
NYU-SH Honors Linear Algebra II – Lectures Summary – Leonardo T. Rolla

Part I: Inner product spaces

1 Inner products

Main reference: Axler §1.B

• The field F is either R or C. Elements of F are called numbers or scalars. A
complex number z ∈ C is a number of the form z = x+ iy where x, y ∈ R. In C we
have usual algebraic properties of multiplication and addition, plus the property
that i2 = −1, so (1 + 2i)(3 + 4i) = 3 + 4i+ 6i+ 8i2 = −5 + 10i.

• Why C? Cutting a long story short... Want to count: N. Want to subtract:
N  Z. Want to divide: Z  Q. Want intermediate value theorem: Q  R.
Want polynomials to have roots: R C.

• A vector space over the field F is a set V together with the operations of addition
and scalar multiplication satisfying certain properties.

Main reference: Axler §6.A

• The dot product can be seen as a generalization of multiplication on R. The inner
product can be seen as a generalization of the usual dot product on Rn.

• An inner product on a vector space V is a function 〈·, ·〉 : V × V → F satisfying:

1. For every v ∈ V , 〈v, v〉 > 0 (in particular 〈v, v〉 ∈ R);
2. 〈v, v〉 = 0 if and only if v = 0;
3. For every u, v, w ∈ V and α ∈ F, 〈u+ αv,w〉 = 〈u,w〉+ α〈v, w〉;
4. For every u, v ∈ V , 〈v, u〉 = 〈u, v〉.

Examples:

– The dot product 〈x, y〉 = x · y on Rn is the simplest case.
– For positive real numbers c1, . . . , cn, we can define 〈x, y〉 =

∑
j cjxjyj .

– On Cn, we can define 〈z, w〉 =
∑
j zjwj or 〈z, w〉 =

∑
j cjzjwj .

– On P(C), we can define 〈p, q〉 =
∫∞

0 e−tp(t)q(t) dt.

• An inner product space is a vector space endowed with an inner product.

• 〈u, v + αw〉 = 〈u, v〉+ α〈u,w〉, for every u, v, w ∈ V and for every α ∈ F.

• Two vectors u, v ∈ V are orthogonal if 〈u, v〉 = 0. We denote it u ⊥ v.

• 0 is the only vector orthogonal to itself.
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2 Inner products and norms

Main reference: Axler §6.A
Terminology. In these lecture notes, “proof” means just the main idea of the proof.
The complete proof is the one written on the whiteboard or in the textbook.

• On an inner product space V , the norm of v ∈ V is defined by ‖v‖ =
√
〈v, v〉.

• Properties of a norm:

1. For every v ∈ V , ‖v‖ > 0
2. ‖v‖ = 0 if and only if v = 0
3. For every u, v ∈ V , ‖u+ v‖ 6 ‖u‖+ ‖v‖
4. For every v ∈ V and every α ∈ F, ‖αv‖ = |α| · ‖v‖

Proof. Triangle inequality is postponed. The other three immediate from 〈·, ·〉.

• Pythagorean Theorem : If u ⊥ v, then ‖u+ v‖2 = ‖u‖2 + ‖v‖2.
Proof. Just expand 〈u+ v, u+ v〉 and group the cross term.
Counter-example: u = (1, 1 + i), v = (2− i,−1− i) ∈ C2. By carefully examining
the proof, we can see why the inner product is in iR for such examples.

• Orthogonal decomposition: For u, v ∈ V , v 6= 0, we have

u = λv + w, with 〈w, v〉 = 0,

where the scalar λ and vector w are given by λ = 〈u,v〉
〈v,v〉 and w = u− λv.

Proof. Assume there is such a decomposition and compute 〈u, v〉.

• Cauchy-Schwarz Inequality. For every u, v ∈ V , |〈u, v〉| 6 ‖u‖ · ‖v‖.
Equality holds if and only if v = 0 or if u = λv for some λ ∈ F.
Proof. Apply Pythagorean Theorem to the orthogonal decomposition of u onto v.
Example: for continuous functions f, g : [0, 1]→ R,∫ 1

0
f(t)g(t) dt 6

√(∫ 1

0
f(t)2 dt

)( ∫ 1

0
g(t)2 dt

)
.

• Triangle Inequality. For every u, v ∈ V , ‖u+ v‖ 6 ‖u‖+ ‖v‖.
Equality holds if and only if v = 0 or u = λv for some λ > 0.
Proof. Expand ‖u+ v‖2 and use Cauchy-Schwarz Inequality.
Example: for continuous functions f, g : [0, 1]→ C,√∫ 1

0
|f(x) + g(x)|2 dt 6

√∫ 1

0
|f(x)|2 dt+

√∫ 1

0
|g(x)|2 dt.



3 Orthonormal bases

Main reference: Axler §6.B

• A family of vectors e1, . . . , em ∈ V is orthonormal if, for every 1 6 j, k 6 m,

〈ej , ek〉 =
{

1 if j = k,
0 if j 6= k.

Examples: {(cos θ, sin θ), (− sin θ, cos θ)}, {(0,−
√

2
2 ,
√

2
2 ), (0,

√
2

2 ,
√

2
2 ), (1, 0, 0)}.

◦ Parseval’s Identity. Let e1, . . . , em ∈ V be an orthonormal family of vectors.
For every a1, . . . , am ∈ F, we have

‖a1e1 + · · ·+ amem‖2 = |a1|2 + · · ·+ |am|2.

Proof. Pythagorean Theorem.

• If e1, . . . , em ∈ V are orthonormal then they are linearly independent.
Proof. Use previous identity.

• An orthonormal basis is a basis consisting of orthonormal vectors.
Every orthonormal family containing dimV vectors is an orthonormal basis.

• Decomposition. Let e1, . . . , em be an orthonormal basis for V . For every v ∈ V ,

v = 〈v, e1〉e1 + · · ·+ 〈v, en〉en,

and ‖v‖2 = |〈v, e1〉|2 + · · ·+ |〈v, en〉|2.
Proof. Direct computation and Parseval’s identity.

• The Gram-Schmidt procedure: Let v1, . . . , vm ∈ V be linearly independent. Define
e1 = 1

‖v1‖v1 and, for j = 2, . . . ,m,

ẽj = vj − 〈vj , e1〉e1 − 〈vj , e2〉e2 − · · · − 〈vj , ej−1〉ej−1 ej = 1
‖ẽj‖ ẽj .

Then e1, . . . em is orthonormal and span(v1, . . . , vj) = span(e1, . . . , ej) for every j.
Example: On P2(R) with 〈p, q〉 =

∫ 1
−1 p(t)q(t) dt, apply G-S to t2, 1, t.

◦ Let e1, . . . , em denote the orthonormal family obtained by applying Gram-
Schmidt to v1, . . . , vm, and let e′1, . . . , e′m, e′m+1 denote the family obtained from
v1, . . . , vm, vm+1. Then e1 = e′1, . . . , em = e′m.
An analogous property would not hold for vm+1, v1, . . . , vm.
That is, Gram-Schmidt procedure gives a consistent output if we add more vectors
at the end of the list, but not at the beginning.



4 Schur’s Theorem and Riesz Representation Theorem

Main reference: Axler §6.B (Uses results from Axler §5.B)
Notation. A “ ◦ ” indicates a point that it is not quite following the textbook.

• Every finite-dimensional inner product space has an orthonormal basis.
Proof. Apply Gram-Schmidt to an arbitrary basis.

• For finite-dimensional inner product spaces, every orthonormal family can be
extended to an orthonormal basis.
Proof. Extend to an arbitrary basis (add at the end) and apply Gram-Schmidt.

• If an operator T on a finite-dimensional inner product space has upper-triangular
matrix with respect to some basis, then it has an upper-triangular matrix with
respect to some orthonormal basis.
Proof. Recall that [T ]v1,...,vm is upper-triangular if and only if span(v1, . . . , vj) is
invariant under T for every j = 1, . . . ,m. Apply Gram-Schmidt and conclude.

• Schur’s Theorem: Every operator on a finite-dimensional and complex inner
product space has upper-triangular matrix with respect to some orthonormal basis.
Proof. Recall that every operator on a finite-dimensional complex vector space is
upper-triangular with respect to some basis. Apply previous result.
Example: compare T (x, y) = (−y, x) on R2 and C2.

• A linear functional ϕ on V is a linear map from V to F, i.e. ϕ ∈ L(V,F).
Example: ϕ(z) = 2z1 − iz3 + 3z3 + 5iz1 on C3.
Remark. The above example can be written as ϕ(z) = 〈z, (2− 5i, 0, 3 + i)〉.
Example: ϕ(p) =

∫ 1
0 p(t) cosπtdt on P(C).

• Riesz Representation Theorem. Let V be a finite-dimensional inner product
space and ϕ ∈ L(V,F). There is a unique u ∈ V such that ϕ(v) = 〈v, u〉 ∀v.
Proof. Take an orthonormal basis, write u =

∑
j αjej , and expand 〈ej , u〉. Show

that this u has the desired property. For uniqueness, compute ϕ(u− u′).
Remark. So we compute u, and the result does not depend on the choice of basis.

◦ As a remark, for ϕ(p) =
∫ 1

0 p(t) cosπtdt on P(C), there is no q ∈ P(C) with this
property. The proof is analytic, requiring Stone-Weierstrass Theorem, etc. This is
Functional Analysis, which combines Linear Algebra, Analysis and Topology.
However, if we restrict this functional ϕ to P2(C), then we can find q ∈ P2(C) such
that ϕ(p) = 〈p, q〉 for every p ∈ P2(C).



5 Orthogonal complement

Main reference: Axler §6.C
Notation. CR[a, b] = {f : [a, b]→ R continuous}, CC[a, b] = {f + ig : f, g ∈ CR[a, b]}.

• If U is a subset of V , then the orthogonal complement of U , denoted U⊥, is the
set of vectors in V that are orthogonal to every vector in U , that is

U⊥ = {v ∈ V : 〈v, u〉 = 0, ∀u ∈ U} .

• Let V be an inner product space. Then

1. For every subset U of V , U⊥ is a subspace;
2. {0}⊥ = V and V ⊥ = {0};
3. For every subset U ⊂ V , U⊥ ∩ U ⊂ {0};
4. For every subsets U ⊂W ⊂ V , W⊥ ⊂ U⊥.

Proof. Proof. In each case, check the definitions.

• If V is a inner product space and U ⊂ V is a finite-dimensional subspace then

V = U ⊕ U⊥.

Proof. For V = U + U⊥, take an orthonormal basis e1, . . . , em of U , write v as a
sum of its components 〈v, ej〉ej in U plus the remainder w in U⊥.
Finally, ⊕ follows from U ∩ U⊥ = {0}.

◦ What can go wrong?
Let V = CR[−1, 1] with 〈f, g〉 =

∫ 1
−1 f(t)g(t) dt.

For U = {f ∈ V : f(0) = 0}, U⊥ = {0} and U + U⊥ 6= V .

• If U is a finite-dimensional subspace, then U = (U⊥)⊥.
Proof. To show that U ⊂ (U⊥)⊥ check the definition. For U ⊃ (U⊥)⊥, let v ∈
(U⊥)⊥, and write v = u+w. Since U ⊂ (U⊥)⊥, u ∈ (U⊥)⊥, hence (v−u) ∈ (U⊥)⊥.
On the other hand, (v − u) = w ∈ U⊥, thus v − u = 0, hence v ∈ U .

◦ With the previous counter-example, (U⊥)⊥ is bigger than U .

• If V is finite-dimensional and U is a subspace, then dimU⊥ = dimV − dimU .
Proof. Just recall that a sum is a direct sum if and only if dimensions add up.



6 Orthogonal projection and best approximation

Main reference: Axler §6.C
In this lecture, we assume that U is a finite-dimensional subspace of V .

• The orthogonal projection of V onto U is the map PU : V → U defined as follows.
For every v ∈ V , write v as

v = u+ w with u ∈ U and w ∈ U⊥,

and take PU v = u. This is well-defined because V = U ⊕ U⊥.

• Properties of the projection operator.

1. PU ∈ L(V );
2. PUu = u, ∀u ∈ U and PUw = 0, ∀w ∈ U⊥;
3. rangePU = U and kerPU = U⊥;
4. (v − PU v) ∈ U⊥;

5.
(
PU
)2 = PU ;

6. ‖PU v‖ 6 ‖v‖ and equality holds if and only if v ∈ U .
7. Given an orthonormal basis e1, . . . , en of U , we have, for every v ∈ V ,

PU v =
m∑
i=1
〈v, ei〉ei.

Proof. Check the definition of linear. Use the definition of PU . Use previous
property and V = U ⊕ U⊥. Use the definition of PU . Use the second property.
Pythagorean Theorem to v = PU v + (v − PU v). Done in the proof of V = U ⊕ U⊥.

• Best approximation. For every v ∈ V and every u ∈ U , we have that

‖v − PU v‖ 6 ‖v − u‖,

and equality holds if and only if u = PU v.
Proof. Apply Pythagorean Theorem to v − u = (v − PU v) + (PU v − u).

• The assumption that U is finite-dimensional is of course very restrictive. But the
theory is still very powerful under this assumption, see Example 6.58.

◦ Example: Find the affine function that best approximates g(t) =
√
t in terms of

mean squared difference on [0, 1].



Part II: Operators on inner product spaces

We assume that all spaces are finite-dimensional.

7 The adjoint operator

Main reference: Axler §7.A

• Let V and W be two inner product spaces. The adjoint of a linear map T ∈
L(V,W ) is the map T ∗ defined by w 7→ T ∗w where T ∗w is the unique vector in V
such tat

〈Tv,w〉W = 〈v, T ∗w〉V
for every v ∈ V . The operator T ∗ is well-defined by Riesz Representation Theorem.

• Examples:
T (x1, x2, x3) = (−2x2, 5x3 − 3x1)
Tv = 〈v, u〉V x for fixed u ∈ V and x ∈W

Tv = Av on R4, where A =
[

0 1 2 3
4 5 6 7

]
• Properties. On the appropriate spaces,

1. T ∗ ∈ L(W,V )
2. (S + T )∗ = S∗ + T ∗

3. (λT )∗ = λ̄T ∗

4. (T ∗)∗ = T

5. (ST )∗ = T ∗S∗

6. I∗ = I

Proof. Check the definitions.

• For every T , ker T ∗ = (rangeT )⊥.
Proof. Use V ⊥ = {0} and the definitions of ker, adjoint, ⊥ and range.

• Corollaries: rangeT = (ker T ∗)⊥, rangeT ∗ = (ker T )⊥, ker T = (rangeT ∗)⊥.
Proof. Take ⊥. Replace T by T ∗. Take ⊥.

• For T ∈ L(V,W ) and orthonormal bases A of V and B of W , we have
[T ∗]A,B = ([T ]B,A)∗,

where A∗ denotes the conjugate transpose of a matrix A.
Proof. Let C = [T ]B,A and D = [T ∗]A,B. Then cj,k = · · · = 〈Tek, gj〉. Likewise,
dj,k = 〈T ∗gk, ej〉. On the other hand, 〈T ∗gk, ej〉 = 〈gk, T ej〉 = 〈Tej , gk〉 = ck,j .



8 Self-adjoint and normal operators

Main reference: Axler §7.A

• An operator T ∈ L(V ) is self-adjoint if T ∗ = T .

• In some sense, taking the adjoint of a linear operator is the analogous of taking
the complex conjugate of a number. In the same spirit, since a number being real
is equivalent to being equal to its conjugate, the property of an operator being
self-adjoint has many similarities with the property of a number being real.

• If T ∈ L(V ) is self-adjoint, then all its eigenvalues are real.
Proof. Show that λ‖v‖2 = λ̄‖v‖2.

• Let V be a complex inner product space and let T ∈ L(V ) be an operator. T is
self-adjoint if and only if 〈Tv, v〉 ∈ R for every v ∈ V .
Proof. Check that 〈Tv, v〉 − 〈Tv, v〉 = 〈(T − T ∗)v, v〉 and use following fact.
* If 〈Sv, v〉 = 0 for every v ∈ V , then S = 0.
Proof. For u,w ∈ V , expanding 0 =

∑
k i
k〈S(u + ikw), u + ikw〉 = 4〈Su,w〉 gives

Su ∈ V ⊥ = {0}. Example: Compare S(x, y) = (−y, x) on R2 and C2.

• Let V be an inner product space (real or complex) and let T ∈ L(V ) be a self-
adjoint operator. If 〈Tv, v〉 = 0 for every v ∈ V , then T = 0.
Proof. For F = C it is the previous theorem, so we can assume F = R. Expanding
0 = 〈T (u+w), u+w〉−〈T (u−w), u−w〉 gives 4〈Tu,w〉 = 0, hence Tu ∈ V ⊥ = {0}.

• An operator T ∈ L(V ) is normal if TT ∗ = T ∗T .
Examples:
T (x, y) = (−2y, 2x) on F2. Check that T ∗ = (2y,−2x), TT ∗ = T ∗T = (4x, 4y).
T (x, y) = (y, y). Check that T ∗ = (0, x+ y), TT ∗ = (x+ y, x+ y), T ∗T = (0, 2y).

• An operator T ∈ L(V ) is normal if and only if ‖Tv‖ = ‖T ∗v‖ for every v ∈ V .
Proof. Write S = T ∗T − TT ∗. We have S = S∗, want to show that S = 0. Show
that 〈Sv, v〉 = ‖T ∗v‖2 − ‖Tv‖2 and use previous theorem.

• If T ∈ L(V ) is a normal operator with eigenvector v ∈ V associated to some
eigenvalue λ ∈ F, then v is also an eigenvector of T ∗ associated to the eigenvalue
λ̄.
Proof. Show that T − λI is also normal, whence ‖Tv − λv‖ = ‖T ∗v − λ̄v‖.

• If T ∈ L(V ) is a normal operator then eigenvectors associated to distinct
eigenvalues are orthogonal.
Proof. By previous theorem, Tu = αu and T ∗v = β̄v. Show that (α−β)〈u, v〉 = 0.



9 Spectral Theorem

Main reference: Axler §7.B

• Spectral Theorems. Why do we care? Diagonal operators? Orthogonal bases?

• Can you diagonalize T (x, y) = (−2y, 2x) on C2? What about R2?

• Can you diagonalize T (x, y) = (2x+ y, x+ 2y) on C2? What about R2?

• Complex Spectral Theorem: Let V be a complex inner product space and T ∈
L(V ) be an operator. T is normal if and only if it is orthonormal diagonalizable.
Proof. (⇐) We know that [T ∗] = [T ]∗, so [T ∗] is also diagonal with respect to the
same orthonormal basis, thus [T ]∗ and [T ] commute, hence T ∗ and T commute.
(⇒) By Schur’s Theorem, there is orthonormal basis A = {e1, . . . , en} such that
[T ]A is upper-triangular. Using [T ∗] = [T ]∗, ‖Tej‖ = ‖T ∗ej‖ and Pythagorean
Theorem, show recursively that off-diagonal entires of each row of [T ] are zero.

• Real Spectral Theorem. Let V be a real inner product space and let T ∈ L(V ) be
an operator. Then T is self-adjoint if and only if it is orthonormal diagonalizable.
We prove the Real Spectral Theorem with three lemmas.
An irreducible quadratic factor is a polynomial of the form q(t) = t2 + 2bt+ c for
real numbers c > b2. Note that q(t) > 0 for every t ∈ R.
* If T ∗ = T and c > b2 > 0, then S = T 2 + 2bT + cI is invertible.
Proof. For ‖v‖ = 1, expand using (T + bI)∗ = T + bI to show 〈Sv, v〉 > 0.
* If V 6= {0} and T ∗ = T , then T has at least one eigenvalue.
Proof. Assume F = R. Fix v 6= 0. Writing n = dimV , the family
v, Tv, T 2v, . . . , Tnv must be linearly dependent, whence

∑
j ajT

jv = 0. Consider
the non-zero polynomial p(x) = a0 + a1x + a2x

2 + · · · + anx
n, and recall that

every polynomial over R can be factorized as a constant times several irreducible
quadratic factors times several factors of the form x − λk for λk ∈ R. Since
p(T )v = 0, at least one of the linear factors T − λkI is not injective, and therefore
λk is an eigenvalue. The case F = C is similar but simpler, since polynomials over
C factorize completely.
* If T ∗ = T and U ⊂ V is an invariant subspace under T , then U⊥ is invariant
under T , T|U ∈ L(U) is self-adjoint and T|

U⊥
∈ L(U⊥) is self-adjoint.

Proof. For T (U⊥) ⊂ U⊥, check the definition using T ∗ = T . For T|U self-adjoint,
check the definition. For T|

U⊥
self-adjoint, switch U and U⊥.

Proof of Real Spectral Theorem: (⇐) Since [T ] is diagonal with respect to an
orthonormal basis, we have that [T ∗] = [T ]∗ = [T ]t = [T ], hence T ∗ = T .
(⇒) Use the two lemmas above and induction on the dimension.



10 Positive operators and isometries

Main reference: Axler §7.C

• The idea is that every linear map can be “diagonalized” by two orthonormal bases.
Whereas a diagonal operator only does some “stretching,” having different bases
reflects some “rotation” done on the top of that. By flipping elements of the second
base, we can even restrict the stretching to positive real scalars. As we will see
later, stretching is represented by a positive operator, and rotation by an isometry.

• An operator T ∈ L(V ) is positive if T ∗ = T and if 〈Tv, v〉 > 0 for every v ∈ V .
Examples: The identity operator is positive. An orthogonal projection PU is
positive. If T ∗ = T and c > b2 are real, then T 2 + 2bT + cI is positive. (7.32)
Remark: By the Spectral Theorem, a self-adjoint operator is positive if and only
if all eigenvalues are non-negative.

• Let T ∈ L(V ) be an operator. An operator R ∈ L(V ) is a square root of T if
T = R2. (7.33)
Example: T (x, y, z) = (z, 0, 0) and R(x, y, z) = (y, z, 0) on C3.

• If T is a positive operator, then T has a unique positive square root, denoted
√
T .

Proof. Use the Spectral Theorem. For existence, take R having eigenvalues
√
λk

with same orthonormal eigenvectors as T . For uniqueness, let v be an eigenvector
of T , so Tv = λv. Let

√
λk denote the eigenvalues of R for an orthonormal basis

(e1, . . . , en), show that
∑
k akλkek =

∑
k akλek. Conclude that ak with different

eigenvalues are zero, hence Rv =
√
λv. Since eigenvectors form a basis, this

determines R. (7.36)

• An operator S ∈ L(V ) is an isometry if ‖Sv‖ = ‖v‖ for every v ∈ V .

◦ Let S ∈ L(V ). The following are equivalent:

1. S is an isometry;
2. 〈Su, Sv〉 = 〈u, v〉 for every u, v ∈ V ;
3. Se1, . . . , Sem is orthonormal for every orthonormal family e1, . . . , em;
4. Se1, . . . , Sen is orthonormal for some orthonormal basis e1, . . . , en;
5. S is invertible and S−1 = S∗;
6. S∗ is an isometry.

Proof. First 1 ⇒ 2 ⇒ 3 ⇒ 4 ⇒ 5 ⇒ 6. Use that 4〈u, v〉 =
∑
k i
k‖u + ikv‖2.

Orthonormality is preserved once inner product is preserved. Existence follows
from Gram-Schmidt. Mapping a basis to a basis, S is invertible and, by linear
combinations on a basis it preserves inner product, so 〈u, S−1v〉 = 〈Su, SS−1v〉 for
all u, v. 〈S∗v, S∗v〉 = 〈SS∗v, v〉 = ‖v‖2. For 6⇒ 1, use 1⇒ 6 and T ∗∗ = T . (7.42)



11 Polar Decomposition & Singular Value Decomposition

Main reference: Axler §7.D
Numbers refer to page or otherwise equation/theorem numbering in Axler.

• Polar Decomposition. Let T be an operator on V . There exist an isometry S and
a positive operator P such that T = SP . This P can be given by P =

√
T ∗T .

Proof. Use T ∗T = P ∗P to show ‖Pv‖ = ‖Tv‖. Let U = rangeP andW = rangeT .
Define S1 ∈ L(U,W ) by S1Pv = Tv. Since S1 preserves norm, it is injective. It
follows from the definition that it is also surjective, so dimW = dimU . Define S2 ∈
L(U⊥,W⊥) by Tej = gj for some orthonormal bases. Define S = S1PU + S2P

U⊥
.

Since S1 and S2 preserve norm, by orthogonality so does S. (7.45)

• Let T ∈ L(V ). The singular values of T is the list consisting of the eigenvalues of√
T ∗T , where an eigenvalue λ is counted dim ker(

√
T ∗T − λI) times.

Remark: Singular values are nonnegative. By the Spectral Theorem there are
always dimV of them. (236)
Example: With computations we check that T (x, y, z, w) = (0, 3x, 2y,−3w) has
singular values (0, 2, 3, 3) but only 0 and −3 are eigenvalues. (7.49)

• Singular Value Decomposition. Let T ∈ L(V ). There exist orthonormal bases A
and B such that [T ]B,A has the singular values on the diagonal and zero elsewhere.
Proof. Express P =

√
T ∗T in terms an orthonormal eigenbasis. Using Polar

Decomposition, apply S to this expression, getting Tv = s1〈v, e1〉Se1 + · · · +
sn〈v, en〉Sen. (7.51)



Part III: Operators on complex vector spaces

We assume that F = R or C and dimV = n > 1.

12 Generalized eigenvectors

Main reference: Axler §8.A

• Let T ∈ L(V ). We have {0} = ker T 0 ⊂ ker T 1 ⊂ ker T 2 ⊂ ker T 3 ⊂ · · ·
Proof. Just check the definition.

• If ker Tm = ker Tm+1, then ker Tm = ker Tm+1 = ker Tm+2 = ker Tm+3 = · · ·
Proof. Show that v ∈ ker Tm+k+1 is also in ker Tm+k using T kv ∈ ker Tm+1. (8.3)

• We have ker T k = ker Tn for every k > n.
Proof. Each time there is strict inclusion, the dimension increases by at least one.

• We have V = ker Tn ⊕ rangeTn.
Proof. To show ker∩ range = {0}, write v = Tnu, and show u ∈ ker T 2n = ker Tn.
Finally, dimensions add up by Rank-Nullity Theorem.
After-class exercise: Let T (z1, z2, z3) = (4z2, 0, 5z3). Check that ker T ∩ rangeT 6=
{0} and C3 6= ker T + rangeT but C3 = ker T 3 ⊕ rangeT 3 by finding describing
these subspaces explicitly. (8.5)

• A vector v ∈ V is a generalized eigenvector associated to λ if v 6= 0 and if there
exist a nonnegative integer j such that (T − λI)jv = 0.
Remark: In this case λ must be an eigenvalue, because otherwise (T − λI) being
injective would imply that (T − λI)j is injective.

• Ideally, one should be able to decompose V as a direct sum of invariant subspaces
where T behaves nicely. We would like to have V = E(λ1, T )⊕ · · ·⊕E(λm, T ) but
that is not always possible. Introducing generalized eigenvectors is an attempt to
give a good description of linear operators, as simple and complete as possible.

• The subspace G(λ, T ) = ker(T − λI)n is called the generalized eigenspace of T
associated to the eigenvalue λ.
Exercise: Let T (z1, z2, z3) = (4z2, 0, 5z3). Find the eigenvalues of T and the
generalized eigenspaces. Check that C3 is a direct sum of generalized eigenspaces.

• Let v1, . . . , vm be generalized eigenvectors corresponding to distinct eigenvalues
λ1, . . . , λm of T ∈ L(V ). Then the vectors v1 . . . , vm are linearly independent.
Proof. Take w = (T − λ1I)kv1 as a λ1-eigenvector. So (T − λI)nw = (λ1 − λ)nw.
Apply (T − λ1I)k

∏
j>1(T − λjI)n to both sides of

∑
j ajvj = 0 and conclude that

a1 = 0. To get aj = 0 we repeat the same argument. (8.13)



13 Generalized eigenvectors and nilpotent operators

Main reference: Axler §8.A & §8.B

• An operator N ∈ L(V ) is nilpotent if Nn = 0.
Examples: The derivative on P7(R), or N(z1, z2, z3, z4) = (z2 + z3, z3, z4, 0) on C4.

• Let N ∈ L(V ) be a nilpotent operator. There exists a basis B such that [N ]B is
upper-triangular with only 0’s on the diagonal.
Proof. Choose basis for kerN , extend it to a basis of kerN2, and so on. (8.19)

• Let T ∈ L(V ) be an operator and let λ be an eigenvalue of T . The algebraic
multiplicity of λ is defined as dim ker(T − λI)n. The geometric multiplicity of λ is
defined as dim ker(T − λI) and can be smaller than the algebraic multiplicity.
Exercise: For T (z1, z2, z3) = (6z1 + 3z2 + 4z3, 6z2 + 2z3, 7z3), find the eigenvalues,
generalized eigenspaces, and a basis of C3 made of generalized eigenvectors.

Below we assume that F = C.

◦ Let λ1, . . . , λm denote the distinct eigenvalues of T ∈ L(V ). Then

V = G(λ1, T )⊕ · · · ⊕G(λm, T ).

In particular, there is a basis of generalized eigenvectors, and the sum of algebraic
multiplicities of λ1, . . . , λm equals n. Moreover, for all j, the subspace G(λj , T ) is
invariant under T and the restriction of T − λjI to G(λj , T ) is nilpotent.
Proof. We use the observation that ker p(T ) and range p(T ) are invariant under T
for any complex polynomial p(z), in particular for p(z) = (z − λj)n. Invariance of
G(λj , T ) under T follow from this, nilpotence follows from definition of G(λ, T ).
For the direct sum, recall that operators on complex spaces have at least one λ1,
write V = G(λ1, T )⊕U with U = range(T−λ1I)n invariant under T . Let S = T|U ∈
L(U). The λ1-eigenvectors are in G(λ1, T ), hence not in U . By induction on n, U =
G(λ2, S)⊕· · ·⊕G(λm, S). Since G(λ, S) ⊂ G(λ, T ), G(λ1, T )+· · ·+G(λm, T ) = V .
Direct sum follows from linear independence of generalized eigenvectors. (8.21)

• Let λ1, . . . , λm denote the distinct eigenvalues of T ∈ L(V ) and d1, . . . , dm their
algebraic multiplicities. There exists a basis B of V such that [T ]B is block diagonal
with blocks A1, . . . , Am such that Aj , j ∈ {1, . . . ,m}, is a dj × dj upper-triangular
matrix with λj on the diagonal.
Proof. Defining Nj ∈ L(G(λj , T )) by Njv = (T − λjI)v, we have Nj nilpotent, so
there is a basis Bj of G(λj , T ) such that [Nj ]Bj is upper-triangular with zeros on
the diagonal, adding back λjI gives the upper-triangular matrix with λj on the
diagonal. (8.29)



14 Characteristic and minimal polynomials

Main reference: Axler §8.C

• A monic polynomial is a polynomial whose leading coefficient is 1.

• There exists a unique monic polynomial p ∈ P(F) of smallest degree such that
p(T ) = 0. The polynomial p is called the minimal polynomial of T .
Proof. Consider the largest m such that I, T, T 2, . . . , Tm is linearly independent
(such m exists since L(V ) is finite-dimensional). Then I, T, T 2, . . . , Tm is a basis
for its span, which in turn contains Tm+1 by definition of m. Therefore, there is
a unique monic polynomial p(z) = zm+1 + amz

m + · · ·+ a1z + a0 of degree m+ 1
such that p(T ) = 0. Moreover, if q is a polynomial of smaller degree such that
q(T ) = 0, by linear independence of I, T, T 2, . . . , Tm we have q = 0, so q cannot
be monic. (8.40)

• Let p be the minimal polynomial of T and let q ∈ P(F) be a polynomial. We have
that q(T ) = 0 if and only if p divides q, i.e. q = p× s for some polynomial s.
Proof. The more difficult direction uses polynomial division. (8.46)

• Let V be a finite-dimensional vector space and let T ∈ L(V ). The zeros of the
minimal polynomial of T are exactly the eigenvalues of T .
Proof. If p(λ) = 0, we have (T − λI)q(T )v = 0 for every v, and since q(T ) 6= 0, λ
is an eigenvalue. Conversely, if λ is an eigenvalue then for an eigenvector we get
0 = p(T )v = p(λ)v, hence p(λ) = 0. (8.49)

Below we assume that F = C.

• Let λ1, . . . , λm denote the distinct eigenvalues of T ∈ L(V ) and d1, . . . , dm their
algebraic multiplicities. The characteristic polynomial of T is defined by

g(z) = (z − λ1)d1 · · · (z − λm)dm .

Remark: g(z) has degree n and its zeros are the eigenvalues.

• Cayley-Hamilton Theorem: g(T ) = 0.
Proof. Every v is a combination of vectors vj ∈ ker(T − λjI)dj , and since the
operators (T − λjI)dj commute, g(T )vj = 0. (8.37)

• The characteristic polynomial is a multiple of the minimal polynomial.
Proof. Combine Cayley-Hamilton and the property above. (8.48)



15 Jordan form

Main reference: Axler §8.D For this lecture, F = C

• Suppose N is nilpotent. Then V has a basis which is of the form

v1, Nv1, N
2v1, . . . , N

d1v1, v2, Nv2, . . . , N
d2v2, . . . , vm, Nvm, N

2vm, . . . , N
dmvm,

and is such that Ndj+1vj = 0 for j = 1, . . . ,m.
Remark: The only eigenvalue ofN is 0, andm is just enumerating different families.
Each family j starts with some vector vj and ends when NNN · · ·NNvj = 0.
Proof. We will show how to find such a basis. Let Uk = rangeNk. A basis of a
subspace U ⊂ V with the above properties will be called a good basis for U .
First, Un = {0} and the empty set is a good basis for Un.
Let Bk+1 = (v′1, Nv′1, . . . , Nd′1v′1, . . . , v

′
m′ , Nv

′
m′ , . . . , N

d′mv′m′) be a good basis for
Uk+1. We will construct a good basis for Uk. Since Uk+1 = range(N|Uk ), we can find
a solution vk to Nvk = v′k, for k = 1, . . . ,m′. Let dj = d′j+1 for j = 1, . . . ,m′. Take
the collection B̃k = (v1, Nv1, . . . , N

d1v1, . . . , vm′ , Nvm′ , . . . , N
dmvm′) obtained by

inserting v1, . . . , vm′ before each subfamily of Bk+1.
To show that B̃k is linearly independent, we consider a null linear combination,
apply N and use linear independence of Bk+1 to show that the all the coefficients
except the last one of each family are zero. For the last coefficients of each family,
use again linear independence of Bk+1. Complete B̃k to a basis of Uk by adding
wm′+1, . . . , wm.
Since Nwm′+j ∈ Uk+1, it is a linear combination of Bk+1, which means a linear
combination of N B̃k which means Nxj for some x ∈ span B̃k. Take vm′+j =
wm′+j−xj soNvm′+j = 0. Take the collection Bk obtained by adding vm′+1, . . . , vm
to B̃k. Then Bk spans Uk, so it is a basis, and moreover it is a good basis. (8.55)

• A basis B is a Jordan basis for T if [T ]B is block diagonal with each block Ai such
that its diagonal consists entirely of λi’s, where λi is an eigenvalue of T , and the
line above the diagonal consists entirely of 1’s.
Remark: If N is nilpotent, then a good basis as in the previous proof, written
backwards, is a Jordan basis for N .

• Let V be a complex finite-dimensional vector space. For any operator T ∈ L(V ),
there exists a Jordan basis for T .
Proof. Recall that V = G(λ1, T ) ⊕ · · · ⊕ G(λm, T ), where G(λj , T ) is invariant
under T and Nj = (T − λjI)|G(λj,T ) is nilpotent. Find a Jordan basis for each Nj .
These bases together provide a Jordan basis for T . (8.60)



16 Computing a Jordan basis

Main references: Jordan-compute.pdf and Jordan-thread.pdf For this lecture, F = C

◦ To get a Jordan basis, we need the eigenvalues. Then work with N = T − λI for
each λ separately. In fact, we can work with different λ in parallel in case we don’t
know the dimensions of each G(λ, T ), so we know when to stop. In order to start,
we may need to find either some eigenvectors or generalized eigenvectors.

• A thread is a chain of non-zero vectors v,Nv,N2v, . . . , Nkv. Typically, Nk+1v = 0
in which case we say that it is a closed thread.
Remark. This is not a standard terminology.

• We represent a thread by v0 7→ v1 7→ v2 7→ · · · 7→ vk 7→ 0.

• A Jordan basis for a nilpotent operator can always be written as a collection of
closed threads. Conversely, if a collection of closed threads has n vectors and they
are linearly independent, these vectors form a Jordan basis. Moreover, it is enough
to check linear independence of the last vector of the threads.

◦ To find a Jordan basis we must work with rational numbers written as fractions.
Numerical software cannot be used, because even the existence of “repeated
eigenvalues” is a property that breaks down in the presence of rounding error.
More precisely, we often need to apply row reduction to non-invertible matrices
which become invertible (but horrible) in the presence of a small rounding error.

• The Quick and Dirty Method starts with some vector u and tries to find long
threads v0 7→ v1 7→ v2 7→ · · · 7→ vk 7→ 0 where vj = u for some j. To enlarge the
thread forward just apply N , to enlarge it backward we need to solve an equation.
The method is not guaranteed but we can always try to get n vectors and test
whether Q−1AQ is in Jordan form.

◦ The Thorough Method (a.k.a. Guaranteed Method) is based on the proof given
in the previous lecture. It is probably the most economic if we wanted to find a
Jordan basis that has a large number of threads with different lengths (which we
don’t want), but it is very rigid and really a pain in the neck.

• The Simpler Method is more playful and flexible. We can start with an ad hoc
collection of threads, reduce the collection to get linear independence, and add
more chains gradually if needed to span the whole space (or subspace).

◦ These names for the methods are not standard terminology either.



Part IV: Operators on real vector spaces
For this part, F = R, dimV = n > 1.

17 Complexification I

Main reference: Axler §9.A

• We have already given the best possible description to operators on complex spaces.
The idea now is to import that knowledge and use it to help us study operators
on real vector spaces.

• The complexification VC of V is the complex vector space consisting of ordered
pairs (u, v) ∈ VC = V × V with the addition defined naturally and the (complex)
scalar multiplication defined by

(a+ ib)(u, v) = (au− bv, bu+ av).

If we use the notation (u, v) = u + iv, then the scalar multiplication follows the
usual multiplication rules for complex numbers.
Short description: VC = V + iV with sum of two vectors and multiplication of a
vector by a complex scalar multiplication defined in the obvious way.

• If v1, . . . , vn is a basis of V , then it is also a basis of VC. So dimR V = dimC VC.

• Definition. Let T ∈ L(V ). The complexification TC ∈ L(VC) of T is defined by
TC(u+ iv) = Tu+ iTv.
Remark: Not every S ∈ L(VC) corresponds to Tu+ iTv for some T ∈ L(V ).

• Let B be a basis of V . Then [T ]B = [TC]B.

◦ The minimal polynomial of T is equal to the minimal polynomial of TC.
Proof. First note that (TC)k(u + iv) = T ku + iT kv for every u, v ∈ V and k ∈ N,
whence g(TC)u = g(T )u for real polynomial g and u ∈ V .
Let p be the minimal polynomial of T , and let v1, . . . , vn be a basis for V . Then it
is also a basis for VC, and since p(TC)vj = p(T )vj = 0 for all j, we have p(TC) = 0.
Now suppose q = f + ig is a complex polynomial with smaller degree such that
q(TC) = 0. Then q(TC)z = 0 for all z ∈ VC, and in particular q(TC)u = 0 for
all u ∈ V . But q(TC)u = f(T )u + ig(T )u, hence f(T ) = 0 and g(T ) = 0. By
minimality of p, both f and g are the zero polynomial, and so is q. (here)

◦ If 〈·, ·〉 is an inner product on V then 〈u+iv, x+iy〉C = 〈u, x〉+〈v, y〉+i〈v, x〉−i〈u, y〉
defines a complex inner product on VC.
Proof. Long computations show that it satisfies the 4-5 axioms. (Exercise 9.B.3)



18 Complexification II

Main reference: Axler §9.A
For convenience, fix a basis for V and work with matrix representation A = [T ] ∈ Rn×n.

• Let λ ∈ R. Then λ is an eigenvalue of T if and only if it is an eigenvalue of TC.
Proof. Suppose λ is an eigenvalue for T . Then there is u ∈ V \ {0} such that
Tu = λu. On the other hand, TCu = Tu = λu so λ is also an eigenvalue of TC.
Let λ be an eigenvalue for TC. Then TC(u+ iv) = λ(u+ iv) = (λu)+ i(λv) for some
z = u + iv ∈ VC \ {0}. On the other hand, TC(u + iv) = Tu + iTv, so Tu = λu
and Tv = λv. Since u and v cannot be both zero, λ is an eigenvalue. (9.11)

◦ For any λ ∈ C, j ∈ N and u, v ∈ V ,

(TC − λI)j(u+ iv) = 0⇔ (TC − λI)j(u− iv) = 0.

Proof. (A− λ̄I)j x̄ = (Ā− λ̄Ī)j x̄ = (A− λI)j x̄ = (A− λI)jx. (here)

• Let λ ∈ C. Then λ is an eigenvalue of TC if and only if λ is an eigenvalue of TC.
Proof. Take j = 1.

◦ For TC, the algebraic multiplicity of λ equals the algebraic multiplicity of λ.
Proof. If x1, . . . , xd is a basis for G(λ,A), then x̄1, . . . , x̄d is a basis for G(λ̄, A).

• Every operator on an odd-dimensional real vector space has at least one eigenvalue.
Proof. The non-real eigenvalues of TC come in pairs with equal multiplicity. (9.19)

◦ The (geometric and algebraic) multiplicities of λ ∈ R for T are the same for TC.
Proof: The number of free variables in the echelon form of A− λI and (A− λI)n.

• The characteristic polynomial of TC has real coefficients.
Proof. (z − λ)m(z − λ̄)m = (z2 − 2<(λ)z + |λ|2)m has real coefficients. (9.20)

◦ The characteristic polynomial of T is defined as the characteristic polynomial of
TC. Its degree is dimV and its real roots are the eigenvalues of T .

• Cayley-Hamilton Theorem. p(T ) = 0.
Proof. By the complex Cayley-Hamilton Theorem, [p(T )] = p([T ]) = p([TC]) = 0.

• The minimal polynomial divides the characteristic polynomial.
Proof. The minimal polynomial divides any polynomial that annihilates T .



19 Normal operators on real inner product spaces

Main reference: Axler §9.B

• Theorem. If T ∈ L(V ) is normal, then there exists an orthonormal basis B such
that [T ]B is block diagonal with each block either 1 × 1 with a real eigenvalue or
2× 2 of the form

[
a −b
b a

]
where b > 0 and λ = a+ ib an eigenvalue of TC.

Lemma 1. Every operator has an invariant subspace of dimension 1 or 2.
Proof. We know that TC has at least one eigenvalue a+ ib. So there exist u, v ∈ V
such that u+iv ∈ VC\{0} is an eigenvector. Hence, TC(u+iv) = (a+ib)(u+iv) =
(au − bv) + i(av + bu). On the other hand, TC(u + iv) = Tu + iTv. Thus,
Tu = (au − bv) and Tv = (av + bu). Therefore, span(u, v) is invariant and has
dimension 1 or 2. (9.8)
Lemma 2. If U is a 2-dimensional real inner product space, and T ∈ L(U) is
normal but not self-adjoint, then there exists an orthonormal basis B of U such
that [T ]B =

[
a −b
b a

]
with a, b ∈ R, b > 0.

Proof. Pick any o.n. basis and check that [T ] must have this form with ±b. (9.27)
Lemma 3. If T ∈ L(V ) is a normal operator and U is a subspace invariant under
T , then U⊥ is invariant under T , moreover T|U and T|

U⊥
are normal operators.

Proof. For invariance of U⊥, extend an orthonormal basis for U and write [T ] =
[A,B; 0, C]. To show that B = 0, we use

∑m
j=1 ‖Tej‖2 =

∑m
j=1 ‖T ∗ej‖2 and repeat

the same trick as in the Complex Spectral Theorem. Invariance of U and U⊥

under T ∗ follows from [T ∗] = [A∗,0; 0, C∗]. Normality of T|U and T|
U⊥

follows
from normality of A and C, which in turn follow from normality of [T ]. (9.30)
Proof of the theorem. Work by induction on n = dimV .
For n = 1 the description follows trivially, so suppose n > 2 and that the theorem
holds for spaces of dimension smaller than n.
Let U be an invariant subspace of dimension 1, if such subspace exists. If not, let
U be an invariant subspace of dimension 2 (it exists by Lemma 1). In the former
case, take v ∈ U with ‖v‖ = 1 and let B = {v}. In the latter case, we know that T|U
is normal (by Lemma 3) but not self-adjoint (otherwise T would have eigenvalues
by the Real Spectral Theorem and we would not be in the latter case), hence by
Lemma 2 there is a basis B of U for which [T|U ] is a 2×2 matrix of the above form.

On the other hand, by Lemma 3, U⊥ is invariant and T|
U⊥

is normal. By the
induction hypothesis, there is an orthonormal basis B′ for U⊥ for which [T|

U⊥
] has

the desired form. Then for the orthonormal basis A = B′ ∪ B of V we have [T ]A
in the desired form, proving the theorem. (9.34)



20 Isometries and 2x2 block diagonalization

Main reference: these notes.

• If S ∈ L(V ) is an isometry, then there exists an orthonormal basis B such
that [T ]B is block diagonal with each block either [±1]1×1 or of the form
[cos θ,− sin θ; sin θ, cos θ]2×2 with θ ∈ (0, π).
Proof. Use the previous theorem and the assumption that S is an isometry. (9.36)

• If the real vectors u1, . . . , un form a basis for VC, then they form a basis for V.
Proof. If

∑
j αjuj = 0 in V , then

∑
j αjuj = 0 in VC, implying αj = 0.

• If 2m vectors u1± iv1, . . . , um± ivm are L.I., then u1, v1, . . . , um, vm are L.I. in VC.
Proof. These vectors span the same subspace of VC, hence they are L.I. in VC.

• If the m complex vectors u1 + iv1, . . . , um+ ivm are L.I. in VC, then the real family
u1, v1, . . . , um, vm has at least m vectors which are L.I. in VC.
Proof. The span of u1, v1, . . . , um, vm contains the span of u1 + iv1, . . . , um + ivm,
which has complex dimension m. Hence, at least m of them are L.I. in VC.

• If u+ iv is an eigenvector of TC with eigenvalue a+ ib with b > 0, then span{u, v}
is two-dimensional and invariant under T , and [T|span{u,v} ]{v,u} =

[
a −b
b a

]
.

Proof. Since u − iv is an eigenvector for a − ib, they are linearly independent
and span{u± iv} = span{u, v} is two-dimensional. Now observe that Tu+ iTv =
TC(u+ iv) = (a+ ib)(u+ iv) = (au− bv) + i(bu+ av), whence Tu = au− bv and
Tv = bu+ av. Hence span{u, v} is invariant and [T|span{u,v} ]{v,u} =

[
a −b
b a

]
.

• Suppose TC is diagonalizable. Denote the eigenvalues of TC listed with multiplicity
by a1+ib1, . . . , am+ibm, a1−ib1, . . . , am−ibm, am+1, . . . , an where am+1 6 . . . 6 an
and bj > 0. Then there is a basis B for V such that [T ]B is block diagonal, with
m blocks of the form

[
aj −bj
bj aj

]
and n− 2m blocks of the form [aj ]1×1.

How to get B? Let zj = uj + ivj denote the elements of the original eigenbasis.
Replace zm+j by uj − ivj for j = 1, . . . ,m. For each string of identical
eigenvalues ak, . . . , ak+d, choose d + 1 linearly independent vectors xk, . . . , xk+d
from uk, vk, . . . , uk+d, vk+d, and replace them in the list. The new collection has n
eigenvectors (why?) and spans all the eigenspaces (why?), hence it spans VC, so it is
an eigenbasis. And [T ]B has the claimed form if B = v1, u1, . . . , vm, um, x2m+1, xn.
Remark. When T is normal, the orthonormal basis of eigenvalues provided by the
Complex Spectral Theorem will provide an orthogonal basis whose existence we
proved in the previous lecture. Gram-Schmidt might be needed for the real part.
Remark. If A is a Jordan basis for TC, a similar procedure will give a basis B such
that [T ]B has blocks in the diagonal as above, some 1’s above the real eigenvalues,
and some

[
1 0
0 1

]
blocks above the

[
a −b
b a

]
blocks.



Part V: Trace and determinant

For this part, F = R or C, and dimV = n > 1. For convenience, TC
and VC mean T and V if F = C, or their complexification if F = R.

21 Trace

Main reference: Axler §10.A

• We define the trace of an operator T ∈ L(V ), denoted traceT , as the sum of all
n eigenvalues of TC. We define the trace of a matrix A = (ajk)jk ∈ Cn×n by
traceA =

∑n
k=1 akk, which is the sum of its n diagonal entries.

• If pT (z) =
∑
j ajz

j is the characteristic polynomial of T , then traceT = −an−1.

• Theorem. For every basis B, trace[T ]B = traceT. In particular, trace[T ]B does not
depend on the choice of basis.

• To prove the previous theorem, we recall the following facts:
* There is a basis B of VC such that [TC]B is triangular superior.
* For every basis B of VC, if [TC]B is triangular superior then its diagonal elements
coincide with the n eigenvalues of TC.
And we use the following property of matrix trace:
* If A is invertible, then trace(ABA−1) = trace(B).
The last property implies that trace[T ]B does not depend on the basis B. Hence,
it is enough to show that the definitions of trace of operator and trace of matrix
coincide for some basis B. The first property ensures the existence of a convenient
basis, which together with the second property shows that this basis gives the
desired equality, proving the theorem.

• Proof that trace(ABA−1) = trace(B).
This follows from another property: trace(AB) = trace(BA), given by

traceAB =
∑
j

(AB)jj =
∑
j

∑
k

ajkbkj =
∑
k

∑
j

bkjajk =
∑
k

(BA)kk = traceBA.

• Interesting property: Although there is no relationship between the eigenvalues of
S + T with sums of eigenvalues of S and of T , when added together we have that
the sum of all eigenvalues of S + T equals the sum of all eigenvalues of S and T .

• Interesting application: There are no operators S and T such that ST − TS = I.



22 Determinant

Main reference: Axler §10.B

• We define the determinant of an operator T ∈ L(V ), denoted detT , as the product
of all n eigenvalues of TC. It equals (−1)na0 in the characteristic polynomial.

• The operator T is invertible if and only if detT 6= 0. Also, pT (z) = det(zI − T ).

• We define the determinant of a matrix A = (ajk)jk ∈ Cn×n by

detA =
∑
σ

sgn(σ)
n∏
j=1

aσ(j),j ,

where the sum is over all the n! permutations σ of {1, . . . , n}, and

sgn(σ) = (−1)#{(j,k) : j<k and σ(j)>σ(k)}.

• det(AB) = (detA)(detB)

• For every basis B of V , we have det[T ]B = detT .
Proof. Since det I = 1, by the previous property det[T ]B does not depend on B, so
it suffices to show the identity for some basis of VC. Take a basis B of TC for which
[TC]B is upper-triangular, so the n elements in the diagonal are the n eigenvalues
of TC. Finally, notice that the determinant of an upper-triangular matrix is the
product of the elements in the diagonal, because other permutations always pick
an entry below it.

◦ For Ω ⊂ Rn open and bounded, vol(T (Ω)) = | detT | × vol(Ω).
The volume is defined as

vol(Ω) = inf
A

∑
k

vol(Ak).

The infimum is taken over all sequences of boxes A = (A1, A2, . . . ) whose faces are
orthogonal to the axes and whose union contains Ω. The volume of a box (Ak) is
defined as the product of its n dimensions (width, depth, height, etc.).
The proof uses the following facts:

– A diagonal operator D stretches volume by a factor | detD|. (exercise)
– Isometries preserve volume. (accepted without proof)
– An isometry S has | detS| = 1. (exercise)
– det(RT ) = (detR)(detT ). (exercise)
– Singular Value Decomposition: T = S1S2DS3. (write P = S2DS3)

Proof. vol(T (Ω)) = vol(S1S2DS3(Ω)) = vol(DS3(Ω)) = | detD| × vol(S3(Ω)) =
| detD| × vol(Ω). On the other hand, | detT | = | detD|, concluding the proof.
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\emph{\Large Part I: Inner product spaces}

%\let\thefootnote\relax\footnotetext{Put your text here}

\section{Inner products}

Main reference:
Axler \S1.B

\begin{itemize}

\item

The \emph{field} $\F$ is either $\R$ or $\C$.
Elements of $\F$ are called \emph{numbers} or \emph{scalars}.
A \emph{complex number} $z \in \C$ is a number of the form $z = x+iy$ where $x,y\in \R$.
In $\C$ we have usual algebraic properties of multiplication and addition, plus the property that $i^2=-1$, so $(1+2i)(3+4i)=3+4i+6i+8i^2=-5+10i$.

\item

Why $\C$?
Cutting a long story short...
Want to count: $\N$.
Want to subtract: $\N \leadsto \Z$.
Want to divide: $\Z \leadsto \Q$.
Want intermediate value theorem: $\Q \leadsto \R$.
Want polynomials to have roots: $\R \leadsto \C$.

\item

A \emph{vector space over the field $\F$} is a set $V$ together with the operations of addition and scalar multiplication satisfying certain properties.

\end{itemize}

Main reference:
Axler \S6.A

\begin{itemize}

\item

The dot product can be seen as a generalization of multiplication on $\R$.
The inner product can be seen as a generalization of the usual dot product on $\R^n$.

\item

An \emph{inner product} on a vector space $V$ is a function $\inner{\cdot}{\cdot}:V\times V\to\mathbb{F}$ satisfying:
\begin{enumerate}
\item For every $v\in V$, $ \inner{v}{v} \geq 0$ \ \ (in particular $\inner{v}{v} \in\mathbb{R}$);
\item $\inner{v}{v}=0$ if and only if $v={\mathbf{0}}$;
\item For every $u,v,w\in V$ and $\alpha\in\mathbb{F}$, $\inner{u+\alpha v}{w}=\inner{u}{w}+\alpha \inner{v}{w}$;
\item For every $u,v\in V$, $\inner{v}{u}=\overline{\inner{u}{v}}$.
\end{enumerate}
Examples:
\begin{itemize}
\item
The dot product $\inner{x}{y} = x \mydot y$ on $\R^n$ is the simplest case.

\item
For positive real numbers $c_1,\dots,c_n$, we can define $\inner{x}{y} = \sum_j c_j x_j y_j$.

\item
On $\C^n$, we can define $\inner{z}{w} = \sum_j z_j \overline{w_j}$ or $\inner{z}{w} = \sum_j c_j z_j \overline{w_j}$.

\item
On $\cP(\C)$, we can define $ \inner{p}{q} = \int_0^\infty e^{-t}p(t)\overline{q(t)} \, \dd t $.

\end{itemize}

\item

An \emph{inner product space} is a vector space endowed with an inner product.

\item 

$\langle u,v+\alpha w\rangle=\langle u,v\rangle+\overline{\alpha}\langle u,w\rangle$, for every $u,v,w\in V$ and for every $\alpha \in \mathbb{F}$.

\item

Two vectors $u,v\in V$ are \emph{orthogonal} if $\langle u,v\rangle=0$.
We denote it $u\perp v$.

\item

${\bf 0}$ is the only vector orthogonal to itself.

\end{itemize}


\clearpage
\section{Inner products and norms}

Main reference:
Axler \S6.A

\textbf{Terminology.}
In these lecture notes, ``proof'' means just the main idea of the proof.
The complete proof is the one written on the whiteboard or in the textbook.

\begin{itemize}

\item

On an inner product space $V$, the \emph{norm} of $v\in V$ is defined by $\|v\|=\sqrt{\langle v,v\rangle}$.
\item

Properties of a norm:
\begin{enumerate}
\item For every $v\in V$, $\|v\| \geq 0$
\item $\|v\|=0$ if and only if ${v}=\mathbf{0}$
\item For every $u,v\in V$, $\|u+v\|\leq \|u\|+\|v\|$
\item For every $v\in V$ and every $\alpha\in\mathbb{F}$, $\|\alpha v\|=|\alpha|\cdot\|v\|$
\end{enumerate}

\emph{Proof.}
Triangle inequality is postponed. The other three immediate from $\inner{\cdot}{\cdot}$.

\item

\emph{Pythagorean Theorem} : If $u \perp v$, then $\|u+v\|^2=\|u\|^2+\|v\|^2$.

\emph{Proof.}
Just expand $ \inner{u+v}{u+v} $ and group the cross term.

Counter-example: $u=(1,1+i),v=(2-i,-1-i) \in \C^2$.
By carefully examining the proof, we can see why the inner product is in $i\,\R$ for such examples.

\item

\emph{Orthogonal decomposition:} For $u,v\in V$, $v\neq \0$, we have
\[
u= \lambda v+w , \quad \text{ with }\langle w,v\rangle=0,
\]
where the scalar $\lambda$ and vector $w$ are given by 
\(
\lambda = \frac{\langle u,v\rangle}{\inner{v}{v}}
\text{ and }
w = u-\lambda v.
\)

\emph{Proof.}
Assume there is such a decomposition and compute $\inner{u}{v}$.

\item

\emph{Cauchy-Schwarz Inequality.}
For every $u,v\in V$, $|\langle u,v\rangle|\leq \|u\|\cdot\| v\|$.
\\
Equality holds if and only if $v={\bf 0}$ or if $u=\lambda v$ for some $\lambda\in\mathbb{F}$.

\emph{Proof.}
Apply Pythagorean Theorem to the orthogonal decomposition of $u$ onto $v$.

Example:
for continuous functions $f,g:[0,1]\to \R$,
\[
\int_0^1 f(t)g(t) \, \dd t \leq \sqrt{\Big(\int_{0}^{1}f(t)^2 \, \dd t \Big)\Big(\int_{0}^{1} g(t)^2 \, \dd t \Big)}
.
\]

\item

\emph{Triangle Inequality.}
For every $u,v\in V$, $\|u+v\| \leq \|u\| + \|v\|$.
\\
Equality holds if and only if $v=\0$ or $u=\lambda v$ for some $\lambda \geq 0$.

\emph{Proof.}
Expand $\|u+v\|^2$ and use Cauchy-Schwarz Inequality.

Example:
for continuous functions $f,g:[0,1]\to \C$,
\begin{align*}
\sqrt{ \int_{0}^{1} |f(x)+g(x)|^2 \, \dd t }
\leq
\sqrt{ \int_{0}^{1} |f(x)|^2 \, \dd t }
+
\sqrt{ \int_{0}^{1} |g(x)|^2 \, \dd t }
.\end{align*}

\end{itemize}


\clearpage
\section{Orthonormal bases}

Main reference:
Axler \S6.B

\begin{itemize}

\item

A family of vectors $e_1,\dots,e_m\in V$ is \emph{orthonormal} if, for every $1\leq j,k\leq m$, 
\[
\langle e_j,e_k\rangle=
\left\{
\begin{array}{c}
1\text{ if } j=k , \\
0\text{ if } j\neq k.
\end{array}
\right.
\]

Examples: $\{(\cos \theta, \sin \theta),(-\sin \theta, \cos \theta)\},\
\{(0, -\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}),(0, \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}), (1,0,0)\}$.

\spitem

\emph{Parseval's Identity.}
Let $e_1,\dots,e_m\in V$ be an \emph{orthonormal} family of vectors.
\\
For every $a_1,\dots,a_m\in\mathbb{F}$, we have
\[
\|a_1e_1+\dots+a_me_m\|^2=|a_1|^2+\dots+|a_m|^2.
\]

\emph{Proof.}
Pythagorean Theorem.

\item
If $e_1,\dots,e_m\in V$ are orthonormal then they are linearly independent.

\emph{Proof.}
Use previous identity.

\item

An \emph{orthonormal basis} is a basis consisting of orthonormal vectors.
\\
Every orthonormal family containing $\mydim V$ vectors is an orthonormal basis.

\item
\emph{Decomposition.}
Let $e_1,\dots,e_m$ be an orthonormal basis for $V$.
For every $v\in V$,
\[
v=\langle v,e_1\rangle e_1+\dots+\langle v,e_n\rangle e_n,
\]
and $\|v\|^2=|\langle v,e_1\rangle|^2+\dots+|\langle v,e_n\rangle|^2$.

\emph{Proof.}
Direct computation and Parseval's identity.

\item

\emph{The Gram-Schmidt procedure:} Let $v_1,\dots,v_m\in V$ be linearly independent.
Define $e_1=\frac{1}{\|v_1\|} v_1$ and, for $j = 2,\dots,m$,
\[
\tilde{e}_j = v_j-\displaystyle{\langle v_j,e_1\rangle e_1} - \inner{v_j}{e_2}e_2 - \dots - \inner{v_j}{e_{j-1}}e_{j-1}
\qquad
e_j = \tfrac{1}{\left\|\tilde{e}_j\right\|} \, \tilde{e}_j.
\]
Then $e_1,\dots\,e_m$ is orthonormal and $\myspan(v_1,\dots,v_j)=\myspan(e_1,\dots,e_j)$ for every $j$.

%Example:
%$(i,i,i),(-1,0,1),(3,0,3)$.

Example:
%$\sqrt{\frac{1}{2}},\sqrt{\frac{3}{2}}x,\sqrt{\frac{45}{8}}(x^2 - \frac{1}{3})$ 
On $\cP_2(\R)$ with $\inner{p}{q} = \int_{-1}^{1}p(t)q(t) \, \dd t$, apply G-S to $t^2,1,t$.

\spitem
Let $e_1,\dots,e_m$ denote the orthonormal family obtained by applying Gram-Schmidt to $v_1,\dots,v_m$, and let $e_1',\dots,e_m',e_{m+1}'$ denote the family obtained from $v_1,\dots,v_m,v_{m+1}$. Then $e_1=e_1',\dots,e_m=e_m'$.

An analogous property would not hold for $v_{m+1},v_1,\dots,v_m$.

That is, Gram-Schmidt procedure gives a consistent output if we add more vectors at the end of the list, but not at the beginning.

\end{itemize}


\clearpage
\section{Schur's Theorem and Riesz Representation Theorem}

Main reference:
Axler \S6.B
\ \ \
(Uses results from Axler \S5.B)

\textbf{Notation.}
A `` $\circ$ '' indicates a point that it is not quite following the textbook.

\begin{itemize}

\item

Every \textbf{finite-dimensional} inner product space has an orthonormal basis.

\emph{Proof.}
Apply Gram-Schmidt to an arbitrary basis.

\item

For \textbf{finite-dimensional} inner product spaces, every orthonormal family can be extended to an orthonormal basis.

\emph{Proof.}
Extend to an arbitrary basis (add at the end) and apply Gram-Schmidt.

\item

If an operator $T$ on a \textbf{finite-dimensional} inner product space has upper-triangular matrix with respect to some basis, then it has an upper-triangular matrix with respect to some orthonormal basis.

\emph{Proof.}
Recall that $[T]_{v_1,\dots,v_m}$ is upper-triangular if and only if $\myspan(v_1,\dots,v_j)$ is invariant under $T$ for every $j = 1,\dots,m$.
Apply Gram-Schmidt and conclude.

\item

\emph{Schur's Theorem}: Every operator on a \textbf{finite-dimensional} and \textbf{complex} inner product space has upper-triangular matrix with respect to some orthonormal basis.

\emph{Proof.}
Recall that every operator on a finite-dimensional complex vector space is upper-triangular with respect to some basis.
Apply previous result.

Example:
compare $T(x,y)=(-y,x)$ on $\R^2$ and $\C^2$.

\item

A \emph{linear functional} $\varphi$ on $V$ is a linear map from $V$ to $\mathbb{F}$, i.e.~$\varphi\in\mathcal{L}(V,\mathbb{F})$.

Example:
$\varphi(z)=2z_1 -i z_3 + 3z_3 + 5i z_1$ on $\C^3$.

\emph{Remark.}
The above example can be written as $\varphi(z) = \inner{z}{(2-5i,0,3+i)}$.

Example:
$\varphi(p)= \int_0^1 p(t) \cos \pi t \, \dd t$ on $\cP(\C)$.

%Remark:
%This one cannot be written as $\varphi(p) = \inner{p}{q}$ for some fixed $q \in V$.

\item

\emph{Riesz Representation Theorem.}
Let $V$ be a \textbf{finite-dimensional} inner product space and $\varphi\in\mathcal{L}(V,\mathbb{F})$. There is a unique $u\in V$ such that $\varphi(v)=\langle v,u\rangle \ \forall v$.

\emph{Proof.}
Take an orthonormal basis, write $u = \sum_j \alpha_j e_j$, and expand $\inner{e_j}{u}$.
Show that this $u$ has the desired property.
For uniqueness, compute $\varphi(u-u')$.

\emph{Remark.}
So we compute $u$, and the result does not depend on the choice of basis.

\spitem

As a remark, for $\varphi(p)= \int_0^1 p(t) \cos \pi t \, \dd t$ on $\cP(\C)$, there is no $q \in \cP(\C)$ with this property.
The proof is analytic, requiring Stone-Weierstrass Theorem, etc.
This is Functional Analysis, which combines Linear Algebra, Analysis and Topology.

However, if we restrict this functional $\varphi$ to $\cP_2(\C)$, then we can find $q \in \cP_2(\C)$ such that $\varphi(p) = \inner{p}{q}$ for every $p \in \cP_2(\C)$.

\end{itemize}


\clearpage
\section{Orthogonal complement}

Main reference:
Axler \S6.C

\textbf{Notation.}
$C_\R[a,b] = \{f:[a,b]\to\R \text{ continuous}\}$,
$C_\C[a,b] = \{f+ig:f,g\in\mathcal{C}_\R[a,b]\}$.

\begin{itemize}

\item

If $U$ is a subset of $V$, then the \emph{orthogonal complement} of $U$, denoted $U^{\perp}$, is the set of vectors in $V$ that are orthogonal to every vector in $U$, that is
\[
U^{\perp}=\left\{v\in V:\ \langle v,u\rangle=0, \ \forall u\in U\right\}.
\]

%Examples on $\R^3$.

\item

Let $V$ be an inner product space. Then
\begin{enumerate}
\item For every subset $U$ of $V$, $U^\perp$ is a subspace;
\item $\{\0\}^\perp=V$ and $V^\perp=\{\bf{ 0}\}$;
\item For every subset $U\subset V$, $U^\perp\cap U\subset \{{\bf 0}\}$;
\item For every subsets $U\subset W\subset V$, $W^\perp\subset U^\perp$.
\end{enumerate}
%  finite-dimensional (not needed?!)

\emph{Proof.}
\emph{Proof.}
In each case, check the definitions.

\item

If $V$ is a inner product space and $U\subset V$ is a \textbf{finite-dimensional} subspace then $$V=U\oplus U^\perp.$$

\emph{Proof.}
For $V=U+U^\perp$, take an orthonormal basis $e_1,\dots,e_m$ of $U$, write $v$ as a sum of its components $\inner{v}{e_j}e_j$ in $U$ plus the remainder $w$ in $U^\perp$.
\\
Finally, $\oplus$ follows from $U \cap U^\perp = \{\0\}$.

\spitem

What can go wrong?

Let $V = C_\R[-1,1]$ with $\inner{f}{g} = \int_{-1}^1 f(t)g(t) \,\dd t$.
\\
For $U = \{f \in V:f(0)=0\}$, $U^\perp = \{\0\}$ and $U+U^\perp \ne V$.

\item

If $U$ is a finite-dimensional subspace, then $U=(U^\perp)^\perp$.

\emph{Proof.}
 To show that $U \subset (U^\perp)^\perp$ check the definition.
For $U \supset (U^\perp)^\perp$, let $v\in (U^\perp)^\perp$, and write $v=u+w$.
Since $U \subset (U^\perp)^\perp$, $u \in (U^\perp)^\perp$, hence $(v-u) \in (U^\perp)^\perp$.
On the other hand, $(v-u) = w \in U^\perp$, thus $v-u=\0$, hence $v \in U$.

\spitem

With the previous counter-example, $(U^\perp)^\perp$ is bigger than $U$.

\item

If $V$ is finite-dimensional and $U$ is a subspace, then $\mydim U^\perp = \mydim V - \mydim U$.

\emph{Proof.}
Just recall that a sum is a direct sum if and only if dimensions add up.

\end{itemize}


\clearpage
\section{Orthogonal projection and best approximation}

Main reference:
Axler \S6.C

In this lecture, we assume that $U$ is a finite-dimensional subspace of $V$.

\begin{itemize}

\item

The \emph{orthogonal projection} of $V$ onto $U$ is the map $\proj{U} : V \to U$ defined as follows.
For every $v\in V$, write $v$ as
$$v=u+w \ \ \text{ with } u\in U \text{ and } w\in U^\perp,$$
and take $\proj{U} v=u$.
This is well-defined because $V=U\oplus U^\perp$.

\item

Properties of the projection operator.
\begin{enumerate}
\item $\proj{U}\in\mathcal{L}(V)$;
\item $\proj{U} u=u,\ \forall u\in U$ and $\proj{U} w=\0, \ \forall w\in U^\perp$;
\item $\myrange \proj{U}=U$ and $\myker \proj{U}=U^\perp$;
\item $(v - \proj{U} v )\in U^\perp$;
\item $\big(\proj{U}\big)^2=\proj{U}$;
\item $\|\proj{U} v\|\leq \|v\|$ and equality holds if and only if $v\in U$.
\item Given an orthonormal basis $e_1,\dots,e_n$ of $U$, we have, for every $v\in V$,
$$\proj{U} v = \sum_{i=1}^m\langle v,e_i\rangle e_i.$$
\end{enumerate}
\emph{Proof.}
Check the definition of linear.
Use the definition of $\proj{U}$.
Use previous property and $V=U\oplus U^\perp$.
Use the definition of $\proj{U}$.
Use the second property.
Pythagorean Theorem to $v=\proj{U} v + (v - \proj{U} v)$.
Done in the proof of $V=U\oplus U^\perp$.

\item

\emph{Best approximation.}
For every $v\in V$ and every $u\in U$, we have that
\[
\|v-\proj{U}v\| \leq \|v-u\|,
\]
and equality holds if and only if $u=\proj{U} v$.

\emph{Proof.}
Apply Pythagorean Theorem to $v-u=(v - \proj{U} v) + (\proj{U} v - u)$.

\item

The assumption that $U$ is finite-dimensional is of course very restrictive.
But the theory is still very powerful under this assumption, see Example 6.58.

\spitem

Example:
Find the affine function that best approximates $g(t)=\sqrt{t}$ in terms of mean squared difference on $[0,1]$.

\end{itemize}


\clearpage

\hfil
\emph{\Large Part II: Operators on inner product spaces}

\bigskip

\hfill
We assume that all spaces are finite-dimensional.

\section{The adjoint operator}

Main reference:
Axler \S7.A

\begin{itemize}

\item

Let $V$ and $W$ be two inner product spaces. The \emph{adjoint} of a linear map $T\in\mathcal{L}(V,W)$ is the map $T^*$ defined by $w \mapsto T^* w$ where $T^* w$ is the unique vector in $V$ such tat
$$\langle Tv,w\rangle_{{}_W} = \langle v,T^*w\rangle_{{}_V}$$ for every $v\in V$.
The operator $T^*$ is well-defined by Riesz Representation Theorem.

\item

Examples:

$T(x_1,x_2,x_3)=(- 2 x_2, 5 x_3 - 3 x_1)$

$Tv = \inner{v}{u}_{{}_V} \, x$ for fixed $u\in V$ and $x\in W$

$Tv = Av$ on $\R^4$, where
$ A =
\left[ \begin{array}{cccc}
0 & 1 & 2 & 3 \\
4 & 5 & 6 & 7
\end{array} \right]$

\item

Properties. On the appropriate spaces,

\begin{enumerate}
\item
$T^*\in\mathcal{L}(W,V)$
\item
$(S+T)^*=S^*+T^*$
\item
$(\lambda T)^*=\bar{\lambda}T^*$
\item
$(T^*)^*=T$
\item
$(ST)^*=T^*S^*$
\item
$I^* = I$
\end{enumerate}
\emph{Proof.}
Check the definitions.

\item
For every $T$, $\myker T^*=(\myrange T)^\perp$.

\emph{Proof.}
Use $V^\perp = \{\0\}$ and the definitions of $\myker$, adjoint, $\perp$ and $\myrange$.

\item
Corollaries:
$\myrange T = (\myker T^*)^\perp$,
$\myrange T^* = (\myker T)^\perp$,
$\myker T=(\myrange T^*)^\perp$.

\emph{Proof.}
Take $\perp$. Replace $T$ by $T^*$. Take $\perp$.

\item

For $T\in\mathcal{L}(V,W)$ and orthonormal bases $\mathcal{A}$ of $V$ and $\mathcal{B}$ of $W$, we have
$$
[T^*]_{\mathcal{A},\mathcal{B}}= ([T]_{\mathcal{B},\mathcal{A}})^*,
$$
where $A^*$ denotes the \emph{conjugate transpose} of a matrix $A$.

\emph{Proof.}
Let $C=[T]_{\mathcal{B},\mathcal{A}}$ and $D=[T^*]_{\mathcal{A},\mathcal{B}}$.
Then $c_{j,k} = \dots = \inner{Te_k}{g_j}$.
Likewise, $d_{j,k} = \inner{T^* g_k}{e_j}$.
On the other hand,
$\inner{T^* g_k}{e_j}=\inner{g_k}{T e_j}=\overline{\inner{T e_j}{g_k}}=\overline{c_{k,j}}$.

\end{itemize}


\clearpage
\section{Self-adjoint and normal operators}

Main reference:
Axler \S7.A

%\textbf{In this lecture we assume all spaces are finite-dimensional.}

\begin{itemize}

\item

An operator $T\in\mathcal{L}(V)$ is \emph{self-adjoint} if $T^*=T$.

\item

In some sense, taking the adjoint of a linear operator is the analogous of taking the complex conjugate of a number.
In the same spirit, since a number being real is equivalent to being equal to its conjugate, the property of an operator being self-adjoint has many similarities with the property of a number being real.

\item

If $T\in\mathcal{L}(V)$ is self-adjoint, then all its eigenvalues are real.

\emph{Proof.}
Show that $\lambda \|v\|^2 = \bar{\lambda} \|v\|^2$.

\item

Let $V$ be a {\bf complex} inner product space and let $T\in\mathcal{L}(V)$ be an operator. $T$ is self-adjoint if and only if $\langle Tv,v\rangle\in\mathbb{R}$ for every $v\in V$.

\emph{Proof.}
Check that $\inner{Tv}{v}-\overline{\inner{Tv}{v}}=\inner{(T-T^*)v}{v}$ and use following fact.

* If $\langle Sv,v\rangle=0$ for every $v\in V$, then $S={\bf 0}$.

\emph{Proof.}
For $u, w\in V$, expanding
$0 = \sum_k i^k \inner{S(u+i^kw)}{u+i^kw} = 4 \inner{Su}{w}$ gives $Su \in V^\perp=\{\0\}$.
Example:
Compare $S(x,y)=(-y,x)$ on $\R^2$ and $\C^2$.

\item

Let $V$ be an inner product space (real or complex) and let $T\in\mathcal{L}(V)$ be a {\bf self-adjoint} operator. If $\langle Tv,v\rangle=0$ for every $v\in V$, then $T={\bf 0}$.

\emph{Proof.}
For $\F=\C$ it is the previous theorem, so we can assume $\F=\R$. Expanding
$0=\inner{T(u+w)}{u+w}-\inner{T(u-w)}{u-w}$ gives $4\inner{Tu}{w}=0$, hence $Tu \in V^\perp=\{\0\}$.

\item

An operator $T\in\mathcal{L}(V)$ is \emph{normal} if $TT^*=T^*T$.

Examples:
\\
$T(x,y)=(-2y,2x)$ on $\F^2$.
Check that $T^*=(2y,-2x)$, $TT^*=T^*T=(4x,4y)$.\\
$T(x,y)=(y,y)$.
Check that $T^*=(0,x+y)$, $TT^*=(x+y,x+y)$, $T^*T=(0,2y)$.

\item

An operator $T\in\mathcal{L}(V)$ is normal if and only if $\|Tv\|=\|T^*v\|$ for every $v\in V$.

\emph{Proof.}
Write $S=T^*T-TT^*$. We have $S=S^*$, want to show that $S=\0$.
Show that $\inner{Sv}{v}=\|T^*v\|^2 - \|Tv\|^2$ and use previous theorem.

\item If $T\in\mathcal{L}(V)$ is a normal operator with eigenvector $v\in V$ associated to some eigenvalue $\lambda\in\mathbb{F}$, then $v$ is also an eigenvector of $T^*$ associated to the eigenvalue $\bar{\lambda}$.

\emph{Proof.}
Show that $T-\lambda I$ is also normal, whence $\|Tv-\lambda v\|=\|T^*v - \bar\lambda v\|$.

\item If $T\in\mathcal{L}(V)$ is a normal operator then eigenvectors associated to distinct eigenvalues are orthogonal.

\emph{Proof.}
By previous theorem, $Tu=\alpha u$ and $T^*v=\bar\beta v$.
Show that $(\alpha-\beta)\inner{u}{v}=0$.

\end{itemize}


\clearpage
\section{Spectral Theorem}

Main reference:
Axler \S7.B

%\textbf{In this lecture we assume all spaces are finite-dimensional.}

\begin{itemize}

\item

\text{Spectral Theorems.}
Why do we care?
Diagonal operators?
Orthogonal bases?

%\item
%
%In-class exercise: 
%Diagonalize $T(x,y)=(2x+y,x+2y)$ on $\R^2$.

\item

%In-class exercise: 
Can you diagonalize $T(x,y)=(-2y,2x)$ on $\C^2$? What about $\R^2$?

\item

Can you diagonalize $T(x,y)=(2x+y,x+2y)$ on $\C^2$? What about $\R^2$?

\item

\emph{Complex Spectral Theorem:} Let $V$ be a \textbf{complex} inner product space and $T\in\mathcal{L}(V)$ be an operator. $T$ is \textbf{normal} if and only if it is orthonormal diagonalizable.

%Example:
%$T(x,y)=(-2y,2x)$ being orthogonal diagonalizable on $\C^2$ but not on $\R^2$ is consistent with it being normal but not self-adjoint.

\emph{Proof.}
$(\Leftarrow)$
We know that $[T^*]=[T]^*$, so $[T^*]$ is also diagonal with respect to the same orthonormal basis, thus $[T]^*$ and $[T]$ commute, hence $T^*$ and $T$ commute.
\\
$(\Rightarrow)$
By Schur's Theorem, there is orthonormal basis $\mathcal{A}=\{e_1,\dots,e_n\}$ such that $[T]_\A$ is upper-triangular.
Using $[T^*]=[T]^*$, $\|T e_j \|=\|T^* e_j \|$ and Pythagorean Theorem, show recursively that off-diagonal entires of each row of $[T]$ are zero.

\item

\emph{Real Spectral Theorem.} Let $V$ be a \textbf{real} inner product space and let $T\in\mathcal{L}(V)$ be an operator.
Then $T$ is \textbf{self-adjoint} if and only if it is orthonormal diagonalizable.

%Example:
%$T(x,y)=(2x+y,x+2y)$ being orthonormal diagonalizable on $\R^2$ is consistent with it being self-adjoint.

We prove the Real Spectral Theorem with three lemmas.

An \emph{irreducible quadratic factor} is a polynomial of the form $q(t)=t^2 + 2bt + c$ for real numbers $c>b^2$.
Note that $q(t)>0$ for every $t \in \R$.
% For $\alpha>0$, $x^2 + \alpha bx + \alpha^2 c$ is still an irreducible factor.

*
If $T^*=T$ and $c>b^2 \geq 0$, then $S=T^2+2bT+cI$ is invertible.

\emph{Proof.}
% Check that $x^2 + bx +c > 0$ for all $x$, conclude that $x^2 + bxy + cy^2 > 0$ if $y>0$.
For $\|v\|=1$, expand using $(T+bI)^*=T+bI$ to show $\inner{Sv}{v}>0$.

*
If $V\neq\{\0\}$ and $T^*=T$, then $T$ has at least one eigenvalue.

\emph{Proof.}
Assume $\F=\R$.
Fix $v\ne\0$.
Writing $n=\mydim V$, the family $v,Tv,T^2v,\dots,T^nv$ must be linearly dependent, whence $\sum_j 
a_j T^j v = \0$.
Consider the non-zero polynomial $p(x)=a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$, and recall that every polynomial over $\R$ can be factorized as a constant times several irreducible quadratic factors times several factors of the form $x-\lambda_k$ for $\lambda_k \in \R$.
Since $p(T)v=\0$, at least one of the linear factors $T-\lambda_k I$ is not injective, and therefore $\lambda_k$ is an eigenvalue.
The case $\F=\C$ is similar but simpler, since polynomials over $\C$ factorize completely.

*
If $T^*=T$ and $U\subset V$ is an invariant subspace under $T$, then $U^\perp$ is invariant under $T$, $T_{|_U}\in{\mathcal{L}(U)}$ is self-adjoint and $T_{|_{U^\perp}}\in{\mathcal{L}(U^\perp)}$ is self-adjoint.

\emph{Proof.}
For $T(U^\perp) \subset U^\perp$, check the definition using $T^*=T$.
For $T_{|_{U}}$ self-adjoint, check the definition.
For $T_{|_{U^\perp}}$ self-adjoint, switch $U$ and $U^\perp$.

Proof of Real Spectral Theorem:
$(\Leftarrow)$
Since $[T]$ is diagonal with respect to an orthonormal basis, we have that $[T^*]=[T]^*=[T]^t=[T]$, hence $T^*=T$.
\\
$(\Rightarrow)$
Use the two lemmas above and induction on the dimension.

\end{itemize}


\clearpage
\section{Positive operators and isometries}

Main reference:
Axler \S7.C

\begin{itemize}

\item

%Spectral Theorem is about orthonormal diagonalization.
%But not every linear operator is diagonalizable, let alone orthonormal diagonalizable.

The idea is that every linear map can be ``diagonalized'' by two orthonormal bases.
Whereas a diagonal operator only does some ``stretching,'' having different bases reflects some ``rotation'' done on the top of that.
By flipping elements of the second base, we can even restrict the stretching to positive real scalars.
As we will see later, stretching is represented by a positive operator, and rotation by an isometry.

\item

An operator $T\in\mathcal{L}(V)$ is \emph{positive} if $T^*=T$ and if $\langle Tv,v\rangle \geq 0$ for every $v\in V$.

Examples:
The identity operator is positive.
An orthogonal projection $\proj{U}$ is positive.
If $T^*=T$ and $c > b^2$ are real, then $T^2 + 2 b T + cI$ is positive.
(7.32)

Remark:
By the Spectral Theorem, a self-adjoint operator is positive if and only if all eigenvalues are non-negative.

\item

Let $T\in\mathcal{L}(V)$ be an operator. An operator $R\in\mathcal{L}(V)$ is a \emph{square root} of $T$ if $T=R^2$.
\hfill
(7.33)

Example:
$T(x,y,z)=(z,0,0)$ and $R(x,y,z)=(y,z,0)$ on $\C^3$.

\item

If $T$ is a positive operator, then $T$ has a \emph{unique} positive square root, denoted $\sqrt{T}$.

\emph{Proof.}
Use the Spectral Theorem.
For existence, take $R$ having eigenvalues $\sqrt{\lambda_k}$ with same orthonormal eigenvectors as $T$.
For uniqueness, let $v$ be an eigenvector of $T$, so $Tv = \lambda v$.
Let $\sqrt{\lambda_k}$ denote the eigenvalues of $R$ for an orthonormal basis $(e_1,\dots,e_n)$, show that $\sum_k a_k \lambda_k e_k = \sum_k a_k \lambda e_k$.
Conclude that $a_k$ with different eigenvalues are zero, hence $Rv=\sqrt{\lambda}v$.
Since eigenvectors form a basis, this determines $R$.
\hfill
(7.36)

\item

An operator $S\in\mathcal{L}(V)$ is an \emph{isometry} if $\|Sv\|=\|v\|$ for every $v\in V$.

\spitem

Let $S\in\mathcal{L}(V)$.
The following are equivalent:
\begin{enumerate}
\item $S$ is an {isometry};
\item $\inner{Su}{Sv} = \inner{u}{v}$ for every $u,v\in V$;
\item $Se_1,\dots,Se_m$ is orthonormal for every orthonormal family $e_1,\dots,e_m$;
\item $Se_1,\dots,Se_n$ is orthonormal for some orthonormal basis $e_1,\dots,e_n$;
\item $S$ is invertible and $S^{-1}=S^*$;
\item $S^*$ is an isometry.
\end{enumerate}

\emph{Proof.}
First $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 5 \Rightarrow 6$.
Use that $4 \inner{u}{v} = \sum_k i^k \| u+i^k v\|^2$.
Orthonormality is preserved once inner product is preserved.
Existence follows from Gram-Schmidt.
Mapping a basis to a basis, $S$ is invertible and, by linear combinations on a basis it preserves inner product, so $\inner{u}{S^{-1}v}=\inner{Su}{SS^{-1}v}$ for all $u,v$.
$\inner{S^*v}{S^*v}=\inner{SS^*v}{v}=\|v\|^2$.
For $6 \Rightarrow 1$, use $1 \Rightarrow 6$ and $T^{**}=T$.
\hfill
(7.42)

% \item
% 
% Let $V$ be a \textbf{complex} inner product space. Then, an operator $S\in\mathcal{L}(V)$ is an isometry if and only if $S$ is orthonormal diagonalizable and $|\lambda|=1$ for every eigenvalue $\lambda$.
% 
% \emph{Proof.}

\end{itemize}


\clearpage
\section{Polar Decomposition \& Singular Value Decomposition}

Main reference:
Axler \S7.D

Numbers refer to page or otherwise equation/theorem numbering in Axler.

\begin{itemize}

\item

\emph{Polar Decomposition.}
Let $T$ be an operator on $V$.
There exist an isometry $S$ and a positive operator $P$ such that $T=SP$.
This $P$ can be given by $P=\sqrt{T^*T}$.

\emph{Proof.}
Use $T^*T=P^*P$ to show $\|Pv\|=\|Tv\|$.
Let $U=\myrange P$ and $W = \myrange T$.
Define $S_1 \in \cL(U,W)$ by $S_1 P v = T v$.
Since $S_1$ preserves norm, it is injective.
It follows from the definition that it is also surjective, so $\mydim W = \mydim U$.
Define $S_2 \in \cL(U^\perp,W^\perp)$ by $Te_j=g_j$ for some orthonormal bases.
Define $S = S_1 \proj{U} + S_2 \proj{U^\perp}$.
Since $S_1$ and $S_2$ preserve norm, by orthogonality so does $S$.
\hfill
(7.45)

%Remark:
%Polar Decomposition implies that, over $\mathbb{C}$, any operator is the product of two diagonalizable operators (this does not say that every operator is diagonalizable).

\item

Let $T\in\mathcal{L}(V)$. The \emph{singular values} of $T$ is the list consisting of the eigenvalues of $\sqrt{T^*T}$, where an eigenvalue $\lambda$ is counted $\mydim \myker (\sqrt{T^*T}-\lambda I)$ times.

Remark:
Singular values are nonnegative. By the Spectral Theorem there are always $\mydim V$ of them.
\hfill
(236)

Example:
With computations we check that $T(x,y,z,w)=(0,3x,2y,-3w)$ has singular values $(0,2,3,3)$ but only $0$ and $-3$ are eigenvalues.
\hfill
(7.49)

\item

\emph{Singular Value Decomposition.}
Let $T\in\mathcal{L}(V)$.
There exist orthonormal bases $\mathcal{A}$ and $\mathcal{B}$ such that $[T]_{\mathcal{B},\mathcal{A}}$ has the singular values on the diagonal and zero elsewhere.

\emph{Proof.}
Express $P=\sqrt{T^*T}$ in terms an orthonormal eigenbasis.
Using Polar Decomposition, apply $S$ to this expression, getting
$Tv=s_1\langle v,e_1\rangle Se_1+\dots+s_n\langle v,e_n\rangle S e_n.$
\hfill
(7.51)

\end{itemize}


\clearpage

\hfil
\emph{\Large Part III: Operators on complex vector spaces}

\bigskip

\hfill
We assume that $\F = \R \text{ or }\C$ and $\dim V = n \geq 1$.

\section{Generalized eigenvectors}

Main reference:
Axler \S8.A
%\hfill
%For this lecture, $\F = \R \text{ or }\C$, $\dim V = n \geq 1$

\begin{itemize}

\item

Let $T\in\mathcal{L}(V)$. We have $\{\0\}=\myker T^0\subset \myker T^1\subset \myker T^2\subset \myker T^3 \subset \cdots$

\emph{Proof.}
Just check the definition.

\item

If $\myker T^m = \myker T^{m+1}$, then $\myker T^m = \myker T^{m+1} = \myker T^{m+2} = \myker T^{m+3} = \cdots$

\emph{Proof.}
Show that $v \in \myker T^{m+k+1}$ is also in $\myker T^{m+k}$ using $T^k v \in \myker T^{m+1}$.
\hfill
(8.3)

\item

We have $\myker T^k= \myker T^n$ for every $k \geq n$.

\emph{Proof.}
Each time there is strict inclusion, the dimension increases by at least one.

\item

We have $V = \myker T^n \oplus \myrange T^n$.

\emph{Proof.}
To show $\myker \cap \myrange = \{\0\}$, write $v = T^n u$, and show $u \in \myker T^{2n} = \myker T^n$.
Finally, dimensions add up by Rank-Nullity Theorem.

After-class exercise:
Let $T(z_1,z_2,z_3)=(4z_2,0,5z_3)$.
Check that $\myker T \cap \myrange T \ne \{\0\}$ and $\C^3 \ne \myker T + \myrange T$ but $\C^3 = \myker T^3 \oplus \myrange T^3$ by finding describing these subspaces explicitly.
\hfill
(8.5)

\item

A vector $v\in V$ is a \emph{generalized eigenvector} associated to $\lambda$ if $v\neq\0$ and if there exist a nonnegative integer $j$ such that $(T-\lambda I)^jv=\0$.

Remark:
In this case $\lambda$ must be an eigenvalue, because otherwise $(T-\lambda I)$ being injective would imply that $(T-\lambda I)^j$ is injective.

\item

Ideally, one should be able to decompose $V$ as a direct sum of invariant subspaces where $T$ behaves nicely.
We would like to have $V = E(\lambda_1, T) \oplus \cdots \oplus E(\lambda_m,T)$ but that is not always possible.
Introducing generalized eigenvectors is an attempt to give a good description of linear operators, as simple and complete as possible.

\item

The subspace $G(\lambda,T) = \myker (T-\lambda I)^n$ is called the \emph{generalized eigenspace} of $T$ associated to the eigenvalue $\lambda$.

Exercise:
Let $T(z_1,z_2,z_3)=(4z_2,0,5z_3)$.
Find the eigenvalues of $T$ and the generalized eigenspaces.
Check that $\C^3$ is a direct sum of generalized eigenspaces.

\item

Let $v_1,\dots,v_m$ be generalized eigenvectors corresponding to distinct eigenvalues $\lambda_1,\dots,\lambda_m$ of $T\in\mathcal{L}(V)$. Then the vectors $v_1\dots,v_m$ are linearly independent.

\emph{Proof.}
Take $w=(T-\lambda_1 I)^k v_1$ as a $\lambda_1$-eigenvector.
So $(T - \lambda I)^n w = (\lambda_1 - \lambda)^n w$.
Apply $(T-\lambda_1 I)^k \prod_{j>1} (T - \lambda_j I)^n$ to both sides of $\sum_j a_j v_j = \0$ and conclude that $a_1 = 0$.
To get $a_j = 0$ we repeat the same argument.
\hfill
(8.13)

\end{itemize}


\clearpage
\section{Generalized eigenvectors and nilpotent operators}

Main reference:
Axler \S8.A \& \S8.B
%\hfill
%For this lecture, $\F = \R \text{ or }\C$, $\dim V = n \geq 1$

\begin{itemize}

\item

An operator $N\in\mathcal{L}(V)$ is \emph{nilpotent} if $N^n={\bf 0}$.

Examples:
The derivative on $\mathcal{P}_7(\R)$, or $N(z_1,z_2,z_3,z_4)=(z_2+z_3,z_3,z_4,0)$ on $\C^4$.

\item

Let $N\in\mathcal{L}(V)$ be a nilpotent operator. There exists a basis $\mathcal{B}$ such that $[N]_{\mathcal{B}}$ is upper-triangular with only 0's on the diagonal.

\emph{Proof.}
Choose basis for $\myker N$, extend it to a basis of $\myker N^2$, and so on.
\hfill
(8.19)

\item

Let $T\in\mathcal{L}(V)$ be an operator and let $\lambda$ be an eigenvalue of $T$. The \emph{algebraic multiplicity} of $\lambda$ is defined as $\mydim \myker (T-\lambda I)^n$. The \emph{geometric multiplicity} of $\lambda$ is defined as $\mydim \myker (T-\lambda I)$ and can be smaller than the algebraic multiplicity. 

Exercise:
For $T(z_1,z_2,z_3)= ( 6z_1 + 3z_2 + 4z_3 , 6z_2 + 2z_3 , 7z_3 )$, find the eigenvalues, generalized eigenspaces, and a basis of $\C^3$ made of generalized eigenvectors.

\bigskip
\hfil
\textbf{Below we assume that $\F=\C$.}
\medskip

\spitem                

%($ \F=\C $).
Let $\lambda_1,\dots,\lambda_m$ denote the distinct eigenvalues of $T\in\mathcal{L}(V)$.
Then $$V= G(\lambda_1,T) \oplus \cdots \oplus G(\lambda_m, T).$$
In particular, there is a basis of generalized eigenvectors, and the sum of algebraic multiplicities of $\lambda_1,\dots,\lambda_m$ equals $n$.
Moreover, for all $j$, the subspace $G(\lambda_j,T)$ is invariant under $T$ and the restriction of $T-\lambda_j I$ to $G(\lambda_j,T)$ is nilpotent.

\emph{Proof.} We use the observation that $\myker p(T)$ and $\myrange p(T)$ are invariant under $T$ for any complex polynomial $p(z)$, in particular for $p(z)=(z-\lambda_j)^n$.
Invariance of $G(\lambda_j,T)$ under $T$ follow from this, nilpotence follows from definition of $G(\lambda,T)$.
For the direct sum, recall that operators on complex spaces have at least one $\lambda_1$, write $V = G(\lambda_1, T) \oplus U$ with $U = \myrange (T-\lambda_1 I)^n$ invariant under $T$.
Let $S=T_{|_U} \in \cL(U)$.
The $\lambda_1$-eigenvectors are in $G(\lambda_1,T)$, hence not in $U$.
By induction on $n$, $U = G(\lambda_2,S) \oplus \cdots \oplus G(\lambda_m,S)$.
Since $G(\lambda,S)\subset G(\lambda,T)$, $G(\lambda_1,T)+ \cdots + G(\lambda_m,T) = V$.
Direct sum follows from linear independence of generalized eigenvectors.
\hfill
(8.21)

\item

%($ \F=\C $).
Let $\lambda_1,\dots,\lambda_m$ denote the distinct eigenvalues of $T\in\mathcal{L}(V)$ and $d_1,\dots,d_m$ their algebraic multiplicities.
There exists a basis $\mathcal{B}$ of $V$ such that $[T]_{\mathcal{B}}$ is block diagonal with blocks $A_1,\dots,A_m$ such that $A_j$, $j\in\{1,\dots,m\}$, is a $d_j\times d_j$ upper-triangular matrix with $\lambda_j$ on the diagonal.

\emph{Proof.}
Defining $N_j \in \cL(G(\lambda_j,T))$ by $N_j v = (T - \lambda_j I) v$, we have $N_j$ nilpotent, so there is a basis $\mathcal{B}_j$ of $G(\lambda_j,T)$ such that $[N_j]_{\mathcal{B}_j}$ is upper-triangular with zeros on the diagonal, adding back $\lambda_j I$ gives the upper-triangular matrix with $\lambda_j$ on the diagonal.
\hfill
(8.29)

\end{itemize}


\clearpage
\section{Characteristic and minimal polynomials}

Main reference:
Axler \S8.C
%\hfill
%For this lecture, $\F = \R \text{ or }\C$, $\dim V = n \geq 1$

\begin{itemize}

\item

A {\it monic polynomial} is a polynomial whose leading coefficient is $1$.

\item

There exists a unique monic polynomial $p \in \cP(\F)$ of smallest degree such that $p(T)={\bf 0}$. The polynomial $p$ is called the {\it minimal polynomial} of $T$.

\emph{Proof.}
Consider the largest $m$ such that $I,T,T^2,\dots,T^m$ is linearly independent (such $m$ exists since $\cL(V)$ is finite-dimensional).
Then $I,T,T^2,\dots,T^m$ is a basis for its span, which in turn contains $T^{m+1}$ by definition of $m$.
Therefore, there is a unique monic polynomial $p(z) = z^{m+1} + a_{m} z^{m} + \dots + a_1 z + a_0$ of degree $m+1$ such that $p(T) = \0$.
Moreover, if $q$ is a polynomial of smaller degree such that $q(T)=\0$, by linear independence of $I,T,T^2,\dots,T^m$ we have $q=\0$, so $q$ cannot be monic.
\hfill
(8.40)

\item

Let $p$ be the minimal polynomial of $T$ and let $q\in\mathcal{P}(\mathbb{F})$ be a polynomial. We have that $q(T)={\bf 0}$ if and only if $p$ divides $q$, i.e. $q=p\times s$ for some polynomial $s$.

\emph{Proof.}
The more difficult direction uses polynomial division.
\hfill
(8.46)

\item

Let $V$ be a finite-dimensional vector space and let $T\in\mathcal{L}(V)$. The zeros of the minimal polynomial of $T$ are exactly the eigenvalues of $T$.

\emph{Proof.}
If $p(\lambda)=0$, we have $(T-\lambda I)q(T) v = \0$ for every $v$, and since $q(T) \ne \0$, $\lambda$ is an eigenvalue.
Conversely, if $\lambda$ is an eigenvalue then for an eigenvector we get $\0 = p(T)v = p(\lambda) v$, hence $p(\lambda)=0$.
\hfill
(8.49)

\bigskip
\hfil
\textbf{Below we assume that $\F=\C$.}
\medskip

\item

Let $\lambda_1,\dots,\lambda_m$ denote the distinct eigenvalues of $T\in\mathcal{L}(V)$ and $d_1,\dots,d_m$ their algebraic multiplicities.
The \emph{characteristic polynomial} of $T$ is defined by
\[
g(z) = (z-\lambda_1)^{d_1} \cdots (z-\lambda_m)^{d_m}.
\]
Remark: $g(z)$ has degree $n$ and its zeros are the eigenvalues.

\item

\emph{Cayley-Hamilton Theorem}: $g(T)={\bf 0}$.

\emph{Proof.} Every $v$ is a combination of vectors $v_j \in \ker (T-\lambda_j I)^{d_j}$, and since the operators $(T-\lambda_j I)^{d_j}$ commute, $g(T) v_j = \0$.
\hfill
(8.37)

\item

The characteristic polynomial is a multiple of the minimal polynomial.

\emph{Proof.}
%Every polynomial that annihilates $T$ is a multiple of the minimal polynomial.
Combine Cayley-Hamilton and the property above.
\hfill
(8.48)

\end{itemize}


\clearpage
\section{Jordan form}

Main reference:
Axler \S8.D
\hfill
For this lecture, $\F = \C$

\begin{itemize}

\item

Suppose $N$ is nilpotent.
Then $V$ has a basis which is of the form
$$
v_1,N v_1, N^2 v_1, \dots, N^{d_1} v_1 ,
v_2,N v_2, \dots, N^{d_2} v_2 ,
\dots ,
v_m,N v_m, N^2 v_m, \dots, N^{d_m} v_m,
$$
and is such that $N^{d_j+1}v_j = \0$ for $j=1,\dots,m$.

Remark: The only eigenvalue of $N$ is $0$, and $m$ is just enumerating different families. Each family $j$ starts with some vector $v_j$ and ends when $NNN\cdots NN v_j = \0$.

\emph{Proof.}
We will show how to find such a basis.
Let $U_k = \myrange N^k$.
A basis of a subspace $U \subset V$ with the above properties will be called a \emph{good} basis for $U$.

First, $U_n = \{\0\}$ and the empty set is a good basis for $U_n$.

Let $\B_{k+1} = (
v_1',N v_1', \dots, N^{d_1'} v_1' ,
\dots ,
v_{m'}',N v_{m'}', \dots, N^{d_m'} v_{m'}')
$
be a good basis for $U_{k+1}$.
We will construct a good basis for $U_k$.
Since $U_{k+1} = \myrange (N_{|_{U_k}})$, we can find a solution $v_k$ to $N v_k = v_k'$, for $k=1,\dots,m'$.
Let $d_j = d_j' + 1$ for $j=1,\dots,m'$.
Take the collection
$\tilde{\B}_{k} = (
v_1,N v_1, \dots, N^{d_1} v_1 ,
\dots ,
v_{m'},N v_{m'}, \dots, N^{d_m} v_{m'})
$
obtained by inserting $v_1,\dots,v_{m'}$ before each subfamily of $\B_{k+1}$.

To show that $\tilde{\B}_{k}$ is linearly independent, we consider a null linear combination, apply $N$ and use linear independence of $\B_{k+1}$ to show that the all the coefficients except the last one of each family are zero.
For the last coefficients of each family, use again linear independence of $\B_{k+1}$.
Complete $\tilde{B}_k$ to a basis of $U_k$ by adding $w_{m'+1},\dots,w_m$.

Since $N w_{m'+j} \in U_{k+1}$, it is a linear combination of $\B_{k+1}$, which means a linear combination of $N \tilde{\B}_k$ which means $N x_j$ for some $x \in \myspan \tilde{\B}_k$.
Take $v_{m'+j} = w_{m'+j} - x_j$ so $N v_{m'+j} = \0$.
Take the collection $\B_k$ obtained by adding $v_{m'+1},\dots,v_{m}$ to $\tilde{\B}_k$.
Then $\B_k$ spans $U_k$, so it is a basis, and moreover it is a good basis.
\hfill
(8.55)

\item

A basis $\mathcal{B}$ is a {\it Jordan basis} for $T$ if $[T]_{\mathcal{B}}$ is block diagonal with each block $A_i$ such that its diagonal consists entirely of $\lambda_i$'s, where $\lambda_i$ is an eigenvalue of $T$, and the line above the diagonal consists entirely of $1$'s.

Remark:
If $N$ is nilpotent, then a good basis as in the previous proof, written backwards, is a Jordan basis for $N$.

\item

Let $V$ be a complex finite-dimensional vector space. For any operator $T\in\mathcal{L}(V)$, there exists a Jordan basis for $T$.

\emph{Proof.}
Recall that $V= G(\lambda_1,T) \oplus \cdots \oplus G(\lambda_m, T)$, where $G(\lambda_j,T)$ is invariant under $T$ and $N_j = (T-\lambda_j I)_{|_{G(\lambda_j,T)}}$ is nilpotent.
Find a Jordan basis for each $N_j$.
These bases together provide a Jordan basis for $T$.
\hfill
(8.60)

%\item
%
%How to find a Jordan basis? See file ``Jordan.pdf''

\end{itemize}


\clearpage
\section{Computing a Jordan basis}

Main references:
\textsf{Jordan-compute.pdf} and \textsf{Jordan-thread.pdf}
\hfill
For this lecture, $\F = \C$

\begin{itemize}

\spitem

To get a Jordan basis, we need the eigenvalues.
Then work with $N=T-\lambda I$ for each $\lambda$ separately.
In fact, we can work with different $\lambda$ in parallel in case we don't know the dimensions of each $G(\lambda,T)$, so we know when to stop.
In order to start, we may need to find either some eigenvectors or generalized eigenvectors.

\item

A \emph{thread} is a chain of non-zero vectors $v,Nv,N^2v,\dots,N^kv$.
Typically, $ N^{k+1}v =\0 $ in which case we say that it is a \emph{closed thread}.

\emph{Remark.}
This is not a standard terminology.

\item

We represent a thread by $v_0 \mapsto v_1 \mapsto v_2 \mapsto \dots \mapsto v_k \mapsto \0$.

\item

A Jordan basis for a nilpotent operator can always be written as a collection of closed threads.
Conversely, if a collection of closed threads has $n$ vectors and they are linearly independent, these vectors form a Jordan basis.
Moreover, it is enough to check linear independence of the last vector of the threads.

\spitem

To find a Jordan basis we must work with rational numbers written as fractions.
Numerical software cannot be used, because even the existence of ``repeated eigenvalues'' is a property that breaks down in the presence of rounding error.
More precisely, we often need to apply row reduction to non-invertible matrices which become invertible (but horrible) in the presence of a small rounding error.

\item

The Quick and Dirty Method starts with some vector $u$ and tries to find long threads $v_0 \mapsto v_1 \mapsto v_2 \mapsto \dots \mapsto v_k \mapsto \0$ where $v_j=u$ for some $j$. To enlarge the thread forward just apply $N$, to enlarge it backward we need to solve an equation. The method is not guaranteed but we can always try to get $n$ vectors and test whether $ Q^{-1} A Q $ is in Jordan form.

\spitem

The Thorough Method (a.k.a.\ Guaranteed Method) is based on the proof given in the previous lecture.
It is probably the most economic if we wanted to find a Jordan basis that has a large number of threads with different lengths (which we don't want), but it is very rigid and really a pain in the neck.

\item

The Simpler Method is more playful and flexible. We can start with an \textsl{ad hoc} collection of threads, reduce the collection to get linear independence, and add more chains gradually if needed to span the whole space (or subspace).

\spitem

These names for the methods are not standard terminology either.

\end{itemize}


\clearpage

\hfil
\emph{\Large Part IV: Operators on real vector spaces}

\medskip

\hfill
For this part,
$\F = \R$, $\dim V = n \geq 1$.

\section{Complexification I}

Main reference:
Axler \S9.A
%\hfill
%For this lecture, $\F = \R$, $\dim V = n \geq 1$

\begin{itemize}

\item

We have already given the best possible description to operators on complex spaces.
The idea now is to import that knowledge and use it to help us study operators on real vector spaces.

%\item
%
%How to construct $\C$ from $\R$?
%
%Short answer:
%Take $\C = \R + i\R$ and identify $i^2$ with $1$.
%
%Precise answer: Define $\boldsymbol{1}=(1,0)$ and $\boldsymbol{i}=(0,1)$ on $\R \times \R$.
%Define the product by $z \times (u+w) = (z \times u) + (z \times w)$ with
%$\boldsymbol{1} \times \boldsymbol{1} = \boldsymbol{1}$,
%$\boldsymbol{1} \times \boldsymbol{i} = \boldsymbol{i} \times \boldsymbol{1} = \boldsymbol{i}$,
%and
%$\boldsymbol{i} \times \boldsymbol{i} = -\boldsymbol{1}$.
%
%\item
%
%We have the space $\R^3$ with sum of vectors and multiplication by real scalars.
%
%How to construct the space $\C^3$ with $\F = \C$?
%
%Short answer:
%Take $\C^3 = \R^3 + i \R^3$ and define the operations.
%\\
%- Sum of complex vectors: $(u_1 + i v_1) + (u_2 + i v_2) = (u_1 + u_2) +i (v_1 + v_2)$
%\\
%- Multiplication by complex scalars: $(a + ib)(u + i v) = (au - bv) + i (bu + av)$
%
%Precise answer:
%Define $V = \R^3 \times \R^3$ with the usual addition operation, and multiplication by complex scalars defined by $(a+ib) \times (u,v) = (au-bv,bu+av)$.

\item

The \emph{complexification} $V_{\mathbb{C}}$ of $V$ is the complex vector space consisting of ordered pairs $(u,v)\in V_{\mathbb{C}}=V\times V$ with the addition defined naturally and the (complex) scalar multiplication defined by
\[
(a+ib)(u,v)=(au-bv,bu+av).
\]
If we use the notation $(u,v)=u+iv$, then the scalar multiplication follows the usual multiplication rules for complex numbers.

Short description: $V_\C = V + iV$ with sum of two vectors and multiplication of a vector by a complex scalar multiplication defined in the obvious way.

\item

If $v_1,\dots,v_n$ is a basis of $V$, then it is also a basis of $V_{\mathbb{C}}$.
So $\mydim_\R V = \mydim_\C V_\C$.

\item

Definition.
Let $T\in\mathcal{L}(V)$.
The \emph{complexification} $T_{\mathbb{C}} \in \cL(V_\C)$ of $T$ is defined by $T_{\mathbb{C}}(u+iv)=Tu+iTv$.

Remark: Not every $S \in \cL(V_\C)$ corresponds to $Tu + iTv$ for some $T \in \cL(V)$.

\item

Let $\mathcal{B}$ be a basis of $V$.
Then $[T]_{\mathcal{B}}=[T_{\mathbb{C}}]_{\mathcal{B}}$.

\spitem

The minimal polynomial of $T$ is equal to the minimal polynomial of $T_{\mathbb{C}}$.

\emph{Proof.}
First note that $(T_\C)^k (u + i v) = T^k u + i T^k v$ for every $u,v \in V$ and $k \in \N$, whence $g(T_\C)u=g(T)u$ for real polynomial $g$ and $u \in V$.

Let $p$ be the minimal polynomial of $T$, and let $v_1,\dots,v_n$ be a basis for $V$.
Then it is also a basis for $V_\C$, and since $p(T_\C) v_j = p(T) v_j = \0$ for all $j$, we have $p(T_\C) = \0$.

Now suppose $q = f + i g$ is a complex polynomial with smaller degree such that $q(T_\C)=\0$.
Then $q(T_\C)z=\0$ for all $z \in V_\C$, and in particular $q(T_\C)u=\0$ for all $u \in V$.
But $q(T_\C)u = f(T)u + i g(T)u$, hence $f(T)=\0$ and $g(T)=\0$.
By minimality of $p$, both $f$ and $g$ are the zero polynomial, and so is $q$.
\hfill
(here)

\spitem

% Next time push it to the next lecture.

If $ \inner{\cdot}{\cdot} $ is an inner product on $V$ then
$ \inner{u+iv}{x+iy}_\C = \inner ux + \inner vy + i \inner vx -i \inner uy $
defines a complex inner product on $ V_\C $.

\emph{Proof.}
Long computations show that it satisfies the 4-5 axioms.
\hfill
(Exercise 9.B.3)

\end{itemize}


%\end{document}


\clearpage
\section{Complexification II}

Main reference:
Axler \S9.A
%\hfill
%For this lecture, $\F = \R$, $\dim V = n \geq 1$, and $T \in \cL(V)$.

For convenience, fix a basis for $V$ and work with matrix representation $A=[T]\in \R^{n \times n}$.

%Denote matrix and vector conjugates by $\bar B = (\bar b_{jk})_{jk} \in \C^{n \times n}$ and $\bar x = (\bar x_j)_j \in \C^{n \times 1}$.
%\\
%Remark: The map $x \mapsto \bar x$ is not linear for $\F = \C$.

\begin{itemize}

\item

Let $\lambda\in\mathbb{R}$.
Then $\lambda$ is an eigenvalue of $T$ if and only if it is an eigenvalue of $T_{\mathbb{C}}$.

\emph{Proof.}
Suppose $\lambda$ is an eigenvalue for $T$.
Then there is $u \in V \setminus \{\0\}$ such that $T u = \lambda u$.
On the other hand, $T_\C u = T u = \lambda u$ so $\lambda$ is also an eigenvalue of $T_\C$.

Let $\lambda$ be an eigenvalue for $T_\C$.
Then $T_\C(u+iv) = \lambda (u+iv) = (\lambda u) + i (\lambda v)$ for some $z=u+iv \in V_\C \setminus \{\0\}$.
On the other hand, $T_\C(u+iv) = Tu + i Tv$, so $Tu = \lambda u$ and $T v = \lambda v$.
Since $u$ and $v$ cannot be both zero, $\lambda$ is an eigenvalue.
\hfill
(9.11)

\spitem

For any $\lambda\in\mathbb{C}$, $j\in\mathbb{N}$ and $u,v\in V$,
\[
(T_{\mathbb{C}}-\lambda I)^j(u+iv)={\bf 0}\Leftrightarrow (T_{\mathbb{C}}-\overline{\lambda} I)^j(u-iv)={\bf 0}.
\]

\emph{Proof.}
$(A - \bar\lambda I)^j \bar x = (\bar A - \bar\lambda \bar I)^j \bar x = \overline{(A - \lambda I)}^j \bar x = \overline{(A - \lambda I)^j x}$.
\hfill
(here)

\item

Let $\lambda\in\mathbb{C}$. Then $\lambda$ is an eigenvalue of $T_{\mathbb{C}}$ if and only if $\overline{\lambda}$ is an eigenvalue of $T_{\mathbb{C}}$.

\emph{Proof.}
Take $j=1$.

\spitem

For $T_\C$, the algebraic multiplicity of $\lambda$ equals the algebraic multiplicity of $\overline{\lambda}$.

\emph{Proof.}
If $x_1,\dots,x_d$ is a basis for $G(\lambda,A)$, then $\bar x_1, \dots, \bar x_d$ is a basis for $G(\bar\lambda,A)$.

\item

Every operator on an odd-dimensional real vector space has at least one eigenvalue.

\emph{Proof.}
The non-real eigenvalues of $T_\C$ come in pairs with equal multiplicity.
\hfill
(9.19)

\spitem

The (geometric and algebraic) multiplicities of $\lambda\in\R$ for $ T $ are the same for $ T_\C $.

\emph{Proof:}
The number of free variables in the echelon form of $ A-\lambda I $ and $ (A-\lambda I)^n $.

%For $\lambda\in\R$, the multiplicities of $\lambda$ is the same for $ T $ and $ T_\C $.
%
%\emph{Proof.}
%It is the number of free variables in the echelon form of $ (A-\lambda I)^n $.

\item

The characteristic polynomial of $T_{\mathbb{C}}$ has real coefficients.

\emph{Proof.}
$(z-\lambda)^m (z- \bar \lambda)^m = (z^2 - 2 \Re(\lambda)z + |\lambda|^2)^m$ has real coefficients.
\hfill
(9.20)

\spitem

The \emph{characteristic polynomial} of $T$ is defined as the characteristic polynomial of $T_{\mathbb{C}}$.
Its degree is $\mydim V$ and its real roots are the eigenvalues of $T$.

\item

\emph{Cayley-Hamilton Theorem.}
$p(T)=\0$.

\emph{Proof.}
By the complex Cayley-Hamilton Theorem,
$[p(T)] = p([T]) = p([T_\C])=\0$.

\item

The minimal polynomial divides the characteristic polynomial.

\emph{Proof.}
The minimal polynomial divides any polynomial that annihilates $T$.

\end{itemize}


\clearpage
\section{Normal operators on real inner product spaces}

Main reference:
Axler \S9.B
%\hfill
%For this lecture, $\F = \R$, $\dim V = n \geq 1$, and $T \in \cL(V)$.

\begin{itemize}

\item

\textbf{Theorem.}
If $T \in \cL(V)$ is normal, then there exists an orthonormal basis $\mathcal{B}$ such that $[T]_{\mathcal{B}}$ is block diagonal with
each block either $1 \times 1$ with a real eigenvalue or $2 \times 2$ of the form
\(
\abba
%[ a, -b ; b, a ]_{2 \times 2}
\)
where $b>0$ and $\lambda = a + ib$ an eigenvalue of $T_\C$.

Lemma~1.\
Every operator has an invariant subspace of dimension $1$ or $2$.

\emph{Proof.}
We know that $T_\C$ has at least one eigenvalue $a+ib$.
So there exist $u,v \in V$ such that $u+iv \in V_\C \setminus \{\0\}$ is an eigenvector.
Hence, $T_\C(u+iv) = (a+ib) (u+iv) = (au - bv) + i(av + bu)$.
On the other hand, $T_\C(u+iv) = Tu + i Tv$.
Thus, $Tu = (au - bv)$ and $Tv = (av + bu)$.
Therefore, $\myspan(u,v)$ is invariant and has dimension 1 or 2.
\hfill
(9.8)

Lemma~2.\
If $U$ is a 2-dimensional real inner product space, and $T\in\mathcal{L}(U)$ is normal but not self-adjoint, then there exists an orthonormal basis $\mathcal{B}$ of $U$ such that
\(
[T]_{\mathcal{B}} =
\abba
%\left[ \begin{array}{rr} a & -b \\ b & a\end{array}\right]
\)
with $a,b\in\mathbb{R}$, $b>0$.

\emph{Proof.}
%A system of non-linear equations shows that
Pick any o.n.\ basis and check that
$[T]$ must have this form with $\pm b$.
\hfill
(9.27)

Lemma~3.\
If $T\in\mathcal{L}(V)$ is a normal operator and $U$ is a subspace invariant under $T$, then
$U^\perp$ is invariant under $T$, moreover $T_{|_U}$ and $T_{|_{U^\perp}}$ are normal operators.

\emph{Proof.}
For invariance of $ U^{\perp} $, extend an orthonormal basis for $U$ and write $ [T]=[A,B;\0,C] $.
To show that $ B=\0 $, we use $ \sum_{j=1}^m \|Te_j\|^2 = \sum_{j=1}^m \|T^*e_j\|^2 $ and repeat the same trick as in the Complex Spectral Theorem.
Invariance of $ U $ and $ U^\perp $ under $ T^* $ follows from $ [T^*] = [A^*, \0 ; \0, C^*] $.
Normality of $T_{|_U}$ and $T_{|_{U^\perp}}$ follows from normality of $ A $ and $C$, which in turn follow from normality of $ [T] $.
\hfill
(9.30)

%\emph{Proof.}

\emph{Proof of the theorem.}
Work by induction on $n = \mydim V$.

For $n=1$ the description follows trivially, so suppose $n \geq 2$ and that the theorem holds for spaces of dimension smaller than $n$.

Let $U$ be an invariant subspace of dimension $1$, if such subspace exists.
If not, let $U$ be an invariant subspace of dimension $2$ (it exists by Lemma~1).
In the former case, take $v \in U$ with $\|v\|=1$ and let $\B = \{v\}$.
In the latter case, we know that $T_{|_U}$ is normal (by Lemma~3) but not self-adjoint (otherwise $T$ would have eigenvalues by the Real Spectral Theorem and we would not be in the latter case), hence by Lemma~2 there is a basis $\B$ of $U$ for which $[T_{|_U}]$ is a $2\times 2$ matrix of the above form.

On the other hand, by Lemma~3, $U^\perp$ is invariant and $T_{|_{U^\perp}}$ is normal.
By the induction hypothesis, there is an orthonormal basis $\B'$ for $U^\perp$ for which $[T_{|_{U^\perp}}]$ has the desired form.
Then for the orthonormal basis $\A = \B' \cup \B$ of $V$ we have $[T]_{\A}$ in the desired form, proving the theorem.
\hfill
(9.34)

\end{itemize}


\clearpage
\section{Isometries and 2x2 block diagonalization}

Main reference: these notes.

\begin{itemize}

\item

If $S \in \cL(V)$ is an isometry, then  there exists an orthonormal basis $\mathcal{B}$ such that $[T]_{\mathcal{B}}$ is block diagonal with
each block either $[ \pm 1]_{1 \times 1}$ or of the form
\( [ \cos \theta  , -\sin \theta  ; \sin \theta , \cos \theta ]_{2 \times 2} \)
with $\theta \in (0,\pi)$.

\emph{Proof.} Use the previous theorem and the assumption that $S$ is an isometry.
\hfill
(9.36)

\item

If the real vectors $ u_1,\dots,u_n $ form a basis for $ V_\C $, then they form a basis for $ V. $

\emph{Proof.}
If $ \sum_j \alpha_j u_j = \0 $ in $ V $, then $ \sum_j \alpha_j u_j = \0 $ in $ V_\C $, implying $ \alpha_j=0. $

%Check the definition of L.I.

\item

If $ 2m $ vectors $ u_1 \pm i v_1,\dots,u_m \pm i v_m $ are L.I., then  
%in $ V_\C $, then the $ 2m $ real vectors 
$ u_1,v_1,\dots,u_m,v_m $ are L.I. in $ V_\C. $

\emph{Proof.}
These vectors span the same subspace of $ V_\C $, hence they are L.I. in $ V_\C $.

%Transform the collection and use the above lemma.
%Consider the dimension of the span

\item

If the $ m $ complex vectors $ u_1+iv_1,\dots,u_m+iv_m $ are L.I. in $ V_\C $, then the real family $ u_1,v_1,\dots,u_m,v_m $ has at least $ m $ vectors which are L.I. in $ V_\C $.

\emph{Proof.}
The span of $ u_1,v_1,\dots,u_m,v_m $ contains the span of $ u_1+iv_1,\dots,u_m+iv_m $, which has complex dimension $ m $. Hence, at least $ m $ of them are L.I. in $ V_\C $.

%Enlarge and transform the collection, then use the lemma.
%Consider the dimension of the span

\item

If $ u+iv $ is an eigenvector of $ T_\C $ with eigenvalue $ a+ib $ with $ b>0 $, then $ \myspan\{u,v\} $ is two-dimensional and invariant under $ T $, and
$ [T_{|_{\myspan\{u,v\}}}]_{\{v,u\}} = \abba $.
%$ [T_{|_{\myspan\{u,v\}}}]_{\{v,u\}} = [a, -b ; b, a]$.

\emph{Proof.}
Since $ u-iv $ is an eigenvector for $ a-ib $, they are linearly independent and $ \myspan\{u\pm iv\} = \myspan\{u,v\} $ is two-dimensional.
Now observe 
that
$ Tu + iTv = T_\C(u+iv) = (a+ib)(u+iv) = (au-bv) + i (bu+av) $,
whence $ Tu=au-bv $ and $ Tv=bu+av $.
Hence $ \myspan\{u,v\} $ is invariant and
$ [T_{|_{\myspan\{u,v\}}}]_{\{v,u\}} = \abba $.
%$ [T_{|_{\myspan\{u,v\}}}]_{\{u,v\}} = [a, b ; -b, a]$.

\item

Suppose $ T_\C $ is diagonalizable.
Denote the eigenvalues of $ T_\C $ listed with multiplicity by
$a_1+ib_1,\dots,a_m+ib_m,a_1-ib_1,\dots,a_m-ib_m,a_{m+1},\dots,a_n$ where $ a_{m+1} \leq \dots \leq a_n $ and $ b_j > 0 $.
Then there is a basis $ \B $ for $ V $ such that $ [T]_\B $ is block diagonal, with $ m $ blocks of the form
$ \tiny \begin{bmatrix} a_j \ {-b_j} \\ b_j \ \ \ a_j \end{bmatrix} $
%$[a_j, -b_j ; b_j, a_j]_{2 \times 2}$
and $ n-2m $ blocks of the form $ [a_j]_{1 \times 1} $.

How to get $ \B $?
Let $ z_j = u_j + iv_j $ denote the elements of the original eigenbasis.
Replace $ z_{m+j} $ by $ u_j - iv_j $ for $ j=1,\dots,m $.
For each string of identical eigenvalues $ a_k,\dots,a_{k+d} $, choose $ d+1 $ linearly independent vectors $ x_k,\dots,x_{k+d} $ from $ u_k,v_k,\dots,u_{k+d},v_{k+d}, $ and replace them in the list.
The new collection has $ n $ eigenvectors (why?) and spans all the eigenspaces (why?), hence it spans $ V_\C $, so it is an eigenbasis.
And $ [T]_\B $ has the claimed form
if $ \B = v_1,u_1,\dots,v_m,u_m,x_{2m+1},x_n $.

\emph{Remark.}
When $ T $ is normal, the orthonormal basis of eigenvalues provided by the Complex Spectral Theorem will provide an orthogonal basis whose existence we proved in the previous lecture.
Gram-Schmidt might be needed for the real part.

\emph{Remark.}
If $ \A $ is a Jordan basis for $ T_\C $, a similar procedure will give a basis $ \B $ such that $ [T]_\B $ has blocks in the diagonal as above, some $ 1 $'s above the real eigenvalues, and some
$ \tiny \begin{bmatrix} 1 \ 0 \\ 0 \ 1 \end{bmatrix} $
blocks above the 
$ \abba $
blocks.

\end{itemize}


%\end{document}
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\hfil
\emph{\Large Part V: Trace and determinant}

\bigskip

\hfill
For this part,
$\F=\R \text{ or } \C$, and $\mydim V = n \geq 1$.
%\\
%\hspace*{\fill}
For convenience, $T_\C$
\\
\hspace*{\fill}
and $V_\C$
mean $T$ and $V$ if $\F=\C$, or
%\\
%\hspace*{\fill}
their
complexification if $\F=\R$.
%Same for $V_\C$.

\section{Trace}

Main reference:
Axler \S10.A

\begin{itemize}

\item

We define the \emph{trace of an operator} $T \in \cL(V)$, denoted $\mytrace T$, as the sum of all $n$ eigenvalues of $T_\C$.
We define the \emph{trace of a matrix} $A = (a_{jk})_{jk} \in \C^{n \times n}$ by
\(
\mytrace A = \sum_{k=1}^n a_{kk}
,
\)
which is the sum of its $n$ diagonal entries.

\item

If $ p_T(z) = \sum_j a_j z^j $ is the characteristic polynomial of $ T $, then $ \mytrace T = -a_{n-1} $.

\item

\emph{Theorem.} For every basis $\B$,
\(
\mytrace [T]_\B = \mytrace T
.
\)
In particular, $\mytrace [T]_\B$ does not depend on the choice of basis.

\item

To prove the previous theorem, we recall the following facts:

* There is a basis $\B$ of $V_\C$ such that $[T_\C]_\B$ is triangular superior.

* For every basis $\B$ of $V_\C$, if $[T_\C]_\B$ is triangular superior then its diagonal elements coincide with the $n$ eigenvalues of $T_\C$.

And we use the following property of matrix trace:

* If $A$ is invertible, then $\mytrace(A B A^{-1}) = \mytrace(B)$.

The last property implies that $\mytrace [T]_\B$ does not depend on the basis $\B$.
Hence, it is enough to show that the definitions of trace of operator and trace of matrix coincide for \emph{some} basis $\B$.
The first property ensures the existence of a convenient basis, which together with the second property shows that this basis gives the desired equality, proving the theorem.

\item

Proof that $\mytrace(A B A^{-1}) = \mytrace(B)$.

This follows from another property: $\mytrace(AB) = \mytrace(BA)$, given by
\[
\mytrace AB
= \sum_j (AB)_{jj}
= \sum_j \sum_k a_{jk} b_{kj}
= \sum_k \sum_j b_{kj} a_{jk}
= \sum_k (BA)_{kk}
= \mytrace BA.
\]

\item

Interesting property:
Although there is no relationship between the eigenvalues of $S+T$ with sums of eigenvalues of $S$ and of $T$, when added together we have that the sum of all eigenvalues of $S+T$ equals the sum of all eigenvalues of $S$ and $T$.

\item

Interesting application:
There are no operators $S$ and $T$ such that $ST - TS = I$.

\end{itemize}


\clearpage
\section{Determinant}

Main reference:
Axler \S10.B

%$\F=\R \text{ or } \C$, and $\mydim V = n$.
%
%$T_\C$ means $T$ if $\F=\C$ or its complexification if $\F=\R$.
%Same for $V_\C$.

\begin{itemize}

\item

We define the \emph{determinant of an operator} $T \in \cL(V)$, denoted $\mydet T$, as the product of all $n$ eigenvalues of $T_\C$.
It equals $ (-1)^n a_0 $ in the characteristic polynomial.

\item

The operator $T$ is invertible if and only if $\mydet T \ne 0$.
Also,
$p_T(z) = \mydet( zI - T )$.


\item

We define the \emph{determinant of a matrix} $A = (a_{jk})_{jk} \in \C^{n \times n}$ by
\[
\mydet A = \sum_{\sigma} \mysgn(\sigma) \prod_{j=1}^n a_{\sigma(j),j}
,
\]
where the sum is over all the $n!$ permutations $\sigma$ of $ \{1,\dots,n\} $, and
\[
\mysgn(\sigma) = (-1)^{\#\{(j,k) \,:\, j<k \text{ and } \sigma(j) > \sigma(k) \}}
.
\]

%\emph{Proof.}
%$T$ invertible $\Leftrightarrow 0 \text{ is not an eigenvalue} \Leftrightarrow \mydet T \ne 0$.

\item

$\mydet(AB)=(\mydet A)(\mydet B)$

%\emph{Proof.} omitted

\item

For every basis $\B$ of $ V $,
we have
$\mydet [T]_\B = \mydet T$.

\emph{Proof.}
Since $\mydet I = 1$, by the previous property $\mydet [T]_\B$ does not depend on $\B$, so it suffices to show the identity for \emph{some} basis of $ V_\C $.
Take a basis $\B$ of $T_\C$ for which $[T_\C]_{\B}$ is upper-triangular, so the $n$ elements in the diagonal are the $n$ eigenvalues of $T_\C$.
Finally, notice that the determinant of an upper-triangular matrix is the product of the elements in the diagonal, because other permutations always pick an entry below it.

\spitem

For $\Omega \subset \R^n$ open and bounded,
$\mathsf{vol}(T(\Omega))=|\mydet T| \times \mathsf{vol}(\Omega)$.

The volume is defined as
$$\mathsf{vol}(\Omega) = \inf_\A \sum_k \mathsf{vol}(A_k).$$
The infimum is taken over all sequences of boxes $\A = (A_1,A_2,\dots)$ whose faces are orthogonal to the axes and whose union contains $\Omega$.
The volume of a box $(A_k)$ is defined as the product of its $n$ dimensions (width, depth, height, etc.).

The proof uses the following facts:
\begin{itemize}
\item
A diagonal operator $D$ stretches volume by a factor $|\mydet D|$.
\hfill
(exercise)
\item
Isometries preserve volume.
\hfill
(accepted without proof)
\item
An isometry $S$ has $|\mydet S|=1$.
\hfill
(exercise)
\item
$\mydet(RT)=(\mydet R)(\mydet T)$.
\hfill
(exercise)
\item
Singular Value Decomposition: $T = S_1 S_2 D S_3$.
\hfill
(write $P = S_2 D S_3$)
\end{itemize}

\emph{Proof.}
$
\mathsf{vol}(T(\Omega))=
\mathsf{vol}(S_1 S_2 D S_3(\Omega))=
\mathsf{vol}(D S_3(\Omega))=
|\mydet D| \times \mathsf{vol}(S_3(\Omega))=
|\mydet D| \times \mathsf{vol}(\Omega).
$
On the other hand,
$|\mydet T| = |\mydet D|$, concluding the proof.

\end{itemize}
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