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1 Uniform probability spaces

1.1 Probability encoded as sets and functions

Consider the following experiment: a box has 4 red balls, 6 blue balls and 10
green balls. We pick a ball at random. What is the probability of that ball being
red? We are taught in school that this should be the number of red balls over the
total number of balls, so 4

20 = 0.2 = 20% and this is indeed true under certain
assumptions. To understand the assumptions we are implicitly making when
doing this computation, we ask the following questions:

• What is a probability as a mathematical object?
• What other questions could we ask without changing the experiment?
• Would the answer be the same if some balls are harder to grasp (e.g. they

are of difference sizes)?

Note that when we ask about a probability, we need to determine the event
whose probability we are interested in – while the probability of a specific event
(e.g. ‘the ball is red’) is a number in [0, 1], the probability on its own, is a map
that attaches to each event a number.

There are three possible outcomes for this experiment: red, blue and green. We
call the set of all possible outcomes sample space, usually denoted by Ω. As a
mathematical object, Ω is any non-empty set – in this case, Ω = {red, blue, green}

We can, however, ask other questions as well. For example, we can ask for
the probability that ‘the ball is either blue or green’ (which would have been
equivalent to ‘ball is not red’). In words, an event is a statement that you can
tell whether it is true or not, after seeing the outcome of the experiment. In this
case, all possible events are

• ‘The ball is none of the three colours or any other colour’ – mathematically,
this will be denoted by the empty set ∅, since it contains none of the
possible outcomes.

• ‘The ball is red’ – denoted by {red}
• ‘The ball is blue’ – denoted by {blue}
• ‘The ball is green’ – denoted by {green}
• ‘The ball is either red or blue’ – denoted by {red, blue}
• ‘The ball is either red or green’ – denoted by {red, green}
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• ‘The ball is either blue or green’ – denoted by {blue, green}
• ‘The ball is any of red, blue or green’ – denoted by {red, blue, green} = Ω.

From this exhaustive list, it is clear that all events are subset of Ω and in fact,
in this case at least, all subsets of Ω are events. We call the collection of all
events the event space (or, more formally, σ-algebra), usually denoted by F . As
a mathematical object, this is a collection of subsets of the sample space – we
will later see that this collection has to satisfy certain properties but for now, we
assume that it includes all subsets, so F = P(Ω), where P denotes the power-set
(collection of all subsets).

We have already argued that the probability, usually denoted by P, is a map
from the event space to numbers [0, 1] – we denote it by P : F → [0, 1]. Using
our intuition, however, we expect that

• P(∅) = 0
• P({red}) = 0.2
• P({blue}) = 0.3
• P({green}) = 0.5
• P({red, blue}) = 0.5
• P({red, green}) = 0.7
• P({blue, green}) = 0.8
• P({red, blue, green}) = 1.

What implicit assumptions are we making when doing these computations, based
on our intuition?

• The probability of the event ∅ that includes no outcomes should be 0.
• The probability of the event Ω that includes all outcomes should be 1.
• When an event can be broken down to the union of two disjoint events,

then its probability should be the sum of the two probabilities, e.g.
P({red, blue}) = P({red}) + P({blue}).

These are fundamental properties that a probability map should have.

In conclusion, the triplet (Ω,F ,P) of sample space Ω, event space F and
probability P form what is called a probability space.
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1.2 Uniform probability space

In the previous example, the way we postulated the probability of each colour
had an implicit assumption: that all balls have the same chance to be chosen.
This is a correct assumption if the balls have the same weight, size, texture, etc.

What if instead coloured red, green or blue, the balls were numbered from 1 to 20?
Under the same assumption (that the balls have the same weight, size, texture,
etc.), we would have Ω = {red1, . . . , red4, blue1, . . . , blue6, green1, . . . , green10}
and P would be so that every ball has the same chance to be picked, that is,
every element ω ∈ Ω would have the same chance. Then, the event ‘ball is red’
would correspond to the event A = {red1, . . . , red4} and we would intuitively
expect that the probability of getting a red ball would be equal to 4

20 , where 4 is
the number of elements in A (and red balls) and 20 is the number of all possible
outcomes.

When each outcome is equally likely, we have a uniform probability space.

Definition 1.1. A uniform probability space is defined as the triplet (Ω,F ,P),
where

• Ω (the sample space) is a non-empty finite set of all possible outcomes of
the experiment;

• F (the event space) is the collection of all events, given by the power-set
P(Ω) of Ω;

• P : F → [0, 1] is a map from the event space to [0, 1], satisfying

− P(∅) = 0,P(Ω) = 1 , (1.1a)

− P(A ∪B) = P(A) + P(B) , for every A,B ∈ F such that A ∩B = ∅

(finite additivity) (1.1b)

− P({ω}) = P({ω̃}) for all ω, ω̃ ∈ Ω (uniform) (1.1c)

As a result of the uniform assumption, computing the probability of any event
comes down to computing the cardinality of the event. Remember that an event
is a set (a subset of the sample space Ω) – the cardinality of a set is the number
of its elements. For a set A ⊆ Ω, it is denoted by |A|.

To formally define cardinality, we first need to define one-to-one correspondence
between two sets: given two sets A, B we say that they are in a one-to-one
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correspondence if there exists a bijective map between them i.e. a function
f : A→ B that is both injective and surjective.

Definition 1.2. A set A has cardinality n ∈ N if it is in a one-to-one
correspondence with {1, 2, . . . , n} and A has cardinality 0 if A = ∅.

Proposition 1.1. Let (Ω,F ,P) be a uniform probability space. Then for all
ω ∈ Ω

P({ω}) = 1
|Ω| , (1.2)

and for all A ⊆ Ω (A ∈ F)

P(A) = |A|
|Ω| . (1.3)

Proof. Since ∀ω1, ω2 ∈ Ω, P({ω1}) = P({ω2}), let p ∈ [0, 1] s.t.

p := P({ω}) ∀ω ∈ Ω .

Since P is a probability measure

1 = P(Ω) =
∑
ω∈Ω

P({w})] by (1.1b)

=
∑
ω∈Ω

p = p
∑
ω∈Ω

1 = p|Ω| .

Therefore
p = 1
|Ω| .

showing (1.2). We see that (1.3) follows from (1.1b), as

P(A) =
∑
ω∈A

P({ω}), by (1.1b)

=
∑
ω∈A

p = p
∑
ω∈A

1 = p|A| = |A|
|Ω| .

Exercise 1.1. Consider an urn with 50 balls numbered 1 to 50. Assume that
they are drawn uniformly at random. After defining a suitable probability space,
determine the probability that the first ball drawn shows a number divisible by
12.
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Solution: Define (Ω,F ,P) as follows: Ω = {1, 2, 3, . . . , 50}, F = P(Ω) and P the
uniform probability measure. Then the event in question is

E = {12, 24, 36, 48} .

By Proposition 1.1 (1.3)

P(E) = |E|
|Ω| = 4

50 = 2
25 .

2 How to count

2.1 Basics of combinatorics

In general, formula (1.3) says that, in order to compute probabilities, we need
to count. This section digs deeper into the problem of counting.

Example 2.1. If there are 30 people in a room, what is the probability of at
least two of them to have the same birthday? (Assume that no one is born on
February 29 and that any day has the same chance of being anyone’s birthday).

To answer the question in Example 2.1, we need to compute the cardinality
of the set of all possible combinations of birthdays as well as the cardinality
of the set of all possible combination of birthdays where at least two are the
same. How do we do that? We will need to use the the fundamental counting
principle, which allows us to compute cardinalities of large and complex sets,
where explicit counting is not possible.

First we start by identifying the fundamental rules of counting:

Correspondence Rule If A and B are in a one-to-one correspondence then
|A| = |B|.

Addition Rule If A1, . . . , An are pairwise disjoint subsets of some set then∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣ =
n∑
i=1
|Ai| .

Fundamental Counting Principle Suppose that the elements of a finite set
E can be determined in k successive steps, with n1 possible choices for
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step 1, n2 possible choices for step 2, . . . , nk possible choices for step k.
Suppose also that different choices lead to different elements. Then

|E| = n1 · n2 · · · · · nk .

The set of all combinations of birthdays of 30 people appearing in Example 2.1 is
an example of a set of ordered k-tuples of elements of a given set. More generally,
this is defined as follows:

Definition 2.1. Let A be a finite set of cardinality n ∈ N. A sequence of length
k ∈ N of elements of A is an ordered k-tuple (a1, . . . , ak) s.t. ai ∈ A, i = 1, 2, . . . k.
We denote by Sn,k(A) the set of all sequences of length k of elements of A.

By “ordered" we mean that the order of the sequence matters, for example:
(a1, a2) 6= (a2, a1). Note also that repetitions of elements are allowed, for example
(1, 1) is a sequence of length 2 of elements of {1}.

Proposition 2.1. Let A be a finite set of cardinality n ∈ N. The set Sn,k(A) of
all sequences of length k ∈ N of elements of A has cardinality nk, i.e.

|Sn,k(A)| = nk

Proof. To construct an arbitrary element (a1, a2, . . . , ak) of Sn,k(A), we perform
the following steps

(a) choose the first value a1. There are n1 = |A| = n ways to do this.
(b) choose the second value a2. There are n2 = |A| = n ways to do this.

...

k. I choose the kth value ak. There are nk = |A| = n ways to do this.

Thus we find

|Sn,k(A)| = n1 · n2 · · · · · nk = n · n · · · · · n︸ ︷︷ ︸
k times

= nk .

To complete the Example 2.1, we also need to compute the cardinality of the

14



set of all possible birthdays where at least two are the same. It is easier and
equivalent (why?) to compute the cardinality of the set where no two birthdays
are the same. As there cannot be any repetition, this is an example of an ‘ordering
of length 30 of elements of {1, . . . , 365}. More generally, we define orderings of
length k as follows:

Definition 2.2. Let A be a finite set of cardinality n ∈ N and let k ∈ N such
that k 6 n. An ordering of length k of elements of A is a sequence of length k of
elements of A with no repetitions. We denote the set of orderings of length k of
elements of A by On,k(A). Thus we have

On,k(A) = {(a1, . . . , ak) : ai ∈ A ∀i = 1, . . . , k, ai 6= aj ∀i 6= j} .

Proposition 2.2. Let A be a finite set of cardinality n ∈ N and k 6 n. Then

|On,k(A)| = n(n− 1) . . . (n− k + 1) .

Proof. We determine an element of On,k(A) by the following steps:

(a) We choose a1. There are n1 = |A| = n choices for this.
(b) We choose a2 such that a2 6= a1. There are n2 = n− 1 choices for this.
(c) We choose a3 such that a3 6= a2 and a3 6= a1. There are n3 = n− 2 choices

for this.
...

k. We choose ak such that ak 6= ai ∀ i = 1, 2, . . . , k − 1. There are nk =
n− (k − 1) choices for this.

By the fundamental counting principle

|On,k(A)| = n1n2 . . . nk = n(n− 1) . . . (n− k + 1) .

Example 2.2 (continued). We can now answer the question of Example 2.1.
First, we compute the probability that no two people have the same birthday,
corresponding to event B. As discussed above, B is an ordering of length 30
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(k = 30 from a set of cardinality 365 (n = 365), so

P(B) = |B|
|Ω| = 365× · · · × (365− 30 + 1)

36530 ≈ 0.29

The event that at least two people have the same birthday is the complement of
event B, so the probability that at least two out of the 30 people have the same
birthday will be close to 71%.

Remarks. We read n! as n factorial. The following hold:

• n! is the product of the first n natural numbers and by assumption 0! = 1.
• n! is the number of ways in which we can order the elements of a set of

cardinality n or equivalently the number of ways to put the elements of a
set of cardinality n in a row.

• n(n− 1) . . . (n− k + 1) = n!
(n−k)! is the number of ways to put k elements

of a set of cardinality n in a row.

Example 2.3. Now we consider a slightly different question to that of Example 2.1:
what is the probability that exactly two people in the room with the same
birthday? To construct such an example, we would need to

1. Choose the two people that have the same birthday.
2. Choose a day for their birthday.
3. Choose a day for everyone else’s birthday, so that no other birthdays are

the same.

In how many ways can we choose the two people that have the same birthday?
We need to choose two numbers from C = {1, . . . , 30} – this will be a sequence
of length 2 with no repetition, but what is different to what we had before is
that the order doesn’t matter. Whether it is (1, 2) or (2, 1), it is still the same
pair of people with the same birthday! To correct for that, we need to divide
by all possible ways we can order the two elements – each such way will be a
sequence of length 2 with no repetition, but now we are choosing from a set of
just two points, so the set of all possibilities is O2,2. This gives

|O30,2|
|O2,2|

= 30× 29
2! = 30!

28!2! .

We denote this by
(30

2
)
. Now, back to our question: we have computed the

number of ways we can pick the two people with the same birthday. There are
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are 365 ways to choose their birthday. For their remaining 28 people, there will
be 364× · · · × (365− 28) ways of picking their birthdays since they all need to
be different. So, the total number of ways of selecting an outcome in the event
‘exactly two people have the same birthday’ is

30!
28!2!365× 364× · · · × (365− 28).

Finally, to compute the probability of exactly two people having the same
birthday, we need to divide by the cardinality of all possible birthday combinations
given by 36530, which gives approximately 0.38 or 38%.

Choosing two people from a set of 30 is an example of a combination of 2 elemnts
of {1, . . . , 30}. More generally, we can ask for the number of combinations of k
elements of a finite set A.

Definition 2.3. Let A be a finite set of cardinality n ∈ N. A combination of k
elements of A is a subset of A with k elements. We denote by Cn,k(A) the set of
combinations of k elements of A.

Proposition 2.3. Let A be a finite set of cardinality n ∈ N and k 6 n. Then

|Cn,k(A)| =
(
n

k

)
= n!
k!(n− k)! .

Proof. Notice that an ordering of length k of elements of A can be obtained
uniquely by the following steps

(a) Choose a combination of k elements of A. There are n1 = |Cn,k(A)| choices
for this.

(b) Choose a permutation of these elements. By Corollary 2.1 there are n2 = k!
choices for this.

By the fundamental counting principle,

|On,k(A)| = |Cn,k(A)| · k!.

The above equation can be solved for the only unknown term, giving

|Cn,k(A)| = |On,k(A)|
k! = n!

(n− k)!k! =
(
n

k

)
.
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This concludes the proof.

The number of orderings of length n when the cardinality of the set is also n is
an important spacial case or orderings:

Definition 2.4. Let A be a finite set of cardinality n ∈ N. An ordering of length
n of elements of A is called a permutation of A.

Corollary 2.1. Let A be a finite set of cardinality n ∈ N. Then the number of
permutations of the elements of A is n(n− 1)(n− 2) . . . 1 = n!.

Proof. It suffices to take k = n in Proposition 2.2.

Exercise 2.1. A fair die is tossed 8 times. How many different outcomes can we
have that contain the outcome 2 exactly three times and the outcome 3 exactly
five?

Solution. Each possible outcome is completely determined by specifying
which tosses result to a 2 – the remaining will be 3. For example, outcome
(2, 3, 2, 2, 3, 3, 3, 3) is determined by the subset {1, 3, 4} of set {1, 2, 3, 4, 5, 6, 7, 8},
with the first corresponding to the positions of 2 and the second being the
numbering of all tosses. Thus, to compute the number of possible outcomes, it is
sufficient to compute the number of subsets of size 3 from a set of cardinality 8.
This is exactly C8,3, which is equal to 56.

Example 2.4. Let’s take exercise 2.1 a bit further: how would we compute the
number of outcomes of 8 tosses of a die that contain exactly three 2’s, three 4’s
and two 5’s? As before, an outcome will be completely determined by specifying
the positions of two out of the three possibilities, e.g. 2 and 4. For example,
outcome (2, 4, 5, 2, 2, 5, 4, 4) corresponds to sets A2 = {1, 4, 5} and A4 = {2, 7, 8}
where A2 is the set of positions of outcome 2 and similarly for A4. It follows
that A5 = {3, 6}, as these are the only two positions left.

So, to answer the question, we need to count in how many ways we can pick
a subset of {1, 2, 3, 4, 5, 6, 7, 8} of length 3 and then another subset of length
3 from the remaining 5 elements. We have

(8
3
)
choices for the first set and

(5
3
)

choices for the second. Applying the fundamental counting principle, we get(
8
3

)(
5
3

)
= 8!

5!3!
5!

3!2! = 8!
3!3!2! .
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The above is an example of counting the ways we can split a set into a fixed
number of subsets. To define this formally, we first need to define a partition:

Definition 2.5. Let A be a set of cardinality n ∈ N and r ∈ N such that r 6 n.
A partition of A into r subsets is a family {A1, . . . , Ar} of subsets of A such that

(a) Every subset in the family is non-empty: Ai 6= ∅ ∀ i = 1, 2, . . . , r.
(b) The subsets in the family are pairwise disjoint: Ai ∩ Aj = ∅ ∀ i 6= j,

i, j = 1, 2, . . . , r.
(c) The union of all the subsets in the family is equal to A:

⋃r
i=1Ai = A.

Proposition 2.4. Let A be a finite set with |A| = n. Let r ∈ N, r 6 n. Then
the number of partitions of A into r subsets {A1, . . . , Ar} such that |A1| = k1,
|A2| = k2 . . . , |Ar| = kr (k1 + k2 + · · ·+ kr = n, 1 6 ki 6 n) is given by

n!
k1!k2! . . . kr!

.

Proof. Every partition of A satisfying the assumptions can be uniquely
determined via the following steps:

(a) Choose A1 ⊆ A such that |A1| = k1. There are
(
n
k1

)
choices for this step.

(b) Choose A2 ⊆ A such that |A2| = k2 and A1 ∩A2 = ∅ (which implies that
A2 ⊆ A \A1). There are

(
n−k1
k2

)
choices for this step.

(c) Choose A3 ⊆ A such that |A3| = k3, A3 ∩A2 = ∅ and A3 ∩A1 = ∅ (which
implies that A3 ⊆ A \ (A1 ∪A2)). There are

(
n−k1−k2

k3

)
choices for this step.

...

r. Finally choose the remaining set Ar ⊆ A such that |Ar| = kr and Ai∩Aj =
∅ for all i = 1, 2, . . . , r − 1 (we see that Ar ⊆ A \ (A1 ∪ · · · ∪ Ar)). There
are

(
n−(k1+k2+···+kr−1)

kr

)
choices for this step.

Thus, by the fundamental counting principle the number of partitions of A into r
subsets {A1, A2, . . . , Ar} such that |A1| = k1, . . . , |Ar| = kr with k1 + k2 + · · ·+
kr = n is(
n

k1

)(
n− k1

k2

)
. . .

(
n− (k1 + · · ·+ kr−1)

kr

)

19



= n!
k1!(n− k1)!

(n− k1)!
k2!(n− k1 − k2)! . . .

(n− (k1 + · · ·+ kr−1))!
kr!(n− (k1 + · · ·+ kr))!

= n!
k1!k2! . . . kr!

,

where the last equality comes by cancellation of the fractions and noticing that
(n− (k1 + · · ·+ kr))! = (n− n)! = 0! = 1.

2.2 Sampling

Picking a subset out of a larger set is also called sampling. Sampling allows us
to use information about a small group in order to make an inference on the
properties or preferences of a larger group. It is a fundamental tool in statistics.
When the population is ‘homogeneous’ (every person in the group is likely to
have the same properties or preferences), any sample picked at random (with a
uniform probability) will be representative of the group - we still need to use
advanced mathematical tools to quantify the uncertainty in our inference about
a population, given the size of the sample, but this is the subject for a different
module. What we would like to understand now is how the probability structure
on the samples varies when the population is mixed. To understand the question,
consider the following.

Example 2.5. The lecturer of ST120 wants to know to what extend students
have understood the concept of a probability space. Given the size of the class,
it is not possible to ask every single student. Instead, they want to sample a
small group of students and ask them. How should they pick the students?

A practical solution is to talk to some of the students in the lecture hall. However,
there is a bias - students that come to lectures are more likely to understand
the concepts! So, the lecturer decides to pick at random a number of student ID
numbers and email them and let’s assume that all students reply. This would be
a representative group, if the class was homogeneous. However, we know that the
class consists of two groups of n1 Mathematics students and n2 Computer Science
students. To understand the bias, the lecturer needs to compute the probability
that the group ends up with k1 Mathematics students and k2 Computer Science
students. What would that be?
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There are
(
n1
k1

)
ways to choose k1 Mathematics students and

(
n2
k2

)
to choose k2

Computer Science students. So, the cardinality of the set of all groups of k1

Mathematics students and k2 Computer Science students will be(
n1

k1

)(
n2

k2

)
The cardinality of the set of all groups of k1 +k2 students will be

(
n1+n2
k1+k2

)
. So, the

probability of picking a group with k1 Mathematics students and k2 Computer
Science students is (

n1
k1

)(
n2
k2

)(
n1+n2
k1+k2

) .
The next step would be to use this probability in order to remove the bias, but
they will need to consult the lecturers of more advanced statistics modules on
how to do this!

The above is an example of sampling from a population of size n ∈ N, which has
n1 ∈ N (n1 6 n) individuals of type 1 and n2 = n − n1 individuals of type 2.
We draw a sample of size k < N from the whole population ’at random’ without
replacement (i.e. an individual cannot be picked twice). Then, the probability of
the sample containing k1 individuals of type 1 and k2 = k − k1 individuals of
type 2 is given by (

n1
k1

)(
n2
k2

)(
n
k

) . (2.1)

Exercise 2.2. Construct the uniform probability space corresponding to sampling
without replacement from a population with two types of individuals and prove
(2.1). In other words, give the triplet (Ω,F ,P) such that, by proposition 1.1, all
the events ω ∈ Ω have the same probability. The event of interest ω is the set
of all the combinations containing k1 numbers from 1 to n1 and k2 = k − k1

numbers from n1 + 1 to n.

Example 2.6. Now consider the following problem: an environmental biologist is
studying the weight of a specific species of fish. To do that, they sample from
that fish population, weigh the fish and then release them back to the wild.
Assume that there is no way of knowing that a fish has already been sampled.
Also, assume that the population consists of only two types of fish - male and
female - which have slightly different average weights and this needs to be taken
into consideration when de-biasing.
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If the whole population of fish is n, with n1 male and n2 = n− n1 females and
the sample size is k, what is the probability of having k1 males and k2 females
in the sample?

The difference with this example and example 2.5 is that now individuals can be
picked more than once. As a result, it is no more sufficient to only determine
the positions of type 1 individuals in the sample but we also need to specify
the individuals so that we keep track of the ones chosen repeatedly. So, we go
through the following process:

• Choose the position of males (the remaining positions will be taken by
females) – there are

(
k
k1

)
choices.

• Choose the males that are picked – there are nk1
1 choices.

• Choose the females that are picked – there are nk2
2 choices.

So, the number of different samples with k1 males and k2 females will be(
k

k1

)
nk1

1 n
k2
2 .

Given that the total number of possible samples are nk, the probability of picking
k1 males and k2 females will be given by(

k
k1

)
nk1

1 n
k2
2

nk
=
(
k

k1

) (n1

n

)k1 (
1− n1

n

)k−k1
. (2.2)

The above is an example of sampling from a population of size n ∈ N, which has
n1 ∈ N (n1 6 n) individuals of type 1 and n2 = n − n1 individuals of type 2.
We draw a sample of size k < N from the whole population ’at random’ with
replacement (i.e. an individual can be picked twice). Then, the probability of the
sample containing k1 individuals of type 1 and k2 = k − k1 individuals of type 2
is given by (2.2).

Exercise 2.3. Construct the uniform probability space corresponding to sampling
with replacement from a population with two types of individuals and prove
(2.2). Now the event of interest ω is the set of all the sequences containing k1

numbers from 1 to n1 and k2 = k − k1 numbers from n1 + 1 to n.

Exercise 2.4. The sampling probabilities should not be sensitive to what type
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was deemed ‘1’ and that type was deemed ‘2’. Indeed,(
k

k1

)(n1

n

)k1(
1− n1

n

)k−k1
=
(
k

k2

)(n2

n

)k2(
1− n2

n

)k−k2
.

Assuming that k1 + k2 = k and n1 + n2 = n, check the above identity.

3 Probability spaces

In section 1, we defined a uniform probability space as the triplet (Ω,F ,P),
where Ω is a finite set, F = P(Ω) and P : F → [0, 1] satisfies properties (1.1a) -
(1.1c). We will now generalise the concept of a probability space, to allow for

• Arbitrary sample spaces Ω.
• Event spaces that reflect partial information – it is not necessary or indeed

sometimes possible that F = P(Ω).
• Probability defined on a general event space.

3.1 Sample space and event space

Definition 3.1. A sample space Ω is the set of all possible outcomes of a random
process (or experiment), i.e. a process whose outcome cannot be determined in
advance. It can be any set.

Example 3.1. What is the sample space corresponding to the following processes?

• The flip of a coin: Ω = {H,T}.
• The roll of a die: Ω = {1, 2, 3, 4, 5, 6}.
• The number of emails send by a @google.com address in a year: Ω = N.
• The weight of an apple: Ω = [0, 1].
• The position of a dart thrown onto a square board of size 1: Ω = [0, 1]×[0, 1].
• The price of a Twitter stock in a year: Ω = R.
• The temperature fluctuations at Coventry in 2023: in this case, the sample

space is a whole function, mapping time t to a number in [−50, 50].
• The state of the world in a year! In this case, the sample space cannot

be described, but it exists as a concept and it can be partially observed
through its interaction with processes that can be measured (e.g. it will
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affect interest rates or number of hospital admissions in a certain day in
the future, frequency of extreme weather events etc).

Remark 1. While Ω can be any set in theory, in ST120 we will only consider the
cases where the cardinality of Ω is equal to n, for some n ∈ N (finite state space),
|Ω| = |N| (countable state space) or |Ω| = |R| (uncountable or continuous state
space – to include intervals or Cartesian products of R and its intervals).

As we have already seen in the case of the uniform probability space, events are
subsets of Ω. More generally, an event is a subset of Ω when it is possible to
say whether any given outcome belongs to the set (i.e. ‘the event happened’)
or not, given the information we have about the outcome – note that we don’t
always have full information about the outcome and the event space reflects the
information that we do have. The following example demonstrates exactly this
property of the event space.

Example 3.2. Suppose that I roll a die (Ω = {1, 2, 3, 4, 5, 6}) and I report the
following information to two students: I tell James if the outcome is an even
number or not and I tell Lily the quotient of (ω− 1) divided by two (i.e., I report
0 for {1, 2}, 1 for {3, 4} and 2 for {5, 6}). What are the corresponding event
spaces?

James only knows whether the outcome is odd or even, so he can only tell whether
it belongs to {1, 3, 5} or {2, 4, 6}. Since, by construction of Ω, all outcomes are in
Ω, he can also tell that the outcome is in Ω and not in ∅ – note that both ∅ and Ω
are subsets of Ω. So, the collection of events (i.e. the event space) corresponding
to the information that James has is

FJ = {∅, {1, 3, 5}, {2, 4, 6},Ω} .

(Think about why James cannot tell with certainty whether the outcome is in
any other subset).

Based on the information given to her, Lily will be able to tell whether the
outcome is in {1, 2}, {3, 4} or {5, 6}. She can also tell whether the outcome will be
in {1, 2, 3, 4}, {1, 2, 5, 6} or {3, 4, 5, 6} (e.g. {1, 2, 3, 4} corresponds to the number
reported to Lily being 0 or 1) and she can tell, by default that the outcome will
be in Ω and not in ∅ (the ∅ is defined as the complement of Ω with respect to
Ω, so all points in Ω that are not in Ω, which is of course none! It is easier to
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think about it as the event where the outcome is not in the sample space rather
than the event when nothing happens). So, the event space corresponding to
information given to Lily is

FL = {∅, {1, 2}, {3, 4}, {5, 6}, {1, 2, 3, 4}, {1, 2, 5, 6}, {3, 4, 5, 6},Ω} .

Note that there is redundancy in the way information is encoded in the event
space – information corresponds to knowing simultaneously the answer to ‘event
happened or not’ for all events in the event space but knowing, for example, that
both {1, 2} and {1, 2, 3, 4} have happened allows us to deduce the answer for
everything else. What assumption are we making that allows us to say this?

If A and B are events, then according to out intuition we expect the following
to be events as well:

• A ∩B (Both A and B have happened).
• A ∪B (Either A or B has happened).
• Ac (A has not happened).
• A \B = A ∩Bc (A has happened but B has not).

Notation. When we write Ac, it is implicit that we are taking complement
with a given sample space Ω. A more explicit notation is to write Ω \A.

So, we would like the event space to be closed under the operations of union,
intersection, complement and difference (when we say that a set is closed under
an operation, we mean that if we apply the operation to any elements in the set,
the outcome is still in the set). Is that sufficient? Let us consider the following

Example 3.3. Consider the case where Ω = N (i.e. any natural number can be
the outcome of the random process that we consider) and suppose that we have
sufficient information to say whether event {n} happened or not, for any n ∈ N.
According to our intuition, if we can tell whether any outcome ω belongs to any
set {n} or not (what can you tell for ω when ω ∈ {n}?), then we should also be
able to tell whether ω ∈ {2n|n ∈ N} or not, i.e. we should be able to tell whether
ω is even. So, we would expect

∞⋃
n=0
{2n} = {2n|n ∈ N}
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to be in the event space. We are now making the assumption that the event
space is not just closed to unions but also to unions of countably (i.e infinite but
with cardinality equal to |N|) many sets.

Following our intuition, we define the event space as follows

Definition 3.2. Let Ω be the sample space and F be a collection of subsets of
Ω. F is an event space (also called σ-algebra) if it satisfies

(i) Ω ∈ F .
(ii) if A ⊆ Ω, A ∈ F ⇒ Ac ∈ F (F is closed under compliments).

(iii) if {An : n ∈ N} is such that An ∈ F ∀n then

∞⋃
n=1

An ∈ F .

(F is closed under countable unions.)

Exercise 3.1. Let Ω be a non-empty set and F = P(Ω) i.e. the set of all subsets
of Ω. Then F is an event space on Ω.

Solution. We need to show that F = P(Ω) satisfies the three properties in 3.2.

(i) Ω ⊆ Ω and thus Ω ∈ P(Ω) = F .
(ii) Let A ⊆ Ω, A ∈ F . Then, Ac = Ω \A ⊆ Ω. Thus, Ac ∈ P(Ω) = F .

(iii) Let An be such that An ⊆ Ω, ∀n ∈ N. Then

∞⋃
n=1

An ⊆
∞⋃
n=1

Ω = Ω⇒
∞⋃
n=1

An ∈ P(Ω) = F .

Exercise 3.2. Let A ⊆ Ω be a non-empty subset of Ω. Then

{∅, A,Ac,Ω}

is an event space on Ω.

Solution. We need to show that {∅, A,Ac,Ω} satisfies the three properties in 3.2.

(i) Ω ∈ F by definition.
(ii) We check that the property holds for each event: ∅c = Ω ∈ F , Ac ∈ F ,

(Ac)c = A ∈ F , Ωc = ∅ ∈ F .
(iii) Let {Bn : n ∈ N} be a sequence of subsets of Ω such that Bn ∈ F ∀n. We

go through all possibilities:
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• If all the sets Bn are identical and equal B (so B ∈ F), or there is a
subsequence Bnk of sets that are identical to B with the rest being
all ∅, then

⋃∞
n=1Bn = B ∈ F .

• If at least one of the sets is the sample space (e.g. Bi = Ω, for some
i ∈ N) then

∞⋃
n=1

Bn = Ω

and thus
⋃∞
n=1Bn ∈ F .

• if there is at least one set A and one set Ac, then

Ω = A ∪Ac ⊆
∞⋃
n=1

Bn ⊆ Ω,

where the last relationship follows from the fact that all events are
subsets of Ω. It follows that

⋃∞
n=1Bn = Ω and thus

⋃∞
n=1Bn ∈ F .

Proposition 3.1. Let F be a event space on Ω. Then

(a) F is closed under finite unions.
(b) F is closed under finite intersections.
(c) F is closed under countable intersections.

Proof.

(a) Let A1, . . . , An ∈ F . Set Aj = ∅ ∈ F ∀ j > n, thus An ∈ F ∀n > 1. Since
the empty sets will not contribute to the union, we can show that

n⋃
j=1

Aj =
∞⋃
j=1

Aj ∈ F ,

as F is closed under countable unions.
(b) Let A1, . . . , An ∈ F . We want to show that

⋂n
j=1Aj ∈ F . By De Morgan’s

law (show that every element of one set needs to belong to the other set
as well)

n⋂
j=1

Aj =

 n⋃
j=1

Acj

c

.

Since the event space F is closed under taking complemets, Acj ∈ F , for
every j = 1, . . . , n. Since it is closed under finite unions (statement 1 of
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the proposition, shown above),

n⋃
j=1

Acj ∈ F

By taking complement once more, it follows that
⋂n
j=1Aj ∈ F .

(c) The proof is similar to that of statement 2 above, noting that De Morgan’s
law also holds for countable unions and intersections. That is, we can write

∞⋂
j=1

Aj =

 ∞⋃
j=1

Acj

c

.

3.2 Probability

The last element of the probability space triplet is the probability measure P.
In definition 1.1 of the uniform probability space, we defined the probability
measure as a map from the event space to [0, 1], such that the probability of
the event Ω (‘the outcome is in the sample space) is 1 and for two disjoint
events A,B, P(A∪B) = P(A) + P(B) – the later property can be generalised by
induction to finite additivity: if A1, . . . , An are disjoint events, then

P(
n⋃
i=1

Ak) =
n∑
k=1

P(Ak).

Is this sufficient for infinite probability spaces? Let us consider the following

Example 3.4. Let Ω = N∗ = {1, 2, . . . } be the positive natural numbers and
F = P(Ω). Suppose that P({n}) = 1

2n , for every n > 1. What would we expect
the event {2n|n > 1} (‘the outcome is an even number’) to be?

Intuitively, what we would do is to sum up the probabilities corresponding to
the outcome being even, i.e.

P({2n|n > 1}) =
∞∑
n=1

P({2n}) =
∞∑
n=1

1
22n =

∞∑
n=1

1
4n = 1

3 .

(Note that the event {n} corresponds to ‘the outcome is n’). The computation
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above cannot be justified, unless we extend the property of finite additivity to
also hold for countable unions of disjoint events. Indeed, this is what we do!

Definition 3.3 (Probability measure). Given a sample space Ω and an event
space F , a function P : F → R is called a probability measure if it satisfies

(i) P(B) ∈ [0, 1] for every B ∈ F ;
(ii) P(Ω) = 1;

(iii) (Countable additivity) For every An ∈ F , n > 1 disjoint events (i.e. for all
m,n > such that m 6= n, Am ∩An = ∅,

P

( ∞⋃
n=1

An

)
=
∞∑
n=1

P(An).

We now give the definition of an abstract probability space.

Definition 3.4. A probability space is defined as the triplet (Ω,F ,P), where

• Ω (the sample space) is the set of all possible outcomes of the experiment
(we always assume that it is not empty);

• F is an event space of subsets of Ω.
• P is a probability measure on F .

Proposition 3.2. Let (Ω,F ,P) be a probability space. Then, P has the following
properties

(a) If A,B ∈ F such that A ⊆ B, then

P(B −A) = P(B)− P(A).

Note that B −A = B ∩Ac and is to be interpreted as ‘all elements of B
that are not in A.

(b) For every A ∈ F ,
P(Ac) = 1− P(A).

(c) P(∅) = 0.

Proof.

(a) We write B as the union of the set will those elements in B that are not
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in A and those that are, so B = (B −A) ∪A. By finite additivity

P(B) = P((B −A) ∪A) = P(B −A) + P(A),

which proves the claim.
(b) Using the above property,

P(Ac) = P(Ω−A) = P(Ω)− P(A) = 1− P(A).

(c) P(∅) = P(Ωc) = 1− P(Ω) = 1− 1 = 0.

We can use countable additivity to compute the probability of a union of disjoint
events. How can we compute the probability of any union of events? The following
proposition gives us a way to do this.

Proposition 3.3 (Inclusion-Exclusion Formula). Let (Ω,F ,P) be a probability
space. Then, for any finite collection A1, . . . , An of events in F , we have

P

(
n⋃
k=1

Ak

)
=

n∑
k=1

(−1)k−1
∑

16i1<···<ik6n
P(Ai1 ∩ · · · ∩Aik) .

Remark 2. Formula 3.3 above uses concise notation and is not straight forward
to interpret. To understand it better, let us consider some specific cases.

n = 2

P

( 2⋃
k=1

Ak

)
=

2∑
k=1

(−1)k−1
∑

16i1<···<ik62
P(A1 ∩ · · · ∩Ak)

=
∑

16i62
P(Ai)−

∑
16i1<i262

P(Ai1 ∩Ai2)

= P(A1) + P(A2)− P(A1 ∩A2) .

n = 3

P

( 3⋃
k=1

Ak

)
=

3∑
k=1

(−1)k−1
∑

16i1<···<ik63
P(A1 ∩ · · · ∩Ak)

=
∑

16i63
P(Ai)−

∑
16i1<i263

P(Ai1 ∩Ai2)
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+
∑

16i1<i2<i363
P(Ai1 ∩Ai2 ∩Ai3)

= P(A1) + P(A2) + P(A3)− P(A1 ∩A2)− P(A1 ∩A3)

− P(A2 ∩A3) + P(A1 ∩A2 ∩A3) .

So, the sum
∑

16i1<···<ik62 is to be interpreted as the sum going through
all k-tiples (i1, . . . , ik) of numbers {1, . . . , n} with no repetition (inqualities
are strict). As we have seen in section 2, there are

(
n
k

)
such k-tiples, so the

sum will have
(
n
k

)
summands.

Proof. We will prove the result only for n = 2 (the proof of the induction step
in the general case is similar, but messier!). We write

A1 ∪A2 = (A1 −B) ∪B ∪ (A2 −B),

where B = A1 ∩A2. The sets A1 −B,B,A2 −B are all disjoint, so we can write

P(A1 ∪A2) = P ((A1 −B) ∪B ∪ (A2 −B)) = P(A1 −B) + P(B) + P(A2 −B)

using finite additivity. We know by proposition 3.2 that P((A1 −B) = P(A1)−
P(B) and similarly P(A2 −B) = P(A2)− P(B). Replacing these to the formula
above, we get

P(A1∪A2) = (P(A1)−P(B))+P(B)+(P(A2)−P(B)) = P(A1)+P(A2)−P(B),

which proces the claim.

Proposition 3.4. Let (Ω,F ,P) be a probability space. If A,B ∈ F and A ⊆ B,
then

P(A) 6 P(B) .

Proof. Since A ⊆ B, it follows that P(B − A) = P(B)− P(A) or, equivalently,
P(A) = P(B) − P(B − A) 6 P(B), where the inequality follows from the fact
that probabilities are always non-negative.

Proposition 3.5 (Boole’s inequality). Let (Ω,F ,P) be a probability space. If
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A1, . . . , An ∈ F , then

P

(
n⋃
i=1

Ai

)
6

n∑
i=1

P(Ai) (∗)

Proof. We proceed by induction. For n = 2, notice that

P(A1 ∪A2) = P(A1) + P(A2)− P(A1 ∩A2)︸ ︷︷ ︸
>0

6 P(A1) + P(A2) .

so that (*) holds for n = 2. Assume now (*) holds ∀ j 6 n, then we need to prove
it holds for n+ 1 events. Let A1, . . . , An+1 ∈ F , then arguing as above we have

P

n+1⋃
j=1

Aj

 = P

 n⋃
j=1

Aj

 ∪An+1


= P

 n⋃
j=1

Aj

+ P (An+1)− P

 n⋃
j=1

Aj

 ∩An+1


6 P

 n⋃
j=1

Aj

+ P(An+1)

6
n∑
j=1

P(Aj) + P(An+1) =
n+1∑
j=1

P(Aj) .

4 Conditional probability and independence

4.1 Conditional probability

Example 4.1. Suppose that before rolling a fair die, you bet one pound that the
outcome is 3. Your friend sees the result before you and tells you that the die
shows an even number. Would you continue your bet or withdraw from it? What
about if you are told that the outcome is odd? How does this partial information
about the outcome changes the probability?

We model the probability space corresponding to rolling a fair die by taking
Ω = {1, 2, . . . , 6}, F to be the power set and P as the uniform probability on it.
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Then, the event our friend tells us happened is

B = {2, 4, 6}, and its probability is P(B) = 3
6 = 1

2 > 0

The favourable event for us is

A = {3} and its probability is P(A) = 1
6 .

Knowing that the outcome is even can be interpreted as changing the sample
space from Ω to B. Intuitively, we would assume that the probability on the new
sample space remains uniform, but the probability of each outcome changes from
1
6 to 1

3 since there are now only 3 outcomes. Given that our preferred outcome
3 is not in the new sample space, we would expect the probability of getting
3 to be 0 and thus it would make sense to withdraw from the bet. If, in the
other hand, we were told that the outcome is odd, then we could reformalise the
probability space as one with sample space Bc = {1, 3, 5} and we would expect
the probability of winning the bet to be 1

3 , as it is one of 3 possible outcomes.

What about if we bet on {2, 3}? Then we would be looking at the number of
ways we can still win, divided by the number of outcomes still possible. So,
according to our intuition, we would expect the updated probability given that
event B happened to be

PB(A) = |A ∩B|
|B|

=
( |A∩B||Ω| )

( |B||Ω| )
= P(A ∩B)

P(B) .

But is this a well-defined probability?

Proposition 4.1. Let (Ω,F ,P) be a probability space and B ∈ F s.t. P(B) > 0.
Let PB : F → R such that

PB(A) = P(A|B) = P(A ∩B)
P(B) .

Then PB is a probability measure.

Proof. We need to check that all properties of probability measures are satisfied.

(i) First, we need to show that the PB is defined for every A ∈ F and it takes
values on [0, 1], i.e. PB is a map from F to [0, 1] as it should.
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• Let A ∈ F . We have assumed that B ∈ F and thus A∩B ∈ F as the
event space is closed under intersections. So P(A ∩B) is well defined
and since P(B) > 0, their ratio PB(A) = P(A∩B)

P(B) is well defined.
• A ∩B ⊆ B and thus P(A ∩B) 6 P(B) (proposition 3.4). It follows

that PB(A) 6 1. Similarly, since P(A ∩ B) > 0 and P(B) > 0, it
follows that PB(A) > 0. So, PB(A) ∈ [0, 1].

(ii)

PB(Ω) = P(Ω ∩B)
P(B) = P(B)

P(B) = 1 ,

as required.
(iii) (countable additivity) Let An ∈ F for every n > 1, such that An ∩Am = ∅

for all n 6= m (disjoint events). Then

PB

( ∞⋃
n=1

An

)
= 1

P(B)P
(( ∞⋃

n=1
An

)
∩B

)

= 1
P(B)P

( ∞⋃
n=1

(An ∩B)
)

(**)

Now, since An ∈ F and B ∈ F for all n > 1, it follows that An ∩B ∈ F for all
n > 1. Moreover, the events An ∩B are disjoint. Indeed, for n 6= m

(An ∩B) ∩ (Am ∩B) ⊆ An ∩Am = ∅ .

Since P is a probability measure, it is countably additive, which implies

(**) = 1
P(B)

∞∑
n=1

P(An ∩B) =
∞∑
n=1

P(An ∩B)
P(B) =

∞∑
n=1

P(An|B) =
∞∑
n=1

PB(An) .

Definition 4.1. Let (Ω,F ,P) be a probability space and B ∈ F such that
P(B) > 0. For A ∈ F , the conditional probability of A given B is denoted by
P(A|B) and is defined as

P(A|B) = P(A ∩B)
P(B) (*)

Exercise 4.1. An experiment consists of tossing a fair coin 7 times.
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(a) Describe the probability space associated to it.
(b) Let E be the event corresponding to getting a prime number of heads.

What is P(E)?
(c) Let B be the event “H occurs at least 6 times”. What is P(E|B)?

Solution.

(a) Ω = {(a1, . . . , a7) : ai ∈ {H,T}} = S2,7({H,T}), F the power set of Ω
and P the uniform probability, i.e. P is such that

∀ A ∈ F P(A) = |A|
|Ω| .

Recall that |Ω| = |S2,7({H,T})| = 27.

(b) For i = 1, . . . , 7 let Ai be the event “we get exactly i heads”. The elements
of Ai can be uniquely characterised via the position H appearing in the
sequence. Hence by the fundamental counting principle |Ai| =

(7
i

)
. Thus

P(Ai) = 1
27

(
7
i

)
Now, notice that Ai ∩ Aj = ∅ for i 6= j (no outcome has both i and j

heads) and
E = A2 ∪A3 ∪A5 ∪A7 .

Then, by finite additivity

P(E) = P(A2) + P(A3) + P(A5) + P(A7)

=
(

7
2

)
1
27 +

(
7
3

)
1
27 +

(
7
5

)
1
27 +

(
7
7

)
1
27 = 78

128 .

(c) B is the event “H appears at least 6 times”, so B = A6 ∪A7. Notice that,

P(B) = P(A6) + P(A7) =
(

7
6

)
1
27 +

(
7
7

)
1
27

= 7!
6!1! ·

1
27 + 7!

6!0! ·
1
27 = 7 + 1

27 = 7 + 1
27 = 8

27 = 1
24 > 0 .

Now, we can compute P(E|B). By definition,

P(E|B) = P(E ∩B)
P(B)
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Since E ∩B = (A2 ∪A3 ∪A5 ∪A7) ∩ (A6 ∪A7) = A7, we have

P(E|B) = P(A7)
P(B) =

1
27

1
24

= 24

27 = 1
8 .

Example 4.2. A student buys 2 apples, 3 bananas and 5 coconuts. Every day
the student chooses a fruit uniformly at random and eats it.

The sample space is the set of all triplets that can be constructed with the
available fruits, with each outcome corresponding to the fruit eaten on each day.
Since by the end of the three days we have full information, so the event space is
the power set of the sample space. We define the events Ai = {the student eats
an apple on day i}, Bi = {the student eats a banana on day i} and Ci = {the
student eats a coconut on day i}.

(a) What is the probability that the student eats a coconut in day 1 and a
banana in day 2? The event ‘the student eats a coconut in day 1 and
a banana in day 2’ corresponds to the event C1 ∩ B2. Note that the
way information about the probability is encoded is through conditional
probabilities: the statement ‘every day the student chooses a fruit
uniformly at random and eats it’ can be interpreted as the conditional
probability of choosing any of the remaining fruits uniformly at random,
so we know that

P(B2|C1) = 3
9 .

It follows from the definition of conditional probability that

P(C1 ∩B2) = P(B2|C1)P(C1) = 3
9

5
10 = 1

6 .

Writing the probability of an intersection of two events as a product of
a conditional probability and a probability is called the ‘multiplication
rule’ and can be extended to intersections of more than two events. For
example, let us consider the following question.

(b) What is the probability that on the third day the student will eat the last
apple? Since there are exactly two apples, that means that the student will
it the first apple on either day 1 or day 2. So, if A is the event ‘student
eats last apple on the third day’, we can write

A = (A1 ∩Ac2 ∩A3) ∪ (Ac1 ∩A2 ∩A3) .
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Notice that the events A1∩Ac2∩A3 and Ac1∩A2∩A3 are disjoint, therefore

P(A) = P(A1 ∩Ac2 ∩A3) + P(Ac1 ∩A2 ∩A3)

= P(A1)P(Ac2|A1)P(A3|A1 ∩Ac2) + P(Ac1)P(A2|A1)P(A3|Ac1 ∩A2)

= 2
10 ·

8
9 ·

1
8 + 8

10 ·
2
9 ·

1
8 = 1

45 + 1
45 = 2

45 ,

by using the multiplication rule twice.

Proposition 4.2 (Multiplication Rule). Let (Ω,F ,P) be a probability space and
A1, . . . , An ∈ F s.t. P(A1 ∩ · · · ∩An−1) > 0. Then,

P(A1 ∩ · · · ∩An) = P(A1)P(A2|A1)P(A3|A1 ∩A2) . . .P(An|A1 ∩ · · · ∩An−1) .

Proof. Notice that for k = 1, . . . , n− 1, A1 ∩ · · · ∩Ak ⊃ A1 ∩ · · · ∩An−1. Hence,
by Proposition 3.4 and by assumption

P(A1 ∩A2 ∩ · · · ∩Ak) > P(A1 ∩ · · · ∩An−1) > 0 .

This ensures that all the conditional probabilities at the right hand side are well-
defined. The result follows by a direct application of the definition of conditional
probability on the right-hand-side:

P(A1)P(A2|A1)P(A3|A1 ∩A2) . . .P(An|A1 ∩ · · · ∩An−1)

= P(A1)P(A1 ∩A2)
P(A1)

P(A3 ∩A1 ∩A2)
P(A1 ∩A2) . . .

P(A1 ∩ · · · ∩An)
P(A1 ∩ · · · ∩An−1)

= P(A1 ∩ · · · ∩An) .

4.2 Law of Total Probability

Example 4.3 (4.2 continued). Suppose that we are now asked to compute the
probability that the student eats a coconut on day 2. To compute the probability,
we need to condition on what happened in day 1, but going through all possible
options. In this case, there are two options that affect the computation of the
conditional probability: whether the student also had a coconut on day 1 (event
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C1) or not (event Cc1). So

P(C2) = P(C2|C1) · P(C1) + P(C2|Cc1) · P(Cc1) = 4
9 ·

5
10 + 5

9 ·
5
10 = 1

2 .

Where is this formula coming from? We write

C2 = (C2 ∩ C1) ∪ (C2 ∩ Cc1).

so, from finite additivity, it follows that

P(C2) = P(C2 ∩ C1) + P(C2 ∩ Cc1).

By applying the multiplication rule to the conditional probabilities above, we
get the formula which is a specific example of the law of total probabilities.

The law of total probabilities allows us to compute the probability of an event,
by conditioning on all possible instances of a ‘different event’, or, more formally,
on every set in a partition of the sample space.

Definition 4.2. Let (Ω,F ,P) be a probability space. Let Bn ∈ F for all
n = 1, . . . , N} (where N is either finite or infinite). Then, the collection of all
Bn, {Bn : n = 1, . . . , N}, is called a partition of Ω if

• Bn 6= ∅ ∀ n = 1, . . . , N .
• Bn ∩Bm = ∅ ∀n 6= m

•
⋃N
n=1Bn = Ω.

So, a partition is a collection of non-empty, disjoint events that span the whole
space.

Proposition 4.3 (Law of Total Probability). Let (Ω,F ,P) be a probability space
and {Bn : n = 1, . . . , N} with N is either finite or infinite, be a partition of Ω
such that P(Bn) > 0, ∀ n = 1, . . . , N . Then, for all A ∈ F

P(A) =
N∑
n=1

P(A|Bn)P(Bn) .
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Proof. Notice that since {Bn : n = 1, . . . , N} forms a partition of Ω, we have

A = A ∩ Ω = A ∩
N⋃
n=1

Bn =
N⋃
n=1

(A ∩Bn) .

Further, since Bn’s are disjoint so are {A ∩ Bn : n = 1 . . . N}, therefore by
finite/countable additivity, we have

P(A) = P

(
N⋃
n=1

A ∩Bn

)
=

N∑
n=1

P(A ∩Bn) =
N∑
n=1

P(A|Bn)P(Bn) .

In the last equality we use the definition of conditional probability with the
assumption that P(Bn) > 0 ∀ n = 1, . . . , N .

Example 4.4. A student is faced with a multiple choice question, with 4 choices.
The student either knows the answer or chooses one of the answers uniformly at
random. The probability that the student knows the answer is 2

3 .

(a) The student would like to compute the probability that they answer
correctly. Let us start by defining the events of interest:

A = {student answers correctly}

B = {student knows the answer}

The information we are given about the probability are that ‘the student
either knows the answer (and thus answers correctly’ or ‘chooses one of
the answers uniformly at random’. These can be expressed as P(A|B) = 1
and P(A|Bc) = 1

4 . We are also told that the probability that the student
knows the answer is 2

3 . so P(B) = 2
3 . Given this information, we are asked

to find P(A).
Since B andBc form a partition of the sample space, by applying the law
of total probability we get

P(A) = P(A|B)P(B) + P(A|Bc)P(Bc) = 1 · 2
3 + 1

4 ·
1
3 = 3

4 .

(b) The teacher would like to know the probability that the student knows
the answer if they have answered correctly, so P(B|A). How can we use the
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information we have to derive this? We write

P(B|A) = P(A ∩B)
P(A) = P(A|B)P(B)

P(A) = 2/3
3/4 = 8

9 .

This is a particular example of what is known as Bayes’ formula.

4.3 Bayes’ Theorem

Theorem 4.1 (Bayes’ Theorem). Let (Ω,F ,P) be a probability space and {Bn :
n = 1, . . . , N} with N is either finite or infinite, be a partition of Ω such that
P(Bn) > 0 ∀ n = 1, . . . , N . Then for A ∈ F such that P(A) > 0

P(Bn|A) = P(A|Bn)P(Bn)∑N
j=1 P(A|Bj)P(Bj)

∀ n = 1, . . . , N .

Proof. By definition of conditional probability and since A is such that P(A) > 0
then by the definition of conditional probability and the law of total probability:

P(Bn|A) = P(Bn ∩A)
P(A) = P(A|Bn)P(Bn)

P(A) = P(A|Bn)P(Bn)∑N
j=1 P(A|Bj)P(Bj)

.

Example 4.5 (False Positives). A disease has incidence of 1 in 100 over the
population. The available diagnostic test is such that

• if you have the disease, the test is positive with probability 72
100

• if you don’t have the disease, the test is positive with probability 5
1000 .

A person gets a positive result. What is the probability they actually have the
disease?

The two events of interest are D = {the person has the disease} and P = {the
person tests positive}. We are interested in P(D|P ). The information we are
given is P(D) = 1

100 , P(P |D) = 72
100 and P(P |Dc) = 5

1000 . By Bayes’ Theorem

P(D|P ) = P(P |D)P(D)
P(P |D)P(D) + P(P |Dc)P(Dc) ≈ 0.59 .

Bayes’ theorem allows us to compute the conditional probability of one event,
given another in terms of the reverse conditional probabilities. It is particularly
useful in Statistics, leading to a whole area called Bayesian Statistics: while in
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probability, we are interested in computing probabilities given a ‘model’ (i.e.
sufficient information that determine the probabilities), in statistics, we are
interested in choosing a model, given the events that we observe. Bayes’ theorem
allows us to connect the two.

4.4 Independence

Definition 4.3. Let (Ω,F ,P) be a probability space. We say that events A and
B are independent if P(A ∩B) = P(A) · P(B).

One way to think of independence is that knowledge about occurrence of one of
the events will neither increase nor decrease the chance that the other occurs.
Indeed, assuming that P(B) > 0, you can check that A and B are independent if
and only if P(A|B) = P(A) (exercise!). In particular, if A and B are independent,
then Ac and B are also independent.

Remark 3. The notions of “independent” and “disjoint” events are very different.
In fact, these notions are normally incompatible: two disjoint events are
independent if and only if the probability of one of them is 0 (exercise!).

Definition 4.4. Let (Ω,F ,P) be a probability space and A1, A2, . . . , An be
events. We say that the events A1, . . . , An are pairwise independent if Aj and
Ak are independent for every choice of j and k distinct. We say that the events
A1, . . . , An are mutually independent, if

P(Aj1 ∩Aj2 ∩ · · · ∩Ajk) = P(Aj1)P(Aj2) · · ·P(Ajk)

for every k = 2, . . . , n and every choice of 1 6 j1 < j2 < · · · < jk 6 n.

In case n = 2, pairwise independence is obviously the same as mutual
independence. In case n = 3, pairwise independence means

P(A1 ∩A2) = P(A1)P(A2)

P(A1 ∩A3) = P(A1)P(A3)

P(A2 ∩A3) = P(A2)P(A3).
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whereas mutual independence means

P(A1 ∩A2) = P(A1)P(A2)

P(A1 ∩A3) = P(A1)P(A3)

P(A2 ∩A3) = P(A2)P(A3)

P(A1 ∩A2 ∩A3) = P(A1)P(A2)P(A3).

This illustrates that mutual independence is stronger than pairwise independence.
It is hard to write down the list for larger values of n. For instance, if n = 5,
pairwise independence involves

(5
2
)

= 10 conditions to be checked, and mutual
independence involves 25 − 5− 1 = 26 conditions to be checked.

Example 4.6. Two dice are rolled. Let

A1 = {the first die is even}

A2 = {the second die is odd}

A3 = {sum of the dice is 7}.

These events are pairwise independent, since

P(A1 ∩A2) = 1
4 = P(A1)P(A2)

P(A1 ∩A3) = 1
12 = P(A1)P(A3)

P(A2 ∩A3) = 1
12 = P(A2)P(A3).

That means, for each pair of events in this family, knowledge about occurrence
of one of them will not affect the odds that any of the other two occurs. In
particular, neither A1 or A2 alone will affect the odds of A3. However, knowing
that A1 and A2 both occur will in fact increase the chance that A3 occurs, as

P(A3|A1 ∩A2) = 1
3 6=

1
6 = P(A3).

More formally,

P(A1 ∩A2 ∩A3) = 1
12 6=

1
24 = P(A1 ∩A2 ∩A3) = P(A1)P(A2)P(A3).
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Example 4.7. Toss three fair coins. Consider the events:

A1 = First coin comes up Heads

A2 = Second coin gives the same as the first coin

A3 = Second coin gives the same as the third coin

A4 = Third coms up Tails

Then:
These events are pairwise independent.
A1, A2 and A3 are mutually independent.
A1, A2, A3 and A4 are not mutually independent.

5 Random variables

5.1 Definition

Very often, we are interested in a quantity that is determined as the result of a
given experiment.

For example, consider a game of chance where two dice are rolled and you get
a monetary reward given by the maximum value obtained among the two dice.
How do you model this situation? As usual, each outcome is a pair ω = (ω1, ω2)
where both ω1 and ω2 are in {1, 2, 3, 4, 5, 6}. That is, Ω = {1, 2, 3, 4, 5, 6}2 =
{1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}. The reward is determined by the values of ω1

and ω2 through the following table:

1 2 3 4 5 6
1 £1 £2 £3 £4 £5 £6
2 £2 £2 £3 £4 £5 £6
3 £3 £3 £3 £4 £5 £6
4 £4 £4 £4 £4 £5 £6
5 £5 £5 £5 £5 £5 £6
6 £6 £6 £6 £6 £6 £6

The key word here is ‘determined’: even though the outcome is random, it is
only random because the outcome ω is random.
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Mathematically, this means that the prize X can be written as a function of the
outcome ω. In general, a random variable is a function

X : Ω→ R

from the sample space to the set of real numbers. More formally, we require that
conditions specified in terms of X be random events, that is, events that the
observer can determine whether they occur or not.

Definition 5.1 (Random variable). Let (Ω,F ,P) be a probability space. A
random variable is a function X : Ω→ R such that {ω ∈ Ω : X(ω) 6 a} ∈ F for
every a ∈ R.

In the above example, we can write X explicitly as the function that assigns to
each pair (ω1, ω2) their maximum value, that is X((x, y)) = max{x, y}.

Using this tool, we can make statements such as

P(X = 1) = 1
36 , P(X = 5) = 1

4 , . . .

Notation. For convenience, we will use the shorthand notation

{X = 5} = {ω ∈ Ω : X(ω) = 5}, and P(X = 5) = P({X = 5}), etc.

It is very useful to consider the probability measure on the set of real numbers
induced by a random variable. If we are only interested in the value of X, we
can leave (Ω,F ,P) behind, and take the sample space to be R.

Definition 5.2 (Distribution). The distribution of a random variable X is the
probability measure on R denoted PX and given by

PX(B) = P({ω ∈ Ω : X(ω) ∈ B})

for subsets B in some event space on the set of real numbers.

In the previous example, PX(B) is determined by its values

PX({k}) = 2k − 1
36 , k = 1, 2, 3, 4, 5, 6, PX(R \ {1, 2, 3, 4, 5, 6}) = 0.
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Notation. The event space on R, denoted B(R), is an event space that contains
sets such as {x} and (a, b]. We will not worry about describing B(R) in details.
You can think about this being the collection of all sets that you can obtain by
applying a countable number of set operations (union, intersection, complement)
to intervals.

Remark 4. The space Ω could be more complicated than R. In general,
(R,B(R),PX) can be simpler than (Ω,F ,P). Note that PX was built from P and
X. However, it is not possible to reconstruct (Ω,F ,P) nor X from PX .

Proposition 5.1. The function PX is a probability measure on R.

Proof. Recall Definition 3.3. We check the three conditions:

(i) PX(B) = P(X ∈ B) ∈ [0, 1].
(ii) PX(R) = P({ω ∈ Ω : X(ω) ∈ R}) = P(Ω) = 1.

(iii) If B1, B2, B3, · · · ∈ B(R) are disjoint, then

PX(∪∞n=1Bn) = P({ω : X(ω) ∈ ∪∞n=1Bn})

= P(∪∞n=1{ω : X(ω) ∈ Bn})

=
∑∞
n=1 P({ω : X(ω) ∈ Bn})

=
∑∞
n=1 PX(Bn).

In the above inequalities we used: definition of PX ; that pre-image of the
union is the union of the pre-image; that pre-image of disjoint sets are
disjoint, combined with countable additivity of P; definition of PX .

This proves the proposition.

5.2 Discrete random variables

Definition 5.3 (Discrete random variable). Let (Ω,F ,P) be a probability space
and X be a random variable. We say that X and PX are discrete if there is a
finite or countably infinite set S ⊆ R such that P(X ∈ R \ S) = 0.

Definition 5.4 (Probability mass function). Let (Ω,F ,P) be a probability space
and X be a discrete random variable. We define the probability mass function of

45



X as the function pX : R→ [0, 1] given by

pX(x) = PX({x}).

Note that pX is built from PX , and pX is simpler than PX , because pX takes as
input a number and PX takes as input a set of numbers. We will see below that
it is possible to reconstruct PX from pX in case PX is discrete.

Definition 5.5 (Discrete support). Let (Ω,F ,P) be a probability space and X
be a discrete random variable. We define the discrete support of X, or, more
precisely, the discrete support of its distribution PX , as the set

{x ∈ R : pX(x) > 0}.

As claimed above, in order to study PX , it is enough to know pX .

Proposition 5.2. Let X be a discrete random variable. Then

PX(B) =
∑

x∈B∩DX

pX(x)

for every B ∈ B(R), where DX denotes the discrete support of X.

Notation. Before writing down the proof, we need to explain the meaning of∑
x∈B∩D. Since the set B∩D is countable, we can write B∩D = {x1, x2, x3, . . . },

and we can take
∑
x∈B∩D pX(x) to be

∑∞
k=1 pX(xk). We need to be careful here,

because we used an an arbitrary “enumeration” of B ∩D. However, since the
terms in the sum are non-negative, another enumeration would mean reordering
the terms, and it does not affect the value of the sum.

Proof. By definition of PX being discrete, there is a countable set S ⊆ R such
that PX(Sc) = 0. We can decompose

PX(B) = PX(B ∩ S) + PX(B ∩ Sc).

The second term is zero, because, since B ∩ Sc ⊆ Sc,

0 6 PX(B ∩ Sc) 6 PX(Sc) = 0.
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Hence,

PX(B) = PX(B ∩ S) = PX(∪x∈B∩S{x}) =
∑

x∈B∩S
PX({x}).

If we substitute Dc instead of B in the above formula, we get PX(Dc) =∑
x∈Dc∩S PX({x}) = 0, because PX({x}) = pX(x) = 0 for every x ∈ Dc.

By the same argument,

PX(B) = PX(B ∩D) + PX(B ∩Dc) = PX(B ∩D) =
∑

x∈B∩D
pX(x),

which is what we wanted to prove.

It is convenient to specify the distribution of a random variable by saying what
pX is. When we say “let X be a discrete random variable with probability mass
function such and such,” what do we mean? Does this really describe a random
variable? The next definition and proposition answer this question.

Definition 5.6 (Probability mass function). A function f : R → [0, 1] is a
probability mass function if the set D given by D = {x : f(x) > 0} is countable
and

∑
x∈D f(x) = 1.

Proposition 5.3. Let f : R→ [0, 1] be a probability mass function. Then there
exist a probability space (Ω,F ,P) and a discrete random variable X such that
pX(x) = f(x) for every x ∈ R.

Proof. Take D = {x : g(x) > 0}. Take Ω = R, F = B(R) and

P(B) =
∑

x∈B∩D
f(x).

Finally, take X(x) = x. Then X is a random variable. Moreover,

PX(Dc) =
∑

x∈D∩Dc
f(x) = 0,

because the sum over an empty set always equals zero. So X is a discrete random
variable. Let us check that pX = p.
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For x ∈ D, we have

pX(x) = PX({x}) = P({x}) =
∑

z∈{x}∩D

f(z) =
∑
z∈{x}

f(z) = f(x)

because the sum of a single factor is that factor.

On the other hand, for x ∈ Dc, we have f(x) = 0 and

pX(x) =
∑

z∈{x}∩D

f(z) =
∑
z∈∅

f(z) = 0 = f(x).

Hence, pX = p as claimed, and this completes the proof of the proposition.

5.3 The most common discrete distributions

Definition 5.7 (Bernoulli distribution). We say that a discrete random
variable X has Bernoulli distribution with parameter p ∈ [0, 1], denoted
X ∼ Bernoulli(p), if its probability mass function is

pX(x) =


p, x = 1,

1− p, x = 0,

0, otherwise.

Example 5.1. Let Ω = {H,T} (heads or tails for a coin toss) with P(H) = p

and P(T ) = 1− p, and let X(H) = 1 and X(T ) = 0. Then, X ∼ Bernoulli(p).

Definition 5.8 (Geometric distribution). We say that a discrete random
variable X has geometric distribution with parameter p ∈ (0, 1], denoted
X ∼ Geom(p), if its probability mass function is

pX(x) =

p · (1− p)x−1, x ∈ N,

0, otherwise.

To see that pX is indeed a probability mass function, note that

∞∑
k=0

pX(k) = p ·
∞∑
k=1

(1− p)k−1 = p ·
∞∑
`=0

(1− p)` = p · 1
1− (1− p) = p · 1

p
= 1.
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Random variables having the geometric distribution arise in the following
situation. Suppose that we repeatedly perform trials, each of which can be
a success or a failure. Assume that the trials are independent, and the probability
of success is the same in each of them, equal to p. Then, the number of trials
performed until the first success is obtained has a geometric distribution with
parameter p.

Remark 5. Some rare references use a different definition for the geometric
distribution with parameter p: they take the distribution on N0 (instead of N)
and probability mass function p̃X(k) = p ·(1−p)k, for k ∈ N0. A random variable
with probability mass function p̃X counts the number of failed trials performed
before the first success is obtained. So, in case a success is obtained already in
the first trial, then the number of failed trials is zero.

Example 5.2. We roll a die repeatedly until we roll a 6 for the first time. Let X
be the total number of times we roll the die. Then, X ∼ Geom( 1

6 ).

Definition 5.9 (Binomial distribution). We say that a discrete random
variable X has binomial distribution with parameters n ∈ N0 and p ∈ [0, 1],
denoted X ∼ Binom(n, p), if its probability mass function is

pX(x) =


(
n
x

)
px(1− p)n−x, x ∈ {0, 1, . . . , n},

0, otherwise.

Note that pX is indeed a probability mass function since

1 = (p+ (1− p))n =
n∑
k=0

(
n

k

)
· pk · (1− p)n−k.

Example 5.3. Roll a die ten times, and let X the number of times a 5 or a 6 is
rolled. Then, X ∼ Binom(10, 1

3 ).

Recall that 00 = 1 and 0! = 1.

Definition 5.10 (Poisson distribution). We say that a discrete random
variable X has Poisson distribution with parameter λ > 0, denoted by
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X ∼ Poisson(n, p), if its probability mass function is

pX(x) =

 e−λλx

x! , x ∈ N0,

0, otherwise.

To show that pX is indeed a probability mass function, we compute

∞∑
k=0

pX(k) =
∞∑
k=0

λk

k! · e
−λ = e−λ ·

∞∑
k=0

λk

k! = e−λ · eλ = 1.

Random variables that count rare occurrences among many trials (such as:
number of accidents in a road throughout a year, number of typos in a book
page) typically follow the Poisson distribution. More precisely, a Poisson random
variable can be used to approximate a Binomial(n, p) when n is large, p is small,
and np = λ is fixed. Indeed, if X ∼ Binom(n, p) for p = λ

n , then

P(X = k) =
(
n

k

)
pk(1− p)n−k

= n!
k!(n− k)!

(
λ

n

)k (
1− λ

n

)n−k
= λk

k!
n(n− 1) · · · (n− k + 1)

nk

(
1− λ

n

)n (
1− λ

n

)−k
→ λk

k! e
−λ, for n large

where the approximation follows from the following approximations for large n:

n(n− 1)...(n− k + 1)/nk → 1,
(

1− λ

n

)n
→ e−λ,

λ

n
→ 0 .

Brief review

Probability spaces

Ω – sample space: elements ω ∈ Ω are outcomes, Ω is a non-empty set.

F – event space: elements A ∈ Ω are events (A ⊆ Ω)

Must satisfy three conditions:
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• F 6= ∅
• Ac ∈ F for every A ∈ F
• (∪∞n=1An) ∈ F for every sequence of events A1, A2, A3, . . .

Consequences of these conditions:

• Ω ∈ F (indeed, take A ∈ F , A ∪Ac = Ω)
• ∅ ∈ F (indeed, Ωc = ∅)
• (∩∞n=1An) ∈ F for every sequence of events A1, A2, A3, . . .

(indeed, ∩∞n=1An = (∪∞n=1A
c
n)c)

P – probability measure: P : F → R.

Must satisfy three conditions:

• P(A) > 0 for all A ∈ F
• P(Ω) = 1
• P is countably additive: P(∪∞n=1An) =

∑∞
n=1 P(An)

for every sequence of disjoint events A1, A2, A3, . . .

The triple (Ω,F ,P) is called a probability space.

Example 5.4 (Uniform probability spaces). Ω a finite set, F = P(Ω), P(A) = |A|
|Ω| .

Example 5.5. There is no probability space to model the experiment “pick an
integer at random”. Much as we would like to say that an integer X chosen at
random will be even with probability 1

2 and the last digit in its representation
in decimal will be 7 with probability 1

10 , there is no probability space that
can model that. More precisely, for Ω = Z, F = P(Z), there is no probability
measure P : F → R such that P({j}) = P({k}) for every j, k ∈ Z. Indeed,
if P({j}) > 0 then P(Z) =

∑
x ∈ ZP({x}) = +∞, and if P({j}) = 0 then

P(Z) =
∑
x ∈ ZP({x}) = 0, and in either case P violates the requirements to be

a probability measure, that P(Z) = 1.

Combinatorics

Finite set A, n = |A|.

Sequences of length k of elements of A:

|Sn,k(A)| = nk,
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because in order to specify an element of Sn,k(A) we need to make k choices, in
each choice we have n options.

Permutations (or reordering) of elements of A:

n!,

because we need to make n choices, and each time the number of options
decreases. (read “n factorial”)

Ordering of length k of elements of A:

|On,k(A)| = n!
(n−m)! ,

because we can obtain any element of On,k(A) by permuting the elements of A,
keeping the first m elements, and forgetting about the ordering of the n −m
remaining ones.

Subsets of A having cardinality k:

|Cn,k(A)| =
(
n

k

)
= n!
k!(n− k)! ,

because we can obtain any element of Cn,k(A) by taking the first m elements
in a permutation of A, then keeping the first m elements, and then forgetting
about the ordering of these m elements as well as the n −m remaining ones.
(read “n choose k”)

Decompose of A into labelled sets A1, . . . , Ar such that |Aj | = kj for j = 1, . . . , r,
where k1 + · · ·+ kr = n.

n!
k1!k2! · · · kr!

,

because we can obtain partition by first permuting all elements of A, taking A1

to be the first k1 elements of this permutation, A2 to be the next k2 elements and
so on, and then forgetting about the ordering of each block. This is the number
of ways in which n labelled balls can be distributed into r labelled buckets under
the constraint that, for every j = 1, . . . , r, bucket number j gets kj balls. The
combinations Cn,k(A) are just a particular case of two buckets labelled “in” and
“out”.

To give a more rigorous justification for the terms in the denominator (which
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we called “forget about the ordering”), we can obtain the number by reasoning
backwards, as follows. We will produce a permutation of A = {1, . . . , n} in two
ways. The first way has three steps:

(a) Choose k elements of A to go first, and let the remaining n− k go after.
There are x possibilities.

(b) Permute the first k elements. There are k! possibilities.
(c) Permute the remaining n− k elements. There are (n− k)! possibilities.

In total, there are x · k! · (n− k)! possibilities. The second way is straightforward:
just permute the n elements already, there are n! possibilities. Hence, n! =
x · k! · (n− k)!, so we have just found what x is! Therefore, |Cn,k(A)| = n!

k!(n−k)! .

Sampling

Population with n = n1 + n2 individuals, where n1 are individuals of Type 1
and n2 are individuals of Type 2.

If we take a sample of k individuals, without replacement, then the chance of
picking k1 elements of Type 1 (and thus k2 = k − k1 individuals of Type 2) is(

n1
k1

)
·
(
n2
k2

)(
n
k

) .

This can be obtained by assuming that the individuals were sampled
simultaneously (so |Ω| =

(
n
k

)
) or one after the other (so |Ω| = n!

(n−k)! ), and
both approaches give the same probability (as expected!). Indeed, the second
approach gives (

k
k1

)
n1!

(n1−k1)!
n2!

(n2−k2)!
n!

(n−k)!

which simplifies to the first formula if we expand the first term.

If we take a sample of k individuals, with replacement, then the chance of picking
k1 elements of Type 1 (and thus k2 = k − k1 individuals of Type 2) is(

k

k1

)(n1

n

)k1(
1− n1

n

)k2
.

This can be only be achieved by assuming that the individuals were sampled one
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after the other, so that we can put them back into the population (so |Ω| = nk).
The above formula is obtained after rewriting(

k
k1

)
nk1

1 n
k2
2

nk

in a more convenient (or meaningful) form.

Observe that, if X denotes the number of individuals of Type 1 in the sample
with replacement, then

X ∼ Binom(k, n1
n ),

which can be checked by matching the above formula with the probability mass
function of a binomial random variable.

Random variables

Random variable:
X : Ω→ R

with the requirement that {ω : X(ω) 6 a} ∈ F for every a ∈ R.

The distribution of X is PX : B → R, given by

PX(B) = P({ω : X(ω) ∈ B})

is a probability measure on R, where B is the event space on R.

A random variableX is discrete if there is a countable set S such that PX(Sc) = 0.

For discrete X, we define the probability mass function of X as the function
pX : R→ R given by

pX(x) = PX({x}).

and the discrete support of X as the set {x ∈ R : pX(x) > 0}.

If X is discrete, then
PX(B) =

∑
x∈B∩DX

pX(x)

for all B ∈ B, where DX denotes the discrete support of X.

We say that a function f : R→ R is a probability mass function if f(x) > 0 for
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all x ∈ R, the set {x ∈ R : f(x) > 0} is countable and

∑
x:f(x)>0

f(x) = 1.

Given a probability mass function f , it is possible to construct a probability
space (Ω,F ,P) and a random variable X such that f is the probability mass
function of X.

6 Expectation

If we roll a fair die many times, we expect that each of the six possible outcomes
will appear about one-sixth of the time, and thus the average of the numbers
obtained would be approximately

1
6 · 1 + 1

6 · 2 + 1
6 · 3 + 1

6 · 4 + 1
6 · 5 + 1

6 · 6 = 7
2 .

We call this number 7
2 the expectation of X.

6.1 Definition and examples

Definition 6.1 (Expectation). Let X be a discrete random variable. We define
the expectation of X, denoted E[X], as the real number given by

E[X] =
∑

x:P(X=x)>0

x · P(X = x),

as long as this sum converges absolutely, otherwise E[X] is not defined.

Terminology. To say that
∑
n an converges absolutely means that

∑
n |an|

converges.

Definition 6.2 (Integrable). We say that a discrete random variable X is
integrable if is expectation is defined, that is, if the sum

∑
x:P(X=x)>0

|x| · P(X = x)

is convergent.
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Notation. The fact that E[X] depends on X is made obvious by the fact that
“X” appears in “E[X]” and the fact that that it depends on P is made somewhat
apparent by the fact that “E” and “P” use the same font.

Example 6.1. Toss a fair coin 4 times and count the number of Heads.

E[X] = 0 · P(X = 0) + 1 · P(X = 1) + 2 · P(X = 2) +

+ 3 · P(X = 3) + 4 · P(X = 4)

= 0 · 1
16 + 1 · 4

16 + 2 · 6
16 + 3 · 4

16 + 4 · 1
16

= 2.

Example 6.2 (Indicator function). Let A ∈ F and take X given by

X(ω) =

1, ω ∈ A,

0, ω ∈ Ac.

Such a function is called indicator function of the set A and is denoted 1A. In
this case, E[X] = 0× P(Ac) + 1× P(A) = P(A). That is,

E[1A] = P(A).

Example 6.3. Roll a fair die twice and add the observed values.

E[X] = 2× 1
36 + 3× 2

36 + 4× 3
36 + 5× 4

36 + 6× 5
36 + 7× 6

36 +

+ 8× 5
36 + 9× 4

36 + 10× 3
36 + 11× 2

36 + 12× 1
36 = 7.

Example 6.4. Take 3 cards from a deck of 52, one after the other and without
replacement, and count how many are queens.

E[X] = 0× 48 · 47 · 46
52 · 51 · 50 + 1× 3 · 48 · 47 · 4

52 · 51 · 50 +

+ 2× 3 · 48 · 4 · 3
52 · 51 · 50 + 3× 4 · 3 · 2

52 · 51 · 50 = 3
13 .

Example 6.5 (Poisson). If X ∼ Poisson(λ), then

E[X] =
∞∑
n=0

n
λne−λ

n! =
∞∑
n=1

λne−λ

(n− 1)! =
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= λe−λ
∞∑
n=1

λn−1

(n− 1)! = λe−λ
∞∑
k=0

λk

k! = λe−λeλ = λ.

Therefore, the expectation of a random variable distributed as Poisson(λ) is λ.

Example 6.6 (Binomial). If X ∼ Binom(n, p), then

E[X] =
n∑
k=0

k
(
n
k

)
pk(1− p)n−k =

n∑
k=1

n
(
n−1
k−1
)
pk(1− p)n−k

= n

n−1∑
j=0

(
n−1
j

)
pj+1(1− p)n−j−1 = np

n−1∑
j=0

(
n−1
j

)
pj(1− p)n−1−j

= np[p+ (1− p)]n−1 = np.

Example 6.7 (Geometric). Suppose X ∼ Geom(p). We will compute

E[X] =
∞∑
n=1

n(1− p)n−1p

by differentiating a power series. Writing x = 1− p, to develop as follows:

E[X] =
∞∑
n=1

n · p · (1− p)n−1 = p

∞∑
n=0

n · xn−1

= p

∞∑
n=0

d
dx
[
xn
]

= p · d
dx

[ ∞∑
n=0

xn
]

= p · d
dx

[ 1
1− x

]
= p ·

(
− (1− x)−2

)
· (−1) = 1

p
.

Therefore, the expectation of a random variable distributed as Geom(p) is 1
p .

We know that the power series
∑
n x

n converges if |x| < 1, and we are accepting
a property which says that the power series can be differentiated term by term
within that range.

6.2 Properties of the expectation

In the above examples, 2 = 1
2 + 1

2 + 1
2 + 1

2 , 7 = 7
2 + 7

2 ,
3
13 = 1

13 + 1
13 + 1

13 , and
np = p+ · · ·+ p. This is not a coincidence. It comes from the fact that

E[X + Y ] = E[X] + E[Y ]
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for integrable discrete random variables X and Y .

Theorem 6.1. Let X and Y be integrable discrete random variables defined on
the same probability space (Ω,F ,P). Then:

(1) E[1A] = P(A) for every A ∈ F ,
(2) If 0 6 Z 6 X for all ω ∈ Ω then 0 6 E[Z] 6 E[X],
(3) E[aX + bY ] = aE[X] + bE[Y ].

We say that the expectation is unitary, monotone, and linear.

We will see a proof further down the road.

Example 6.8. In Example 6.1, we can define X1, X2, X3 and X4 as the indicator
function of the events that the first, second, third and forth tosses of the coin
came up Heads, respectively. Since X = X1 +X2 +X3 +X4 we can obtain the
expectation using linearity, as in

E[X] = E[X1] + E[X2] + E[X3] + E[X4] = 1
2 + 1

2 + 1
2 + 1

2 = 2,

instead of computing the probability mass function of X.

Example 6.9. In Example 6.3, observe that X = Y +Z, where Y and Z represent
the result of the first and second dice. Thus

E[X] = E[Y ] + E[Z] = 7
2 + 7

2 = 7.

Example 6.10. In Example 6.4, observe that X = X1 +X2 +X3, where Xk is
the indicator of whether the k-th card is a queen. Unlike the previous examples,
notice that here X1, X2 and X3 are not “independent” (a precise notion of
independence will be introduced further down the road). Nevertheless, each one
of them individually satisfies E[Xk] = 1

13 , and we can compute

E[X] = E[X1] + E[X2] + E[X3] = 3
13 .

Example 6.11. In Example 6.6, observe that X has the same distribution as
X1 + · · ·+Xn, where each Xk is distributed as Bernoulli(p), and therefore

E[X] = E[X1] + · · ·+ E[Xn] = (p+ · · ·+ p) = np.
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In the previous examples, it was easier to compute the expectation using linearity
than using the distribution of X directly. In many other cases, describing the
distribution of X in a way that allows us to compute the expectation can be very
hard or even impractical, but it may still be possible to compute the expectation
using linearity.

Example 6.12. A drawer contains 10 pairs of socks, all different from each other.
Someone opens the drawer in the dark and takes 6 socks from it. What is the
expectation of X, the number of pairs formed by the socks taken? It is more
convenient to suppose that the socks are drawn in order, from 1-st to 6-th. We
will count how many of them has a pair that was also drawn This will give a
number N which is twice the number of pairs, because each pair will be counted
twice, so N = 2X. Now observe that N = X1 + · · · + X6, where Xk = 1Ak

and Ak is the event that pair of the k-th sock taken has also been taken. Then
P(Ak) = 5

19 (exercise!) and thus E[N ] = E[X1] + · · ·+ E[X6] = 6 · 5
19 . Therefore,

E[X] = E[N2 ] = 15
19 . The combinatorics involved in showing that P(Ak) = 5

19 may
not be very easy, but it is much easier than describing the distribution of N .

6.3 Function of a random variable

Proposition 6.1. Let X be a discrete random variable, and let g : R → R be
any function. Then

E[g(X)] =
∑
x∈DX

g(x) · P(X = x),

if this sum converges absolutely, and E[g(X)] is undefined if not. In the sum,
DX denotes the discrete support of X.

Example 6.13. Suppose pX(x) = 1
3 for x = 1, 2, 3. Let us compute E[(X − 2)2]

in two ways. For the function g(x) = (x− 2)2, we want to compute E[g(X)].

The first way goes as follows. Define the random variable Z = g(X) = (X − 2)2,
and compute E[Z] from the definition. We start by computing pZ(0) = P(X ∈
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{2}) = 1
3 and pZ(1) = P(X ∈ {1, 3}) = 2

3 , obtaining the table

z pZ(z)
0 1

3

1 2
3

and finally E[Z] = 0 · 1
3 + 1 · 2

3 = 2
3 . For the second way, just write down

x g(x) pX(x)
1 1 1

3

2 0 1
3

3 1 1
3

and compute E[g(X)] = 1 · 1
3 + 0 · 1

3 + 1 · 1
3 = 2

3 .

Example 6.14. If X ∼ Poisson(λ), then

E[X2] =
∞∑
n=0

n2λ
ne−λ

n! =
∞∑
n=1

n
λne−λ

(n− 1)!

=
∞∑
n=1

λne−λ

(n− 1)! +
∞∑
n=1

(n− 1) λ
ne−λ

(n− 1)!

=
∞∑
n=1

λne−λ

(n− 1)! +
∞∑
n=2

λne−λ

(n− 2)!

= λe−λ
∞∑
n=1

λn−1

(n− 1)! + λ2e−λ
∞∑
n=2

λn−2

(n− 2)!

= λe−λ
∞∑
k=0

λk

k! + λ2e−λ
∞∑
m=0

λm

m!

= λ+ λ2.

Although a lot of algebraic computation was involved, the alternative would be
worse: define Z = X2, describe the discrete support of Z, find an expression for
pZ(z), write E[Z] =

∑
z z · pZ(z) and then try to evaluate the sum.

Example 6.15. Suppose X ∼ Geom(p). As before, we will compute

E[X2] =
∞∑
n=1

n2(1− p)n−1p
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by differentiating two power series. To do that, we write x = 1− p and develop

E[X2] =
∞∑
n=1

n2 · p · xn−1

= p

∞∑
n=1

n · xn−1 + p

∞∑
n=1

n · (n− 1) · xn−1

= p

∞∑
n=0

n · xn−1 + px

∞∑
n=0

n · (n− 1) · xn−2

= p

∞∑
n=0

d
dx [xn] + px

∞∑
n=0

d2

dx2 [xn]

= p · d
dx

[ ∞∑
n=0

xn
]

+ px · d2

dx2

[ ∞∑
n=0

xn
]

= p
1

(1− x)2 + px
2

(1− x)3

= 1
p

+ 2 · 1− p
p2

= 2− p
p2 .

As before, we know that the power series
∑
n x

n converges if |x| < 1, and we are
accepting a property which says that the power series can be differentiated term
by term within that range.

Example 6.16. Suppose X ∼ Geom(p). For which values of t is etX integrable,
and what is the value of E[etX ]? We can write

E[etX ] =
∞∑
n=1

etn · p · (1− p)n−1 = pet
∞∑
k=0

[et · (1− p)]n−1 = pet

1− [et · (1− p)] .

This can be rewritten as

E[etX ] = p

e−t + p− 1 ,

and it is defined if et · (1− p) < 1, or alternatively t < ln 1
1−p and is undefined

otherwise.
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6.4 Variance

Here we introduce another fundamental quantity that describes the distribution
of a random variable. While E[X] gives the mean number of X, we now define a
quantity that quantifies the degree of dispersion of X from its mean value.

Definition 6.3 (square-integrable random variables). We say that a discrete
random variable X is square-integrable if X2 is integrable, which means that the
sum ∑

x:P(X=x)>0

x2 · P(X = x)

is convergent. Note that square-integrable random variables are automatically
integrable, because |x| 6 1 + x2.

Definition 6.4 (Variance). Let X be a square-integrable discrete random
variable and denote µ = E[X]. We define the variance of X as

Var(X) = E
[
(X − µ)2].

Even though this formula may be the best definition to understand the properties
of variance, very often there is a more convenient way to compute it:

Var(X) = E[X2]− (E[X])2,

which we get by expanding E[(X − µ)2] = E[X2 − 2µX + µ2] = E[X2]− µ2.

Example 6.17 (Poisson). Suppose X ∼ Poisson(λ). Then

Var(X) = E[X2]− (E[X])2 = λ+ λ2 − λ = λ,

so the variance of a Poisson random variable equals its expectation.

Example 6.18 (Geometric). Suppose X ∼ Geom(p). Then

Var(X) = E[X2]− (E[X])2 = 2− p
p2 − 1

p2 = 1− p
p2 .

Example 6.19 (Bernoulli). Suppose X ∼ Bernoulli(p). Then

Var(X) = E[X2]− (E[X])2 = p− p2 = p · (1− p).
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Note that
Var(aX) = a2 ·Var(X)

which means that Var(X) is not in the same unit of measure as X. For instance,
if X is measured in meters, then E[X] is also measured in meters but Var(X) is
measured in squared meters.

To quantify the dispersion of X in the same units as X, we need to take the
square root.

Definition 6.5 (Standard deviation). Let X be a square-integrable discrete
random variable. We define the standard deviation of X as

σ(X) =
√

Var(X).

Unlike the variance, the standard deviation satisfies σ(aX) = |a| · σ(X).

The standard deviation of a Poisson random variable is
√
λ, of a Bernoulli random

variable is
√
p(1− p), and of a geometric random variable is

√
p−2 − p−1.

7 Multivariate discrete distributions

7.1 Joint probability mass function of two variables

Definition 7.1 (Joint probability mass function). Given two discrete random
variables X and Y , we define the joint probability mass function of X and Y ,
denoted pX,Y : R2 → R, and given by

pX,Y (x, y) = P(X = x, Y = y),

or, more formally, P({ω ∈ Ω : X(ω) = x, Y (ω) = y}).

Example 7.1. Roll two dice, let X denote the large value and Y denote the
smaller value. Then pX,Y (x, y) for x = 1, . . . , 6 and y = 1, . . . , 6 is given by the
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table
1 2 3 4 5 6

1 1
36

2
36

2
36

2
36

2
36

2
36

2 0
36

1
36

2
36

2
36

2
36

2
36

3 0
36

0
36

1
36

2
36

2
36

2
36

4 0
36

0
36

0
36

1
36

2
36

2
36

5 0
36

0
36

0
36

0
36

1
36

2
36

6 0
36

0
36

0
36

0
36

0
36

1
36

,

and p(x, y) = 0 if x or y is not in {1, 2, 3, 4, 5, 6}.

Observe that

pX(x) = P(X = x)

=
∑
y∈DY

P(X = x, Y = y) + P(X = x, Y 6∈ DY )

=
∑
y∈DY

P(X = x, Y = y)

=
∑
y∈DY

pX,Y (x, y)

for every x ∈ R, where DY denotes the discrete support of Y .

Terminology (Marginal probability mass function). The above formula to
compute the probability mas function of X from the joint probability mass
function of X and Y is called marginal probability mass function.

Example 7.2. A bag contains 1 red, 2 greens and 2 blue balls. We pick 2 balls from
the bag, without replacement. Let X be the number of green balls picked, and
Y be the number of red balls picked. Then the joint probability mass function
of X and Y is given by the central cell of the table below:

y\x 0 1 2 total
0 0.1 0.4 0.1 0.6
1 0.2 0.2 0 0.4

total 0.3 0.6 0.1 1

.

By adding each column we find the marginal probability mass function of X,
which is given by pX(0) = 0.3, pX(1) = 0.6, and pX(2) = 0.1. By adding each
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row we find the marginal probability mass function of Y , which is given by
pX(0) = 0.6 and pX(1) = 0.4.

7.2 Expectation in the discrete bivariate case

Proposition 7.1 (Expectation in the bivariate case). Let X and Y be discrete
random variables, and let g : R2 → R be any function. Then

E[g(X,Y )] =
∑
x∈DX

∑
y∈DY

g(x, y) · P(X = x, Y = y),

if this sum converges absolutely, and E[g(X,Y )] is undefined if not. The sets DX

and DY in the formula denote the discrete supports of X and Y .

Proof. Let Z = g(X,Y ). We first observe that, for each z ∈ R,

P(Z = z) = P
(
g(X,Y ) = z

)
= P

(
(X,Y ) ∈ g−1(z)

)
=

∑
(x,y)∈g−1(z)∩D

P
(
X = x, Y = y

)
,

where D = {(x, y) : P(X = x, Y = y) > 0}. The support of Z is given by the
image DZ = g(D), which is countable. Finally,

E[Z] =
∑
z∈DZ

z · P(Z = z)

=
∑
z∈DZ

∑
(x,y)∈g−1(z)∩D

z · P
(
X = x, Y = y

)
=
∑
z∈DZ

∑
(x,y)∈g−1(z)∩D

g(x, y) · P
(
X = x, Y = y

)
=

∑
(x,y)∈D

g(x, y) · P
(
X = x, Y = y

)
=
∑
x∈DX

∑
y∈DY

g(x, y) · P(X = x, Y = y),

and the sum converges absolutely if and only if Z is integrable. This concludes
the proof.
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Proof of Proposition 6.1. If we take Y = 0 and apply Proposition 7.1 with
g̃(x, y) = g(x), we get

E[X] = E[g̃(X,Y )]

=
∑
x∈DX

∑
y∈{0}

g̃(x, y) · P(X = x, Y = y)

=
∑
x∈DX

g(x) · P(X = x),

and the sums converge absolutely if and only if E[X] is defined. This concludes
the proof of Proposition 6.1.

Corollary 7.1. The expectation is linear.

Proof. Suppose X and Y are integrable, and let a, b ∈ R. Using Proposition 7.1
with g(x, y) = ax+ by, g(x, y) = x and g(x, y) = y, we get

E[aX + bY ] =
∑
x∈DX

∑
y∈DY

(ax+ by) · P(X = x, Y = y)

= a
∑
x∈DX

∑
y∈DY

x · P(X = x, Y = y) + b
∑
x∈DX

∑
y∈DY

y · P(X = x, Y = y)

= aE[X] + bE[Y ],

which is what we wanted to prove.

7.3 Independent discrete random variables

Definition 7.2 (Independence). Two discrete random variables X and Y are
independent if

pX,Y (x, y) = pX(x) · pY (y)

for every x, y ∈ R.

Example 7.3. Toss a fair coin 5 times. Let X be the number of Heads in the first
three tosses, and Y be the number of Heads in the last two tosses. Then the
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joint probability mass function is shown in the table

y\x 0 1 2 3 total
0 1/32 3/32 3/32 1/32 1/4
1 2/32 6/32 6/32 2/32 1/2
2 1/32 3/32 3/32 1/32 1/4

total 1/8 3/8 3/8 1/8 1

Notice how each entry in the middle of the table is given by the product of its
column total and row total, which means exactly pX,Y (x, y) = pX(x) · pY (y).

Definition 7.3 (Pairwise independence). We say that a collection of discrete
random variables X1, X2, X3, . . . is pairwise independent if Xj and Xk are
independent for every j 6= k.

Definition 7.4 (Mutual independence). We say that a collection of discrete
random variables X1, X2, X3, . . . is mutually independent if, for every k and
every x1, x2, . . . , xk, we have

P(X1 = x1, X2 = x2, . . . , Xk = xk) = P(X1 = x1) · P(X2 = x2) · · ·P(Xk = xk).

Theorem 7.1 (Expectation of independent random variables). If X and Y are
independent integrable discrete random variables, then XY is integrable and

E[XY ] = E[X] · E[Y ].

Proof. Using Proposition 7.1,

E[XY ] =
∑
x∈DX

∑
y∈DY

xy · P(X = x, Y = y)

=
∑
x∈DX

x ·
( ∑
y∈DY

y · P(X = x)P(Y = y)
)

=
∑
x∈DX

x · P(X = x) ·
( ∑
y∈DY

y · P(Y = y)
)

=
( ∑
y∈DY

y · P(Y = y)
)
·
( ∑
x∈DX

x · P(X = x)
)

= E[X] · E[Y ].

In order to use Proposition 7.1 we should have known that XY was integrable
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in the first place. This can be checked using exactly the same development with
|x| instead of x and |y| instead of y. This proves the theorem.

Example 7.4. Roll a fair die twice and multiply the values observed.

E[X] = 1
36
(
1 · 1 + 2 · 2 + 3 · 2 + 4 · 3 + 5 · 2 + 6 · 4+

+ 8 · 2 + 9 · 1 + 10 · 2 + 12 · 4 + 15 · 2 + 16 · 1+

+ 18 · 2 + 20 · 2 + 24 · 2 + 25 · 1 + 30 · 2 + 36 · 1
)

= 49
4 .

A simpler solution is to observe that X = Y Z, where Y and Z represent the
first and second rolling of the die. Using the above theorem,

E[X] = E[Y ] · E[Z] = 7
2 ·

7
2 = 49

4 .

Notice how the computation was simplified.

Proposition 7.2. Let X1, . . . , Xn be pairwise independent square-integrable
discrete random variables. Then

Var
( n∑
i=1

Xi

)
=

n∑
i=1

Var(Xi) .

Proof. Let µi := E[Xi], i = 1, 2, . . . , n and set µ :=
∑n
i=1 µi = E[

∑n
i=1Xi] by

linearity of expectation. Then,

Var
( n∑
i=1

Xi

)
= E

[( n∑
i=1

Xi − µ
)2]

= E
[( n∑

i=1
(Xi − µi)

)2]
= E

[ n∑
i=1

n∑
j=1

(Xi − µi)(Xj − µj)
]

= E
[ n∑
i=1

(Xi − µi)2
]

+ E
[∑
i 6=j

(Xi − µ)(Xj − µj)
]

=
n∑
i=1

E[(Xi − µi)2] +
∑
i6=j

E[(Xi − µi)(Xj − µj)],
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=
n∑
i=1

Var(Xi) +
∑
i6=j

(
E[XiXj ]− µiµj

)
=

n∑
i=1

Var(Xi).

8 The law of averages

One of the main topics of Probability is the “law of averages.” It says that the
sum of a large number of pairwise independent variables tends to be close to the
expectation. More precisely, the observed average X1+···+Xn

n , which is random,
will approximate the theoretical average E[X1+···+Xn

n ], which is deterministic!

The simplest manifestation of this phenomenon concerns relative frequencies.
Imagine we run an experiment many times, under the same condition, and count
how many resulted in success and how many resulted in failure. Taking Xn to
be the indicator that the n-th trial resulted in success, the relative frequency of
success is given exactly by While writing this preamble, the lecturers simulated
tossing a fair coin a million times, and obtained Heads 499,947 times. Repeating
the same procedure, they obtained Heads 499.508 times, then 500.318 times,
then 500.512 times. Obviously, something is happening here. As predicted by the
law of averages, the relative frequency was always very close to the probability
of obtaining Heads in each toss of the coin, which is exactly 1

2 . Intuitively, we
tend to associate probability of success to relative frequency of successes, and
this association is almost ingrained in our thinking.

More generally, the relevant result of each experiment does not need to be 0 or 1
to represent failure or success. It can be any random variable. Before writing
this paragraph, the lecturers rolled a die 10 times, and the sum of the values
obtained as 38. Repeating the same procedure, they obtained 33, 28, 37 and
finally 43. It doesn’t quite look like this sum is very well concentrated near any
deterministic value. However, the lectures proceeded to simulating 10,000 rolls
of the die, and the sum of the results was 35,082. Repeating this procedure, they
obtained as sum 34.769, then 35.419, and finally 34.691. As predicted by the law
of averages, when the number of rolls of the dice was large, the observed average
was always close to the theoretical average, given by E[X1] = 7

2 .

In the theory of Probability, the law of averages is not just a tale or a mysterious

69



phenomenon, it is a theorem that can have many different formulations. Here
we will consider the simplest possible version.

Theorem 8.1 (Law of averages). Let X1, X2, X3, . . . be pairwise independent
square-integrable discrete random variables with the same mean µ and same
variance σ2. Then, for every a > 0, and n ∈ N,

P
(
µ− a 6

X1 + · · ·+Xn

n
6 µ+ a

)
> 1− σ2

a2 n
.

The law of averages is commonly known as the Law of Large Numbers.

We draw the attention to the fact that, no matter how small a is, this probability
can be made as close to 1 as we wish by taking n large enough (of course, if a is
too small, we will need n to be really very large).

Our next goal is now to understand how such an estimate for probabilities even
came about. So far we used probabilities to compute expectations and standard
deviations, and now suddenly we are using the standard deviation to make
extremely interesting estimates about probabilities!

This endeavour will have two parts: understanding what is the variance of the
sum of many random variables, and understanding how the variance of a random
variable provides estimates on the probability that it deviates from its mean.

9 Covariance

9.1 Definition

What happens to the variance when we add variables?

Example 9.1. Toss five fair coins. Let X be the number of Heads among the
first two coin tosses, and Y be the number of Heads among the last three coin
tosses. Let Z = X+Y the the total number of Heads among all five tosses. After
computations (that we omit), we get Var(X) = 1

2 , Var(Y ) = 3
4 and Var(Z) = 5

4 .
In this case, the relation Var(X + Y ) = Var(X + Y ) has been verified. Is this a
coincidence? Under which conditions is this relation verified?

Example 9.2. Suppose X ∼ Bernoulli( 1
2 ) and let Y = X. In this case, we have

Var(X) = 1
4 , Var(Y ) = 1

4 , Var(X + Y ) = 1, so Var(X + Y ) 6= Var(X + Y ).
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To better understand what happens to Var(X + Y ), we expand:

Var(X + Y ) = E[((X − E[X]) + (Y − E[Y ]))2]

= Var(X) + Var(Y ) + 2 · E[(X − E[X])(Y − E[Y ])].

Definition 9.1 (Covariance). Suppose X and Y are square-integrable discrete
random variables. We define the covariance of X and Y as

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])].

From the previous calculations, we see that Var(X + Y ) = Var(X) + Var(Y ) if
and only if Cov(X,Y ) = 0. When this condition is satisfied, we say that X and
Y are uncorrelated.

9.2 Properties

Let us see the main properties of covariance. By switching X and Y ,

Cov(X,Y ) = Cov(Y,X)

By substituting X in the place of Y , we get

Cov(X,X) = Var(X)

Proposition 9.1. Suppose X, Y and Z are square-integrable discrete random
variables. Then

Cov(aX + bY, Z) = aCov(X,Z) + bCov(Y,Z)

for every a, b ∈ R.

Proof. Just expand and group:

Cov(aX + bY, Z) = E[((aX + bY )− E[aX + bY ])(Z − E[Z])]

= E[(aX − E[aX] + bY − E[bY ])(Z − E[Z])]

= E[(aX − E[aX])(Z − E[Z]) + (bY − E[bY ])(Z − E[Z])]
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= aE[(X − E[X])(Z − E[Z])] + bE[(Y − E[Y ])(Z − E[Z])]

= aCov(X,Z) + bCov(Y,Z),

proving the identity.

Corollary 9.1. Suppose X1, . . . , Xn, Y1, . . . , Ym are square-integrable discrete
random variables. Then

Cov
( n∑
j=1

ajXj ,

m∑
k=1

bkYk

)
=

n∑
j=1

m∑
k=1

ajbkCov(Xj , Yk)

for every a1, . . . , an, b1, . . . , bm ∈ R.

Proof. Using the previous proposition repeatedly and symmetry,

Cov
( n∑
j=1

ajXj ,

m∑
k=1

bjYj

)
=

n∑
j=1

ajCov
(
Xj ,

m∑
k=1

bjYj

)
=

n∑
j=1

ajCov
( m∑
k=1

bjYj , Xj

)
=

n∑
j=1

m∑
k=1

ajbjCov(Yj , Xj)

=
n∑
j=1

m∑
k=1

ajbjCov(Xj , Yj),

which proves the stated identity.

Corollary 9.2. Let X1, . . . , Xn be square-integrable discrete random variables.
Then

Var
( n∑
k=1

Xk

)
=

n∑
k=1

Var(Xk) + 2
∑

16j<k6n
Cov(Xj , Xk)

Proof. Using the previous properties,

Var
( n∑
k=1

Xk

)
= Cov

( n∑
j=1

Xj ,

n∑
k=1

Xk

)
=

n∑
j=1

n∑
k=1

Cov(Xj , Xk)
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=
n∑
k=1

Cov(Xk, Xk) +
∑
j 6=k

Cov(Xj , Xk)

=
n∑
k=1

Var(Xk) + 2
∑

16j<k6n
Cov(Xj , Xk).

Definition 9.2. We say that a collection of square-integrable discrete random
variables X1, X2, X3, . . . is uncorrelated if Cov(Xj , Xk) = 0 for every j 6= k.

Corollary 9.3. If X1, . . . , Xn are uncorrelated discrete random variables, then

Var
( n∑
k=1

Xk

)
=

n∑
k=1

Var(Xk).

Proof. Apply the previous formula and note that the covariance of different
terms is zero.

This gives us the “square root law”: if X1, . . . , Xn are uncorrelated discrete
random variables with the same mean µ and variance σ2, then

E[X1+···+Xn
n ] = µ and σ(X1+···+Xn

n ) = σ√
n
.

This starts to explain why the law of averages emerges when we add many
random variables.

9.3 Sums of pairwise independent variables

Perhaps a more convenient expression for covariance:

Cov(X,Y ) = E[XY ]− E[X] · E[Y ].

If X and Y are independent, then, by Theorem 7.1, Cov(X,Y ) = 0.

Corollary 9.4. If X1, . . . , Xn are pairwise independent square-integrable discrete
random variables, then

Var
( n∑
k=1

Xk

)
=

n∑
k=1

Var(Xk).
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By the previous observation, a family of pairwise independent discrete random
variables is also uncorrelated.

10 Chebyshev’s inequality

We will now see how the mean and standard deviation of a random variable
allow us to make some estimates on probabilities involving the random variable.

10.1 Markov’s inequality

In order to get there, we start with something more modest: Markov’s inequality.
It allows us to say something about the distribution of a random variable using
knowledge of its expectation.

Theorem 10.1 (Markov’s inequality). Let X be an integrable non-negative
discrete random variable. Then,

P(X > x) 6 E[X]
x

for every x > 0.

Proof. Fix x > 0. Define the random variable

Y :=

x if X > x;

0 otherwise.

We have that X > Y , because:

• if X > x, then Y = x, so X > Y ;
• if X ∈ [0, x), then Y = 0, so X > Y .

This also gives E[X] > E[Y ]. Next, note that Y is a discrete random variable (it
only attains the values 0 and x) with

pY (x) = P(X > x), pY (0) = P(X < x).
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Hence,

E[X] > E[Y ] = 0 · pY (0) + x · pY (x) = x · pY (x) = x · P(X > x).

Rearranging this, we obtain the desired inequality.

Example 10.1. Suppose a company produces an average of 50 items per week.
Can you estimate the probability that a particular week’s production exceeds
75 items? Let X be the number of items the company produces each week. By
the statement, we know that X > 0 and E[X] = 50. Hence the assumptions of
Markov’s inequality are satisfied and we can deduce an estimate on the requested
probability, which is P(X > 75). Hence,

P(X > 75) 6 E[X]
75 = 50

75 = 2
3 .

It is interesting to note that Markov’s inequality does not always give a useful
bound. Indeed, if X is a non-negative random variable with expectation equal
to µ, and x ∈ (0, µ], then in the inequality

P(X > x) 6 µ

x
,

the right-hand side is larger than 1, so the bound only tells us that the probability
is smaller than or equal to 1, but we knew that already!

10.2 Chebyshev’s inequality

While Markov’s inequality gives a bound on the probability that a random
variable is large, Chebyshev’s inequality gives a bound on the probability that a
random variable is far from its expectation.

Theorem 10.2 (Chebyshev’s inequality). Let X be a square-integrable discrete
random variable. Then,

P(|X − E[X]| > a) 6 Var(X)
a2

for every a > 0.

We emphasize that here no assumption is made concerning the sign of X.
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Proof. Let a > 0. Define Y := (X − E[X])2. Then, Y is non-negative and

E[Y ] = E
[
(X − E[X])2

]
= Var(X).

In particular, Y is integrable. Next, note that the following events are the same:

{|X − E[X]| > a} = {(X − E[X])2 > a2} = {Y > a2}.

Hence, by Markov’s inequality we have

P(|X − E[X]| > a) = P(Y > a2) 6 E[Y ]
a2 = Var(X)

a2 .

This concludes the proof of the theorem.

Example 10.2. Suppose E[X] = 10 and σ(X) = 2. Let us find an estimate on
the probability that 6 6 X 6 14. Taking x = 4 in Chebyshev’s inequality,

P(6 6 X 6 14) > P(6 < X < 14) = 1− P(|X − E[X]| > 4) > 1− 22

42 = 3
4 .

10.3 Proof of the law of averages

Recall that X1, X2, X3, . . . are pairwise independent square-integrable discrete
random variables with the same mean µ and same variance σ2.

We want to show that, for every a > 0, and n ∈ N,

P
(
µ− a 6

X1 + · · ·+Xn

n
6 µ+ a

)
> 1− σ2

a2 n
.

Using linearity of expectation and the fact that all Xk have the same mean µ,

E
[X1 + · · ·+Xn

n

]
= 1
n
E
[
X1 + · · ·+Xn

]
= 1
n
·
(
E[X1] + · · ·+ E[Xn]

)
= µ.

Using Corollary 9.4 and the fact that all Xk have the same variance σ2,

Var
(X1 + · · ·+Xn

n

)
= 1
n2 Var

(
X1 + · · ·+Xn

)
= 1
n2

(
Var(X1) + · · ·+ Var(Xn)

)
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= 1
n2 · nσ

2

= σ2

n
.

Using Chebyshev’s inequality,

P
(
µ− a 6 X1+···+Xn

n 6 µ+ a
)

= 1− P
(∣∣∣X1 + · · ·+Xn

n
− µ

∣∣∣ > a
)

> 1−
Var(X1+···+Xn

n )
a2

= 1− σ2

a2 · n
,

which concludes the proof.

11 Correlation coefficient

The covariance is a useful quantity that describes how two random variables
vary together. However, it has one disadvantage: it is not scale invariant. To
explain what this means, suppose that X and Y are two random variables, both
measuring lengths in meters. Assume that U and V give the same measurements
as X and Y , respectively, but in centimetres, that is, U = 100X and V = 100Y .
Then,

Cov(U, V ) = Cov(100X, 100Y ) = 100 · 100 · Cov(X,Y ) = 104 · Cov(U, V ).

This means that changing the scale also changes the covariance. To obtain a
scale-invariant quantity, we make the following definition.

Definition (Correlation coefficient). Let X and Y be square-integrable discrete
random variables with positive variance. The correlation coefficient between X
and Y is defined as

ρ(X,Y ) = Cov(X,Y )
σ(X) · σ(Y ) .

As promised, the correlation coefficient does not change when we rescale or shift
the random variables.

Proposition. Let X and Y be square-integrable random variables with positive
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variance. For every a, b, c, d ∈ R with a, c > 0, we have

ρ(aX + b, cY + d) = ρ(X,Y ).

Proof. We first note that the covariance between a constant and any other
random variable is equal to zero. Indeed,

Cov(b, Y ) = E[bY ]− E[b] · E[Y ] = b · E[Y ]− b · E[Y ] = 0.

Therefore,
Cov(aX + b, cY + d) = ac · Cov(X,Y ).

Substituting this into the formula for the correlation coefficient,

ρ(aX + b, cY + d) = Cov(aX + b, cY + d)
σ(aX + b) · σ(cY + d)

= ac · Cov(X,Y )
a · σ(X) · c · σ(Y )

= Cov(X,Y )
σ(X) · σ(Y ) = ρ(X,Y ).

Also, since σ(−Y ) = σ(Y ) and Cov(X,Y ) = Cov(Y,X), the correlation
coefficient also satisfies.

ρ(X,Y ) = ρ(Y,X) and ρ(X,−Y ) = −ρ(X,Y ).

The next proposition further describes in what sense the correlation coefficient
ρ(X,Y ) is a dimensionless index that quantifies how well X and Y are aligned,
see Figure 11.1 for a very visual description.

Proposition. Let X and Y be square-integrable random variables with positive
variance. Then

−1 6 ρ(X,Y ) 6 1.

In the extreme cases, ρ(X,X) = 1 and ρ(X,−X) = −1.

Proof. Observe that (
X − E[X]
σ(X) − Y − E[Y ]

σ(Y )

)2
> 0
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Taking expectation and expanding,

E[(X − E[X])2]
σ2(X) + E[(Y − E[Y ])2]

σ2(Y ) − 2E[(X − E[X])(Y − E[Y ])]
σ(X)σ(Y ) > 0,

which means
2ρ(X,Y ) 6 2,

so ρ(X,Y ) 6 1. The same argument with −Y instead of Y gives ρ(X,Y ) =
−ρ(X,−Y ) 6 1, whence ρ(X,Y ) > −1. Finally,

ρ(X,X) = Cov(X,Y )
σ(X) · σ(X) = 1

and ρ(X,−X) = −ρ(X,X) = −1.

12 Central Limit Theorem

Theorem 12.1 (Central Limit Theorem). Let X1, X2, X3, . . . be mutually in-
dependent square-integrable discrete random variables with the same distribution.
Denote their mean by µ and variance by σ2 > 0. Then, for every a < b

P
(
a 6

X1 + · · ·+Xn − n · µ
σ ·
√
n

6 b
)
≈
∫ b

a

1√
2π e
−x2/2 dx.

1 0.8 0.4 0 -0.4 -0.8 -1

1 1 1 -1 -1 -1

0 0 0 0 0 0 0

Figure 11.1: Illustration of ρ(X,Y ) assuming the pair (X,Y ) has the same
probability to be each point in the depicted cloud. (taken form Wikipedia)
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The approximation “≈” means that the probability gets as close to the integral
(shown in Figure 12.1) as we wish if we pick n large enough.

This remarkable phenomenon is in the heart of statistics and most natural
sciences. It says that, regardless of the distribution of X, if we add enough many
samples of X together, we only see its mean µ and variance σ2.

We will not prove the Central Limit Theorem in this module as some more
advanced tools are needed.

In case X ∼ Bernoulli( 1
2 ), which corresponds to tossing a fair coin, we can

see visually how the distribution of X1 + · · ·+Xn approximates this function
y = 1√

2π e
−x2/2, it is illustrated in Figure 12.2.

Example 12.1. When counting the votes in a very close election, 25,301 votes
have been counted: 12,636 for Candidate A and 12,665 for Candidate B. There
are still 400 votes to be counted. What is the probability that Candidate B wins
the election? Assuming each vote is a fair coin toss, the question are are asking
is about

P(X1 + · · ·+X400 > 215),

where X1, . . . , Xn are independent with distribution Bernoulli( 1
2 ). By symmetry,

this is the same as P(X1 + · · ·+X400 6 185), and therefore it equals

1
2 ·
[
1− P(185 < X1 + · · ·+X400 < 215)

]
.

Since µ = 1
2 and σ = 1

2 , we conveniently rewrite the event to get

1
2 −

1
2 · P

(
−1.5 < X1 + · · ·+X400 − 400 · µ

σ
√

400
< 1.5

)

Figure 12.1: Graph of y = 1√
2π e
−x2/2 and the probability that Z ∈ [a, b]

represented by the greenish area between points a and b.
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and, using the Central Limit Theorem, we approximate it by

1
2 −

1
2

∫ 1.5

−1.5

1√
2π
e−x

2/2 dx ≈ 0.07.

You should not try to compute this integral at home, the only way to get this
value is by looking at a table, we will see more about this later. So the answer is
0.07, or 7%. Note that we only gave a rough answer with one significant figure.
In order to get more precision than that, some more careful considerations would
be necessary and would be the topic of more advanced modules.

We can also use “one-sided versions” of the Central Limit Theorem. This way,
the previous example is simplified:

P(X1 + · · ·+X400 > 215) = P
(X1 + · · ·+X400 − 400 · µ

σ
√

400
> 1.5

)
≈
∫ +∞

1.5

1√
2π e
−x2/2 dx

≈ 0.07.

If we rewrite the Central Limit Theorem as

P
(
µ+ σ√

n
a 6

X1 + · · ·+Xn

n
6 µ+ σ√

n
b
)
≈
∫ b

a

1√
2π e
−x2/2 dx,

we get a good description of the statistical behaviour of the observed average

Figure 12.2: The first two graphs are the probability mass functions of
Binom(n, 1

2 ) rescaled so as to show ±3σ. The third graph is the graph of
y = 1√

2π e
−x2/2. The fourth graph displays the relative frequencies in a random

sample of 200 independent random variables with distribution Binom(16, 1
2 ).
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X1+···+Xn
n . As predicted by the law of averages, the observed average is

concentrated around µ, but now we can say something more precise. The observed
average fluctuates as µ+ σ 1√

n
Z, where Z is this “thing” described by

P(a 6 Z 6 b) =
∫ b

a

1√
2π e
−x2/2 dx.

Random variables described in terms of integrals are called continuous random
variables, the topic of the next section.

13 Continuous random variables

13.1 Probability density function

Consider the random variable X informally defined by: “Let X be a number
chosen in the interval (0, 1) uniformly at random.” Upon careful thought, we see
that this description is a bit puzzling. The word “uniformly” should mean that
any number x ∈ (0, 1) is equally likely to be picked, that is, P(X = x) should
be the same for each x. However, there are infinitely many x ∈ (0, 1), so this
would force P(X = x) to be zero. This will indeed be the case for all random
variables with continuous distributions, which we now define.

Definition 13.1. We say that a random variableX is continuous with probability
density function fX : R→ R if

P(a 6 X 6 b) =
∫ b

a

fX(x) dx

for every a < b ∈ R.

A density fX specifies the “probability per unit length.” It is somewhat analogous
to the probability mass function, but not exactly. The probability that X is in
a small interval of length ∆x is given by fX(x)∆x rather than fX(x) and fX
itself may take very large values on small intervals. So it is “fX(x)∆x” which is
the analogous to pX(x).
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A density function necessarily satisfies∫ +∞

−∞
fX(x) dx = 1.

13.2 Uniform variables

Let a, b ∈ R with a < b. A random variable X has the (continuous) uniform
distribution on (a, b) if it has

fX(x) =

 1
b−a if a < x < b,

0 otherwise.

We write X ∼ U(a, b).

Observe that, for any interval [c, d] ⊆ [a, b], we have

P(X ∈ [c, d]) =
∫ d

c

1
b− a

dx = d− c
b− a

,

that is, the interval [c, d] is assigned a probability given by the proportion of
length that it has inside the interval [a, b]. On the other hand, if c < a and
d ∈ [a, b], then

P(X ∈ [c, d]) = d− a
b− a

because the part of the interval [c, d] that is not overlapping with [a, b] does not
count.

13.3 Normal distribution

Let µ ∈ R and σ > 0. A random variable X has normal (or Gaussian) distribution
with parameters µ and σ2 if it has probability density function given by

fX(x) = 1√
2πσ2

· e−
(x−µ)2

2σ2

for every x ∈ R. We write X ∼ N (µ, σ2).

The parameter µ gives the centre of the density function, and the parameter
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σ2 specifies the scale of how this density is being stretched. Through a change
of variables in the integral, we can see that X ∼ N (µ, σ2) is equivalent to
X = µ+ σ · Z with Z ∼ N (0, 1). Indeed, defining Z = X−µ

σ ,

P(a 6 Z 6 b) = P(µ+ aσ 6 X 6 µ+ bσ)

=
∫ µ+aσ

µ+aσ

1√
2πσ2

· e−
(x−µ)2

2σ2 dx

=
∫ b

a

1√
2π
· e− z

2
2 dz.

Remark 6. It is not easy to see that
∫ +∞
−∞ fX(x) dx = 1. By substituting,

∫ +∞

−∞

1√
2πσ2

· e−
(x−µ)2

2σ2 dx =
∫ +∞

−∞

1√
π
· e−u

2
du.

So it is enough to check that
∫ +∞
−∞ e−x

2 =
√
π. In most textbooks, this is done

using polar coordinates for integrals on R2, but we don’t want to use that.
Instead, we use a different trick: switch the iterated integrals in∫ +∞

0

(∫ +∞

0
ye−(1+x2)y2

dy
)

dx =
∫ +∞

0

(∫ +∞

0
ye−x

2y2
e−y

2
dx
)

dy,

which we can do because the integrand is non-negative. The first integral can be
computed by

lim
z→+∞

∫ z

0
ye−(1+x2)y2

dy = lim
z→+∞

−1
2(1 + x2)

[
e−(1+x)2y2

]z
0

= 1
2(1 + x2)

and∫ +∞

0

(∫ +∞

0
ye−(1+x2)y2

dy
)

dx = lim
z→+∞

∫ z

0

1
2(1 + x2)dx = lim

z→+∞

arctan z
2 = π

4 .

The second integral can be rewritten as∫ +∞

0

(∫ +∞

0
e−u

2
du
)
e−y

2
dy.

This way we conclude that
∫ +∞

0 e−x
2 =

√
π

2 . By symmetry,
∫ +∞
−∞ e−x

2 =
√
π,

which is what we were after.

84



13.4 Exponential lifetimes

Let λ > 0. A random variable X has the exponential distribution with
parameter λ if

fX(x) =

λe−λx if x > 0,

0 if x 6 0.

We write X ∼ Exp(λ).

Note that
P(X > t) = e−λt.

The exponential distribution is commonly used to model the lifetime of entities
that have a lack of memory property, normally inanimate objects that experience
no ageing effect. To explain what this means, let us think of light bulbs. Suppose
that the lifetime of light bulbs of a particular brand has an Exponential(λ)
distribution (assume that we turn on the light and don’t turn it off until the bulb
burns out). Then, the memoryless property means that: regardless of whether
the bulb has just been activated, or it has been active for a certain amount of
time, the distribution of the remaining lifetime is the same. Mathematically, this
is expressed by the following identity, which holds for all s, t > 0:

P(X > t+ s |X > t) = P(X > s).

13.5 Expectation

Definition 13.2 (Expectation). Let X be a continuous random variable with
density fX . We define the expectation of X, denoted E[X], as the real number
given by

E[X] =
∫ +∞

−∞
x fX(x) dx,

as long as this integral converges absolutely. If the integral is absolutely
convergent, we say that X is integrable, otherwise E[X] is not defined.

Example 13.1 (Uniform). If X ∼ U [a, b], then

E[X] =
∫ b

a

x
1

b− a
dx = a+ b

2 .
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That is, the expectation of a random variable with uniform distribution on [a, b]
is the middle point of the interval.

Example 13.2 (Exponential). If X ∼ Exp(λ), then, integrating by parts,

E[X] =
∫ +∞

0
xλe−λx dx = lim

u→+∞

[
−xe−λx − 1

λe
−λx

]u
0

= 1
λ
.

Example 13.3 (Normal). Suppose X ∼ N (0, 1), Then, by substitution u = x2/2,

∫ +∞

0
x
e−x

2/2
√

2π
dx = lim

z→+∞

[−e−x2/2
√

2π

]z
0

= 1√
2π
.

By symmetry, ∫ 0

−∞
x
e−x

2/2
√

2π
dx = − 1√

2π

and, therefore E[X] = 0.

Example 13.4 (Cauchy). Suppose X is a random variable with density

fX(x) = 1
π · (1 + x2) .

Then ∫ +∞

0
xfX(x) dx =

∫ +∞

0

x

π · (1 + x2)dx >
∫ +∞

1

x

π · (1 + x2)dx,

and thus ∫ +∞

0
xfX(x) dx >

∫ +∞

1

1
2πxdx = 1

2π lim
z→∞

ln z = +∞.

In this case E[X] is not defined, despite the symmetry. We finally have an example
of a random variable that is not integrable!

13.6 Variance

Proposition 13.1. Let X be a continuous random variable with density fX .
Let g : R→ R be a piecewise continuous function. Then

E[g(X)] =
∫ +∞

−∞
g(x) fX(x) dx
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if the integral is absolutely convergent, and E[g(X)] is undefined if not.

The analogy with probability mass function is summarised in Table 1.

Example 13.5 (Uniform). If X ∼ U [a, b], then

E[X2] =
∫ b

a

x2

b− a
dx = a2 + ab+ b2

3 .

Example 13.6 (Exponential). If X ∼ Exp(λ), then, integrating by parts twice,

E[X2] =
∫ +∞

0
x2λe−λx dx = lim

z→+∞

[
−x2e−λx − 2x

λ e
−λx − 2

λ2 e
−λx

]z
0

= 2
λ2 .

Example 13.7 (Normal). If X ∼ N (0, 1), then, integrating by parts,

E[X2] =
∫ +∞

−∞
x2 e

−x2/2
√

2π
dx

= 2 · 1√
2π

∫ +∞

0
x · (xe−x

2/2) dx

= 2√
2π

lim
u→+∞

[
−xe−x

2/2 +
∫ u

0
e−x

2/2 dx
]u

0

= 2√
2π

∫ +∞

0
e−x

2/2 dx = 1.

pX fX

pX : R→ R fX : R→ R

pX(x) > 0 ∀x ∈ R fX(x) > 0 ∀x ∈ R

P(X = x) = pX(x) P(X = x) = 0

P(a 6 X 6 b) =
∑
a6x6b pX(x) P(a 6 X 6 b) =

∫ b
a
fX(x)dx

pX(x) = P(X = x) defined implicitly by above∑
x pX(x) = 1

∫∞
−∞ fX(x) dx = 1

pX(x) 6 1 ∀x fX(x) may be > 1

E[g(X)] =
∑
x g(x)pX(x) E[g(X)] =

∫ +∞
−∞ g(x)fX(x)dx

Table 1: Probability mass function and probability density function.
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Definition 13.3 (Square-integrable). Like for discrete random variables, we say
that a continuous random variable is square-integrable if X2 is integrable.

As in the discrete case, if a random variable is square-integrable, then it is
automatically integrable (because |x| 6 1 + x2).

Definition 13.4 (Variance). Let X be a square-integrable continuous random
variable with density fX and mean µ = E[X]. We define the variance of X as

Var(X) = E
[
(X − µ)2].

As we did for discrete random variables, we can expand the definition of variance
to get an alternative formula:

Var(X) = E[X2]− (E[X])2,

which we use in the following examples.

Example 13.8 (Uniform). If X ∼ U [a, b], then

Var(X) = a2 + ab+ b2

3 − a2 + 2ab+ b2

4 = (b− a)2

12 .

Example 13.9 (Exponential). If X ∼ Exp(λ), then

Var(X) = 2
λ2 −

( 1
λ

)2
= 1
λ2 .

Example 13.10 (Normal). If X ∼ N (0, 1), then

Var(X) = 1− 02 = 1.

14 A single theory for discrete and continuous

14.1 Cumulative distribution function

One way to specify a probability distribution on R is to say how much probability
is to the left of each point x. In terms of a random variable X with the given
distribution, this probability is a function of x.
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Definition 14.1. Let X be a random variable. The cumulative distribution
function of X is the function FX : R→ [0,∞) defined by

FX(x) = P(X 6 x)

for every x ∈ R.

Other probabilities from FX

We now observe that, although FX(x) is defined as P(X 6 x), it is possible to
use FX to obtain other probabilities involving X. Important formulas are

P(X > x) = 1− P(X 6 x) = 1− FX(x)

and, for x < y,

P(x < X 6 y) = P(X 6 y)− P(X 6 x) = FX(y)− FX(x).

Observe also that

P(X = x) > 0 if and only if FX has a jump at x

and in that case, the size of the jump is the probability that X = x.

FX determines PX

Proposition 14.1. If X and Y are two random variables with FX = FY , then X
and Y have the same distribution.

This proposition tells us that the cumulative distribution function indeed encodes
the distribution of a random variable (in the sense that given the cumulative
distribution function, there is only one distribution corresponding to it).

We have already seen that FX determines PX({x}) for each x ∈ R and PX((a, b])
for every a < b ∈ R.

We lack the tools needed to prove that it determines PX(B) for every B ∈ B.
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14.2 Discrete and continuous cases

To get a first idea of what a cumulative distribution function looks like, let us
consider the case where X is discrete and has discrete support contained in N0,
so that

∞∑
k=0

P(X = k) = 1.

Then, first observe that FX(x) = P(X 6 x) = 0 for all x < 0. Next, and for
every x ∈ [0, 1),

FX(x) = P(X 6 x) = P(X < 0)+P(X = 0)+P(0 < X 6 x) = 0+pX(0)+0 = pX(0).

By arguing similarly, we conclude that

FX(x) =



0 if x < 0,

pX(0) if x ∈ [0, 1),

pX(0) + pX(1) if x ∈ [1, 2),

pX(0) + pX(1) + pX(2) if x ∈ [2, 3)

· · ·

The graph of FX looks like the one in Figure 14.1.

x

FX

pX(0)

pX(0) + pX(1)
pX(0) + pX(1) + pX(2)

1 2 3 4

1

Figure 14.1: Cumulative distribution function of a discrete random variable.
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x

1

a x0 b

FX(x0)

FX

x

fX

1

a x0 b

area

Figure 14.2: Cumulative distribution function of a uniform random variable.

If X is continuous, then

FX(x) = P(X 6 x) = P(X ∈ (−∞, x]) =
∫ x

−∞
fX(y)dy.

The fundamental theorem of Calculus then implies that, at points where fX is
continuous,

fX(x) = d
dxF

′
X(x),

that is, the cumulative distribution function is differentiable and its derivative
is the probability density function. The graph of FX looks like the one in
Figures 14.2 and 14.3.

14.3 Expectation and variance

It is possible to give a unified definition of expectation of a random variable,
without assuming that it is discrete or that it has a density. There a magic
formula using FX that works simultaneously for any type of random variable. We
will not bother giving such a formula, but it is important to keep in mind that

x

1
FX(x0)

x0

FX

slope= λ

x

λ

x0

fXarea

Figure 14.3: Cumulative distribution function of an exponential random variable.
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expectation is something that can be defined for any bounded random variable
(and, provided some sums or integrals are convergent, can also be defined for
unbounded random variables). Again we say that X is integrable if E[X] is
defined and finite.

This general definition of expectation still satisfies the three properties:

• Unitary: E[1A] = P(A),
• Monotone: If 0 6 Z 6 X for all ω ∈ Ω then 0 6 E[Z] 6 E[X],
• Linear: E[aX + bY ] = aE[X] + bE[Y ]

as long as X and Y are integrable.

We will not prove these properties. Of course, we could not possibly prove them
since we have not even given the general definition of expectation. But even
if we had written down the formula, with the current tools we would not be
able to prove that the expectation is linear in general. The idea of the proof is
the following: any random variables X and Y can be approximated by discrete
random variables X ′ and Y ′ and, since E[X ′ + Y ′] = E[X ′] +E[Y ′], we conclude
that E[X + Y ] = E[X] + E[Y ].

Again, and X is square-integrable if E[X2] is finite, and note that if X is square-
integrable then it is automatically integrable (because |x| 6 1 + x2).

Definition 14.2 (Variance). The variance of a square-integrable random
variable X is defined as

Var(X) = E[(X − E[X])2].

We remark that Chebyshev’s inequality holds for any square-integrable random
variable. Indeed, in the proof given in Section 10.2, we only used the above
properties of expectation and nothing else.

Definition 14.3 (Covariance). We also define the covariance of two square-
integrable random variables as

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])]

and say that they are uncorrelated if their covariance is zero.
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Note that the covariance has all the properties stated in Section 9.2. Indeed, the
proof of those properties only used the above three properties of expectation
and nothing else. In particular Corollary 9.3 holds in general, that is,

Var(X1 + · · ·+Xn) = Var(X1) + · · ·+ Var(Xn)

provided that X1, . . . , Xn are uncorrelated.

Independence is discussed in the next section.

15 Joint distributions and independence

15.1 Joint density

We now explain what it means for two random variables to follow a jointly
continuous distribution.

Definition 15.1 (Joint density). Two random variables X and Y defined in
the same probability space are called jointly continuous with joint probability
density function fX,Y : R2 → R+ if

P(a1 6 X 6 a2, b1 6 Y 6 b2) =
∫ a2

a1

(∫ b2

b1

fX,Y (x, y) dy
)

dx

for every a1 < a2 and b1 < b2.

The marginal density functions are given by:

fX(x) =
∫ ∞
−∞

fX,Y (x, y)dy and fY (y) =
∫ ∞
−∞

fX,Y (x, y)dx.

Shortly put, marginal densities are obtained from the joint density by “integrating
out” the other variable.

Example 15.1. Consider the square Q = {(x, y) ∈ R2 : |x|+ |y| < 1}, and suppose
a joint probability density function of X and Y is fX,Y (x, y) = 1

21Q(x, y). We
can determine the marginal density function of X by integrating:

fX(x) =
∫ +∞

−∞

1
21Q(x, y) dy = (1− |x|)1[−1,1](x).
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If we integrate with respect to x, we obtain fY (y) = (1− |y|)1[−1,1](y).

15.2 Joint cumulative distribution function

Definition 15.2. Let X,Y be random variables. The joint cumulative
distribution function of (X,Y ) is the function FX,Y : R2 → [0, 1] given by

FX,Y (x, y) = P(X 6 x, Y 6 y)

for every x, y ∈ R.

For discrete, random variables, this definition reduces to

FX,Y (x, y) =
∑
s6x

∑
t6y

pX,Y (s, t)

for every x, y ∈ R. For jointly continuous random variables, the joint cumulative
distribution function is given by

FX,Y (x, y) =
∫ x

−∞

∫ y

−∞
fX,Y (s, t) dt ds.

In either case, it is possible to recover the joint probability mass function and the
joint probability density function from the joint cumulative distribution function,
but we will not dig into that.

15.3 Independence

Definition 15.3 (Independence of two random variables). Given any two
random variables X and Y we say that X and Y are independent if

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B)

for all A,B ∈ B.

For discrete random variables, this definition is equivalent to

pX,Y (x, y) = pX(x) · pY (y)
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for every x, y ∈ R, that we gave in Section 7.3.

Amazingly enough, the joint cumulative distribution function is able to capture
whether two random variables are independent or not.

Proposition 15.1. Two random variables X and Y are independent if and only
if

FX,Y (x, y) = FX(x)FY (y)

for every x, y ∈ R.

Fragment of proof. For A = (a, b] and B = (c, d], we expand to get

P(a < X 6 b, c < Y 6 d) = P(a < X 6 b, Y 6 d)− P(a < X 6 b, Y 6 c)

= P(X 6 b, Y 6 d)− P(X 6 a, Y 6 d)− P(a < X 6 b, Y 6 c)

= FX,Y (b, d)− FX,Y (a, d)− [FX,Y (b, c)− FX,Y (a, c)]

= FX(b)FY (d)− FX(a)FY (d)− [FX(b)FY (c)− FX(a)FY (c)]

= [FX(b)− FX(a)] · [FY (d)− FY (c)]

= P(a < X 6 b)P(c < Y 6 d).

Therefore, P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B) when both A and B are
given by a union of finitely many intervals of this form (open on the left and
closed on the right). The case of more general sets A and B requires tools that
we currently lack.

For jointly continuous random variables, the situation is a bit trickier. Suppose
X and Y have fX and fY as density functions. Then they are independent if
and only if they jointly continuous with a joint density function given by

fX,Y (x, y) = fX(x)fY (y)

for every x, y ∈ R. However, if we are given a joint density function fX,Y and
want to show that X and Y are not independent, it is not enough to find
a single point (x, y) such that fX,Y (x, y) 6= fX(x)fY (y). We need to check
that fX,Y (x, y) 6= fX(x)fY (y) for all x ∈ [a, b] and all y ∈ [c, d] for some non-
degenerate intervals [a, b] and [c, d]. This is because, unlike the probability mass
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function, probability density functions are not unique, and we can modify them
on a single point causing the identity displayed above to break down.

Theorem 15.1. If X and Y are independent integrable random variables, then
XY is integrable and

E[XY ] = E[X] · E[Y ].

In particular, independent square-integrable random variables are uncorrelated.

We have given a proof assuming X and Y are discrete. A proof that works in the
general case requires tools that we currently lack. As for linearity of expectation,
it is based on the fact that any random variable can be approximated by discrete
random variables, reducing the problem to the case that we already know.

Definition 15.4 (Pairwise independence). We say that a collection of random
variables X1, X2, X3, . . . is pairwise independent if Xj and Xk are independent
for every j 6= k.

Definition 15.5 (Mutual independence). We say that a collection of discrete
random variables X1, X2, X3, . . . is mutually independent if, for every k and
every A1, . . . , Ak ∈ B, we have

P(X1 ∈ A1, . . . , Xk ∈ Ak) = P(X1 ∈ A1) · · ·P(Xk ∈ Ak).

There are analogous conditions for mutual independence when the random
variables are continuous or discrete, and also an equivalent condition in terms of
joint cumulative distribution functions. But we will not dig into this.

15.4 Covariance and the law of averages

As mentioned in the previous section, if X1, . . . , Xn are uncorrelated random
variables, then

Var(X1 + · · ·+Xn) = Var(X1) + · · ·+ Var(Xn).

Using this and Chebyshev’s inequality, we can again prove the law of averages
for any sequence of uncorrelated random variables with same mean µ and same
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variance σ2, without assuming that they are discrete. The proof is identical to
the one seen in Section 10.3.

The Central Limit Theorem also holds for any sequence of mutually independent
square-integrable random variables with the same distribution, without assuming
that they are discrete.

16 Sums of independent random variables

Sums of independent random variables show up in many different contexts. Given
two independent random variables X and Y , what is the distribution of X + Y ?

If X and Y are both discrete, X+Y is discrete and its probability mass function
can be computed using the Law of Total Probability:

pX+Y (z) =
∑
x

P(X = x, Y = z − x) =
∑
x

P(X = x)P(Y = z − x)

=
∑
x

pX(x)pY (z − x).

Example 16.1. Suppose X ∼ Binom(n, p) and Y ∼ Binom(m, p) The probability
mass function of X + Y can be obtained as

pX+Y (k) =
∞∑
j=0

P(X = j)P(Y = k − j)

=
k∑
j=0

(
n
j

)
pj(1− p)n−j

(
m
k−j
)
pk−j(1− p)m−k+j

= pk(1− p)m+n−k
k∑
j=0

(
n
j

)(
m
k−j
)

=
(
n+m
k

)
pk(1− p)m+n−k.

When the variables X and Y are independent and have densities fX and fY , we
have the analogous relation

fX+Y (z) =
∫ +∞

−∞
fX(x)fY (z − x) dx.
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Example 16.2 (Exponentials and Gamma). Let X and Y be independent, both
with the Exponential distribution with parameter λ > 0, that is,

fX(x) = fY (x) =

λe−λx if x > 0;

0 otherwise.

Let Z := X + Y . We want to compute

fZ(z) =
∫ ∞
−∞

fX(x) · fY (z − x) dx.

Now, note that the product inside the integral is equal to zero when x < 0
(since fX(x) = 0 then) and when x > z (since fY (z − x) = 0 then). The integral
is then equal to∫ z

0
λe−λx · λe−λ(z−x) dx = λ2 ·

∫ z

0
e−λz dx = λ2 · z · e−λz.

The above distribution corresponds do a Gamma distribution with parameters 2
and λ. In general, Z has Gamma distribution with parameters n and λ if it has
density given by fZ(z) = λn

(n−1)! · z
n−1 · e−λx for z > 0.

The case when X and Y are normal is so important that we state it as a
proposition.

Proposition 16.1. Let X1 ∼ N (µ1, σ
2
1) e X2 ∼ N (µ2, σ

2
2) be independent.

Then X1 +X2 ∼ N (µ1 + µ2, σ
2
1 + σ2

2).

Proof. Since X1 − µ1 ∼ N (0, σ2
1) and X2 − µ2 ∼ N (0, σ2

2), we can suppose that
µ1 = µ2 = 0. After long and laborious algebraic manipulations, it is possible to
obtain

fX+Y (z) = 1
2πσ1σ2

∫ +∞

−∞
e
− (z−x)2

2σ2
2 e
− x2

2σ2
1 dx = · · · = 1√

2π(σ2
1+σ2

2)
· e
− z2

2(σ2
1+σ2

2) .

Therefore, fX+Y is the density corresponding to the distribution N (0, σ2
1 + σ2

2),
which is what we wanted to show.
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17 Moments and moment generating functions

Definition 17.1. Given a random variable X, we define the moment generating
function of X as the function MX given by

MX(t) = E[etX ]

for the values of t for which etX is integrable.

Example 17.1 (Geometric). If X ∼ Geom(p), then

MX(t) =
∞∑
n=1

etnp(1− p)n−1 =


p

e−t+p−1 , t < ln 1
1−p ,

+∞, t > ln 1
1−p .

Example 17.2 (Poisson). If X ∼ Poisson(λ), then

MX(t) =
∞∑
n=0

etn
e−λλn

n! = e−λ
∞∑
n=0

(λet)n

n! = e−λeλe
t

= eλ(et−1).

Example 17.3 (Normal). Let X be a normal random variable with parameters µ
and σ2, that is,

fX(x) = 1√
2πσ2

· e−
(x−µ)2

2σ2 , x ∈ R.

The moment-generating function of X can be computed as follows:

MX(t) = =
∫ ∞
−∞

etx · fX(x) dx

=
∫ ∞
−∞

etx · 1√
2πσ2

· e−
(x−µ)2

2σ2 dx

=
∫ ∞
−∞

1√
2πσ2

· exp
{
− 1

2σ2 [(x− µ)2 − 2σ2tx]
}

dx (17.1)

We now complete the square:

(x− µ)2 − 2σ2tx = x2 − 2(µ+ σ2t) · x+ µ2

= x2 − 2(µ+ σ2t) · x+ µ2 ± (2µσ2t+ σ4t2)

= (x− µ− σ2t)2 − 2µσ2t− σ4t2.
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This gives

− 1
2σ2 [(x− µ)2 − 2σ2tx] = − (x− µ− σ2t)2

2σ2 + tµ+ σ2t2

2 .

The integral in (17.1) then becomes

exp
{
tµ+ σ2t2

2

}
·
∫ ∞
−∞

1√
2πσ2

· exp
{
− (x− µ− σ2t2)2

2σ2

}
dx.

Now note that the function being integrated is the density function of N (µ+
σ2t, σ2), so the integral equals 1. In conclusion,

MX(t) = exp
{
tµ+ σ2t2

2

}
, t ∈ R.

Definition 17.2 (Moments). We define the k-th moment of a random variable
X as E[Xk] if Xk is integrable.

The name “moment generating function” comes from the following fact.

Proposition 17.1. If MX(t) is defined on (−a, a) for some a > 0 then X has
all moments and they are given by

E[Xk] = M
(k)
X (0),

where M (k)
X denotes the k-th derivative of the function MX .

We lack the tools to prove this proposition, but if we are willing to be cheeky,
we can do:

dk
dtkMX(t) = dk

dtk E[etX ] = E
[

dk
dtk e

tX
]

= E[XketX ]

and, evaluating at t = 0 gives the proposition.

Example 17.4 (Geometric). If X ∼ Geom(p), then

E[X] = M ′X(0) = 1
p , E[X2] = M ′′X(0) = 2

p2− 1
p , Var[X] = E[X2]−(E[X])2 = 1−p

p2 .

Example 17.5 (Poisson). If X ∼ Poisson(λ), then

E[X] = M ′X(0) = λ, E[X2] = M ′′X(0) = λ2 +λ, Var[X] = E[X2]− (E[X])2 = λ.
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Example 17.6 (Normal). Let X ∼ N (µ, σ2). Let us compute its mean (i.e. its
expectation) and variance. In the previous example, we proved that MX(t) is
defined for all t ∈ R, with

MX(t) = exp
{
t2σ2

2 + µt

}
.

We then use the above theorem to compute

E[X] = d
dtMX(t)

∣∣∣∣
t=0

=
[
(tσ2 + µ) · exp

{
t2σ2

2 + µt

}]
t=0

= µ

and

E[X2] = d2

d2t
MX(t)

∣∣∣∣
t=0

= · · · = σ2 + µ2.

Hence,
Var(X) = E[X2]− (E[X])2 = σ2 + µ2 − µ2 = σ2.

This is the reason why X is said to be a normal random variable with mean µ
and variance σ2.

Proposition 17.2. For every a, b ∈ R,

MaX+b(t) = etb ·MX(at)

for every t such that MX(t) is defined.

Proof. We compute

MaX+b(t) = E[et(aX+b)] = etb · E[e(at)X ] = etb ·MX(at).

Proposition 17.3. When X and Y are independent,

MX+Y (t) = MX(t) ·MY (t)

for every t such that the moment generating functions are defined.
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Proof. If X and Y are independent, then so are etX and etY . Therefore,

MX+Y (t) = E[et(X+Y )] = E[etX · etY ] = E[etX ] · E[etY ] = MX(t) ·MY (t).

Example 17.7 (Sum of independent Poisson variables). Let X ∼ Poisson(λ) and
Y ∼ Poisson(µ) be independent. Then

MX+Y (t) = MX(t) ·MY (t) = eλ(et−1)eµ(et−1) = e(λ+µ)(et−1) = MZ(t),

where Z ∼ Poisson(λ+ µ). Does it imply that X + Y ∼ Poisson(λ+ µ)?

Th example above makes us wonder whether knowing the moment generating
function of a random variable tells us what the distribution of the random
variable is. This is indeed the case.

Theorem 17.1 (Moment generating function determines the distribution).
Given two random variables X and Y , if there exists a > 0 such that MX(t)
and MY (t) are finite and coincide for every x ∈ [−a, a], then X and Y have the
same distribution.

We also omit the proof of this theorem, and note that it requires tools that are
even harder to build up than other proofs omitted in these notes.

Example 17.8 (Sum of independent Poisson variables). If X ∼ Poisson(λ) and
Y ∼ Poisson(µ) are independent, then X + Y ∼ Poisson(λ+ µ).

Example 17.9 (Sum of independent normal variables). Let X and Y be
two independent normal variables, with means µX , µY and variances σ2

X , σ
2
Y ,

respectively. Also let a, b ∈ R with a 6= 0. Let us determine the distributions
of aX + b and of X + Y . In the last lecture we showed that

MX(t) = exp
{
t2σ2

X

2 + tµX

}
, MY (t) = exp

{
t2σ2

Y

2 + tµY

}
.

We have that

MaX+b(t) = etb·MX(at) = etb·exp
{
aµXt+ a2σ2

Xt
2

2

}
= exp

{
(aµX + b)t+ a2σ2

Xt
2

2

}
.

Hence, aX + b has the same moment-generating function as a N (aµ+ b, a2σ2)
random variable. Since this moment-generating function is defined in a
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neighbourhood of the origin (in fact, in the whole real line), we conclude
that aX + b ∼ N (aµX + b, a2σ2

X).

Next, since X and Y are independent, we have

MX+Y (t) = MX(t) ·MY (t) = exp
{
µXt+ σ2

Xt
2

2

}
· exp

{
µY t+ σ2

Y t
2

2

}

= exp
{

(µX + µY )t+ (σ2
X + σ2

Y )t2

2

}
.

This shows that X + Y has the same moment-generating function as an N (µX +
µY , σ

2
X+σ2

Y ) random variable. Since this moment-generating function is defined in
an open interval containing zero, we conclude thatX+Y ∼ N (µX+µY , σ2

X+σ2
Y ).
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A Useful sums

(a+ b)n =
n∑
j=0

(
n

j

)
ajbn−j a, b ∈ R, n ∈ N0

∞∑
n=0

xn = 1
1− x 0 < x < 1

∞∑
n=0

nxn−1 = 1
(1− x)2 0 < x < 1

∞∑
n=0

n(n− 1)xn−2 = 2
(1− x)3 0 < x < 1

∞∑
n=0

n(n− 1)(n− 2)xn−3 = 3!
(1− x)4 0 < x < 1

∞∑
k=0

xk

k! = ex x ∈ R

n∑
k=1

k = n(n+ 1)
2 n ∈ N

n∑
k=1

k2 = n(n+ 1)(2n+ 1)
6 n ∈ N

The first five are: binomial theorem, geometric series, derivative of geometric
series, second derivative of geometric series, third derivative of geometric series.
It turns out, it is legitimate to differentiate a series of the form

∑
n anx

n term
by term, but we are not concerned about the details of why this is true.

The fifth is the so-called “Taylor series” of the exponential function. To check
the formula makes sense, observe that both sides give 1 for x = 0 and each side
is equal to its own derivative. These two facts imply that both sides are equal
for every x, but we are not concerned about the details of this either.

The last two formulas, once written down, can be proved by induction (suppose
they are correct for a certain n, show that they are correct for n+ 1). If you are
curious about how such formulas came about, they can be derived first making
the educated guess that they should be given by polynomials one degree higher
than the summand, and then using the first two or three terms to write down a
system of equations for the coefficients.
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B Exponentials beat polynomials

For all x > 0 and n ∈ N,

ex > 1 + x+ x2

2 + x3

3! + · · ·+ xn

n!

Proof. For n = 0, we already know that ex > 1. For n = 1,

ex = 1 +
∫ x

0
ex dx > 1 +

∫ x

0
1 dx = 1 + x

For n = 2,

ex = 1 +
∫ x

0
ex dx > 1 +

∫ x

0
(1 + x)dx = 1 + x+ x2

2

For n = 3,

ex = 1 +
∫ x

0
ex dx > 1 +

∫ x

0
(1 + x+ x2

2 )dx = 1 + x+ x2

2 + x3

3! .

The pattern is clear.

This implies that
a0 + a1x+ · · ·+ anx

n

eax

tends to 0 as x→ +∞, for every a > 0.

Proof. Indeed, since eax > an+1

(n+1)!x
n+1, each term in

a0

eax
+ a1x

eax
+ · · ·+ anx

n

eax

is approaching zero as x increases.

This is useful when computing improper integrals that include polynomials and
exponential functions.
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