formula LF (L) is defined as:

¬(BB1 ∨ · · · ∨ BBn)→ ¬p1 ∧ · · · ∧ ¬pn

where BBi is the disjunction B1 ∨ · · · ∨ Bmi of all bodies for rules in
P like

pi ← Bj

such that not atom in L occurs in the positive body of Bj .

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 34 / 67

Semantics

Loop formulas

We can strengthen completion to obtain stable models by adding
loop formulas [Lin , Zhao 2004].

We define a positive dependency graph G with vertices V = Σ
and edges E , one (p,q) for each rule p ← B with q in the positive
body.

A loop L is a set of atoms forming a Strongly Connected
Component in G.

Given a loop L = {p1, . . . ,pn} its loop formula LF (L) is defined as:

¬(BB1 ∨ · · · ∨ BBn)→ ¬p1 ∧ · · · ∧ ¬pn

where BBi is the disjunction B1 ∨ · · · ∨ Bmi of all bodies for rules in
P like

pi ← Bj

such that not atom in L occurs in the positive body of Bj .

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 34 / 67

Semantics

Loop formulas

We can strengthen completion to obtain stable models by adding
loop formulas [Lin , Zhao 2004].

We define a positive dependency graph G with vertices V = Σ
and edges E , one (p,q) for each rule p ← B with q in the positive
body.

A loop L is a set of atoms forming a Strongly Connected
Component in G.

Given a loop L = {p1, . . . ,pn} its loop formula LF (L) is defined as:

¬(BB1 ∨ · · · ∨ BBn)→ ¬p1 ∧ · · · ∧ ¬pn

where BBi is the disjunction B1 ∨ · · · ∨ Bmi of all bodies for rules in
P like

pi ← Bj

such that not atom in L occurs in the positive body of Bj .

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 34 / 67

Semantics

Loop formulas

Example:

a← b b ← a a← not c
c ← d d ← c c ← not a

Completion COMP[P] is:

a↔ ¬c ∨ b b ↔ a c ↔ ¬a ∨ d d ↔ c

has 3 models {a,b}, {c,d}, {a,b, c,d}.

Loops L1 = {a,b} and L2 = {c,d}. Loop Formulas:

LF (L1) : c → ¬a ∧ ¬b
LF (L2) : a→ ¬c ∧ ¬d

Adding them to COMP[P] leaves {a,b} and {c,d} as only stable
models.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 35 / 67

Semantics

Loop formulas

Example:

a← b b ← a a← not c
c ← d d ← c c ← not a

Completion COMP[P] is:

a↔ ¬c ∨ b b ↔ a c ↔ ¬a ∨ d d ↔ c

has 3 models {a,b}, {c,d}, {a,b, c,d}.

Loops L1 = {a,b} and L2 = {c,d}. Loop Formulas:

LF (L1) : c → ¬a ∧ ¬b
LF (L2) : a→ ¬c ∧ ¬d

Adding them to COMP[P] leaves {a,b} and {c,d} as only stable
models.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 35 / 67

Semantics

Loop formulas

Example:

a← b b ← a a← not c
c ← d d ← c c ← not a

Completion COMP[P] is:

a↔ ¬c ∨ b b ↔ a c ↔ ¬a ∨ d d ↔ c

has 3 models {a,b}, {c,d}, {a,b, c,d}.

Loops L1 = {a,b} and L2 = {c,d}. Loop Formulas:

LF (L1) : c → ¬a ∧ ¬b
LF (L2) : a→ ¬c ∧ ¬d

Adding them to COMP[P] leaves {a,b} and {c,d} as only stable
models.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 35 / 67

Examples

1 Semantics

2 Examples

3 Extending the syntax: logical interpretation

4 A recent result: minimal logic programs

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 36 / 67

Examples

Introducing variables

Programs with variables in ASP are understood as abbreviations
of their ground cases.

Keypoint: use of functions was typically forbidden. The
introduction of a function f makes the Herbrand universe infinite
f (c), f (f (c)), f (f (f (c))),

This restriction is being overcome:
lparse allows functors, but their nesting is limited (no lists, for
instance).

More recently, DLV complex allows functions (lists, sets, etc) for
finitely ground programs, a class of programs with finitely many
answer sets that are finite.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 37 / 67

Examples

Introducing variables

Programs with variables in ASP are understood as abbreviations
of their ground cases.

Keypoint: use of functions was typically forbidden. The
introduction of a function f makes the Herbrand universe infinite
f (c), f (f (c)), f (f (f (c))),

This restriction is being overcome:
lparse allows functors, but their nesting is limited (no lists, for
instance).

More recently, DLV complex allows functions (lists, sets, etc) for
finitely ground programs, a class of programs with finitely many
answer sets that are finite.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 37 / 67

Examples

Introducing variables

Programs with variables in ASP are understood as abbreviations
of their ground cases.

Keypoint: use of functions was typically forbidden. The
introduction of a function f makes the Herbrand universe infinite
f (c), f (f (c)), f (f (f (c))),

This restriction is being overcome:
lparse allows functors, but their nesting is limited (no lists, for
instance).

More recently, DLV complex allows functions (lists, sets, etc) for
finitely ground programs, a class of programs with finitely many
answer sets that are finite.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 37 / 67

Examples

Introducing variables

Programs with variables in ASP are understood as abbreviations
of their ground cases.

Keypoint: use of functions was typically forbidden. The
introduction of a function f makes the Herbrand universe infinite
f (c), f (f (c)), f (f (f (c))),

This restriction is being overcome:
lparse allows functors, but their nesting is limited (no lists, for
instance).

More recently, DLV complex allows functions (lists, sets, etc) for
finitely ground programs, a class of programs with finitely many
answer sets that are finite.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 37 / 67

Examples

Introducing variables

A simple example: Hamiltonian circuits. Find a cyclic path that
visits once each node in a graph.

We have the extensional database describing the graph
node(0). node(1). node(2). node(3).
edge(0,1). edge(1,2). edge(1,3).
edge(2,0). edge(2,3). edge(3,2). edge(3,0).

0 // 1

�����������

2

OO

((
3hh

^^=======

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 38 / 67

Examples

Introducing variables

A simple example: Hamiltonian circuits. Find a cyclic path that
visits once each node in a graph.

We have the extensional database describing the graph
node(0). node(1). node(2). node(3).
edge(0,1). edge(1,2). edge(1,3).
edge(2,0). edge(2,3). edge(3,2). edge(3,0).

0 // 1

�����������

2

OO

((
3hh

^^=======

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 38 / 67

Examples

Introducing variables

Predicate in(X,Y) points out that and edge X→ Y is in the cycle.

We generate arbitrary choices with an auxiliary predicate out.
in(X,Y) :- edge(X,Y), not out(X,Y).
out(X,Y) :- edge(X,Y), not in(X,Y).

Only one outgoing node, only one incoming node:
:- in(X,Y), in(X,Z), Y!=Z.
:- in(X,Z), in(Y,Z), X!=Y.

Disregard disconnected cycles. We use a predicate reached(X)
meaning that X can be reached from an arbitrary fixed node, say 0.
reached(X) :- in(0,X).
reached(Y) :- reached(X), in(X,Y).

and we forbid unreached nodes:
:- node(X), not reached(X)

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 39 / 67

Examples

Introducing variables

Predicate in(X,Y) points out that and edge X→ Y is in the cycle.
We generate arbitrary choices with an auxiliary predicate out.
in(X,Y) :- edge(X,Y), not out(X,Y).
out(X,Y) :- edge(X,Y), not in(X,Y).

Only one outgoing node, only one incoming node:
:- in(X,Y), in(X,Z), Y!=Z.
:- in(X,Z), in(Y,Z), X!=Y.

Disregard disconnected cycles. We use a predicate reached(X)
meaning that X can be reached from an arbitrary fixed node, say 0.
reached(X) :- in(0,X).
reached(Y) :- reached(X), in(X,Y).

and we forbid unreached nodes:
:- node(X), not reached(X)

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 39 / 67

Examples

Introducing variables

Predicate in(X,Y) points out that and edge X→ Y is in the cycle.
We generate arbitrary choices with an auxiliary predicate out.
in(X,Y) :- edge(X,Y), not out(X,Y).
out(X,Y) :- edge(X,Y), not in(X,Y).

Only one outgoing node, only one incoming node:
:- in(X,Y), in(X,Z), Y!=Z.
:- in(X,Z), in(Y,Z), X!=Y.

Disregard disconnected cycles. We use a predicate reached(X)
meaning that X can be reached from an arbitrary fixed node, say 0.
reached(X) :- in(0,X).
reached(Y) :- reached(X), in(X,Y).

and we forbid unreached nodes:
:- node(X), not reached(X)

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 39 / 67

Examples

Introducing variables

Predicate in(X,Y) points out that and edge X→ Y is in the cycle.
We generate arbitrary choices with an auxiliary predicate out.
in(X,Y) :- edge(X,Y), not out(X,Y).
out(X,Y) :- edge(X,Y), not in(X,Y).

Only one outgoing node, only one incoming node:
:- in(X,Y), in(X,Z), Y!=Z.
:- in(X,Z), in(Y,Z), X!=Y.

Disregard disconnected cycles. We use a predicate reached(X)
meaning that X can be reached from an arbitrary fixed node, say 0.
reached(X) :- in(0,X).
reached(Y) :- reached(X), in(X,Y).

and we forbid unreached nodes:
:- node(X), not reached(X)

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 39 / 67

Examples

Introducing variables

Predicate in(X,Y) points out that and edge X→ Y is in the cycle.
We generate arbitrary choices with an auxiliary predicate out.
in(X,Y) :- edge(X,Y), not out(X,Y).
out(X,Y) :- edge(X,Y), not in(X,Y).

Only one outgoing node, only one incoming node:
:- in(X,Y), in(X,Z), Y!=Z.
:- in(X,Z), in(Y,Z), X!=Y.

Disregard disconnected cycles. We use a predicate reached(X)
meaning that X can be reached from an arbitrary fixed node, say 0.
reached(X) :- in(0,X).
reached(Y) :- reached(X), in(X,Y).

and we forbid unreached nodes:
:- node(X), not reached(X)

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 39 / 67

Examples

Introducing variables

Making the call:
lparse -n 0 hamilt.txt | smodels
We obtain two answers:
Answer: 1
Stable Model: in(0,1) in(3,0) in(2,3) in(1,2)
Answer: 2
Stable Model: in(0,1) in(3,2) in(2,0) in(1,3)
False

0 // 1

�����������

2

OO

((
3hh

^^=======

0 // 1

����
2

OO

((
3hh

^^

Answer 1 Answer 2

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 40 / 67

Examples

Reasoning about actions with ASP

An example of action domain.

up1 up2 up3 up1 up2 up3 up1 up2 up3

light light light

toggle1 toggle3

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 41 / 67

Examples

Reasoning about actions with ASP

We begin with some “type declarations”.

time(0..pathlength).
previoustime(0..pathlength-1).
switch(1..3).
#domain previoustime(I).
#domain time(J).
#domain switch(X).
#domain switch(Y).

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 42 / 67

Examples

Reasoning about actions with ASP

% Effect axioms
up(X,true,I+1) :- up(X,false,I), toggle(X,I).
up(X,false,I+1) :- up(X,true,I), toggle(X,I).
light(true,I+1) :- light(false,I), toggle(X,I).
light(false,I+1) :- light(true,I), toggle(X,I).

% Inertia
up(X,true,I+1) :- up(X,true,I), not up(X,false,I+1).
up(X,false,I+1) :- up(X,false,I), not up(X,true,I+1).

light(true,I+1) :- light(true,I),
not light(false,I+1).

light(false,I+1) :- light(false,I),
not light(true,I+1).

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 43 / 67

Examples

Reasoning about actions with ASP

% Constraints: unique value
:- up(X,true,J), up(X,false,J).
:- light(true,J), light(false,J).

% Unique action
:- toggle(X,I), toggle(Y,I), X!=Y.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 44 / 67

Examples

Reasoning about actions with ASP

Prediction example

% switches-predict.txt
% Initial state
light(true,0). up(X,true,0).

% Performed actions
toggle(1,0).

Calling lparse/smodels with

lparse -c pathlength=1 switches.txt
switches-predict.txt | smodels

we get . . .

Answer: 1
Stable Model: up(1,false,1) up(2,true,1) up(3,true,1)
light(false,1) ...

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 45 / 67

Examples

Reasoning about actions with ASP

Postdiction example:

% switches-postdict.txt

% Actions generation
1 { toggle(Z,I) : switch(Z) } 1.

% generate 1 toggle among all switches Z

% Completing facts about the initial situation
1 {up(X,true,0), up(X,false,0)} 1.
1 {light(true,0), light(false,0)} 1.

% Observations
up(3,true,0). light(true,0). toggle(3,1).
light(false,1). up(1,false,1). up(3,true,1).

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 46 / 67

Examples

Reasoning about actions with ASP

Calling lparse with

lparse -c pathlength=1 -n 0 switches.txt
switches-postdict.txt | smodels

we get 6 possible explanations. One of them:

Answer: 1
Stable Model: toggle(1,0) up(2,false,0) up(1,true,0)
up(2,false,1) ...

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 47 / 67

Examples

Reasoning about actions with ASP

Planning example

% switches-plan.txt
% Planning problem

% Actions generation
1 { toggle(Z,I) : switch(Z) } 1.

% Initial state
light(true,0). up(X,true,0).

% Goal state
goal :- light(true,pathlength),up(1,false,pathlength),

up(2,true,pathlength), up(3,false,pathlength).

:- not goal.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 48 / 67

Examples

Reasoning about actions with ASP

Calling lparse with

lparse -c pathlength=1 -n 0 switches.txt
switches-plan.txt | smodels

We don’t get models. After increasing pathlength

lparse -c pathlength=2 -n 0 switches.txt
switches-plan.txt | smodels

we get 2 possible plans

Answer: 1
Stable Model: toggle(1,0) toggle(3,1) ...
Answer: 2
Stable Model: toggle(3,0) toggle(1,1) ...

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 49 / 67

Extending the syntax: logical interpretation

1 Semantics

2 Examples

3 Extending the syntax: logical interpretation

4 A recent result: minimal logic programs

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 50 / 67

Extending the syntax: logical interpretation

Extending the syntax

Disjunctive programs: bodies B as before, but heads allow
disjunctions of atoms:

p1 ∨ · · · ∨ pn ← B

The reduct is defined as before, but note that P I does not have
now a least Herbrand model: only minimal ones. Example:

p ∨ q ← t ,not s t ← not q

Given I = {p, t}, P I is the program:

p ∨ q ← t t ←

whose minimal models are {p, t} (stable) and {q, t} (non-stable).

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 51 / 67

Extending the syntax: logical interpretation

Extending the syntax

Disjunctive programs: bodies B as before, but heads allow
disjunctions of atoms:

p1 ∨ · · · ∨ pn ← B

The reduct is defined as before, but note that P I does not have
now a least Herbrand model: only minimal ones.

Example:

p ∨ q ← t ,not s t ← not q

Given I = {p, t}, P I is the program:

p ∨ q ← t t ←

whose minimal models are {p, t} (stable) and {q, t} (non-stable).

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 51 / 67

Extending the syntax: logical interpretation

Extending the syntax

Disjunctive programs: bodies B as before, but heads allow
disjunctions of atoms:

p1 ∨ · · · ∨ pn ← B

The reduct is defined as before, but note that P I does not have
now a least Herbrand model: only minimal ones. Example:

p ∨ q ← t ,not s t ← not q

Given I = {p, t}, P I is the program:

p ∨ q ← t t ←

whose minimal models are {p, t} (stable) and {q, t} (non-stable).

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 51 / 67

Extending the syntax: logical interpretation

Extending the syntax

The definition is adapted accordingly

Definition (stable model)
I is a stable model of a disjunctive program P if it is a minimal model of
P I .

Finding a stable model of a disjunctive program is slightly more
complex: ΣP

2 -complete.

Tools for disjunctive ASP: DLV, GnT, cmodels.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 52 / 67

Extending the syntax: logical interpretation

Extending the syntax

The definition is adapted accordingly

Definition (stable model)
I is a stable model of a disjunctive program P if it is a minimal model of
P I .

Finding a stable model of a disjunctive program is slightly more
complex: ΣP

2 -complete.

Tools for disjunctive ASP: DLV, GnT, cmodels.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 52 / 67

Extending the syntax: logical interpretation

Extending the syntax

The definition is adapted accordingly

Definition (stable model)
I is a stable model of a disjunctive program P if it is a minimal model of
P I .

Finding a stable model of a disjunctive program is slightly more
complex: ΣP

2 -complete.

Tools for disjunctive ASP: DLV, GnT, cmodels.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 52 / 67

Extending the syntax: logical interpretation

Extending the syntax

Adding default negation in the head [Inoue & Sakama 98]. Rules
H ← B where:

1 Body B = conjunction of literals (as before).

We define:

B = q1 ∧ · · · ∧ qn︸ ︷︷ ︸
B+

∧not qn+1 ∧ · · · ∧ not qm︸ ︷︷ ︸
B−

2 Head H = disjunction of literals. We define:

H = p1 ∨ · · · ∨ pk︸ ︷︷ ︸
H+

∨not pk+1 ∨ · · · ∨ not ps︸ ︷︷ ︸
H−

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 53 / 67

Extending the syntax: logical interpretation

Extending the syntax

Adding default negation in the head [Inoue & Sakama 98]. Rules
H ← B where:

1 Body B = conjunction of literals (as before). We define:

B = q1 ∧ · · · ∧ qn︸ ︷︷ ︸
B+

∧not qn+1 ∧ · · · ∧ not qm︸ ︷︷ ︸
B−

2 Head H = disjunction of literals. We define:

H = p1 ∨ · · · ∨ pk︸ ︷︷ ︸
H+

∨not pk+1 ∨ · · · ∨ not ps︸ ︷︷ ︸
H−

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 53 / 67

Extending the syntax: logical interpretation

Extending the syntax

Adding default negation in the head [Inoue & Sakama 98]. Rules
H ← B where:

1 Body B = conjunction of literals (as before). We define:

B = q1 ∧ · · · ∧ qn︸ ︷︷ ︸
B+

∧not qn+1 ∧ · · · ∧ not qm︸ ︷︷ ︸
B−

2 Head H = disjunction of literals.

We define:

H = p1 ∨ · · · ∨ pk︸ ︷︷ ︸
H+

∨not pk+1 ∨ · · · ∨ not ps︸ ︷︷ ︸
H−

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 53 / 67

Extending the syntax: logical interpretation

Extending the syntax

Adding default negation in the head [Inoue & Sakama 98]. Rules
H ← B where:

1 Body B = conjunction of literals (as before). We define:

B = q1 ∧ · · · ∧ qn︸ ︷︷ ︸
B+

∧not qn+1 ∧ · · · ∧ not qm︸ ︷︷ ︸
B−

2 Head H = disjunction of literals. We define:

H = p1 ∨ · · · ∨ pk︸ ︷︷ ︸
H+

∨not pk+1 ∨ · · · ∨ not ps︸ ︷︷ ︸
H−

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 53 / 67

Extending the syntax: logical interpretation

Extending the syntax

We adapt the definition of reduct as follows:

P I = {H+ ← B+ | I |= B− ∧ ¬H−}

Example: given I = {a,d , c} and program

b ∨ not a ∨ not d ← d ,not e,not h

B− = ¬e ∧ ¬h and ¬H− = ¬(¬a ∨ ¬d) = (a ∧ d).
As I |= B− ∧ ¬H−, its reduct would correspond to:

b ← h

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 54 / 67

Extending the syntax: logical interpretation

Extending the syntax

We adapt the definition of reduct as follows:

P I = {H+ ← B+ | I |= B− ∧ ¬H−}

Example: given I = {a,d , c} and program

b ∨ not a ∨ not d ← d ,not e,not h

B− = ¬e ∧ ¬h and ¬H− = ¬(¬a ∨ ¬d) = (a ∧ d).
As I |= B− ∧ ¬H−, its reduct would correspond to:

b ← h

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 54 / 67

Extending the syntax: logical interpretation

Extending the syntax

Stable models are defined as before: I minimal model of P I .

Example: P is the program

p ∨ ¬p
q ← ¬p

I P I minimal models
∅

q {q} 6= I not stable

{p}

p {p} 6= I stable!

{q}

q {q} stable!

{p,q}

p {p} not stable

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 55 / 67

Extending the syntax: logical interpretation

Extending the syntax

Stable models are defined as before: I minimal model of P I .

Example: P is the program

p ∨ ¬p
q ← ¬p

I P I minimal models
∅

q {q} 6= I not stable

{p}

p {p} 6= I stable!

{q}

q {q} stable!

{p,q}

p {p} not stable

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 55 / 67

Extending the syntax: logical interpretation

Extending the syntax

Stable models are defined as before: I minimal model of P I .

Example: P is the program

p ∨ ¬p
q ← ¬p

I P I minimal models
∅ q {q} 6= I not stable
{p}

p {p} 6= I stable!

{q}

q {q} stable!

{p,q}

p {p} not stable

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 55 / 67

Extending the syntax: logical interpretation

Extending the syntax

Stable models are defined as before: I minimal model of P I .

Example: P is the program

p ∨ ¬p
q ← ¬p

I P I minimal models
∅ q {q} 6= I not stable
{p} p {p} 6= I stable!
{q}

q {q} stable!

{p,q}

p {p} not stable

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 55 / 67

Extending the syntax: logical interpretation

Extending the syntax

Stable models are defined as before: I minimal model of P I .

Example: P is the program

p ∨ ¬p
q ← ¬p

I P I minimal models
∅ q {q} 6= I not stable
{p} p {p} 6= I stable!
{q} q {q} stable!
{p,q}

p {p} not stable

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 55 / 67

Extending the syntax: logical interpretation

Extending the syntax

Stable models are defined as before: I minimal model of P I .

Example: P is the program

p ∨ ¬p
q ← ¬p

I P I minimal models
∅ q {q} 6= I not stable
{p} p {p} 6= I stable!
{q} q {q} stable!
{p,q} p {p} not stable

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 55 / 67

Extending the syntax: logical interpretation

Extending the syntax

Nested expressions [Lifschitz, Tang, Turner 99]:
H and B can be any combination of atoms with ⊥,>,∧,∨,not .

Several transformation rules (we’ll see later) allow reducing nested
expressions to disjunctive programs with negation in the head.

An example: the nested rule

a ∨ not (b ∧ not c)← d ∨ not e

becomes the program:

a ∨ not b ← d ∧ not c
a ∨ not b ← not e ∧ not c

But, which is the semantics for not (a← b) or a← (b ← c) ?

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 56 / 67

Extending the syntax: logical interpretation

Extending the syntax

Nested expressions [Lifschitz, Tang, Turner 99]:
H and B can be any combination of atoms with ⊥,>,∧,∨,not .

Several transformation rules (we’ll see later) allow reducing nested
expressions to disjunctive programs with negation in the head.

An example: the nested rule

a ∨ not (b ∧ not c)← d ∨ not e

becomes the program:

a ∨ not b ← d ∧ not c
a ∨ not b ← not e ∧ not c

But, which is the semantics for not (a← b) or a← (b ← c) ?

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 56 / 67

Extending the syntax: logical interpretation

Extending the syntax

Nested expressions [Lifschitz, Tang, Turner 99]:
H and B can be any combination of atoms with ⊥,>,∧,∨,not .

Several transformation rules (we’ll see later) allow reducing nested
expressions to disjunctive programs with negation in the head.

An example: the nested rule

a ∨ not (b ∧ not c)← d ∨ not e

becomes the program:

a ∨ not b ← d ∧ not c
a ∨ not b ← not e ∧ not c

But, which is the semantics for not (a← b) or a← (b ← c) ?

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 56 / 67

Extending the syntax: logical interpretation

Extending the syntax

Nested expressions [Lifschitz, Tang, Turner 99]:
H and B can be any combination of atoms with ⊥,>,∧,∨,not .

Several transformation rules (we’ll see later) allow reducing nested
expressions to disjunctive programs with negation in the head.

An example: the nested rule

a ∨ not (b ∧ not c)← d ∨ not e

becomes the program:

a ∨ not b ← d ∧ not c
a ∨ not b ← not e ∧ not c

But, which is the semantics for not (a← b) or a← (b ← c) ?

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 56 / 67

Extending the syntax: logical interpretation

Equilibrium Logic

Let us write rules like p ← q,not r in standard logical notation
q ∧ ¬r → p

Equilibrium Logic [Pearce96]: generalises Answer Sets for
arbitrary propositional theories.

Consists of:
1 A non-classical monotonic (intermediate) logic called

Here-and-There (HT)
2 A selection of (certain) minimal models that yields nonmonotonicity

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 57 / 67

Extending the syntax: logical interpretation

Equilibrium Logic

Let us write rules like p ← q,not r in standard logical notation
q ∧ ¬r → p

Equilibrium Logic [Pearce96]: generalises Answer Sets for
arbitrary propositional theories.

Consists of:
1 A non-classical monotonic (intermediate) logic called

Here-and-There (HT)
2 A selection of (certain) minimal models that yields nonmonotonicity

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 57 / 67

Extending the syntax: logical interpretation

Equilibrium Logic

Let us write rules like p ← q,not r in standard logical notation
q ∧ ¬r → p

Equilibrium Logic [Pearce96]: generalises Answer Sets for
arbitrary propositional theories.

Consists of:
1 A non-classical monotonic (intermediate) logic called

Here-and-There (HT)

2 A selection of (certain) minimal models that yields nonmonotonicity

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 57 / 67

Extending the syntax: logical interpretation

Equilibrium Logic

Let us write rules like p ← q,not r in standard logical notation
q ∧ ¬r → p

Equilibrium Logic [Pearce96]: generalises Answer Sets for
arbitrary propositional theories.

Consists of:
1 A non-classical monotonic (intermediate) logic called

Here-and-There (HT)
2 A selection of (certain) minimal models that yields nonmonotonicity

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 57 / 67

Extending the syntax: logical interpretation

Here-and-There

Interpretation = pairs 〈H,T 〉 of sets of atoms H ⊆ T

Intuition: H= true atoms, T = non-false. When H = T we have a
classical model.

Satisfaction of formulas
〈H,T 〉 |= p if p ∈ H (for any atom p)

∧,∨ as always

〈H,T 〉 |= ϕ→ ψ if both

〈H,T 〉 |= ϕ implies 〈H,T 〉 |= ψ
〈T ,T 〉 |= ϕ implies 〈T ,T 〉 |= ψ
This is the same than T |= ϕ→ ψ in classical logic.

Negation ¬F is defined as F → ⊥

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 58 / 67

Extending the syntax: logical interpretation

Here-and-There

Interpretation = pairs 〈H,T 〉 of sets of atoms H ⊆ T

Intuition: H= true atoms, T = non-false. When H = T we have a
classical model.

Satisfaction of formulas
〈H,T 〉 |= p if p ∈ H (for any atom p)

∧,∨ as always

〈H,T 〉 |= ϕ→ ψ if both

〈H,T 〉 |= ϕ implies 〈H,T 〉 |= ψ
〈T ,T 〉 |= ϕ implies 〈T ,T 〉 |= ψ
This is the same than T |= ϕ→ ψ in classical logic.

Negation ¬F is defined as F → ⊥

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 58 / 67

Extending the syntax: logical interpretation

Here-and-There

Interpretation = pairs 〈H,T 〉 of sets of atoms H ⊆ T

Intuition: H= true atoms, T = non-false. When H = T we have a
classical model.

Satisfaction of formulas
〈H,T 〉 |= p if p ∈ H (for any atom p)

∧,∨ as always

〈H,T 〉 |= ϕ→ ψ if both

〈H,T 〉 |= ϕ implies 〈H,T 〉 |= ψ
〈T ,T 〉 |= ϕ implies 〈T ,T 〉 |= ψ

This is the same than T |= ϕ→ ψ in classical logic.

Negation ¬F is defined as F → ⊥

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 58 / 67

Extending the syntax: logical interpretation

Here-and-There

Interpretation = pairs 〈H,T 〉 of sets of atoms H ⊆ T

Intuition: H= true atoms, T = non-false. When H = T we have a
classical model.

Satisfaction of formulas
〈H,T 〉 |= p if p ∈ H (for any atom p)

∧,∨ as always

〈H,T 〉 |= ϕ→ ψ if both

〈H,T 〉 |= ϕ implies 〈H,T 〉 |= ψ
〈T ,T 〉 |= ϕ implies 〈T ,T 〉 |= ψ
This is the same than T |= ϕ→ ψ in classical logic.

Negation ¬F is defined as F → ⊥

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 58 / 67

Extending the syntax: logical interpretation

Here-and-There

Some properties
〈T ,T 〉 |= Γ is the same than T |= Γ in classical logic.

〈H,T 〉 |= Γ implies T |= Γ.

〈H,T 〉 |= ¬ϕ iff T 6|= ϕ in classical logic.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 59 / 67

Extending the syntax: logical interpretation

Here-and-There

Some properties
〈T ,T 〉 |= Γ is the same than T |= Γ in classical logic.

〈H,T 〉 |= Γ implies T |= Γ.

〈H,T 〉 |= ¬ϕ iff T 6|= ϕ in classical logic.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 59 / 67

Extending the syntax: logical interpretation

Here-and-There

Some properties
〈T ,T 〉 |= Γ is the same than T |= Γ in classical logic.

〈H,T 〉 |= Γ implies T |= Γ.

〈H,T 〉 |= ¬ϕ iff T 6|= ϕ in classical logic.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 59 / 67

Extending the syntax: logical interpretation

Equilibrium Logic

Possible alternative description using 3-valued semantics (Gödel’s
logic G3).

Given M = 〈H,T 〉, we can define a 3-valued mapping
M : Atoms 7→ {0,1,2} reading:

2 = (p ∈ H) = true
0 = (p 6∈ T) = false
1 = (p ∈ T \ H) = undefined

∧ returns minimum value, ∨ returns maximum and M(φ→ ψ) = 2
if M(φ) ≤ M(ψ) or returns M(ψ) otherwise.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 60 / 67

Extending the syntax: logical interpretation

Equilibrium Logic

Possible alternative description using 3-valued semantics (Gödel’s
logic G3).

Given M = 〈H,T 〉, we can define a 3-valued mapping
M : Atoms 7→ {0,1,2} reading:

2 = (p ∈ H) = true
0 = (p 6∈ T) = false
1 = (p ∈ T \ H) = undefined

∧ returns minimum value, ∨ returns maximum and M(φ→ ψ) = 2
if M(φ) ≤ M(ψ) or returns M(ψ) otherwise.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 60 / 67

Extending the syntax: logical interpretation

Equilibrium Logic

Possible alternative description using 3-valued semantics (Gödel’s
logic G3).

Given M = 〈H,T 〉, we can define a 3-valued mapping
M : Atoms 7→ {0,1,2} reading:

2 = (p ∈ H) = true
0 = (p 6∈ T) = false
1 = (p ∈ T \ H) = undefined

∧ returns minimum value, ∨ returns maximum and M(φ→ ψ) = 2
if M(φ) ≤ M(ψ) or returns M(ψ) otherwise.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 60 / 67

Extending the syntax: logical interpretation

Equilibrium models

Definition (Equilibrium model)

〈T ,T 〉 is an equilibrium model of a theory Γ if:
〈T ,T 〉 |= Γ, and there is no H ⊂ T such that 〈H,T 〉 |= Γ.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 61 / 67

Extending the syntax: logical interpretation

Equilibrium Logic

Logical techniques available: e.g., methods from many-valued
semantics (tableaux, signed logics,. . .)

Captures all previous syntax extensions, plus other
non-propositional constructions:

weight constraints can be represented as nested expressions
[Ferraris, Lifschitz 2005];

aggregates represented by rules with embedded implications
[Ferraris 2004].

ordered disjunction from [Brewka et al 2004] (LPOD) can also be
captured [Cabalar 2010].

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 62 / 67

Extending the syntax: logical interpretation

Equilibrium Logic

Logical techniques available: e.g., methods from many-valued
semantics (tableaux, signed logics,. . .)

Captures all previous syntax extensions, plus other
non-propositional constructions:

weight constraints can be represented as nested expressions
[Ferraris, Lifschitz 2005];

aggregates represented by rules with embedded implications
[Ferraris 2004].

ordered disjunction from [Brewka et al 2004] (LPOD) can also be
captured [Cabalar 2010].

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 62 / 67

Extending the syntax: logical interpretation

Equilibrium logic

Other interesting features
In nonmonotonic reasoning, we talk about strong equivalence of
Γ1, Γ2 when, for any Π:
Γ1 ∪ Π and Γ2 ∪ Π have the same (selected) models.

Γ1, Γ2 are strongly equivalent iff they are equivalent in HT [Lifschitz
et al 2001].

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 63 / 67

Extending the syntax: logical interpretation

Equilibrium logic

Other interesting features
In nonmonotonic reasoning, we talk about strong equivalence of
Γ1, Γ2 when, for any Π:
Γ1 ∪ Π and Γ2 ∪ Π have the same (selected) models.

Γ1, Γ2 are strongly equivalent iff they are equivalent in HT [Lifschitz
et al 2001].

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 63 / 67

Extending the syntax: logical interpretation

Equilibrium logic

Other interesting features
Disjunctive programs with negation in the head are a (conjunctive)
normal form (CNF) for Equilibrium Logic. [Cabalar & Ferraris
2007].

Theorem
The number of different logic programs (modulo strong equivalence)
that can be built for a finite signature of n atoms is:

n∏
i=0

(
22i−1 + 1

)(n
i)

With n = 2 we get 162, with n = 3 around 5 million.

Transformations into this CNF [Cabalar, Pearce & Valverde 2005].

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 64 / 67

Extending the syntax: logical interpretation

Equilibrium logic

Other interesting features
Disjunctive programs with negation in the head are a (conjunctive)
normal form (CNF) for Equilibrium Logic. [Cabalar & Ferraris
2007].

Theorem
The number of different logic programs (modulo strong equivalence)
that can be built for a finite signature of n atoms is:

n∏
i=0

(
22i−1 + 1

)(n
i)

With n = 2 we get 162, with n = 3 around 5 million.

Transformations into this CNF [Cabalar, Pearce & Valverde 2005].

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 64 / 67

Extending the syntax: logical interpretation

Equilibrium logic

Other interesting features
Equilibrium Logic also covers full First Order Theories with
equality [Pearce & Valverde 2004].

Introduction of partial functions [Cabalar 2008].

Linear temporal equilibrium logic [Cabalar & Pérez 2007].

Equivalent to the extension of reduct [Ferraris 2005] for arbitrary
propositional theories, and general stable model [Ferraris, Lee &
Lifschitz 2007] for first order theories.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 65 / 67

Extending the syntax: logical interpretation

Equilibrium logic

Other interesting features
Equilibrium Logic also covers full First Order Theories with
equality [Pearce & Valverde 2004].

Introduction of partial functions [Cabalar 2008].

Linear temporal equilibrium logic [Cabalar & Pérez 2007].

Equivalent to the extension of reduct [Ferraris 2005] for arbitrary
propositional theories, and general stable model [Ferraris, Lee &
Lifschitz 2007] for first order theories.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 65 / 67

Extending the syntax: logical interpretation

Equilibrium logic

Other interesting features
Equilibrium Logic also covers full First Order Theories with
equality [Pearce & Valverde 2004].

Introduction of partial functions [Cabalar 2008].

Linear temporal equilibrium logic [Cabalar & Pérez 2007].

Equivalent to the extension of reduct [Ferraris 2005] for arbitrary
propositional theories, and general stable model [Ferraris, Lee &
Lifschitz 2007] for first order theories.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 65 / 67

Extending the syntax: logical interpretation

Equilibrium logic

Other interesting features
Equilibrium Logic also covers full First Order Theories with
equality [Pearce & Valverde 2004].

Introduction of partial functions [Cabalar 2008].

Linear temporal equilibrium logic [Cabalar & Pérez 2007].

Equivalent to the extension of reduct [Ferraris 2005] for arbitrary
propositional theories, and general stable model [Ferraris, Lee &
Lifschitz 2007] for first order theories.

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 65 / 67

A recent result: minimal logic programs

1 Semantics

2 Examples

3 Extending the syntax: logical interpretation

4 A recent result: minimal logic programs

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 66 / 67

A recent result: minimal logic programs

Minimal logic programs

Pedro Cabalar (Depto. Computación University of Corunna, SPAIN)ASP July 1, 2010 67 / 67

	Semantics
	Examples
	Extending the syntax: logical interpretation
	A recent result: minimal logic programs

