
NYU-SH Honors Linear Algebra I – Lectures Summary

1 First class

Main reference: Axler §1.A or Treil §1.1 (the book titles are in the Syllabus)
Supplementary reading: Lay §4.1

• Usually “linearity” refers to operations involving the addition of objects of the
same type and multiplication of these objects by numbers.

• Linear Algebra studies the mathematical structure of objects, sets and functions,
as far as such structure is determined (or affected) by these operations.

• Vectors ~x on the plane are given by a pair of numbers ~x = (x1, x2) ∈ R×R = R2.

• Vectors ~x on the 3-dimensional space are given by a triple ~x ∈ R3.

• We can consider vectors on n-dimensional space as n-tuples ~x ∈ Rn.

• Adding two vectors ~x and ~y from Rn, we get another vector ~w = ~x+ ~y ∈ Rn.

• Multiplying a vector ~x ∈ Rn by a number α ∈ R, we get a vector ~w = α~x ∈ Rn.

• Numbers do not need to be real. We will consider both cases when the set F of
numbers is given by F = R or F = C. When F = C, we need the space to be Cn
instead of Rn, otherwise the previous property breaks down.

• A complex number z ∈ C is a number of the form z = x + iy where x, y ∈ R.
In C we have usual algebraic properties of multiplication and addition, plus the
property that i2 = −1, so (1 + 2i)(3 + 4i) = 3 + 4i+ 6i+ 8i2 = −5 + 10i.

• Why C? Cutting a long story short:

– Want to count: N. Can add and multiply.
– Want to subtract: N Z
– Want to divide: Z Q
– Want intermediate value theorem: Q R
– Want polynomials to have roots: R C

Even if one is ultimately interested in studying real quantities, using complex
numbers may be more suitable because polynomials always have roots.
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2 Vector spaces

Main reference: Treil §1.1 & Axler §1.A
Supplementary reading: Axler §1.B, Lay §4.1 and Hefferon §2.I.1 & §2.Fields

• A field F is a set with addition and multiplication operations satisfying:
commutativity, associativity, additive identity 0, multiplicative identity 1, additive
inverse −α, multiplicative inverse 1

α , distributive property.

• Elements of F are called numbers or scalars. We will consider F = R or C.

• A vector space over the field F is a set V together with the operations of
addition and scalar multiplication (that is, for every ~u,~v ∈ V and α ∈ F, one
has ~u + ~v ∈ V and α~u ∈ V ) satisfying: commutativity, associativity, additive
identity 0, additive inverse −~v, multiplicative identity, multiplicative associativity,
distributive property for vector sum, distributive property for scalar sum.

• The additive identity 0 is unique, the additive inverse −~v is unique for each ~v.
Proof. Expand 0 + 0′ and ~w + ~v + ~w′ using the above properties.

• Elements of a vector space are called vectors or points.
A vector space over R is called a real vector space
A vector space over C is called a complex vector space

• Examples of vector spaces: Fn, the set P(F) of polynomials with real (or complex)
coefficients, the set Pn(F) of polynomials of degree at most n.

• Another vector space is the set Fm×n of m× n matrices A = (ajk)j,k written as

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn


m×n

• The transpose of a matrix is defined by AT = (akj)j,k ∈ Fn×m.

Notation. Treil denotes elements of Fn as column vectors, that is, matrices in Fn×1:

~x =


x1
x2
...
xn


n×1

or ~x = [x1, x2, . . . , xn]T .

We will write ~x = (x1, x2, . . . , xn) ∈ Fn, knowing that it denotes a column vector.



3 Linear combinations and bases

Main reference: Treil §1.2
Terminology. In these lecture notes, “proof” means just the main idea of the proof.
The complete proof is the one written on the whiteboard or in the textbook.

• A linear combination of vectors ~v1, . . . , ~vn is a sum of multiples of these vectors,
resulting in some ~u = α1~v1 + · · ·+ αn~vn for some α1, . . . , αn ∈ F.

• A family of vectors ~v1, . . . , ~vn is a basis of V if every vector ~u ∈ V has a unique
representation as a linear combination of ~v1, . . . , ~vn.

• Examples without proof: (1, 0), (0, 1) is a basis of R2; (1, 1), (0, 1) is a basis of R2;
(1, 1), (2, 2) is not a basis of R2; (1, 0), (0, 1), (2, 2) is not a basis of R2; ~e1, . . . , ~en
is the canonical basis of Fn; 1, t, t2, t3 is a basis of P3(F).

• Being a basis means that, for each ~u ∈ V , the equation α1~v1 + · · ·+αn~vn = ~u has a
unique solution (α1, . . . , αn). These numbers α1, . . . , αn are called the coordinates
of ~u in the basis ~v1, . . . , ~vn.

• A family of vectors ~v1, . . . , ~vp is a spanning family, or generating system, or complete
system, if every vector of V can be written as a linear combination of ~v1, . . . , ~vp.
Examples without proof: (1, 0), (0, 1) or (1, 1), (0, 1) or (1, 1), (2, 2) as well as
(1, 0), (0, 1), (2, 2) are all spanning families of R2.

• The trivial linear combination of ~v1, . . . , ~vn is the linear combination 0~v1+· · ·+0~vn.

• A family of vectors is called linearly independent if the only linear combination
equal to 0 ∈ V is the trivial linear combination. A family of vectors which is not
linearly independent is called linearly dependent. ∅ is linearly independent.

• A family of vectors is a basis iff it is both spanning and linearly independent.
Proof. For the more difficult direction, show that two linear combinations giving
the same result must be the same by showing that the difference is trivial.

◦ A family of vectors ~v1, . . . , ~vn is linearly dependent iff there exists k ∈ {1, . . . , n}
and α1, . . . , αk−1 ∈ F such that ~vk = 0 + α1~v1 + · · ·+ αk−1~vk−1.
Proof. Divide by the last non-zero coefficient in a non-trivial linear combination.

• Every finite spanning family contains a basis.
Proof. Remove redundant vectors one by one until you get a basis.



4 Linear transformations and matrix-vector multiplication

Main reference: Treil §1.3 & §1.4

• A linear map, or linear transformation, is a function from a vector space V to a
vector space W which satisfies the properties of additivity and homogeneity.

• Examples without proof: rotations on R2, reflections on R2, transposition of
matrices, T (x1, x2, x3) = (x1 − x3, 4ix2) from C3 to C2.

• Linear functions on F1: multiplication by a number. What about Fn?

• For a linear map T : Fn → Fm, define the vectors ~a1 = T~e1, . . . ,~an = T~en ∈ Fm.
Then ~a1, . . . ,~an determines T . Indeed, given ~x ∈ Fn, by linearity we have

T~x = x1~a1 + · · ·+ xn~an =
n∑
k=1

xk~ak.

Hence, the matrix
A =

[
~a1, . . . ,~an

]
m×n

contains all the information about T . We denote this matrix A by [T ].

• Multiplication of matrix by column. Given A ∈ Fm×n and ~x ∈ Fn, we define the
product ~y = A~x ∈ Fm by

yj = aj,1x1 + · · ·+ aj,nxn =
n∑
k=1

aj,kxk.

Writing A =
[
~a1, . . . ,~an

]
m×n, this gives the same result as

~y = x1~a1 + · · ·+ xn~an =
n∑
k=1

xk~ak.

So with this definition we have T~x = A~x.

• To describe a linear transformation T : Fn → Fm we can consider any basis, it does
not need to be ~e1, . . . , ~en. More generally, a linear transformation T : V → W is
completely determined by the values that it takes on any given spanning family.

• Let L(V,W ) denote the sets of all linear transformations defined on V and taking
values on W . Then L(V,W ) is itself a vector space!
Proof. Exercise.



5 Composition and matrix multiplication

Main reference: Treil §1.5

• Suppose A ∈ Fm×n and B ∈ Fn×r, and let ~b1, . . . ,~br ∈ Fn be the columns of B.
Then the product AB ∈ Fm×r is the matrix whose columns are A~b1, . . . , A~br.

• Writing C = AB, we have

cj,k = (j-th row of A)(k-th column of B) =
n∑
l=1

aj,lbl,k.

• It is defined when the rows of A have the same length as the columns of B.

• For T1 ∈ L(Fn,Fm) and T2 ∈ L(Fr,Fn), then [T1 ◦ T2] = [T1][T2].
Proof. The k-th column equals T (~ek) = T1(T2(~ek)) = T1(B~ek) = T1(~bk) = A~bk

• Example: reflection against the line x1 = 3x2 on R2. Then T = RγT0R−γ is a
composition of rotations and a reflection against the line x2 = 0. After some work,
we get T (x1, x2) = (0.8x1 + 0.6x2, 0.6x1 − 0.8x2).

• Properties: associativity, distributivity, commutativity with scalars.

• No commutative property: in general AB 6= BA.
Remark. If we pick square matrices “at random,” chances are they don’t commute.

• (AB)T = BTAT if one of the products is defined.

• Identity operator: IV ∈ L(V ) = L(V, V ) defined by IV ~v = ~v.
Identity matrix: I = In ∈ Fn×n with 1 on diagonal and 0 elsewhere.



6 Invertible matrices and isomorphisms

Main reference: Treil §1.6

• We say that T ∈ L(V,W ) is left invertible if there exists S ∈ L(W,V ) such that
ST = IV . In this case S is called a left inverse of T .
We say that T ∈ L(V,W ) is right invertible if there exists R ∈ L(W,V ) such that
TR = IW . In this case R is called a right inverse of T .
Remark. The left and right inverses need not be unique. Matrix

(1
1
)
has many left

inverses and no right inverse, [1 1] has many right inverses and no left inverse.

• We say that T is invertible if it is both left invertible and right invertible. In this
case, the left and right inverses are unique and are the same, denoted T−1.
Proof. Expand STR.

• Examples: Identity I−1 = I, rotation (Rγ)−1 = R−γ .

• T ∈ L(V,W ) is invertible iff for each ~y ∈ W the equation T~x = ~y has a unique
solution ~x ∈ V . So T is invertible as a linear map if it is bijective as a function.
Proof. In one direction, apply T−1 to the equation to see that ~x = T−1~y is the
only solution. Conversely, let f(~y) denote the unique solution, so that f ◦ T = IV
and T ◦ f = IW , and check that f is linear.

• A matrix is (left, right) invertible if the corresponding linear transformation is
(left, right) invertible, and A−1 is called the inverse of A.

• If A and B are invertible and AB is defined, then (AB)−1 = B−1A−1.
If A is invertible, then (AT )−1 = (A−1)T and (A−1)−1 = A.
Proof. Check that the product from the left and the right give the identity.

• An invertible linear transformation T ∈ L(V,W ) is called an isomorphism. If T is
an isomorphism, then so is T−1. Two vector spaces V andW are called isomorphic,
denoted by V ∼= W , if there exists an isomorphism between them.
Remark. This means that these spaces have exactly the same properties, as far as
their linear structure is concerned.

• Let T ∈ L(V,W ) be an isomorphism. Then ~v1, ~v2, . . . , ~vn is a basis for V iff
T~v1, T~v2, . . . , T~vn is a basis for W .
Proof. Check that the properties of being LI and spanning are preserved by T .

• Let ~v1, ~v2, . . . , ~vn be a basis for V . Then T ∈ L(V,W ) is invertible iff
T~v1, T~v2, . . . , T~vn is a basis for W .
Proof. Define R ∈ L(W,V ) by R~wk = ~vk. Check that RT = IV and TR = IW .

• Corollary: A matrix is invertible iff its columns form a basis.



7 Row reduction and echelon forms

Main reference: Treil §2.1 & §2.2. Supplementary reading: Hefferon §1.I.1 & §1.I.2

• A system of linear equations, or linear system can be seen as:
– A collection of m linear equations with n unknown variables.
– A matrix-vector equation Ax = b.
– A vector equation x1~a1 + · · ·+ xn~an = b.
Here A ∈ Fm×n is the coefficient matrix and b ∈ Fm×1 is the right-hand side.

• Linear system is encoded by the augmented matrix [A
∣∣b].

• There are three types of row operations:
– Row exchange: interchange two rows
– Scaling: multiply a row by a non-zero scalar
– Row replacement: add a multiple of a row to another row
These operations do not change the set of solutions, because they can be reversed.

• Row reduction:

1. find the left most non-zero column;
2. make sure its topmost entry is non-zero (apply row exchange if needed), this

entry is then called a pivot; maybe apply scaling so that the pivot equals 1;
3. apply row replacement to zero out all entries below the pivot;
4. now leave this row alone, and apply the procedure to the remaining submatrix.

Example:  0 −4 −8 4
1 2 3 1
2 1 2 1

 .
• Echelon form (triangular is a particular case):

1. Non-zero rows are above zero rows, their first non-zero element is called pivot
2. Position of each row’s pivot is to the right of previous rows’ pivots

Reduced echelon form:

3. The value of pivot entries is 1, entries above the pivots are also zero
(below pivots are already zero by the two previous items)

Examples:  1 0 8 0 0 0 9
0 0 0 1 0 3 6
0 0 0 0 1 1 3

 and

 1 3 0
0 0 1
0 0 0

 .
• Row reduction yields an echelon form. To get a reduced echelon form we apply
the backward phase, from right to left. General solution may have free variables.



8 Echelon form and bases

Main reference: Treil §2.3
The notions of row operation, echelon form and pivot help us not only solve a given
linear system, but this process actually reveals fundamental properties of bases, linearly
independent families, spanning families, and invertible matrices.
Notation. Henceforth we write u instead of ~u, but we still write ~vj to avoid confusion.

• Ax = b is inconsistent iff the echelon form of [A|b] has a pivot in the last column.
The echelon form of A, denoted Ae, has a pivot in every column if and only if, for
every b ∈ Fm, the equation Ax = b is either inconsistent or has a unique solution.
Ae has pivots in every row iff Ax = b has solutions for every b.
Ae has pivots in every row and column iff there is a unique solution for every b.
Each row and column of an echelon form have at most one pivot.
Proof. Immediate. Equivalent to not having free variables. Direct implication
follows immediately from the first observation; conversely, if Ae does not have a
pivot in every row, the last row is zero, taking be = (0, . . . , 0, 1) ∈ Fm makes [Ae|be]
inconsistent, and reversing the row operations give [A|b] inconsistent. Follows
immediately from previous two observations. Follows from definition of echelon.

• For a family ~v1, . . . , ~vm ∈ Fn, writing A = [~v1, . . . , ~vm]n×m:
– The family is LI iff Ae has a pivot in every column.
– The family is spanning iff Ae has a pivot in every row.
– The family is a basis iff Ae has a pivot in every row and every column.
Proof. The definitions of LI and spanning match the previous observations.

• A family with more than n vectors in Fn cannot be LI.
Proof. Denote the family ~v1, . . . , ~vm with m > n (if it is infinite, reduce it). There
are at most n pivots in [~v1, . . . , ~vm]e, so there cannot be one at each column.

• Any two bases of V have the same number of elements.
Proof. Can assume one of them, A = ~v1, . . . , ~vn is finite. It is enough to show that
the other one B, cannot have more than n elements. Let T ∈ L(V,Fn) be defined
by T~vj = ~ej . Then T is an isomorphism, hence (T~u)~u∈B is linearly independent.
The claim then follows from the previous proposition.

• Every basis of Fn has n elements.

• A spanning family in Fn must have at least n elements.
Proof. If it is infinite, it has a lot more. If it is finite, it contains a basis.



9 Echelon form and invertibility

Main reference: Treil §2.3 & §2.4
Notation. A “ ◦ ” indicates a point that it is not quite following the textbook.

• A matrix A is invertible iff Ae has a pivot in every row and every column.
Proof. Both are equivalent to Ax = b having unique solution for every b ∈ Fm.
Proof 2. Both are equivalent to ~a1, . . . ,~an being a basis.

• Only square matrices can be invertible.
Proof. Let n be the number of pivots. Then Ae must have n rows and n columns.

• A square matrix is left invertible iff it is right invertible.
Proof. If A is right invertible, Ax = b has solution for every b, thus Ae has a pivot
at every row, hence Ae has a pivot at every column and therefore A is invertible.
If A is left invertible, 0 is the only solution to Ax = 0, thus Ae has a pivot at every
column, hence Ae has a pivot at every row and therefore A is invertible.

• For square matrices, it is enough that AB = I or BA = I to have B = A−1.
Proof. It is a corollary of the previous proposition.

◦ A family ~v1, . . . , ~vn ∈ Fn is LI iff it is spanning.
Proof. LI and spanning are equivalent to the matrix [~v1, . . . , ~vn]n×n having a row
at every column or every row, which are in turn equivalent to each other.

◦ For a family with n vectors, it is enough to check LI or spanning to have a basis.
Proof. It is a corollary of the previous proposition.

• Row operations on an m × n matrix A are equivalent to multiplying A from the
left by an an elementary matrix E. Elementary matrices are invertible.

• To find the inverse of a square matrix A we can apply row reduction to [A|I].
If Ae has fewer than n pivots, we know that A is not invertible, and we can stop.
If it has n pivots, the pivots are on the diagonal, and applying the backward phase
of row reduction we get the reduced echelon form which is [I|A−1].
Proof. Row reduction and backward phase consist in applying B = Ek · · ·E2E1 to
[A|I], giving B[A|I] = [BA|BI] = [I|B], and since BA = I we have B = A−1.

• Any invertible matrix can be represented as a product of elementary matrices.



10 Subspaces and dimension

Main reference: Treil §1.8 & §2.5

• A subset W ⊆ V is called a subspace of V if W is itself a vector space, with the
same operations as inherited from V .

• A subset W ⊆ V is a subspace of V iff it satisfies:

1. 0 ∈W .
2. W is closed under addition, i.e., for every u, v ∈W , we have u+ v ∈W .
3. W is closed under scalar multiplication: αu ∈W for every u ∈W and α ∈ F.

Proof. All the properties are satisfied because W inherits the operations from V .

◦ Examples: Trivial subspaces: {0} and V . The set of all linear combinations of a
family A = ~u1, . . . , ~uk, denoted span(~u1, . . . , ~uk). The set of all solutions to Ax = 0.
The range of T ∈ L(V,W ), denoted rangeT = {Tv : v ∈ V } ⊆ W . The null space
or kernel of T , is given by ker T = {v ∈ V : Tv = 0} ⊆ V .
Useful properties: span(spanA) = spanA, ker(TR) ⊇ kerR, range(TR) ⊆ rangeT .

• The dimension dimV of a vector space V is the number of vectors in a basis (note
that dim{0} = 0 because ∅ is a basis). We say that V is finite-dimensional if it
has a finite basis, otherwise it is infinite-dimensional.
Examples: Fn and Pn(R) are finite-dimensional, P(R) and the space of all
continuous functions defined on [0, 1] are infinite-dimensional.

◦ Suppose n = dimV < ∞. A family A with n vectors is LI iff it is spanning. If it
has fewer vectors, it cannot be spanning. If it has more vectors, it cannot be LI.
For a family with n vectors, it is enough to check LI or spanning to have a basis.
Proof. Take an isomorphism T ∈ L(V,Fn) and use the result for Fn.

◦ Suppose dimV < ∞. If A ⊆ C ⊆ V and A is linearly independent, then there
exists a finite basis B for span C such that A ⊆ B ⊆ C.
Proof. Exercise.

◦ Suppose dimV <∞. If A is a LI family, there is a basis B that contains A.
If C is a spanning family, there is a basis B contained in C.
Proof. Take C = V . Take A = ∅.

• Suppose dimV < ∞. If W is a subspace of V , then dimW 6 dimV . Moreover,
dimW = dimV only if W = V .
Proof. Take a basis for W , extend to a basis of V , if same number then W = V .



11 Fundamental subspaces and rank theorems

Main reference: Treil §2.6 & §2.7. Supplementary reading: Hefferon §2.III.3
Logic. Often in our sentences, we are implicitly saying that a certain statement is true
for all V , for all v, etc. In order to negate such sentences, one needs to show that the
claim is false for some v, etc. It is also implicit that V is a vector space. When we say
that U and W are subspaces, it is implicit that they are subsets of the same space V .
When we say “if vectors x and y ... then ...,” usually it means in the same space.

• If Ax = b has a solution v, then the set of solutions is given by {v + u : Au = 0}.
Proof. If x in this set, Ax = Av + Au = b+ 0 = b, so x is a solution. Conversely,
if Ax = b, take u = x− v, so Au = Ax−Av = b− b = 0, and x is in this set.

Suppose we are given a parametrized family A of solutions as one fixed vector plus the
span of a few other vectors. How can we tell whether A contains all solutions to Ax = b?

• We associate to a given matrix A ∈ Fm×n four fundamental subspaces:

– Null space or kernel: kerA = {v ∈ Fn : Av = 0} ⊆ Fn.
– Column space or range: rangeA = span(~a1, . . . ,~an) = {Ax : x ∈ Fn} ⊆ Fm.
– Row space, given by range(AT ) ⊆ Fn.
– Left null space, given by ker(AT ) ⊆ Fm.

• How to find bases the range, row space and kernel?
First, use row reduction to find an echelon form Ae.
We say that column k is a pivot column if it contains a pivot of Ae.

1. The pivot columns of the original matrix A form a basis for rangeA.
2. The non-zero rows of Ae form a basis for rangeAT .
3. Expressing solutions of Are x = 0 in vector form gives a basis for kerA, each

vector in the basis corresponding to one free variable.

• We define the rank of A as rankA = dim rangeA.

• Rank Theorem: For A ∈ Fm×n, rankA = rankAT .
Proof. From previous procedures, both correspond to the number of pivots in Ae.

• Rank-Nullity Theorem: For A ∈ Fm×n, rankA+ dim kerA = n.
If dimV <∞ and T ∈ L(V,W ), then dim rangeT + dim ker T = dimV .

Proof. From previous procedures, rankA equals the number of pivots in Ae and
dim kerA equals the number of columns without pivots. These add up to n. For a
linear map T ∈ L(V,W ), consider isomorphisms to subspaces of Fn.



12 Finding bases and completing bases

Main reference: Treil §2.7

• How to find bases the range, row space and kernel?

1. The pivot columns of A (those where Ae has a pivot) form a basis for rangeA.
2. The non-zero rows of Ae form a basis for rangeAT .
3. Expressing the solutions of Are x = 0 in vector form gives a basis for kerA,

each vector in the basis corresponding to one free variable.

Proof. We need a few preliminary lemmas.
Exercise: kerA determines which columns are spanned by which other columns.
Exercise: If S is invertible, then ker(ST ) = ker T and range(RS) = rangeR.

1. Pivot columns of Are are LI and span the other columns. Since Are = EA
with E invertible, after applying E−1 the corresponding columns are still LI
and still span the other columns, hence they are a basis for the column space.

2. First, check that non-zero rows of Ae are linearly independent, so they form
a basis for rangeATe . Second, note that ATe = ATET with E is invertible, and
by the second exercise rangeATe = rangeAT .

3. These vectors span the null space kerA by construction. Since the k-th
coordinate of the general solution always equals the free variable xk, the only
linear combination that produces 0 is the trivial one, so they are also LI.

◦ For two subspaces U and W of V , the sum of U and W is the subspace

U +W = {u+ w : u ∈ U, w ∈W} ⊆ V.

◦ span(~x1, . . . , ~xj) + span(~y1, . . . , ~yr) = span(~x1, . . . , ~xj , ~y1, . . . , ~yr).
Proof. Exercise.

◦ How can we complete a LI family in Fn to get a basis? Write them as rows, find
the pivot columns, and add canonical rows ~ek corresponding to the free variables.
Proof. Let A be the matrix [~v1, . . . , ~vj ]T and Ae = [~u1, . . . , ~uj ]T be its echelon form.
Let B be the square matrix [~u1, . . . , ~uj , ~ek1 , . . . , ~ekr ]T . With only row exchanges we
get Be with n pivots, so rankB = n and thus rangeBT = Fn. On the other hand,

rangeBT = span(~u1, . . . , ~uj , ~ek1 , . . . , ~ekr )
= rangeAe

T + span(~ek1 , . . . , ~ekr )
= rangeAT + span(~ek1 , . . . , ~ekr )
= span(~v1, . . . , ~vj , ~ek1 , . . . , ~ekr ).

Since this family is spanning and contains j + r = n vectors, it is a basis.



13 Coordinate and change of basis

Main reference: Treil §2.8

• Let A = ~a1, . . . ,~an be a basis of a vector space V . For a vector v ∈ V such that
v = x1~a1 + · · ·+ xn~an, the coordinate vector of v in the basis A is defined as

[v]A = (x1, . . . , xn) ∈ Fn

and the numbers x1, . . . , xn are the coordinates of v relative to the basis A.

• The map v 7→ [v]A is an isomorphism between V and Fn.

• For a linear map T ∈ L(V,W ) and bases A = ~a1, . . . ,~an of V and B = ~b1, . . . ,~bm of
W , the matrix of T with input basis A and output basis B, denoted [T ]BA ∈ Fm×n
is the matrix whose k-th column is [T~ak]B. With this definition,

[Tv]B = [T ]BA [v]A
for every v ∈ V , and [T ]BA is the only matrix with this property.

◦ A basis is a basis regardless of how vectors are ordered.
But, for the purpose of writing [v]B and [T ]BA, the order does matter.

• If S ∈ L(U, V ) and C is a basis of U , then

[TS]BC = [T ]BA[S]AC .

Proof. [(TS)u]B = [T (Su)]B = [T ]BA [Su]A = [T ]BA [S]AC [u]C .

• The change of coordinate matrix from a basis A = ~a1, . . . ,~an of V to another basis
B = ~b1, . . . ,~bn of V is the matrix of IV with input basis A and output basis B:

[v]B = [IV ]BA[v]A.

Moreover, the change of basis from B to A is the matrix [IV ]AB = ([IV ]BA)−1.

• If S = ~e1, . . . , ~en denote the canonical basis of Fn, and let A = ~a1, . . . ,~an denote
another basis. Then [IV ]SA = A = [~a1,~a2, . . . ,~an]n×n and [IV ]AS = A−1.
Examples: A = (1, 2), (2, 1). A = 1, 1 + t and B = 1 + 2t, 1− 2t.

• The change of basis for the matrix of a linear map T ∈ L(V,W ), with A, A′ bases
of V and B, B′ bases of W , is given by:

[T ]B′A′ = [IW ]B′B[T ]BA[IV ]AA′ .

In case T ∈ L(V ), we have

[T ]B = [IV ]BA[T ]A[IV ]AB.

• Two matrices A and B ∈ Fn×n are similar is there exists an invertible matrix
Q ∈ Fn×n such that A = Q−1BQ. This splits Fn×n into classes.



14 Determinant: axiomatic definition

Main reference: Treil §§3.1–3.3, with row instead of column!

• We want to define the determinant of a square matrix as a quantity, function of
its rows ~aj , which in some sense measures the “volume” induced by vectors ~aj ,
and which is meaningful for Linear Algebra. This function should satisfy:

(0) – Invariance under row replacement
(1) – Linearity in each row
(3) – Normalization

• Assuming (1), Property (0) is equivalent to the following:
(2) – Antisymmetry under row exchange

Proof. For (0) ⇒ (2), add ~aj to ~ak, then −~ak to ~aj , then ~aj to ~ak, and use (1).
For (2)⇒ (0), suppose C is obtained by taking ~cj = ~aj + α~ak. Using (1), detC =
detA+ α detB, where rows j and k of B are identical. Using (2), detB = 0.

• We say that det : Fn → F is a determinant if it satisfies Properties (1)-(2)-(3).
For now, let us assume existence of such a function. We will see that, using only
these properties, we can compute detA. So we can call it the determinant.

• How do row operations affect det? From Properties (0)-(1)-(2),
– Row replacement: does not change det.
– Scaling: multiply det by α.
– Row exchange: multiply det by −1.

• A matrix B ∈ Fn×n is upper triangular if all entries below the main diagonal are
zero. If B is upper triangular, we have detB = b1,1b1,2 · · · bn,n.
Proof. If B has zero on the diagonal, then Be has a zero row and detB = 0 by (1).
If not, then row replacements make B diagonal, and scaling makes it identity.

• Row reduction consists of row operations which yield an upper triangular matrix.
So we can indeed compute detA assuming only (1)-(2)-(3)!

• detA = 0 iff A is not invertible.
Proof. Row operations do not change whether or not a matrix’s determinant is
zero. If A is invertible, row operations yield the identity. If A is not invertible,
row operations yield a zero row.

• detA = 0 iff one of the rows is a linear combination of the others.
Proof. Equivalent to A is not being invertible.

• By linearity in each row, det(αA) = αn detA.

• We still haven’t proved existence of the determinant.



15 Determinant: factorization and permutation formula

Main reference: Treil §3.3 with row instead of column, and §3.4

• det(AB) = (detA)(detB) and det(AT ) = detA.
Proof. Lemma: If E is an elementary matrix, then det(EB) = (detE)(detB).
Indeed, performing row operations is equivalent to multiplying from the left by
elementary matrices, whose determinant coincides with the factor affecting the
determinant of B. To prove the above identities, we can assume A is invertible
(otherwise AB and AT are not invertible, and we get 0 = 0), so A = EN · · ·E2E1.
By the lemma, det(AB) = (detEN ) · · · (detE2)(detE1)(detB) = (detA)(detB).
Moreover, AT = ET1 E

T
2 · · ·ETN , so it is enough to prove the second identity for

elementary matrices, i.e., det(ET ) = detE, which can be checked case by case.

• The determinant of A = (aj,k)j,k ∈ Fn×n exists and is given by

detA =
∑
σ

aσ(1),1aσ(2),2 · · · aσ(n),n sgn(σ).

The above sum is over all permutations σ of {1, 2, . . . , n}. Finally, sgnσ is defined
as ±1 according to the parity of how many disorders are present in σ, i.e.

sgn(σ) = (−1)#{(j,k): 16j<k6n, σ(j)>σ(k)}.

Derivation. First, if A has exactly one 1 in each column, one 1 in each row, and
0 elsewhere, then A is a permutation of the identity, i.e., A = [~eσ(1), . . . , ~eσ(n)] for
some permutation σ. In this case, the product aσ(1),1aσ(2),2 · · · aσ(n),n equals 1 for
this permutation σ and 0 for all others, and the above formula states that detA =
sgnσ. This is consistent with properties of det, as can be seen by applying neighbor
column permutations to In while using Property (2’), and using Property (3) for
In itself. Now consider the general case, A ∈ Fn×n. Write A = [~a1, . . . ,~an], so
~ak = [a1,k, . . . , an,k]T =

∑
j aj,k~ej . Using Property (1’) of det for ~a1,

detA =
∑
j1

aj1,1 det[~ej1 ,~a2, . . . ,~an].

Repeating the same argument for ~a2, . . . ,~an,

detA =
∑
j1

∑
j2

· · ·
∑
jn

aj1,1aj2,2 · · · ajn,n det[~ej1 , ~ej2 , . . . , ~ejn ].

The above sum has nn terms, but most of them are zero for having repeated
columns. The nonzero terms are exactly when the jk’s are all different, i.e., when
for some permutation σ, jk = σ(k) for all k. For this term, det(~eσ(1), . . . , ~eσ(k)) =
sgn(σ). So, a function satisfying (1)-(2)-(3) must agree with the above formula.
Proof. (1) the above summand has exactly one term from each column. (2) column
exchange results from an odd number of neighbor column permutations. (3) when
A = I, only the neutral permutation gives a non-zero summand.



16 Determinant: volume and cofactor expansion

Main reference: Treil §3.5

◦ Given T ∈ L(Rn), for Ω ⊂ Rn open and bounded, vol(T (Ω)) = | detT | × vol(Ω).
Proof. Seen in HLA-2, using Isometries and Singular Value Decomposition.

• Cofactor expansion. For A = (ajk)j,k ∈ Fn×n and for j, k ∈ {1, . . . , n}, let Aj,k ∈
F(n−1)×(n−1) be the submatrix obtained by erasing row j and column k from A.
We can expand the determinant of A with respect to any given row j:

detA =
n∑
k=1

(−1)j+kaj,k detAj,k.

We can also expand the determinant of A with respect to any given column j:

detA =
n∑
k=1

(−1)j+kak,j detAk,j .

Remark. This method has theoretical importance, and can be helpful when
computing examples of size 2 and 3, or for a matrix with many zeros.
Explanation. The expansion for column j can be seen as splitting the permutation
formula according to the value of σ(j). This gives invertible functions from
{1, . . . , n}\{j} to {1, . . . , n}\{k}, which in turn can be identified with permutations
of {1, . . . , n− 1} with the sgn changed accordingly.

• The coefficients cj,k = (−1)j+k detAj,k are called cofactors of A.

◦ Writing C = [~c1, . . . ,~cn] and A = [~a1, . . . ,~an], we have ~cj ·~aj =
∑
k ck,jak,j = detA.

In general, for any vector ~y we have ~cj · ~y = det[~a1, . . . ,~aj−1, ~y,~aj+1, . . . ,~an].

• Let A ∈ Fn×n be invertible and have cofactor matrix C. Then

A−1 = 1
detAC

T .

Remark. Same as before.
Proof. Let D = CTA. Then dj,k = ~cj ·~ak = det[~a1, . . . ,~aj−1,~ak,~aj+1, . . . ,~an].
When k = j, this gives detA. When k 6= j, this is the determinant of a matrix
with two repeated columns, which is zero. So CTA = (detA)I.

• Cramer’s rule: If A is invertible, then the solution to Ax = b is given by

xk = detBk
detA ,

where Bk is the matrix obtained when we replace the k-th column of A by b.
Proof. Writing x = A−1b = 1

detAC
T b = 1

detA~v, we have vk = ~ck · b = detBk.



17 Eigenvalues and eigenvectors

Main reference: Treil §4.1. Review on polynomials: Axler §4

• Let A ∈ Fn×n. A scalar λ ∈ F is an eigenvalue if there exists v ∈ Fn \ {0} such
that Av = λv, and v is called an eigenvector of A associated with eigenvalue λ.

• The subspace ker(A− λI) is called the eigenspace associated to λ.
The set of all the eigenvalues of A is called the spectrum of A.

• pA(λ) = det(A−λI) has degree n and is called the characteristic polynomial of A.
A number λ ∈ F is an eigenvalue of A iff pA(λ) = 0.
Remark. Not very practical unless n is small or A has many zeros.

• Similar matrices have the same characteristic polynomial.
Proof. Exercise.

• The algebraic multiplicity of an eigenvalue is its multiplicity as a root of pA ∈ P(C).

• The n eigenvalues of an upper triangular matrix A ∈ Cn×n, listed with algebraic
multiplicity, are exactly the diagonal entries a1,1, a2,2, . . . , an,n.
Proof. Exercise.

Below we consider F = C. In some situations it may be useful to treat real numbers,
vectors and matrices as particular cases of complex numbers, vectors and matrices.

• Fundamental Theorem of Algebra. Non-constant complex polynomials have roots.
We call z0 a root of p if p(z0) = 0. The multiplicity of a root z0 is the highest power
of (z − z0) that divides p(z). Any complex polynomial of degree n can written as
p(z) = c(z − z1) · · · (z − zn), where z1, . . . , zn are its roots, counting multiplicity.

• Every A ∈ Cn×n has n eigenvalues λ1, . . . , λn, counted with algebraic multiplicity.
Proof. Follows from the factorization of complex polynomials of degree n.

• In this case, detA = λ1 · · ·λn and traceA = λ1 + · · ·+ λn.
Proof. Let us analyze the coefficients of pA(z) = bnz

n + bn−1z
n−1 + · · ·+ b1z + b0.

We first expand the product pA(z) = c(z − λ1) · · · (z − λn), which gives bn = c,
bn−1 = −c(λ1 + · · ·+ λn), and b0 = c (−λ1) · · · (−λn).
Expanding the permutation formula for det(A−zI), only the diagonal permutation
has terms involving zn or zn−1. Other permutations miss at least two positions in
the diagonal. So bn−1 and bn come from (a1,1− z) · · · (an,n− z), giving bn = (−1)n
and bn−1 = (−1)n−1(a1,1 + a2,2 + · · ·+ an,n). Moreover, b0 = pA(0) = detA.



18 Diagonalization

Main reference: Treil §4.2, skipping 4.2.4. We do not always treat R as a subset of C.

◦ For T ∈ L(Fn), it would be very convenient to have a basis B for which [T ]B is a
diagonal matrix. Denoting [T ]S = A, this means Q−1AQ = D, or A = QDQ−1.
Remark. In this case, AN = QDNQ−1, p(A) = Qp(D)Q−1, etA = QetDQ−1, etc.

◦ We say that A ∈ Fn×n is diagonalizable (over F) if A = QDQ−1 for some Q ∈ Fn×n
invertible and D diagonal. In this case we say that Q diagonalizes A.

◦ Let A ∈ Fn×n, B = [~v1, . . . , ~vr] ∈ Fn×r, and D = diag(λ1, . . . , λr) ∈ Fr×r.
Then AB = BD if and only if A~vj = λj~vj for j = 1, . . . , r.
Proof. Check what the columns of AB and BD are.

• A matrix A ∈ Fn×n is diagonalizable iff there is a basis of Fn made of eigenvectors.
Proof. Write Q = [~v1, . . . , ~vn]n×n.

• If ~v1, . . . , ~vr ∈ Fn are eigenvectors of A ∈ Fn×n corresponding to distinct
eigenvalues, then ~v1, . . . , ~vr are linearly independent.
Proof. Apply A− λrI to a null linear combination and use induction on r.

• If A ∈ Fn×n has n distinct eigenvalues λ1, . . . , λn ∈ F, then A is diagonalizable.
Proof. Take n corresponding eigenvectors, they are LI, so they form a basis.

• The geometric multiplicity of an eigenvalue λ is given by dim ker(A− λI).

• The geometric multiplicity of λ cannot exceed its algebraic multiplicity.
Proof. Exercise.

◦ Let λ1, . . . , λr ∈ F denote the distinct eigenvalues of A ∈ Fn×n. Then A is
diagonalizable over F if and only if the sum of algebraic multiplicities m1, . . . ,mr

equals n and they equal the geometric multiplicities g1, . . . , gr.
Proof. (⇒) A LI family of eigenvectors has at most

∑
j gj 6

∑
jmj 6 n vectors,

and a basis has n vectors. (⇐) For each j = 1, . . . , r, take ~vj,1, ~vj,2, . . . , ~vj,mj

as a basis for ker(A − λjI). Let B = ~v1,1, ~v1,2, . . . , ~v1,m1 , . . . , ~vr,1, ~vr,2, . . . , ~vr,mr .
Note that each vector in B is an eigenvector of A, since A~vj,k = λj~vj,k. Suppose∑r
j=1

∑mj

k=1 αj,k~vj,k = 0 for some collection of scalars (αj,k)(j,k). Take ~uj =∑mj

k=1 αj,k~vj,k. Then ~uj is either 0 or a λj-eigenvector. Sine
∑
j ~uj = 0 and

eigenvectors with distinct eigenvalues are LI, we have ~uj = 0 for every j. Since
~vj,1, ~vj,2, . . . , ~vj,mj are LI, we have αj,k = 0 for k = 1, . . . ,mj . Therefore, B is LI.

◦ A square matrix with real entries is diagonalizable over R if and only if it is
diagonalizable over C and all the eigenvalues are real.
Proof. The geometric multiplicity of a real eigenvalue is the same over R or C.



19 Orthogonality and projection

Main reference: Lay §§6.1–6.3. Most proofs of this topic will be skipped.
Notation. Henceforth we write uj instead of ~uj and no longer refer to coordinates.

• For vectors u, v ∈ Rn we define the dot product by u · v = uT v.

• For u, v, w ∈ Rn and α ∈ R, we have :
u · v = v ·u, (u+ v) ·w = u ·w + v ·w, (αu) · v = α(u · v), and u ·u > 0 if u 6= 0.

• The length (or norm) of v is given by ‖v‖ =
√
v · v > 0.

We call v a unit vector if ‖v‖ = 1.

• We say that u is orthogonal to v, denoted u ⊥ v, if u · v = 0.

• Two vectors u and v are orthogonal if and only if ‖u+ v‖2 = ‖u‖2 + ‖v‖2.

• We say that u is orthogonal to B if u ⊥ w for all w ∈ B. The orthogonal complement
of B and is denoted by B⊥ = {u ∈ Rn : u is orthogonal to B}.

• Let B be a family of vectors and W = span(B). Then W⊥ = B⊥.

• A family B of vectors is called an orthogonal family if u ⊥ v for all u 6= v in B.
If moreover all the vectors in B are unit vectors, we call B an orthonormal family.

• The columns of Q ∈ Rn×k are orthonormal iff QTQ = Ik×k. In this case,
(Qu) ·(Qv) = u · v for all u, v ∈ Rk. In particular, ‖Qv‖ = ‖v‖ for all v ∈ Rk.

• Any orthogonal family {u1, . . . , ur} of nonzero vectors is linearly independent.
Moreover, if y ∈ span(u1, . . . , ur), then y =

∑
j
y ·uj

uj ·uj
uj .

Proof. Write y =
∑
j αjuj and compute y ·uk to determine αk.

• Orthogonal decomposition and best approximation. Let U ⊆ Rn be a subspace and
u1, . . . , ur an orthogonal basis for U . For each y ∈ Rn there are unique ŷ ∈ U and
w ∈ U⊥ such that y = ŷ+w. The vector ŷ is called the projection of y onto U , it is
given by ŷ = PU y =

∑
j
y ·uj

uj ·uj
uj and has the property that ‖z−y‖ > ‖ŷ−y‖ for any

other z ∈ U . If the basis is orthonormal, then ŷ = QQT y, where Q = [u1, ..., ur].
Proof. Define ŷ and w by the formulas. Check that ŷ ∈ U and w ∈ U⊥. Note that
‖y − z‖2 = ‖y − ŷ‖2 + ‖ŷ − z‖2, which used twice also gives uniqueness. Last, the
j-th entry of QT y ∈ Rr×1 equals y ·uj , hence Q(QT y) =

∑
j(y ·uj)uj .

• Cauchy-Schwarz Inequality. For every u, v ∈ Rn, we have |u · v| 6 ‖u‖ · ‖v‖.
Proof. If v 6= 0, write u = u · v

v · v v + w, so ‖u‖2 = (u · v
v · v ‖v‖)

2 + ‖w‖2 > (u · v
‖v‖ )2.

• Triangle Inequality. For every u, v ∈ Rn, we have ‖u+ v‖ 6 ‖u‖+ ‖v‖.
Proof. Expand ‖u+ v‖2 and use Cauchy-Schwarz Inequality.



20 Factorizations and least squares

Main reference: Lay §2.5, file PLU.pdf, Lay §§6.4–6.5

• The PLU factorization consists in row reduction with bookkeeping, combined
with partial pivoting (choose the largest candidate for pivot). Start with P =
I, L = I, U = A, so PA = LU . At each step, update the factors while
keeping the factorization valid: (QP )A = (QLQ)(QU) for row exchange and
PA = (LE−1)(EU) for row replacement. This way, P is always a permutation, L
is always lower triangular, and U becomes upper triangular at the end. Example:0 0 1

1 0 0
0 1 0


−2 −2 −1

1 −1 6
−4 1 −2

 =

 1 0 0
1
2 1 0
−1

4
3
10 1


−4 1 −2

0 −5
2 0

0 0 11
2

 .
• Let v1, . . . , vm be LI and Wj = span(v1, . . . , vj). The Gram-Schmidt procedure
gives orthogonal vectors u1, . . . , uk such that span(u1, . . . , uj) = Wj , as follows:

u1 = v1, uj+1 = vj+1 − PWj
vj+1.

• To get an orthonormal family we can take wj = 1
‖uj‖uj .

• The QR factorization consists in writing A ∈ Rn×k as A = QR where Q ∈ Rn×k
has orthonormal columns and R ∈ Rk×k is upper triangular. Q can be found by
applying Gram-Schmidt to the columns of A, and R = QTA. Example:

1 −1 4
1 4 −2
1 4 2
1 −1 0

 =


1/2 −1/2 1/2
1/2 1/2 −1/2
1/2 1/2 1/2
1/2 −1/2 −1/2


2 3 2

0 5 −2
0 0 4

 .

• Given A ∈ Rm×n and b ∈ Rm, a least-squares solution to the equation Ax = b is a
vector x̂ ∈ Rn that minimizes ‖Ax− b‖.

• Least-squares solutions exist and are given by normal equations ATAx̂ = AT b.
Proof. Since the set of possible values of Ax is exactly the subspace rangeA, the
distance ‖Ax− b‖ will be minimized when Ax̂ equals the orthogonal projection of
b onto rangeA. This is equivalent to (Ax̂− b) ⊥ aj for each column aj .

• The minimizer x̂ is unique when ATA is invertible. In this case, Rx̂ = QT b.
Example: with same A as above and b = (20, 20, 20, 0) we have ‖Ax̂− b‖ = 10.



21 Real spectral theorem and sketching simple conics

Main reference: Lay §7.1, §7.2

• For symmetric A ∈ Rn×n, eigenvectors of different eigenvalues are orthogonal.
Proof. Follows from (Av1) · v2 = v1 ·(Av2).

• We say that A ∈ Rn×n is orthogonally diagonalizable is there is an orthogonal
matrix P ∈ Rn×n such that A = PDP T .

• Real Spectral Theorem. A ∈ Rn×n is orthogonally diagonalizable iff A is symmetric.
Proof. We postpone the proof that symmetric matrices are always diagonalizable.
Assuming this fact, by Gram-Schmidt we can find an orthogonal basis to each
eigenspace, and the reunion of the bases of all eigenspaces is orthogonal by the
previous proposition, so a symmetric matrix is orthogonally diagonalizable. The
converse is immediate: AT = (P T )TDTP T = PDP T = A.

• Spectral Decomposition. Let P = [u1, . . . , un] be an orthogonal matrix that
diagonalizes A. Then A can be decomposed as a sum of rank-1 matrices:

A =
n∑
j=1

λj [ujuTj ]n×n

Remark. The matrix ujuTj projects vectors orthogonally onto span(uj).

Proof. This is the column-row expansion of the product (PD)P T .

◦ A quadratic form on Rn is a polynomial of n variables having only terms of degree
two. It can represented in a unique way as x ·Ax for symmetric A ∈ Rn×n.

• If we make an orthogonal change of variables x = Py, where y represents the
coordinates of x with respect to the columns of P , the quadratic form becomes
y ·(P TAP )y. By the Spectral Theorem, it is possible to choose P so that (P TAP )
is diagonal, so the quadratic form has no cross-product terms.

• Example: Sketch the graph of 5x2
1 − 4x1x2 + 5x2

2 = 48.
Diagonalizing [5,−2;−2, 5], we get P = [u1, u2] with u1 = ( 1√

2 ,
1√
2), u2 = (−1√

2 ,
1√
2)

and D = diag(3, 7), so this is an ellipse with a = 4 and b =
√

48/7.

• Example: Sketch the graph of x2
1 − 8x1x2 − 5x2

2 = 16.
Diagonalizing [1,−4;−4,−5], we get P = [u1, u2] with u1 = ( 2√

5 ,
−1√

5), u2 =

( 1√
5 ,

2√
5) and D = diag(3,−7), so this is a hyperbola with a = 4

√
3

3 and b = 4
√

7
7 .



22 Spaces and subspaces revisited

Main reference: Axler §1.C, §2.A, §2.B, §2.C
The last lectures were all about matrices and the spaces Rn, Cn or Fn. We now switch
back to abstract vector spaces V over F = R or C, and consider subspaces U,W , etc.

• The sum U1 + · · ·+Um is a direct sum if for every x ∈ (U1 + · · ·+Um), there exist
unique vectors u1 ∈ U1, . . . , um ∈ Um such that x = u1 + · · ·+ um.

• In case U1 + · · ·+Um is a direct sum, we also denote it by U1⊕ · · · ⊕Um as a way
to indicate this property.

• The sum U1 + · · ·+ Um is a direct sum iff the only m-tuple u1 ∈ U1, . . . , um ∈ Um
that gives u1 + · · ·+ um = 0 is the trivial combination u1 = · · · = um = 0.
Proof. For the converse, take two representations of a given x and subtract.

• The sum U +W is a direct sum if and only if U ∩W = {0}.
Proof. If sum is direct, for v ∈ U ∩W we have v+ (−v) = 0, implying that v = 0.
If U ∩W = {0}, solutions to u+ w = 0, are trivial since w = −u ∈ U ∩W .

• If dimV <∞ and U is a subspace, there is a subspace W such that V = U ⊕W .
Proof. Complete a basis and show uniqueness of v = u+ w.

◦ For a direct sum U ⊕W , we have dim(U ⊕W ) = dimU + dimW .
Proof. Join any two bases u1, . . . , uk for U and w1, . . . , wm for W . See what linear
combinations give 0 by first considering u+ w = 0. Infinite case is trivial.

◦ Suppose dimV <∞. If dim(U +W ) = dimU + dimW , then the sum is direct.
Proof. Assume the general equality below holds for every vector space V and
subspaces U and W . When dimV < ∞ we can subtract and get dim(U ∩W ) =
dimU + dimW − dim(U +W ) = 0, so U ∩W = {0} and hence U +W = U ⊕W .

◦ For V vector space, U,W subspaces, dimU + dimW = dim(U +W ) + dim(U ∩W ).
Proof. If dimU = ∞ or dimW = ∞, we have dim(U + W ) = ∞ and the equality
holds. So we can assume that V is finite-dimensional (otherwise instead of V
use Ṽ = U + W which is finite-dimensional). Let Z = U ∩W . Take Ũ and W̃
such that U = Z ⊕ Ũ and W = Z ⊕ W̃ . We will show that (Ũ ⊕ Z) + W̃ is a
direct sum, so dim(U + W ) = dim(Ũ ⊕ Z) + dim W̃ = dim Ũ + dimZ + dim W̃ =
dimU + dimW − dimZ, proving the desired equality. Suppose u + z + w = 0
with u ∈ Ũ , z ∈ Z,w ∈ W̃ . Then w = −z − u ∈ U , so w ∈ U ∩ W̃ ⊆ Z. But
Z ∩ W̃ = {0}, hence w = 0, proving the claim.



23 Linear maps revisited

Main reference: Axler §3.B, §3.D

• A function T : V →W is called injective if Tu = Tv implies u = v.

• Let T ∈ L(V,W ). Then T is injective if and only if ker T = {0}.
Proof. Use that Tu = Tv if and only if (u− v) ∈ ker T .

• A function T : V →W is called surjective if rangeT = W .

• Rank-Nullity Theorem. For T ∈ L(V,W ), dim rangeT + dim ker T = dimV .
Proof. Seen in Lecture 11.

• If dimW < dimV <∞, then T ∈ L(V,W ) cannot be injective.
Proof. By Rank-Nullity Theorem, dim ker T > 0.

• If dimV < dimW <∞, then T ∈ L(V,W ) cannot be surjective.
Proof. By Rank-Nullity Theorem, dim rangeT < dimW .

• A linear map is invertible if and only if it is injective and surjective.
Proof. Seen in Lecture 6. Need to check that the inverse is linear.

◦ Finite-dimensional spaces are isomorphic iff they have the same dimension.
Proof. Let V and W be finite-dimensional spaces and let v1, . . . , vn be a basis for
V . If there exists an isomorphism T ∈ L(V,W ), then Tv1, . . . , T vn is a basis forW
and hence dimW = n. Conversely, suppose dimW = n. Take w1, . . . , wn a basis
for W and define T ∈ L(V,W ) by Tv1 = w1, . . . , T vn = wn. Then T maps a basis
to a basis, and hence it is an isomorphism.

• For finite-dimensional spaces V and W , dimL(V,W ) = (dimV )(dimW ).
Proof. We will show that the space L(V,W ) is isomorphic to Fm×n. Fix a basis
A = v1, . . . , vn for V and B = w1, . . . , wm for W . Define R : L(V,W )→ Fm×n by
R(T ) = [T ]BA. This R is linear and bijective, so it is an isomorphism.

• Suppose V is finite-dimensional and T ∈ L(V ). Then the following are equivalent:
(a) T is invertible; (b) T is injective; (c) T is surjective.
Proof. By the Rank-Nullity Theorem, (c) is equivalent to ker T = {0}, which in
turn is equivalent to (b). By above proposition, (a) is equivalent to “(b) and (c)”
and this completes the proof.



24 Invariant spaces and eigenvectors

Main reference: Axler §5.A, §5.B

• A number λ ∈ F is called an eigenvalue of T ∈ L(V ) if Tv = λv for some v 6= 0.

• A number λ ∈ F is an eigenvalue of T if and only if T − λI is not injective.
Proof. Tv = λv is equivalent to v ∈ ker(T − λI).

• A vector v is an eigenvector of T corresponding to λ ∈ F if v 6= 0 and Tv = λv.

• Eigenvectors corresponding to distinct eigenvalues are linearly independent.
Proof. Apply T − λmI to a null linear combination, and use induction on m.

• If V is finite-dimensional then T ∈ L(V ) has at most dimV distinct eigenvalues.
Proof. A LI family has at most dimV vectors.

• A subspace U of V is said to be invariant under T if Tu ∈ U for any u ∈ U .
Examples: {0}, V , ker T , rangeT , rangeT 2.

• We define T 0 = I, Tm+1 = TmT .
For p ∈ P(F) and T ∈ L(V ), we define p(T ) = anT

n+· · ·+a2T
2+a1T+a0I ∈ L(V ).

• Factoring polynomials: (pq)(T ) = p(T )q(T ). In particular, p(T )q(T ) = q(T )p(T ).
Proof. Expanding and using the distributive property works for T as it does for z.

• Let B = v1, . . . , vn be a basis for V and T ∈ L(V ). These are equivalent:
(a) [T ]B is upper-triangular;
(b) Tvj ∈ span(v1, . . . , vj) for j = 1, . . . , n;
(c) span(v1, . . . , vj) is invariant under T for j = 1, . . . , n.
Proof. (b⇒c) For v = α1v1 + · · ·+ αjvj , Tv ∈ span(v1) + · · ·+ span(v1, . . . , vj).

• If V is complex finite-dimensional, and T ∈ L(V ), then T has an eigenvalue.
Proof without determinant. Since dimL(V ) = n2, the family I, T, T 2, . . . , Tn

2 is
LD. Hence there is a linear combination α0I+α1T +α2T

2 + · · ·+αkT
kv = 0 with

αk = 1. Now the polynomial
∑k
j=0 αjz

j can be factorized as (z − λ1) · · · (z − λk),
so (T − λ1I) · · · (T − λkI) = 0, and thus one of the factors is not injective.

• If V is complex finite-dimensional, then [T ]B is upper-triangular for some basis B.
Proof. We prove by induction on n. Take λ as an eigenvalue. Subspace U =
range(T − λI) 6= V is invariant because Tu = (T − λI)u+ λu. For the restriction
T|U , by induction there is a basis u1, . . . , uk for U such that Tuj ∈ span(u1, . . . , uj)
for j = 1, . . . , k. Complete it to a basis u1, . . . , uk, vk+1, . . . , vn for V . Now Tvj =
λvj + u for u ∈ U , so Tvj ∈ span(u1, . . . , uk, vj), hence [T ]B is upper triangular.
Counter-example. T (x, y) = (−y, x) on R2 cannot be made upper-triangular.



25 Decomposition into eigenspaces

Main reference: Axler §5.C
Assume the dimension of V is finite, denoted n.

• T ∈ L(V ) is diagonalizable if there exists a basis B of V such that [T ]B is diagonal.

• The eigenspace of T corresponding to λ ∈ F is defined as

E(λ, T ) = ker(T − λI).

• Let λ1, . . . , λm ∈ F denote distinct eigenvalues of T . Then

E(λ1, T ) + · · ·+ E(λm, T ) = E(λ1, T )⊕ · · · ⊕ E(λm, T ).

Proof. Check that u1 + · · ·+ um = 0, uj ∈ E(λj , T ) only has the trivial solution.

• Let λ1, . . . , λm be all distinct eigenvalues of T . The following are equivalent:

1. T is diagonalizable;
2. V has a basis u1, . . . , un consisting of eigenvectors of T ;
3. There are invariant one-dimensional U1, . . . , Un such that V = U1 ⊕ · · · ⊕Un;
4. V = E(λ1, T )⊕ · · · ⊕ E(λm, T );
5. dimE(λ1, T ) + · · ·+ dimE(λm, T ) = n.

Proof. (1 ⇔ 2) by definition of [T ]B.
(2 ⇒ 3) Take Uj = span(uj). Then U1 + · · ·+ Un = V , and the sum is direct.
(3 ⇒ 2) Take uj ∈ Uj \ {0} eigenvector. {u1, . . . , un} spans V , so it is a basis.
(2 ⇒ 4) If eigenvectors span V , we have E(λ1, T )⊕ · · · ⊕ E(λm, T ) = V .
(4 ⇒ 2) Let Aj be a basis for E(λj , T ) and take A = A1, . . . ,Am. Since spanA =
V , it contains a basis for V , and its elements are all eigenvectors.
(4 ⇔ 5) Property of direct sum.

• If T has n distinct eigenvalues, then T is diagonalizable.
Proof. There are n linearly independent eigenvectors, which thus form a basis.

• We define the determinant of an operator T ∈ L(V ) by detT = det[T ]B for some
basis B. The trace is defined as traceT = trace[T ]B. The definitions do not depend
on the choice of basis because similar bases have the same trace and determinant.

• We define the characteristic polynomial of an operator T ∈ L(V ) by pT (z) =
det(T − zI). A number λ ∈ F is an eigenvalue if and only if it is a root of pT . In
this case, we define its algebraic multiplicity as its multiplicity as a root of pT , and
its geometric multiplicity as dim ker(T − λI).

• If V is a complex vector space, then T ∈ L(V ) has n eigenvalues counting algebraic
multiplicity. Moreover, detT =

∏n
j=1 λj and traceT =

∑n
j=1 λj .
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\section*{NYU-SH Honors Linear Algebra I -- Lectures Summary}


\section{First class}

Main reference:
Axler \S1.A
or
Treil \S1.1
(the book titles are in the Syllabus)

Supplementary reading:
Lay \S4.1


\begin{itemize}

\item

Usually ``linearity'' refers to operations involving the addition of objects of the same type and multiplication of these objects by numbers.

\item

\emph{Linear Algebra} studies the mathematical structure of objects, sets and functions, as far as such structure is determined (or affected) by these operations.

\item

Vectors $\vx$ on the plane are given by a pair of numbers $\vx = (x_1,x_2) \in \R \times \R = \R^2$.

\item

Vectors $\vx$ on the 3-dimensional space are given by a triple $\vx \in \R^3$.

\item

We can consider vectors on $n$-dimensional space as $n$-tuples $\vx \in \R^n$.

\item

Adding two vectors $\vx$ and $\vy$ from $\R^n$, we get another vector $\vw = \vx + \vy \in \R^n$.

\item

Multiplying a vector $\vx \in \R^n$ by a number $\alpha \in \R$, we get a vector $\vw = \alpha \vx \in \R^n$.

\item

\emph{Numbers} do not need to be real.
We will consider both cases when the set $\F$ of numbers is given by $\F = \R$ or $\F = \C$.
When $\F=\C$, we need the space to be $\C^n$ instead of $\R^n$, otherwise the previous property breaks down.

\item

A \emph{complex number} $z \in \C$ is a number of the form $z = x+iy$ where $x,y\in \R$.
In $\C$ we have usual algebraic properties of multiplication and addition, plus the property that $i^2=-1$, so $(1+2i)(3+4i)=3+4i+6i+8i^2=-5+10i$.

\item

Why $\C$?
Cutting a long story short:
\begin{itemize}
\item Want to count: $\N$. Can add and multiply.
\item Want to subtract: $\N \leadsto \Z$
\item Want to divide: $\Z \leadsto \Q$
\item Want intermediate value theorem: $\Q \leadsto \R$
\item Want polynomials to have roots: $\R \leadsto \C$
\end{itemize}
Even if one is ultimately interested in studying real quantities, using complex numbers may be more suitable because polynomials always have roots.

\end{itemize}


\clearpage
\section{Vector spaces}

Main reference:
Treil \S1.1
\&
Axler \S1.A\

Supplementary reading:
Axler \S1.B,
Lay \S4.1
and
Hefferon \S 2.I.1 \& \S2.Fields

\begin{itemize}

\item

A \emph{field} $\F$ is a set with addition and multiplication operations satisfying:
commutativity,
associativity,
additive identity $0$,
multiplicative identity $1$,
additive inverse $-\alpha$,
multiplicative inverse $\frac{1}{\alpha}$,
distributive property.

\item

Elements of $\F$ are called \emph{numbers} or \emph{scalars}.
We will consider $\F=\R$ or $\C$.

\item

A \emph{vector space over the field $\F$} is a set $V$ together with the operations of addition and 
scalar multiplication (that is, for every $\vu,\vv \in V$ and $\alpha\in\F$, one has $\vu+\vv \in V$ and $\alpha \vu \in V$) satisfying:
commutativity,
associativity,
additive identity $\0$,
additive inverse $-\vv$,
multiplicative identity,
multiplicative associativity,
distributive property for vector sum,
distributive property for scalar sum.

\item

The additive identity $\0$ is unique, the additive inverse $-\vv$ is unique for each $\vv$.

\emph{Proof.}
Expand $\0 + \0'$ and $\vw+\vv+\vw'$ using the above properties.

\item

Elements of a vector space are called \emph{vectors} or \emph{points}.

A vector space over $\R$ is called a \emph{real vector space}

A vector space over $\mathbb{C}$ is called a \emph{complex vector space}

\item

Examples of  vector spaces: $\mathbb{F}^n$, the set $\cP(\F)$ of polynomials with real (or complex) coefficients, the set $\cP_n(\F)$ of polynomials of degree at most $n$.

\item

Another vector space is the set $\F^{m \times n}$ of $m \times n$ matrices $A=(a_{jk})_{j,k}$ written as
\[
A = \left[
\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{array}
\right]_{m \times n}
\]

\item

The transpose of a matrix is defined by $A^T = (a_{kj})_{j,k} \in \F^{n \times m}$.

\end{itemize}

\textbf{Notation.}
Treil denotes elements of $\F^n$ as column vectors, that is, matrices in $\F^{n \times 1}$:
\[
\vx = \left[
\begin{array}{c}
x_1 \\ x_2 \\ \vdots \\ x_n
\end{array}
\right]_{n \times 1}
\quad
\text{ or }
\quad
\vx = [x_1, x_2, \dots, x_n]^T
.
\]
We will write $\vx = (x_1, x_2 , \dots , x_n) \in \F^n$, knowing that it denotes a column vector.



\clearpage
\section{Linear combinations and bases}

Main reference:
Treil \S1.2

\textbf{Terminology.}
In these lecture notes, ``proof'' means just the main idea of the proof.
The complete proof is the one written on the whiteboard or in the textbook.

\begin{itemize}

\item

A \emph{linear combination} of vectors $\vv_1,\dots,\vv_n$ is a sum of multiples of these vectors, resulting in some $\vu = \alpha_1 \vv_1 + \dots + \alpha_n \vv_n$ for some $\alpha_1,\dots,\alpha_n\in \mathbb{F}$.

\item

A family of vectors $\vv_1,\dots,\vv_n$ is \emph{a basis of $V$} if every vector $\vu \in V$ has a \textbf{unique} representation as a linear combination of $\vv_1,\dots,\vv_n$.

\item

Examples without proof:
$(1,0),(0,1)$ is a basis of $\R^2$; $(1,1),(0,1)$ is a basis of $\R^2$; $(1,1),(2,2)$ is not a basis of $\R^2$; $(1,0),(0,1),(2,2)$ is not a basis of $\R^2$;
$\ve_1,\dots,\ve_n$ is \emph{the canonical basis} of $\F^n$;
$1,t,t^2,t^3$ is a basis of $\cP_3(\F)$.

\item

Being a basis means that, for each $\vu \in V$, the equation $\alpha_1 \vv_1 + \dots + \alpha_n \vv_n = \vu$ has a unique solution $(\alpha_1,\dots,\alpha_n)$.
These numbers 
$\alpha_1,\dots,\alpha_n$ are called \emph{the coordinates of $\vu$ in the basis $\vv_1,\dots,\vv_n$.}

\item

A family of vectors $\vv_1,\dots,\vv_p$ is a \emph{spanning family}, or \emph{generating system}, or \emph{complete system}, if every vector of $V$ can be written as a linear combination of $\vv_1,\dots,\vv_p$.

Examples without proof:
% \\
$(1,0),(0,1)$ or $(1,1),(0,1)$ or $(1,1),(2,2)$ as well as $(1,0),(0,1),(2,2)$ are all spanning families of $\R^2$.

\item

The \emph{trivial} linear combination of $\vv_1,\dots,\vv_n$ is the linear combination $0 \vv_1 + \dots + 0 \vv_n$.

\item

A family of vectors is called \emph{linearly independent} if the only linear combination equal to $\0 \in V$ is the trivial linear combination.
A family of vectors which is not linearly independent is called \emph{linearly dependent}.
$\emptyset$ is linearly independent.

\item

A family of vectors is a basis iff it is both spanning and linearly independent.

\emph{Proof.}
% One direction follows from definition.
For the more difficult direction, show that two linear combinations giving the same result must be the same by showing that the difference is trivial.

\spitem

%A family is LI iff one of the vectors is a linear combination of the previous ones:

A family of vectors $\vv_1, \dots, \vv_n$ is linearly dependent iff there exists $k\in\{1,\dots,n\}$ and $\alpha_1,\dots,\alpha_{k-1}\in\mathbb{F}$ such that $\vv_k=\0 + \alpha_1 \vv_1 + \dots + \alpha_{k-1} \vv_{k-1}$.

\emph{Proof.}
Divide by the last non-zero coefficient in a non-trivial linear combination.

% A family of vectors $\vv_1, \dots, \vv_n$ is linearly dependent iff there exists $k\in\{1,\dots,n\}$ and $\alpha_1,\dots,\alpha_{k-1},\alpha_{k+1},\dots, \alpha_n \in\mathbb{F}$ such that $\vv_k=\alpha_1 \vv_1 + \dots + \alpha_{k-1} \vv_{k-1} + \alpha_{k+1} \vv_{k+1} + \dots + \alpha_n \vv_n$.
% 
% That is, the family is LI iff one of the vectors is a linear combination of the others.

% (Note that if $k=1$, the above equality says that $v_1$ is equal to an empty sum, which is defined as $\0$.)
% Consider the smallest $k$ for which $\vv_1,\dots,\vv_k$ is linearly dependent.
% REMARK: The above is a bit too hard for a second week
% NEW REMARK: The proof in Axler is simpler

\item

Every finite spanning family contains a basis.

\emph{Proof.}
Remove redundant vectors one by one until you get a basis.

% Let $U = \{ v_1,\dots,v_m \}$ be a generating family.
% We want to show that it contains a basis.
% There are two cases: (a) $U$ is linearly independent, (b) $U$ is linearly dependent.
% In case (a), $U$ is a basis and it contains itself.
% In case (b), some $v_k$ is given by a linear combination of $v_1,\dots,v_{k-1}$.
% Now every $u \in V$ is given by a linear combination of $U$, which in turn can be expressed as a linear combination of $U \setminus \{v_k\}$, by replacing the term which contains $v_k$ by a linear combination of $v_1,\dots,v_{k-1}$.
% So $U \setminus \{v_k\}$ is also a generating family.
% We can now repeat this process until we have removed enough many vectors from $U$ so that it is no longer linearly dependent. At that point it will still be a generating family, and hence a basis.

\end{itemize}


\clearpage
\section{Linear transformations and matrix-vector multiplication}

Main reference:
Treil \S1.3  \& \S1.4

\begin{itemize}

\item

A \emph{linear map}, or \emph{linear transformation}, is a function from a vector space $V$ to a vector space $W$ which satisfies the properties of additivity and homogeneity.
 
\item

Examples without proof:
rotations on $\R^2$, reflections on $\R^2$, transposition of matrices, $T(x_1,x_2,x_3)=(x_1-x_3,4ix_2)$ from $\C^3$ to $\C^2$.

% Some of them don't know:
% differentiation of polynomials,

\item

Linear functions on $\F^1$: multiplication by a number.
What about $\F^n$?

\item

For a linear map $T:\F^n \to \F^m$, define the vectors $\va_1 = T \ve_1,\dots,\va_n = T \ve_n \in \F^m$.
Then $\va_1,\dots,\va_n$ determines $T$.
Indeed, given $\vx\in \F^n$, by linearity we have
\[
T\vx = x_1 \va_1 + \dots + x_n \va_n = \sum_{k=1}^n x_k \va_k.
\]
Hence, the matrix \[ A = \big[\, \va_1 , \dots , \va_n \, \big]_{m \times n} \] contains all the information about $T$.
We denote this matrix $A$ by $[T]$.

\item

\emph{Multiplication of matrix by column.}
Given $A \in \F^{m \times n}$ and $\vx \in\mathbb{F}^n$, we define the product $\vy = A \vx \in \F^m$ by
\[
y_j = a_{j,1} x_1 + \dots + a_{j,n} x_n = \sum_{k=1}^n a_{j,k} x_k.
\]
Writing $A = \big[ \va_1 , \dots , \va_n \big]_{m\times n}$, this gives the same result as
\[
\vy = x_1 \va_1 + \dots + x_n \va_n = \sum_{k=1}^n x_k \va_k
.
\]
So with this definition we have $T\vx = A\vx$.

\item

To describe a linear transformation $T:\F^n \to \F^m$ we can consider any basis, it does not need to be $\ve_1,\dots,\ve_n$.
More generally, a linear transformation $T:V \to W$ is completely determined by the values that it takes on any given spanning family.

\item

Let $\cL(V,W)$ denote the sets of all linear transformations defined on $V$ and taking values on $W$. Then $\cL(V,W)$ is itself a vector space!

\emph{Proof.}
Exercise.

\end{itemize}


\clearpage
\section{Composition and matrix multiplication}

Main reference:
Treil \S1.5

\begin{itemize}

\item

Suppose $A \in \F^{m \times n}$ and $B \in \F^{n \times r}$, and let $\vb_1, \dots, \vb_r \in \F^n$ be the columns of $B$.
Then the product $AB \in \F^{m \times r}$ is the matrix whose columns are $A\vb_1, \dots, A\vb_r$.

\item

Writing $C = AB$, we have \[ c_{j,k} = (j\text{-th row of }A)(k\text{-th column of }B) = \sum_{l=1}^{n}a_{j,l}b_{l,k}. \]

\item

It is defined when the rows of $A$ have the same length as the columns of $B$.

\item

For $T_1 \in \cL(\F^n,\F^m)$ and $T_2 \in \cL(\F^r,\F^n)$, then $[T_1 \circ T_2]=[T_1][T_2]$.

\emph{Proof.}
The $k$-th column equals
$T(\ve_k) = T_1(T_2(\ve_k))=T_1(B\ve_k)=T_1(\vb_k)=A\vb_k$

\item

Example: reflection against the line $x_1=3x_2$ on $\R^2$. Then $T=R_\gamma T_0 R_{-\gamma}$ is a composition of rotations and a reflection against the line $x_2=0$.
After some work, we get $T(x_1,x_2)=(0.8x_1+0.6x_2, 0.6x_1-0.8x_2)$.

\item

Properties: associativity, distributivity, commutativity with scalars.

\item

No commutative property: in general $AB\neq BA$.

Remark.
If we pick square matrices ``at random,'' chances are they don't commute.

\item

$(AB)^T = B^T\! A^T$ if one of the products is defined.

\item

Identity operator: $I_V \in \cL(V) = \cL(V,V)$ defined by $I_V \vv = \vv$.

Identity matrix: $I = I_n \in \F^{n \times n}$ with $1$ on diagonal and $0$ elsewhere.

\end{itemize}


\clearpage
\section{Invertible matrices and isomorphisms}
\label{sec:invertible}

Main reference:
Treil \S1.6

\begin{itemize}

\item

We say that $T \in \cL(V,W)$ is \emph{left invertible} if there exists $S \in \cL(W,V)$ such that $ST=I_V$.
In this case $S$ is called \emph{a left inverse} of $T$.

We say that $T \in \cL(V,W)$ is \emph{right invertible} if there exists $R \in \cL(W,V)$ such that $TR=I_W$.
In this case $R$ is called \emph{a right inverse} of $T$.

Remark.
The left and right inverses need not be unique.
Matrix $\binom{1}{1}$ has many left inverses and no right inverse,
$[1 \ 1]$
has many right inverses and no left inverse.

\item

We say that $T$ is \emph{invertible} if it is both left invertible and right invertible.
In this case, the left and right inverses are unique and are the same, denoted $T^{-1}$.

\emph{Proof.}
Expand $STR$.

\item

Examples:
Identity $I^{-1}=I$, rotation $(R_\gamma)^{-1}=R_{-\gamma}$.

\item

$T \in \cL(V,W)$ is invertible iff for each $\vy\in W$ the equation $T\vx = \vy$ has a unique solution $\vx \in V$.
So $T$ is invertible as a linear map if it is bijective as a function.

\emph{Proof.}
In one direction, apply $T^{-1}$ to the equation to see that $\vx = T^{-1} \vy$ is the only solution.
Conversely, let $f(\vy)$ denote the unique solution, so that $f \circ T = I_V$ and $T \circ f = I_W$, and check that $f$ is linear.

\item

A matrix is \emph{(left, right) invertible} if the corresponding linear transformation is (left, right) invertible, and $A^{-1}$ is called \emph{the inverse} of $A$.

\item

If $A$ and $B$ are invertible and $AB$ is defined, then $(AB)^{-1} = B^{-1} A^{-1}$.
\\
If $A$ is invertible, then $(A^T)^{-1} = (A^{-1})^T$ and $(A^{-1})^{-1}=A$.

\emph{Proof.}
Check that the product from the left and the right give the identity.

\item

An invertible linear transformation $T \in \cL(V,W)$ is called an \emph{isomorphism}.
If $T$ is an isomorphism, then so is $T^{-1}$.
Two vector spaces $V$ and $W$ are called \emph{isomorphic}, denoted by $V \cong W$, if there exists an isomorphism between them.

Remark.
This means that these spaces have exactly the same properties, as far as their linear structure is concerned.

\item

Let $T \in \cL(V,W)$ be an isomorphism.
Then $\vv_1,\vv_2,\dots,\vv_n$ is a basis for $V$ iff $T\vv_1,T\vv_2,\dots,T\vv_n$ is a basis for $W$.

\emph{Proof.}
Check that the properties of being LI and spanning are preserved by $T$.

\item

Let $\vv_1,\vv_2,\dots,\vv_n$ be a basis for $V$.
Then $T \in \cL(V,W)$ is invertible iff $T\vv_1,T\vv_2,\dots,T\vv_n$ is a basis for $W$.

\emph{Proof.}
Define $R \in \cL(W,V)$ by $R \vw_k = \vv_k$.
Check that $RT = I_V$ and $TR = I_W$.

\item
Corollary: A matrix is invertible iff its columns form a basis.

\end{itemize}
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\section{Row reduction and echelon forms}

Main reference:
Treil \S2.1 \& \S2.2.
\
Supplementary reading:
Hefferon \S 1.I.1 \& \S1.I.2

\begin{itemize}

\item

A system of linear equations, or \emph{linear system} can be seen as:
\\ --
A collection of $m$ linear equations with $n$ unknown variables.
\\ --
A \emph{matrix-vector equation} $A x  = b $.
\\ --
A \emph{vector equation} $x_1 \va_1 + \dots + x_n \va_n = b $.

Here $A \in \F^{m \times n}$ is the \emph{coefficient matrix} and $b \in \F^{m \times 1}$ is the \emph{right-hand side}.

\item

Linear system is encoded by the \emph{augmented matrix} $[A \big| b ]$.

\item

There are three types of \emph{row operations}:
\\ --
Row exchange: interchange two rows
\\ --
Scaling: multiply a row by a non-zero scalar
\\ --
Row replacement: add a multiple of a row to another row

These operations do not change the set of solutions, because they can be reversed.

\item

Row reduction:
\begin{enumerate}
\item find the left most non-zero column;
\item make sure its topmost entry is non-zero (apply row exchange if needed), this entry is then called a \emph{pivot}; maybe apply scaling so that the pivot equals $1$;
\item apply row replacement to zero out all entries below the pivot;
\item now leave this row alone, and apply the procedure to the remaining submatrix.
\end{enumerate}

Example:
\vspace{-1em}
\[
\left(\begin{array}{rrr|r}
0 & -4 & -8 & 4 \\
1 &  2 &  3 & 1 \\
2 &  1 &  2 & 1 \\
\end{array}\right).
\]

\item
Echelon form (triangular is a particular case):
\begin{enumerate}
\item
Non-zero rows are above zero rows, their first non-zero element is called \emph{pivot}
\item 
Position of each row's pivot is to the right of previous rows' pivots
\end{enumerate}
Reduced echelon form:
\begin{enumerate}
\setcounter{enumi}{2}
\item
The value of pivot entries is $1$, entries above the pivots are also zero
\\
(below pivots are already zero by the two previous items)
\end{enumerate}
\text{Examples: }
\vspace{-1em}
\[
\left(\begin{array}{rrrrrr|r}
\mathbf{1} & 0 & 8 & \0 & \0 & 0 & 9 \\
\0 & \0 & \0 & \mathbf{1} & \0 & 3 & 6 \\
\0 & \0 & \0 & \0 & \mathbf{1} & 1 & 3 \\
\end{array}\right)
\text{ and }
\left(\begin{array}{rr|r}
\mathbf{1} & 3 & \0 \\
\0 & \0 & \mathbf{1} \\
\0 & \0 & \0  \\
\end{array}\right)
.
\]

\item

Row reduction yields an echelon form.
To get a reduced echelon form we apply the backward phase, from right to left.
General solution may have \emph{free variables}.

\end{itemize}


\clearpage
\section{Echelon form and bases}

Main reference:
Treil \S2.3

The notions of row operation, echelon form and pivot help us not only solve a given linear system, but this process actually reveals fundamental properties of bases, linearly independent families, spanning families, and invertible matrices.

\textbf{Notation.} Henceforth we write $u$ instead of $\vu$, but we still write $\vv_j$ to avoid confusion.

\begin{itemize}

\item

$Ax  = b $ is inconsistent iff the echelon form of $[A|b]$ has a pivot in the last column.

The echelon form of $A$, denoted $A_\e$, has a pivot in every column if and only if, for every $b  \in \F^m$, the equation $Ax  = b $ is either inconsistent or has a unique solution.

$A_\e$ has pivots in every row iff
$Ax  = b $ has solutions for every $b$.

$A_\e$ has pivots in every row and column iff
there is a unique solution for every $b$.

Each row and column of an echelon form have at most one pivot.

\emph{Proof.}
Immediate.
Equivalent to not having free variables.
Direct implication follows immediately from the first observation; conversely, if $A_\e$ does not have a pivot in every row, the last row is zero, taking $b_\e = (0,\dots,0,1) \in \F^m$ makes $[A_\e|b_\e]$ inconsistent, and reversing the row operations give $[A|b]$ inconsistent.
Follows immediately from previous two observations.
Follows from definition of echelon.

\item

For a family $\vv_1,\dots,\vv_m \in \F^n$, writing $A=[\vv_1,\dots,\vv_m]_{n \times m}$:
\\ --
The family is LI iff $A_\e$ has a pivot in every column.
\\ --
The family is spanning iff $A_\e$ has a pivot in every row.
\\ --
The family is a basis iff $A_\e$ has a pivot in every row and every column.

\emph{Proof.}
The definitions of LI and spanning match the previous observations.

\item

A family with more than $n$ vectors in $\F^n$ cannot be LI.

\emph{Proof.}
Denote the family $\vv_1,\dots,\vv_m$ with $m>n$ (if it is infinite, reduce it).
There are at most $n$ pivots in $[\vv_1,\dots,\vv_m]_\e$, so there cannot be one at each column.

\item

Any two bases of $V$ have the same number of elements.

\emph{Proof.}
Can assume one of them, $\A = \vv_1,\dots,\vv_n$ is finite.
It is enough to show that the other one $\B$, cannot have more than $n$ elements.
Let $T\in\cL(V,\F^n)$ be defined by $T\vv_j = \ve_j$.
Then $T$ is an isomorphism, hence $(T\vu)_{\vu \in \B}$ is linearly independent.
The claim then follows from the previous proposition.

\item

Every basis of $\F^n$ has $n$ elements.

\item

A spanning family in $\F^n$ must have at least $n$ elements.

\emph{Proof.}
If it is infinite, it has a lot more. If it is finite, it contains a basis.
\end{itemize}
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\section{Echelon form and invertibility}

Main reference:
Treil \S2.3 \& \S2.4

\textbf{Notation.}
A `` $\circ$ '' indicates a point that it is not quite following the textbook.

\begin{itemize}
\item

A matrix $A$ is invertible iff $A_\e$ has a pivot in every row and every column.

\emph{Proof.}
Both are equivalent to $Ax=b$ having unique solution for every $b \in \F^m$.
\\
Proof~2.
Both are equivalent to $\va_1,\dots,\va_n$ being a basis.

\item

Only square matrices can be invertible.

\emph{Proof.}
Let $n$ be the number of pivots. Then $A_\e$ must have $n$ rows and $n$ columns.

\item

A square matrix is left invertible iff it is right invertible.

\emph{Proof.}
If $A$ is right invertible,
$Ax=b$ has solution for every $b$,
thus $A_\e$ has a pivot at every row,
hence $A_\e$ has a pivot at every column and therefore $A$ is invertible.
If $A$ is left invertible,
$\0$ is the only solution to $Ax=\0$, 
thus $A_\e$ has a pivot at every column,
hence $A_\e$ has a pivot at every row and therefore $A$ is invertible.

% $A$ is right invertible
% $\Leftrightarrow$ NEEDS TO JUSTIFY
% $Ax=b$ has solution for every $b$
% $\Leftrightarrow$
% $A_\e$ has pivot at every row
% $\Leftrightarrow$
% $A_\e$ has pivot at every column
% $\Leftrightarrow$
% $\0$ is the only solution to $Ax=\0$,
% $\Leftrightarrow$ NEEDS TO JUSTIFY
% $A$ is left invertible.

% For square matrix, either one of these imply that the matrix is invertible.

\item

For square matrices, it is enough that $AB = I$ \textbf{or} $BA = I$ to have $B = A^{-1}$.

\emph{Proof.}
It is a corollary of the previous proposition.

\spitem

A family $\vv_1,\dots,\vv_n\in\F^n$ is LI iff it is spanning.

\emph{Proof.}
LI and spanning are equivalent to the matrix $[\vv_1,\dots,\vv_n]_{n \times n}$ having a row at every column or every row, which are in turn equivalent to each other.

\spitem

For a family with $n$ vectors, it is enough to check LI \textbf{or} spanning to have a basis.

\emph{Proof.}
It is a corollary of the previous proposition.

\item

Row operations on an $m \times n$ matrix $A$ are equivalent to multiplying $A$ from the left by an an \emph{elementary matrix} $E$.
Elementary matrices are invertible.

\item

To find the inverse of a square matrix $A$ we can apply row reduction to $[A|I]$.

If $A_\e$ has fewer than $n$ pivots, we know that $A$ is not invertible, and we can stop.

If it has $n$ pivots, the pivots are on the diagonal, and applying the backward phase of row reduction we get the reduced echelon form which is $[I|A^{-1}]$.

\emph{Proof.}
Row reduction and backward phase consist in applying $B=E_k \cdots E_2 E_1$ to $[A|I]$, giving $B[A|I]=[BA|BI]=[I|B]$, and since $BA=I$ we have $B=A^{-1}$.

\item

Any invertible matrix can be represented as a product of elementary matrices.

\end{itemize}
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\section{Subspaces and dimension}

Main reference:
Treil
\S1.8
\& 
\S2.5

\begin{itemize}

\item

A subset $W \subseteq V$ is called a \emph{subspace} of $V$ if $W$ is itself a vector space, with the same operations as inherited from $V$.

\item

A subset $W \subseteq V$ is a subspace of $V$ iff it satisfies:
\begin{enumerate}
\item
$\0 \in W$.
\item
$W$ is closed under addition, i.e., for every $u,v \in W$, we have $u+v \in W$.
\item
$W$ is closed under scalar multiplication: $\alpha u \in W$ for every $u \in W$ and $\alpha \in \F$.
\end{enumerate}

\emph{Proof.}
All the properties are satisfied because $W$ inherits the operations from $V$.

% Existence of $\0$ follows from $W \ne \emptyset$ and $0 u = \0$.


\spitem

Examples:
Trivial subspaces: $\{\0\}$ and $V$.
The set of all linear combinations of a family $\A=\vu_1,\dots,\vu_k$, denoted $\myspan(\vu_1,\dots,\vu_k)$.
The set of all solutions to $Ax=0$.
The \emph{range} of $T\in\cL(V,W)$, denoted $\myrange T = \{Tv:v\in V\} \subseteq W$.
The \emph{null space} or \emph{kernel} of $T$, is given by $\myker T = \{v\in V:Tv=\0\}\subseteq V$.

Useful properties:
$\myspan (\myspan \A) = \myspan \A$,
$\myker (TR) \supseteq \myker R$,
$\myrange (TR) \subseteq \myrange T$.
\\

\item
The \emph{dimension} $\mydim V$ of a vector space $V$ is the number of vectors in a basis (note that $\mydim\{\0\}=0$ because $\emptyset$ is a basis).
We say that $V$ is \emph{finite-dimensional} if it has a finite basis, otherwise it is \emph{infinite-dimensional}.

Examples: $\F^n$ and $\cP_n(\R)$ are finite-dimensional, $\cP(\R)$ and the space of all continuous functions defined on $[0,1]$ are infinite-dimensional.

\spitem

Suppose $n = \mydim V < \infty$.
A family $\A$ with $n$ vectors is LI iff it is spanning.
If it has fewer vectors, it cannot be spanning.
If it has more vectors, it cannot be LI.

For a family with $n$ vectors, it is enough to check LI \textbf{or} spanning to have a basis.

\emph{Proof.}
Take an isomorphism $T\in\cL(V,\F^n)$ and use the result for $\F^n$.
%We have already proved these properties if $V=\F^n$, so the claims follow by t

\spitem

Suppose $\mydim V < \infty$.
If $\A \subseteq \cC \subseteq V$ and $\A$ is linearly independent, then there exists a finite basis $\B$ for $\myspan \cC$ such that $\A \subseteq \B \subseteq \cC$.

\emph{Proof.}
Exercise.

\spitem

Suppose $\mydim V < \infty$.
If $\A$ is a LI family, there is a basis $\B$ that contains $\A$.
\\
If $\cC$ is a spanning family, there is a basis $\B$ contained in $\cC$.

\emph{Proof.}
Take $\cC=V$.
Take $\A=\emptyset$.
%Add vectors which are outside the $\myspan$ until it becomes a spanning family. This process has to stop because a LI family cannot have more than $n$ vectors.

\item
Suppose $\mydim V < \infty$.
If $W$ is a subspace of $V$, then $\mydim W \leq \mydim V$.
Moreover, $\mydim W = \mydim V$ only if $W=V$.

\emph{Proof.}
%Like in the previous proof, we can construct a basis for
Take a basis for $W$, extend to a basis of $V$, if same number then $W=V$.

\end{itemize}
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\section{Fundamental subspaces and rank theorems}
\label{sec:rank}

Main reference:
Treil
\S2.6
\& 
\S2.7.
\
Supplementary reading:
Hefferon \S 2.III.3

\textbf{Logic.}
Often in our sentences, we are implicitly saying that a certain statement is true \emph{for all} $V$, \emph{for all} $v$, etc.
In order to negate such sentences, one needs to show that the claim is false \emph{for some} $v$, etc.
It is also implicit that $V$ is a vector space.
When we say that $U$ and $W$ are subspaces, it is implicit that they are subsets of \emph{the same} space $V$.
When we say ``if vectors $x$ and $y$ ... then ...,'' usually it means in the same space.

\begin{itemize}

\item

%General = Particular + Homogeneous:
%\\
If $Ax=b$ has a solution $v$,
then the set of solutions is given by $\{v+u: Au=\0\}$.

\emph{Proof.}
If $x$ in this set, $Ax=Av+Au=b+\0=b$, so $x$ is a solution.
Conversely, if $Ax=b$, take $u = x-v$, so $Au=Ax-Av=b-b=\0$, and $x$ is in this set.

\end{itemize}

Suppose we are given a parametrized family $\A$ of solutions as one fixed vector plus the span of a few other vectors. How can we tell whether $\A$ contains \textbf{all} solutions to $Ax=b$?

% We can check directly whether vectors in $\A$ are solutions to $Ax=b$.
% Even if we solve the system by row reduction, how can we tell if the family of solutions that we get is the same as $\A$?

\begin{itemize}

\item

We associate to a given matrix $A\in\F^{m \times n}$ four \emph{fundamental subspaces}:
\begin{itemize}
\item
\emph{Null space} or \emph{kernel}:
$\myker A = \{v \in \F^n: Av=\0\} \subseteq \F^n$.
\item
\emph{Column space} or \emph{range}:
$\myrange A = \myspan(\va_1,\dots,\va_n) = \{Ax : x\in \F^n\} \subseteq \F^m$.
\item
\emph{Row space}, given by $\myrange(A^T) \subseteq \F^n$.
\item
\emph{Left null space}, given by $\myker(A^T) \subseteq \F^m$.
\end{itemize}

\item

How to find bases the range, row space and kernel?

First, use row reduction to find an echelon form $A_\e$.
\\
We say that column $k$ is a \emph{pivot column} if it contains a pivot of $A_\e$.
\begin{enumerate}
\item
The pivot columns of \emph{the original matrix $A$} form a basis for $\myrange A$.
\item
The non-zero rows of $A_\e$ form a basis for $\myrange A^T$.
\item
Expressing solutions of $A_\re \, x = \0$ in vector form gives a basis for $\myker A$, each vector in the basis corresponding to one free variable.
\end{enumerate}

\item

We define \emph{the rank of $A$} as $\myrank A = \mydim \myrange A$.

\item

\textbf{Rank Theorem:}
For $A \in \F^{m \times n}$,
$\myrank A = \myrank A^T$.

\emph{Proof.}
From previous procedures, both correspond to the number of pivots in $A_\e$.

\item

\textbf{Rank-Nullity Theorem:}
For $A \in \F^{m \times n}$,
$\myrank A + \mydim \myker A = n$.
\\
%For finite-dimensional $V$ and
\hspace*{\fill}
If $\mydim V<\infty$ and $T\in\cL(V,W)$, then
$\mydim\myrange T + \mydim \myker T = \mydim V$.

\emph{Proof.}
From previous procedures, $\myrank A$ equals the number of pivots in $A_{\e}$ and $\mydim \myker A$ equals the number of columns without pivots. These add up to $n$.
For a linear map $T\in\cL(V,W)$, consider isomorphisms to subspaces of $\F^n$.

\end{itemize}


\clearpage
\section{Finding bases and completing bases}

Main reference:
Treil
\S2.7

\begin{itemize}

\item

How to find bases the range, row space and kernel?
\begin{enumerate}
\item
The pivot columns of $A$ (those where $A_\e$ has a pivot) form a basis for $\myrange A$.
\item
The non-zero rows of $A_\e$ form a basis for $\myrange A^T$.
\item
Expressing the solutions of $A_\re \, x = \0$ in vector form gives a basis for $\myker A$, each vector in the basis corresponding to one free variable.
\end{enumerate}

%Why do the above procedures work?

\emph{Proof.} We need a few preliminary lemmas.

Exercise: $\myker A$ determines which columns are spanned by which other columns.

Exercise: If $S$ is invertible, then $\myker (ST) = \myker T$ and $\myrange (RS) = \myrange R$.

\begin{enumerate}
\item
Pivot columns of $A_\re$ are LI and span the other columns.
Since $A_\re = EA$ with $E$ invertible, after applying $E^{-1}$ the corresponding columns are still LI and still span the other columns,
hence they are a basis for the column space.
\item
First, check that non-zero rows of $A_\e$ are linearly independent, so they form a basis for $\myrange A_\e^T$.
Second, note that $A_\e^T = A^T E^T$ with $E$ is invertible, and by the second exercise $\myrange A_\e^T = \myrange A^T$.
\item
These vectors span the null space $\myker A$ by construction.
Since the $k$-th coordinate of the general solution always equals the free variable $x_k$, the only linear combination that produces $\0$ is the trivial one, so they are also LI.
\end{enumerate}

\spitem

For two subspaces $U$ and $W$ of $V$, the \emph{sum of $U$ and $W$} is the subspace
\[
U+W=\{u+w:\ u\in U, \ w\in W\} \subseteq V.
\]

\spitem

$\myspan(\vx_1,\dots,\vx_j) + \myspan(\vy_1,\dots,\vy_r) = \myspan(\vx_1,\dots,\vx_j,\vy_1,\dots,\vy_r)$.

\emph{Proof.}
Exercise.

\spitem

How can we complete a LI family in $\F^n$ to get a basis? Write them as rows, find the pivot columns, and add canonical rows ${\ve}_k$ corresponding to the free variables.

\emph{Proof.}
Let $A$ be the matrix $[\vv_1, \dots, \vv_j]^T$ and $A_\e=[\vu_1,\dots,\vu_j]^T$ be its echelon form.
Let $B$ be the square matrix $[\vu_1,\dots, \vu_j, \ve_{k_1}, \dots, \ve_{k_r}]^T$.
With only row exchanges we get $B_\e$ with $n$ pivots, so $\myrank B = n$ and thus $\myrange B^T = \F^n$.
On the other hand,
\begin{align*}
\myrange B^T
& = \myspan(\vu_1,\dots, \vu_j, \ve_{k_1}, \dots, \ve_{k_r}) \\
& = \myrange {A_\e}^T + \myspan(\ve_{k_1}, \dots, \ve_{k_r}) \\
& = \myrange A^T + \myspan(\ve_{k_1}, \dots, \ve_{k_r}) \\
& = \myspan(\vv_1,\dots, \vv_j,\ve_{k_1}, \dots, \ve_{k_r}).
\end{align*}
Since this family is spanning and contains $j+r=n$ vectors, it is a basis.

%\emph{Proof.}
%Let $A$ be the matrix $[\vv_1, \dots, \vv_j]^T$ and $C=A_\e=[\vw_1,\dots,\vw_j]^T$ be its echelon form.
%Let $B$ be the square matrix $[\vv_1, \dots, \vv_j, \ve_{k_1}, \dots, \ve_{k_r}]^T$ and $D$ be the square matrix $[\vw_1,\dots, \vw_j, \ve_{k_1}, \dots, \ve_{k_r}]^T$.
%We want to show that $B$ is invertible, which is equivalent to $\myker B = \{\0\}$.
%Reordering the rows of $D$ we get $n$ pivots, so $D$ is invertible, that is, $\myker D = \{\0\}$.
%Since $C = EA$, $\myker C = \myker A$.
%Now $\myker D$ is given by the set of vectors
%$x$ such that $Cx=\0$ and $x_{k_1}=\cdots=x_{k_r}=0$.
%But this is the same as the set of vectors
%$x$ such that $Ax=\0$ and $x_{k_1}=\cdots=x_{k_r}=0$, which in turn equals $\myker B$.
%Therefore, $\myker B=\{\0\}$, so $B^T$ is invertible and the resulting family \(\vv_1, \dots, \vv_j, \ve_{k_1}, \dots, \ve_{k_r}\) is indeed a basis for $\F^n$.

\end{itemize}
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\section{Coordinate and change of basis}

Main reference:
Treil
\S2.8

\begin{itemize}

\item

Let $\A=\va_1,\dots,\va_n$ be a basis of a vector space $V$. For a vector $v\in V$ such that $v=x_1\va_1+\dots+x_n\va_n$, the \emph{coordinate vector} of $v$ in the basis $\A$ is defined as
\[
[v]_{\A}=(x_1,\dots,x_n) \in \F^n
%\left(\begin{array}{c}x_1\\ \vdots \\ x_n\end{array}\right).
\]
and the numbers $x_1,\dots,x_n$ are \emph{the coordinates of $v$ relative to the basis $\A$}.

\item

The map $v \mapsto [v]_\A$ is an isomorphism between $V$ and $\F^n$.

\item

For a linear map $T\in\mathcal{L}(V,W)$ and bases $\A=\va_1,\dots,\va_n$ of $V$ and $\B=\vb_1,\dots,\vb_m$ of $W$, the matrix of $T$ with input basis $\A$ and output basis $\B$, denoted $[T]_{\B\A}\in \F^{m \times n}$ is the matrix whose $k$-th column is $[T\va_k]_{\B}$.
With this definition,
\[
[Tv]_{\B}=[T]_{\B\A} \, [v]_{\A}
\]
for every $v\in V$, and $[T]_{\B\A}$ is the only matrix with this property.

\spitem

A basis is a basis regardless of how vectors are ordered.
\\
But, for the purpose of writing $[v]_\B$ and $[T]_{\B\A}$, the order does matter.

\item

If $S\in\mathcal{L}(U,V)$ and $\mathcal{C}$ is a basis of $U$, then 
\[
[TS]_{\B\mathcal{C}}=[T]_{\B\A}[S]_{\A\mathcal{C}}.
\]

\emph{Proof.}
$[(TS)u]_\B = [T(Su)]_\B = [T]_{\B\A} \, [Su]_\A = [T]_{\B\A} \, [S]_{\A\cC} \, [u]_\cC.$

\item

The change of coordinate matrix from a basis $\A=\va_1,\dots,\va_n$ of $V$ to another basis $\B=\vb_1,\dots,\vb_n$ of $V$ is the matrix of $I_V$ with input basis $\A$ and output basis $\B$:
\[
[v]_{\B}=[I_V]_{\B\A}[v]_{\A}.
\]
Moreover, the change of basis from $\B$ to $\A$ is the matrix $[I_V]_{\A\B}=\left([I_V]_{\B\A}\right)^{-1}$.

\item

If $\cS=\ve_1,\dots,\ve_n$ denote the canonical basis of $\F^n$, and let $\A=\va_1,\dots,\va_n$ denote another basis.
Then $[I_V]_{\cS\A} = A = [\, \va_1 , \va_2 , \dots , \va_n ]_{n \times n}$ and $[I_V]_{\A\cS} = A^{-1}$.

Examples:
$\A = (1,2),(2,1)$. $\A = 1,1+t$ and $\B = 1+2t,1-2t$.

\item

The change of basis for the matrix of a linear map $T\in\mathcal{L}(V,W)$, with $\A$, $\A'$ bases of $V$ and $\B$, $\B'$ bases of $W$, is given by:
\[
[T]_{\B'\A'}=[I_W]_{\B'\B}[T]_{\B\A}[I_V]_{\A\A'}.
\]

In case $T \in \cL (V)$, we have
\[
[T]_\B = [I_V]_{\B\A} [T]_\A [I_V]_{\A\B}.
\]

\item

Two matrices $A$ and $B\in \F^{n \times n}$ are \emph{similar} is there exists an invertible matrix $Q \in \F^{n \times n}$ such that $A=Q^{-1}BQ$.
This splits $\F^{n \times n}$ into \emph{classes}.

\end{itemize}


\clearpage
\section{Determinant: axiomatic definition}

Main reference:
Treil
\S\S3.1--3.3, \textbf{with row instead of column!}

\begin{itemize}

\item

We want to define the \emph{determinant} of a \textbf{square} matrix as a quantity, function of its \textbf{rows} $\va_j$, which in some sense measures the ``volume'' induced by vectors $\va_j$, and which is meaningful for Linear Algebra. This function should satisfy:

\hspace*{2em}
(0)
--
Invariance under row replacement
\\
\hspace*{2em}
(1)
--
Linearity in each row
\\
\hspace*{2em}
(3)
--
Normalization

\item

Assuming~(1), Property~(0) is equivalent to the following:

\hspace*{2em}
(2)
--
Antisymmetry under row exchange

\emph{Proof.}
For $(0) \Rightarrow (2)$,
add $\va_j$ to $\va_k$, then $-\va_k$ to $\va_j$, then $\va_j$ to $\va_k$, and use~(1).
For $(2) \Rightarrow (0)$,
suppose $C$ is obtained by taking $\vc_j = \va_j + \alpha \va_k$. Using~(1), $\mydet C = \mydet A + \alpha \mydet B$, where rows $j$ and $k$ of $B$ are identical. Using~(2), $\mydet B = 0$.

\item

We say that $\mydet:\F^n\to\F$ is \emph{a determinant} if it satisfies Properties~(1)-(2)-(3).

For now, let us assume existence of such a function.
We will see that, using only these properties, we can compute $\mydet A$.
%So, if a determinant exists, it is unique.
So we can call it \emph{the determinant}.

\item

How do row operations affect $\mydet$?
From Properties~(0)-(1)-(2),

--
Row replacement: does not change $\mydet$.
\\
--
Scaling: multiply $\mydet$ by $\alpha$.
\\
--
Row exchange: multiply $\mydet$ by $-1$.

\item

A matrix $B \in \F^{n \times n}$ is \emph{upper triangular} if all entries below the main diagonal are zero.
If $B$ is upper triangular, we have $\mydet B = b_{1,1}b_{1,2} \cdots b_{n,n}$.

\emph{Proof.}
If $B$ has zero on the diagonal, then $B_\e$ has a zero row and $\mydet B = 0$ by~(1).
If not, then row replacements make $B$ diagonal, and scaling makes it identity.
\item

Row reduction consists of row operations which yield an upper triangular matrix.
So we can indeed compute $\mydet A$ assuming only (1)-(2)-(3)!

\item

$\mydet A = 0$ iff $A$ is not invertible.

\emph{Proof.}
Row operations do not change whether or not a matrix's determinant is zero.
If $A$ is invertible, row operations yield the identity.
If $A$ is not invertible, row operations yield a zero row.

\item

$\mydet A = 0$ iff one of the rows is a linear combination of the others.

\emph{Proof.}
Equivalent to $A$ is not being invertible.

\item

By linearity in each row, $\mydet(\alpha A) = \alpha^n \mydet A$.

\item
We still haven't proved existence of the determinant.

\end{itemize}


\clearpage
\section{Determinant: factorization and permutation formula}

Main reference:
Treil
\S3.3 with row instead of column, and \S3.4

\begin{itemize}

\item

$\mydet(AB)=(\mydet A)(\mydet B)$
and
$\mydet (A^T) = \mydet A$.

\emph{Proof.}
Lemma: If $E$ is an elementary matrix, then $\mydet(EB)=(\mydet E)(\mydet B)$.
Indeed, performing row operations is equivalent to multiplying from the left by elementary matrices, whose determinant coincides with the factor affecting the determinant of $B$.
To prove the above identities, we can assume $A$ is invertible (otherwise $AB$ and $A^T$ are not invertible, and we get $0=0$), so $A=E_N\cdots E_2E_1$.
By the lemma, $\mydet(AB)=(\mydet E_N)\cdots(\mydet E_2)(\mydet E_1)(\mydet B)=(\mydet A)(\mydet B)$.
Moreover, $A^T = E_1^T E_2^T \cdots E_N^T$, so it is enough to prove the second identity for elementary matrices, i.e., $\mydet (E^T) = \mydet E$, which can be checked case by case.

%\emph{Remark.}
%All the properties involving rows are now valid for columns.

\item

The determinant of $A=(a_{j,k})_{j,k} \in \F^{n \times n}$ exists and is given by
\[
\mydet A = \sum_{\sigma} a_{\sigma(1),1}a_{\sigma(2),2} \cdots a_{\sigma(n),n} \mysgn(\sigma).
\]
The above sum is over all \emph{permutations} $\sigma$ of $\{1,2,\dots,n\}$.
Finally, $\mysgn \sigma$ is defined as $\pm 1$ according to the parity of how many \emph{disorders} are present in $\sigma$, i.e.
\[
\mysgn (\sigma)=(-1)^{\#\{(j,k):\ 1\leq j<k\leq n,\ \sigma(j)>\sigma(k)\}}.
\]

\emph{Derivation.}
First, if $A$ has exactly one $1$ in each column, one $1$ in each row, and $0$ elsewhere, then $A$ is a \emph{permutation of the identity}, i.e., $A=[\ve_{\sigma(1)},\dots,\ve_{\sigma(n)}]$ for some permutation $\sigma$.
In this case, the product $a_{\sigma(1),1}a_{\sigma(2),2} \cdots a_{\sigma(n),n}$ equals $1$ for this permutation $\sigma$ and $0$ for all others, and the above formula states that $\mydet A = \mysgn \sigma$.
This is consistent with properties of $\mydet$, as can be seen by applying neighbor column permutations to $I_n$ while using Property~(2'), and using Property~(3) for $I_n$ itself.
Now consider the general case, $A \in \F^{n\times n}$.
Write $A = [\va_1, \dots, \va_n]$, so $\va_k = [a_{1,k},\dots,a_{n,k}]^T = \sum_j a_{j,k} \ve_j$.
Using Property~(1') of $\mydet$ for $\va_1$,
\[
\mydet A = \sum_{j_1} a_{j_1,1} \mydet [\ve_{j_1},\va_2,\dots,\va_n]
.
\]
Repeating the same argument for $\va_2,\dots,\va_n$,
\[
\mydet A = \sum_{j_1} \sum_{j_2} \cdots \sum_{j_n} a_{j_1,1} a_{j_2,2} \cdots a_{j_n,n} \mydet [\ve_{j_1},\ve_{j_2},\dots,\ve_{j_n}]
.
\]
The above sum has $n^n$ terms, but most of them are zero for having repeated columns.
The nonzero terms are exactly when the $j_k$'s are all different, i.e., when for some permutation $\sigma$, $j_k=\sigma(k)$ for all $k$.
For this term, $\mydet(\ve_{\sigma(1)},\dots,\ve_{\sigma(k)})=\mysgn(\sigma)$.
So, a function satisfying (1)-(2)-(3) must agree with the above formula.

\emph{Proof.}
(1) the above summand has exactly one term from each column.
(2) column exchange results from an odd number of neighbor column permutations.
(3) when $A=I$, only the neutral permutation gives a non-zero summand.

\end{itemize}


\clearpage
\section{Determinant: volume and cofactor expansion}

Main reference:
Treil
\S3.5

\begin{itemize}

\spitem

Given $T\in\cL(\R^n)$, for $\Omega \subset \R^n$ open and bounded,
$\mathsf{vol}(T(\Omega))=|\mydet T| \times \mathsf{vol}(\Omega)$.

\emph{Proof.} Seen in HLA-2, using Isometries and Singular Value Decomposition.

\item

\emph{Cofactor expansion}.
For $A=(a_{jk})_{j,k} \in \F^{n \times n}$ and for $j,k\in\{1,\dots,n\}$, let $A_{j,k} \in \F^{(n-1)\times(n-1)}$ be the submatrix obtained by erasing row $j$ and column $k$ from $A$.
We can expand the determinant of $A$ with respect to any given row $j$:
\[
\mydet A=\sum_{k=1}^n (-1)^{j+k}a_{j,k}\mydet A_{j,k}.
\]
We can also expand the determinant of $A$ with respect to any given column $j$:
\[
\mydet A=\sum_{k=1}^n (-1)^{j+k}a_{k,j}\mydet A_{k,j}.
\]

\emph{Remark.}
This method has theoretical importance, and can be helpful when computing examples of size $2$ and $3$, or for a matrix with many zeros.

\emph{Explanation.}
The expansion for column $j$ can be seen as splitting the permutation formula according to the value of $\sigma(j)$.
This gives invertible functions from $\{1,\dots,n\}\setminus\{j\}$ to $\{1,\dots,n\}\setminus\{k\}$, which in turn can be identified with permutations of $\{1,\dots,n-1\}$ with the $\mysgn$ changed accordingly.

%\emph{Explanation~2.}
%One can check by induction on $n$ that the row expansion is linear in each column, antisymmetric under neighbor column transposition, and normalized.

%\emph{Proof.}
%%Complete proof: 
%Postponed.

\item

The coefficients $c_{j,k}=(-1)^{j+k}\mydet A_{j,k}$ are called \emph{cofactors} of $A$.

\spitem

Writing $C = [\vc_1,\dots,\vc_n]$ and $A=[\va_1,\dots,\va_n]$, we have $\vc_j \mydot \va_j = \sum_k c_{k,j} a_{k,j} = \mydet A$.
In general, for any vector $\vy$ we have $\vc_j \mydot \vy = \mydet [\va_1,\dots,\va_{j-1},\vy,\va_{j+1},\dots,\va_n]$.

\item

Let $A\in\F^{n \times n}$ be invertible and have cofactor matrix $C$. Then
%i.e.\ $C=(C_{jk})_{1\le j,k\le n}$. We have that
\[
A^{-1}=\frac{1}{\mydet A}C^T.
\]

\emph{Remark.}
Same as before.

\emph{Proof.}
Let $D = C^T\! A$.
Then $d_{j,k} = \vc_j \mydot \va_k = \mydet [\va_1,\dots,\va_{j-1},\va_k,\va_{j+1},\dots,\va_n]$.
When $k=j$, this gives $\mydet A$.
When $k \ne j$, this is the determinant of a matrix with two repeated columns, which is zero.
So $C^T\! A = (\mydet A) I$.

\item

Cramer's rule: If $A$ is invertible, then the solution to $Ax=b$ is given by
\[
x_k=\frac{\mydet B_k}{\mydet A},
\]
where $B_k$ is the matrix obtained when we replace the $k$-th column of $A$ by $b$.

\emph{Proof.}
Writing $x = A^{-1}b = \frac{1}{\mydet A} C^T b = \frac{1}{\mydet A} \vv$, we have $v_k = \vc_k \mydot b = \mydet B_k$.

%\item
%
%Let $A\in\F^{n,m}$. Let $k\in\{1,\dots,n\wedge m\}$ and consider a matrix $\tilde{A}$ obtained from $A$ by \emph{keeping} $k$ columns and $k$ rows. The quantity $\mydet \tilde{A}$ is called a minor of order $k$.
%
%\item
%
%Let $A\in\F^{n,m}$. rank$A$ is equal to the maximal $k$ such that there exists a non-zero minor of order $k$.
%
%\item
%
%Let $A(x)$ be a polynomial matrix. The function rank$A(x)$ is constant everywhere except at finitely many points, where its value is smaller.

\end{itemize}


\clearpage
\section{Eigenvalues and eigenvectors}

Main reference:
Treil
\S4.1.
\
Review on polynomials:
Axler \S4

\begin{itemize}

\item

Let $A \in \F^{n \times n}$.
A scalar $\lambda\in \mathbb{F}$ is an \emph{eigenvalue} if there exists $v\in \F^n \setminus\{\0 \}$ such that $Av=\lambda v$, and $v$ is called an \emph{eigenvector} of $A$ associated with eigenvalue $\lambda$.

\item

The subspace $\myker(A-\lambda I)$ is called the \emph{eigenspace} associated to $\lambda$.
\\
The set of all the eigenvalues of $A$ is called the \emph{spectrum} of $A$.

\item

$p_A(\lambda)=\mydet(A-\lambda I)$ has degree $n$ and is called the \emph{characteristic polynomial} of $A$.

A number $\lambda \in \F$ is an eigenvalue of $A$ iff $p_A(\lambda)=0$.

\emph{Remark.}
Not very practical unless $n$ is small or $A$ has many zeros.

\item

Similar matrices have the same characteristic polynomial.

\emph{Proof.}
Exercise.

\item

The \emph{algebraic multiplicity} of an eigenvalue is its multiplicity as a root of $p_A \in \cP(\C)$.

\item

The $n$ eigenvalues of an upper triangular matrix $A \in \C^{n \times n}$, listed with algebraic multiplicity, are exactly the diagonal entries $a_{1,1},a_{2,2},\dots,a_{n,n}$.

\emph{Proof.}
Exercise.

\end{itemize}

Below we consider $\F = \C$.
In some situations it may be useful to treat real numbers, vectors and matrices as particular cases of complex numbers, vectors and matrices.

%$\R$ and $\R^n$ as subsets of $\C$ and $\C^n$.

%From now on we assume $\F = \C$, and think of $\R$ and $\R^n$ as subsets of $\C$ and $\C^n$.
%\\
%Considerations for the case when $A$, $\lambda$ or $v$ happen to be real will be made explicitly.

\begin{itemize}

\item

\emph{Fundamental Theorem of Algebra.}
Non-constant complex polynomials have roots.

We call $z_0$ a \emph{root} of $p$ if $p(z_0)=0$.
The \emph{multiplicity} of a root $z_0$ is the highest power of $(z-z_0)$ that divides $p(z)$.
Any complex polynomial of degree $n$ can written as $p(z)=c(z-z_1)\cdots(z-z_n)$, where $z_1,\dots,z_n$ are its roots, counting multiplicity.

\item

%$\lambda_1,\dots,\lambda_n$ are the eigenvalues counted with multiplicity

%The multiplicity of $\lambda$ as a root of $p_A$ is called 
%the eigenvalue $\lambda$.

Every $A \in \C^{n \times n}$ has $n$ eigenvalues $\lambda_1,\dots,\lambda_n$, counted with algebraic multiplicity.

\emph{Proof.}
Follows from the factorization of complex polynomials of degree $n$.

%, and
%$p_A(\lambda) = (\lambda_1-\lambda)\cdots(\lambda_n-\lambda)$.

\item

In this case,
$\mydet A = \lambda_1 \cdots \lambda_n$
and
$\mytrace A = \lambda_1 + \cdots + \lambda_n$.

\emph{Proof.}
Let us analyze the coefficients of $p_A(z)=b_n z^n + b_{n-1} z^{n-1} + \cdots + b_1 z + b_0$.
\\
We first expand the product $p_A(z) = c(z-\lambda_1)\cdots(z-\lambda_n)$, which gives $b_n = c$, $b_{n-1} = -c (\lambda_1 + \cdots + \lambda_n)$, and $b_0 = c \, (-\lambda_1)\cdots(-\lambda_n)$.
\\
Expanding the permutation formula for $\mydet(A - z I)$, only the diagonal permutation has terms involving $z^n$ or $z^{n-1}$.
Other permutations miss at least two positions in the diagonal.
So $b_{n-1}$ and $b_n$ come from $(a_{1,1}-z)\cdots(a_{n,n}-z)$, giving $b_n = (-1)^n$ and $b_{n-1}=(-1)^{n-1}(a_{1,1} + a_{2,2} + \cdots + a_{n,n})$.
Moreover, $b_0 = p_A(0) = \mydet A$.

\end{itemize}


\clearpage
\section{Diagonalization}
\label{sec:diagonalization}

Main reference:
Treil
\S4.2, skipping 4.2.4.
We do not always treat $\R$ as a subset of $\C$.

\begin{itemize}

\spitem

For $T \in \cL(\F^n)$, it would be very convenient to have a basis $\B$ for which $[T]_\B$ is a diagonal matrix.
Denoting $[T]_\cS = A$, this means $Q^{-1} A Q = D$, or $A=QDQ^{-1}$.

\emph{Remark.}
In this case,
$A^N = Q D^N Q^{-1}$,
$p(A) = Q p(D) Q^{-1}$,
$e^{tA} = Q e^{tD} Q^{-1}$, etc.

\spitem

We say that $A \in \F^{n \times n}$ is \emph{diagonalizable (over $\F$)} if $A = QDQ^{-1}$ for some $Q \in \F^{n \times n}$ invertible and $D$ diagonal.
In this case we say that \emph{$Q$ diagonalizes $A$}.

\spitem

Let $A \in \F^{n \times n}$, $B = [\vv_1,\dots,\vv_r] \in \F^{n \times r}$, and $D = \mydiag(\lambda_1,\dots,\lambda_r) \in \F^{r \times r}$.
\\
Then
$AB = BD$
if and only if
$A\vv_j = \lambda_j \vv_j$ for $j=1,\dots,r$.

\emph{Proof.}
Check what the columns of $AB$ and $BD$ are.

\item

A matrix $A \in \F^{n \times n}$ is diagonalizable iff there is a basis of $\F^n$ made of eigenvectors.

\emph{Proof.}
Write $Q = [\vv_1,\dots,\vv_n]_{n \times n}$.

\item

If $\vv_1,\dots,\vv_r \in \F^n$ are eigenvectors of $A \in \F^{n \times n}$ corresponding to distinct eigenvalues, then $\vv_1,\dots,\vv_r$ are linearly independent.

\emph{Proof.}
Apply $ A - \lambda_r I $ to a null linear combination and use induction on $r$.

\item

If $A \in \F^{n \times n}$ has $n$ distinct eigenvalues $\lambda_1,\dots,\lambda_n \in \F$, then $A$ is diagonalizable.

\emph{Proof.}
Take $n$ corresponding eigenvectors, they are LI, so they form a basis.

\item

The \emph{geometric multiplicity} of an eigenvalue $\lambda$ is given by $\mydim \myker (A-\lambda I)$.

\item

The geometric multiplicity of $\lambda$ cannot exceed its algebraic multiplicity.

\emph{Proof.}
Exercise.

\spitem

Let $\lambda_1,\dots,\lambda_r \in \F$ denote the distinct eigenvalues of $A \in \F^{n \times n}$.
Then $A$ is diagonalizable over $\F$ if and only if the sum of algebraic multiplicities $m_1,\dots,m_r$ equals $n$ and they equal the geometric multiplicities $g_1,\dots,g_r$.
%$m_1 + \dots + m_r = n$ and $\mydim\myker (A - \lambda_j I) = m_j$ for $j=1,\dots,r$.

% Can make the proof shorter by applying $(A - \lambda_2 I)\dots(A - \lambda_r I)$ to the linear combination

\emph{Proof.}
$(\Rightarrow)$
% A proof using similarity A = QDQ' was too sophisticated for the students.
A LI family of eigenvectors has at most $\sum_j g_j \leqslant \sum_j m_j \leqslant n$ vectors, and a basis has $n$ vectors.
$(\Leftarrow)$
For each $j=1,\dots,r$, take $\vv_{j,1},\vv_{j,2},\dots,\vv_{j,m_j}$ as a basis for $\myker (A - \lambda_j I)$.
Let $\B = \vv_{1,1},\vv_{1,2},\dots,\vv_{1,m_1},\dots,\vv_{r,1},\vv_{r,2},\dots,\vv_{r,m_r}$.
Note that each vector in $\B$ is an eigenvector of $A$, since $A \vv_{j,k} = \lambda_j \vv_{j,k}$.
Suppose $\sum_{j=1}^r \sum_{k=1}^{m_j} \alpha_{j,k} \vv_{j,k} = \0$ for some collection of scalars $(\alpha_{j,k})_{(j,k)}$.
Take $\vu_j = \sum_{k=1}^{m_j} \alpha_{j,k} \vv_{j,k}$.
Then $\vu_j$ is either $\0$ or a $\lambda_j$-eigenvector.
Sine $\sum_j \vu_j = \0$ and eigenvectors with distinct eigenvalues are LI, we have $\vu_j = \0$ for every $j$.
Since $\vv_{j,1},\vv_{j,2},\dots,\vv_{j,m_j}$ are LI, we have $\alpha_{j,k}=0$ for $k=1,\dots,m_j$.
Therefore, $\B$ is LI.

\spitem

A square matrix with real entries is diagonalizable over $\R$ if and only if it is diagonalizable over $\C$ and all the eigenvalues are real.

\emph{Proof.}
The geometric multiplicity of a real eigenvalue is the same over $\R$ or $\C$.

%\emph{Remark.}
%If the eigenvalue $\lambda$ and the entries of $A$ are real, then the real dimension of the corresponding eigenspace as a subspace of $\R^n$ is the same as the complex dimension of the corresponding eigenspace as a subspace of $\C^n$.

\end{itemize}


\clearpage
\section{Orthogonality and projection}

Main reference:
Lay
\S\S6.1--6.3.
%Here $\F = \R$.
Most proofs of this topic will be skipped.

\textbf{Notation.}
Henceforth we write $u_j$ instead of $\vu_j$ and no longer refer to coordinates.

\begin{itemize}

\item


%For vectors $$ w
%The \emph{dot product} of $(u_1,\dots,u_n)$ and $(v_1,\dots,v_n) \in \R^n$ is $u \mydot v = \sum_j u_j v_j = u^T v$.

For vectors $u,v \in \R^n$ we define the \emph{dot product} by $u \mydot v = u^T v$.

\item

For $u,v,w \in \R^n$ and $\alpha \in \R$, we have :
\\
$u \mydot v = v \mydot u$, 
$(u+v) \mydot w = u \mydot w + v \mydot w$, $(\alpha u) \mydot v = \alpha (u \mydot v)$, and $u \mydot u > 0$ if $u \ne \0$.

\item

The \emph{length} (or \emph{norm}) of $v$ is given by $\|v\|=\sqrt{v \mydot v} \geq 0$.

We call $v$ a \emph{unit vector} if $\|v\|=1$.

\item

We say that $u$ is \emph{orthogonal} to $v$, denoted $u \perp v$, if $u \mydot v = 0$.

\item

Two vectors $u$ and $v$ are orthogonal if and only if $\|u+v\|^2 = \|u\|^2 + \|v\|^2$.

\item

We say that $u$ is orthogonal to $\B$ if $u \perp w$ for all $w \in \B$.
The \emph{orthogonal complement} of $\B$ and is denoted by $\B^\perp = \{ u \in \R^n : u \text{ is orthogonal to } \B\}$.

\item

Let $\B$ be a family of vectors and $W = \myspan(\B)$.
Then $W^\perp = \B^\perp$.

\item

A family $\B$ of vectors is called an \emph{orthogonal family} if $u \perp v$ for all $u \ne v$ in $\B$.
\\
If moreover all the vectors in $\B$ are unit vectors, we call $\B$ an \emph{orthonormal family}.

\item

%Let $Q = [u_1,\dots,u_r]_{n \times r}$.
The columns of $Q \in \R^{n \times k}$ are orthonormal iff $Q^T Q = I_{k \times k}$.
In this case,
$(Qu) \mydot (Qv) = u \mydot v$ for all $u,v \in \R^k$.
In particular, $\|Qv\| = \|v\|$ for all $v \in \R^k$.

%\item
%An \emph{orthogonal basis} for a subspace $U \subseteq \R^n$ is a basis for $U$ that is also an orthogonal family.
%We define \emph{orthonormal basis} similarly.

\item

Any orthogonal family $\{u_1,\dots,u_r\}$ of nonzero vectors is linearly independent.
Moreover, if $y \in \myspan(u_1,\dots,u_r)$, then
$y = \sum_j \frac{y \mydot u_j}{u_j \mydot u_j}  u_j$.

\emph{Proof.}
Write $y = \sum_j \alpha_j u_j$ and compute $y \mydot u_k$ to determine $\alpha_k$.

\item

\emph{Orthogonal decomposition and best approximation.}
Let $U \subseteq \R^n$ be a subspace and $u_1,\dots,u_r$ an orthogonal basis for $U$.
For each $y \in \R^n$ there are unique $\hat{y} \in U$ and $w \in U^\perp$ such that $y = \hat{y}+w$.
The vector $\hat{y}$ is called the \emph{projection of $y$ onto $U$}, it is given by
$\hat{y} = \proj{U} y = \sum_j \frac{y \mydot u_j}{u_j \mydot u_j}  u_j$ and has the property that $\|z-y\| > \|\hat{y} - y\|$ for any other $z \in U$.
If the basis is orthonormal, then $\hat{y}=Q Q^T y$, where $Q = [u_1,...,u_r]$.

\emph{Proof.}
Define $\hat{y}$ and $w$ by the formulas. Check that $\hat{y} \in U$ and $w \in U^\perp$.
%Check that $\hat{y}-\tilde{y} \in U \cap U^\perp = \{\0\}$.
Note that $\|y-z\|^2 = \|y-\hat{y}\|^2 + \|\hat{y}-z\|^2$, which used twice also gives uniqueness.
Last, the $j$-th entry of $Q^T y \in \R^{r\times 1}$ equals $y \mydot u_j$, hence $Q(Q^Ty) = \sum_j (y \mydot u_j)u_j$.

\item

\emph{Cauchy-Schwarz Inequality.}
For every $u,v\in \R^n$, we have $|u \mydot v| \leq \|u\|\cdot\| v\|$.
%\\
%Equality holds if and only if $v={\bf 0}$ or $u=\lambda v$ for some $\lambda \geq 0$.

\emph{Proof.}
If $v \ne \0$,
write
$u = \frac{u \mydot v}{v \mydot v}v + w$,
so
$\|u\|^2 = (\frac{u \mydot v}{v \mydot v}\|v\|)^2 + \|w\|^2 \geq (\frac{u \mydot v}{\|v\|})^2$.

%Check that $\|u\| \geqslant \|\hat{u}\|$ for the projection onto $\myspan (v)$.

% [Some examples omitted until we learn integrals.]

\item

\emph{Triangle Inequality.}
For every $u,v\in \R^n$, we have $\|u+v\| \leq \|u\| + \|v\|$.
%\\
%Equality holds if and only if $v=\0$ or $u=\lambda v$ for some $\lambda \geq 0$.

\emph{Proof.}
Expand $\|u+v\|^2$ and use Cauchy-Schwarz Inequality.

\end{itemize}


\clearpage
\section{Factorizations and least squares}

Main reference:
Lay \S2.5, file PLU.pdf, Lay \S\S6.4--6.5

\begin{itemize}

\item

The
\emph{PLU factorization}
consists in row reduction with bookkeeping, combined with \emph{partial pivoting} (choose the largest candidate for pivot).
Start with $P = I, L = I, U=A$, so $PA = LU$.
At each step, update the factors while keeping the factorization valid:
$(QP)A = (QLQ)(QU)$
for row exchange and
$PA = (LE^{-1})(EU)$
for row replacement.
This way, $P$ is always a permutation, $L$ is always lower triangular, and $U$ becomes upper triangular at the end.
Example:
\[
\begin{bmatrix}
  0	&  0	&  1 \\
  1	&  0	&  0 \\
  0	&  1	&  0 \\
\end{bmatrix}
\begin{bmatrix}
-2	& -2	& -1 \\
 1	& -1	&  6 \\
-4	&  1	& -2 \\
\end{bmatrix}
=
\begin{bmatrix}
  1	&  0	&  0 \\
\frac{1}{2}& 1	&  0 \\
-\frac{1}{4}& \frac{3}{10}& 1 \\
\end{bmatrix}
\begin{bmatrix}
-4& 1& -2 \\
0& -\frac{5}{2}& 0 \\
0& 0& \frac{11}{2} \\
\end{bmatrix}
.
\]

%$\sigma_{(3,1,2)}[2, 2, 1; 1, 1, 6; 4, 1, 2] = [1, 0, 0; \frac{1}{2}, 1, 0; -\frac{1}{4}, \frac{3}{10}, 1][4 -1 2; 0, 5/2, 0; 0, 0, -11/2]$

\item

Let $v_1,\dots,v_m$ be LI and $W_j = \myspan(v_1,\dots,v_j)$.
The \emph{Gram-Schmidt} procedure gives orthogonal vectors $u_1,\dots,u_k$ such that $\myspan(u_1,\dots,u_j)=W_j$, as follows:
\begin{align*}
u_1 = v_1, \quad u_{j+1} = v_{j+1} - \proj{W_j} v_{j+1}.
\end{align*}

\item

To get an orthonormal family we can take $w_j = \frac{1}{\|u_j\|} u_j$.

\item

The
\emph{QR factorization}
consists in writing $A \in \R^{n \times k}$ as $A=QR$ where $Q \in \R^{n \times k}$ has orthonormal columns and $R \in \R^{k \times k}$ is upper triangular.
$Q$ can be found by applying Gram-Schmidt to the columns of $A$, and $R = Q^T\! A$.
Example:
\[
\begin{bmatrix}
 1	& -1	&  4 \\
 1	&  4	& -2 \\
 1	&  4	&  2 \\
 1	& -1	&  0 \\
\end{bmatrix}
=
%\frac{1}{2}
\begin{bmatrix}
 1/2	& -1/2	&  1/2 \\
 1/2	&  1/2	& -1/2 \\
 1/2	&  1/2	&  1/2 \\
 1/2	& -1/2	& -1/2 \\
\end{bmatrix}
\begin{bmatrix}
 2	&  3	&  2 \\
 0	&  5 	& -2 \\
 0	&  0	&  4 \\
\end{bmatrix}
.
\]

\item

Given $A \in \R^{m \times n}$ and $b \in \R^m$, a \emph{least-squares solution} to the equation $Ax=b$ is a vector $\hat{x} \in \R^n$ that minimizes $\|Ax-b\|$.

\item

Least-squares solutions exist and are given by \emph{normal equations} $A^T\! A \hat{x} = A^T b$.

\emph{Proof.}
Since the set of possible values of $Ax$ is exactly the subspace $\myrange A$, the distance $\|Ax-b\|$ will be minimized when $A\hat{x}$ equals the orthogonal projection of $b$ onto $\myrange A$.
This is equivalent to $(A\hat{x}-b) \perp a_j$ for each column $a_j$.

\item

The minimizer $\hat{x}$ is unique when $A^T \! A$ is invertible.
In this case, $ R \hat{x} = Q^T b $.

Example:
with same $A$ as above and $b=(20,20,20,0)$ we have $ \| A\hat{x} - b\| = 10 $.

\end{itemize}


\clearpage
\section{Real spectral theorem and sketching simple conics}

Main reference:
Lay \S7.1, \S7.2

\begin{itemize}

\item

For symmetric $A \in \R^{n \times n}$, eigenvectors of different eigenvalues are orthogonal.

\emph{Proof.}
Follows from $(A v_1) \mydot v_2 = v_1 \mydot (A v_2)$.

\item

We say that $A \in \R^{n \times n}$ is \emph{orthogonally diagonalizable} is there is an orthogonal matrix $P \in \R^{n \times n}$ such that $A = PDP^T$.

\item

\emph{Real Spectral Theorem.}
$A \in \R^{n \times n}$ is orthogonally diagonalizable iff $A$ is symmetric.

\emph{Proof.}
We postpone the proof that symmetric matrices are always diagonalizable.
Assuming this fact, by Gram-Schmidt we can find an orthogonal basis to each eigenspace, and the reunion of the bases of all eigenspaces is orthogonal by the previous proposition, so a symmetric matrix is orthogonally diagonalizable.
The converse is immediate: $ A^T = (P^T)^T D^T P^T = PDP^T = A $.

\item

\emph{Spectral Decomposition.}
Let $P=[u_1,\dots,u_n]$ be an orthogonal matrix that diagonalizes $A$.
Then $A$ can be decomposed as a sum of rank-1 matrices:
\[
A = \sum_{j=1}^n \lambda_j [u_j u_j^T]_{n \times n}
\]
\emph{Remark.}
The matrix $ u_j u_j^T $ projects vectors orthogonally onto $\myspan(u_j)$.

\emph{Proof.}
This is the column-row expansion of the product $(PD)P^T$.

\spitem

A \emph{quadratic form} on $\R^n$ is a polynomial of $n$ variables having only terms of degree two. It can represented in a unique way as $x \mydot A x$ for symmetric $A \in \R^{n \times n}$.

\item

If we make an orthogonal \emph{change of variables} $x = Py$, where $y$ represents the coordinates of $x$ with respect to the columns of $P$, the quadratic form becomes $y \mydot (P^T\! AP)y$. By the Spectral Theorem, it is possible to choose $P$ so that $ (P^T\! AP) $ is diagonal, so the quadratic form has no cross-product terms.

\item

Example:
Sketch the graph of $5x_1^2 - 4 x_1x_2 + 5x_2^2 = 48$.

Diagonalizing
$ [ 5, -2 ; -2, 5 ] $,
we get
$P = [u_1, u_2]$ with
$u_1 = (\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$,
$u_2 = (\frac{-1}{\sqrt{2}},\frac{1}{\sqrt{2}})$
and
$D=\mydiag(3,7)$,
so this is an ellipse with $a=4$ and $ b=\sqrt{48/7} $.

\item

Example:
Sketch the graph of $x_1^2 - 8 x_1x_2 - 5x_2^2 = 16$.

Diagonalizing
$ [1, -4 ; -4, -5 ] $,
we get
$P = [u_1, u_2]$ with
$u_1 = (\frac{2}{\sqrt{5}},\frac{-1}{\sqrt{5}})$,
$u_2 = (\frac{1}{\sqrt{5}},\frac{2}{\sqrt{5}})$
and
$D=\mydiag(3,-7)$,
so this is a hyperbola with $a=\frac{4\sqrt{3}}{3}$ and $b=\frac{4\sqrt{7}}{7}$.

\end{itemize}
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\section{Spaces and subspaces revisited}

Main reference:
Axler \S1.C, \S2.A, \S2.B, \S2.C

The last lectures were all about matrices and the spaces $\R^n$, $\C^n$ or $\F^n$.
We now switch back to abstract vector spaces $V$ over $\F = \R \text{ or } \C$, and consider subspaces $U,W$, etc.

\begin{itemize}

%\item
%
%The \emph{degree} of a polynomial is the maximal exponent with non-zero coefficient.
%The degree of the zero polynomial is $-\infty$.
%
%\emph{Remark.}
%This is the sensible definition, it gives $\mydeg(pq)=\mydeg p + \mydeg q$, etc.

%\spitem
%
%If $v_1, \dots, v_n$ is LD, there exists $k\in\{1,\dots,n\}$ such that
%$v_1, \dots, v_{k-1}$ is LI and $v_k \in \myspan(v_1, \dots, v_{k-1})$.
%Moreover, $\myspan(v_1, \dots, v_{n}) = \myspan(v_1, \dots, v_{k-1},v_{k+1},\dots,v_n)$.
%
%\emph{Proof.}
%Take the smallest $k$ such that $v_1,\dots,v_k$ is LD.

%\item
%
%The sum $U_1+\dots+U_m$ is the smallest subspace of $V$ containing $U_1,\dots,U_m$.
%
%\emph{Proof.}
%Any other such subspace containing each $U_j$ contains the sum.

\item

The sum $U_1+\dots+U_m$ is a \emph{direct sum} if for every $x \in (U_1+\dots+U_m)$, there exist unique vectors $u_1 \in U_1, \dots, u_m \in U_m$ such that $x=u_1 + \dots + u_m$.

\item
In case $U_1+\dots+U_m$ is a direct sum, we also denote it by $U_1 \oplus \dots \oplus U_m$ as a way to indicate this property.

\item

The sum $U_1+\dots+U_m$ is a direct sum iff the only $m$-tuple $u_1 \in U_1,\dots,u_m\in U_m$ that gives $u_1 + \dots + u_m = \0$ is the trivial combination $u_1=\dots=u_m=\0$.

\emph{Proof.}
For the converse, take two representations of a given $x$ and subtract.

\item

The sum $U + W$ is a direct sum if and only if $U \cap W = \{\0\}$.

\emph{Proof.}
If sum is direct, for $v \in U \cap W$ we have $v + (-v) = \0$, implying that $v=\0$.
If $U \cap W = \{\0\}$, solutions to $u+w = \0$, are trivial since $w = -u \in U \cap W$.

%\item
%
%The span of a family $\B$ is the smallest subspace containing $\B$.
%
%\emph{Proof.}
%$\myspan \B$ contains $\B$ and is contained in any subspace that contains $\B$.

\item

If $\mydim V < \infty$ and $U$ is a subspace, there is a subspace $W$ such that $V = U \oplus W$.

\emph{Proof.}
Complete a basis and show uniqueness of $v = u+w$.

\spitem

For a direct sum $U \oplus W$, we have $\mydim(U \oplus W) = \mydim U + \mydim W$.

\emph{Proof.}
Join any two bases $u_1,\dots,u_k$ for $U$ and $w_1,\dots,w_m$ for $W$. See what linear combinations give $\0$ by first considering $u + w = \0$. Infinite case is trivial.

\spitem

Suppose $\mydim V<\infty$. If $\mydim(U+W) = \mydim U + \mydim W$, then the sum is direct.

\emph{Proof.}
Assume the general equality below holds for every vector space $V$ and subspaces $U$ and $W$.
When $\mydim V < \infty$ we can subtract and get $\mydim(U \cap W) = \mydim U + \mydim W - \mydim (U+W) = 0$, so $U \cap W = \{\0\}$ and hence $U+W = U \oplus W$.

\spitem
For $V$ vector space, $U,W$ subspaces, $\mydim U + \mydim W = \mydim (U+W) + \mydim (U \cap W)$.

\emph{Proof.}
%It remains to prove the general equality.
If $\mydim U = \infty$ or $\mydim W = \infty$, we have $\mydim (U+W) = \infty$ and the equality holds. So we can assume that $V$ is finite-dimensional (otherwise instead of $V$ use $\tilde{V}=U+W$ which is finite-dimensional). Let $Z = U \cap W$. Take $\tilde{U}$ and $\tilde{W}$ such that $U=Z \oplus \tilde{U}$ and $W=Z \oplus \tilde{W}$. We will show that $(\tilde{U}\oplus Z)+ \tilde{W}$ is a direct sum, so $\mydim(U+W) = \mydim (\tilde{U} \oplus Z) + \mydim \tilde{W} = \mydim \tilde{U} + \mydim Z + \mydim \tilde{W} = \mydim U + \mydim W - \mydim Z$, proving the desired equality. Suppose $u+z+w=\0$ with $u \in \tilde{U}, z\in Z, w\in \tilde{W}$. Then $w = -z-u \in U$, so $w \in U \cap \tilde{W} \subseteq Z$. But $Z \cap \tilde{W} = \{\0\}$, hence $w = \0$, proving the claim.

%, hence $z+w \in Z$. Since $z+w=(z+w)+\0 \in Z \oplus \tilde{W}$, we have $z = z+w$ and $w=\0$, proving the claim.

\end{itemize}


\clearpage
\section{Linear maps revisited}

Main reference:
Axler \S3.B, \S3.D

%Let $\F = \C$ or $\R$ be fixed.

\begin{itemize}

\item

A function $T : V \to W $ is called \emph{injective} if $T u = T v$ implies $u = v$.

\item

Let $ T \in \cL(V, W)$. Then $T$ is injective if and only if $ \myker T = \{\0\} $.

\emph{Proof.}
Use that $Tu = Tv$ if and only if $(u-v) \in \myker T$.

\item

A function $T : V \to W $ is called \emph{surjective} if $\myrange T = W$.

\item

\emph{Rank-Nullity Theorem.}
For $T\in\cL(V,W)$, $\mydim\myrange T + \mydim \myker T = \mydim V$.

\emph{Proof.}
Seen in Lecture~\ref{sec:rank}.

\item

If $\mydim W < \mydim V < \infty$, then $T\in\cL(V,W)$ cannot be injective.

\emph{Proof.}
By Rank-Nullity Theorem, $\mydim \myker T > 0$.

\item

If $\mydim V < \mydim W < \infty$, then $T\in\cL(V,W)$ cannot be surjective.

\emph{Proof.}
By Rank-Nullity Theorem, $\mydim \myrange T < \mydim W$.

\item

A linear map is invertible if and only if it is injective and surjective.

\emph{Proof.}
Seen in Lecture~\ref{sec:invertible}.
Need to check that the inverse is linear.

\spitem

Finite-dimensional spaces are isomorphic iff they have the same dimension.

\emph{Proof.}
Let $V$ and $W$ be finite-dimensional spaces and let $v_1,\dots,v_n$ be a basis for $V$.
If there exists an isomorphism $T \in \cL(V,W)$, then $Tv_1,\dots,Tv_n$ is a basis for $W$ and hence $\mydim W = n$.
Conversely, suppose $\mydim W = n$. Take $w_1,\dots,w_n$ a basis for $W$ and define $T \in \cL(V,W)$ by $Tv_1=w_1,\dots,Tv_n=w_n$. Then $T$ maps a basis to a basis, and hence it is an isomorphism.

\item

For finite-dimensional spaces $V$ and $W$, $\mydim \cL(V,W) = (\mydim V) (\mydim W)$.

\emph{Proof.}
We will show that the space $\cL(V,W)$ is isomorphic to $\F^{m \times n}$.
Fix a basis $\A = v_1,\dots,v_n$ for $V$ and $\B = w_1,\dots,w_m$ for $W$.
Define $R:\cL(V,W) \to \F^{m \times n}$ by $R(T) = [T]_{\B\A}$.
This $R$ is linear and bijective, so it is an isomorphism.

\item

Suppose $V$ is finite-dimensional and $T \in \cL(V)$.
Then the following are
equivalent:
(a) $T$ is invertible;
(b) $T$ is injective;
(c) $T$ is surjective.

\emph{Proof.}
By the Rank-Nullity Theorem, (c) is equivalent to $\myker T = \{\0\}$, which in turn is equivalent to (b).
By above proposition, (a) is equivalent to ``(b) and (c)'' and this completes the proof.

\end{itemize}


%\end{document}
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\section{Invariant spaces and eigenvectors}

Main reference:
Axler \S5.A, \S5.B

\begin{itemize}

\item

%5.5
A number $\lambda \in \F$ is called an \emph{eigenvalue of $ T \in \cL(V) $} if $Tv=\lambda v$ for some $ v \ne \0$.

\item

%5.6
A number $\lambda \in \F$ is an eigenvalue of $T$ if and only if $T - \lambda I$ is not injective.

\emph{Proof.}
$Tv = \lambda v$ is equivalent to $v \in \myker (T- \lambda I)$.

\item

%5.7
A vector $v$ is an \emph{eigenvector of $T$} corresponding to $\lambda \in \F$ if $v \ne \0$ and $Tv = \lambda v$.

\item

%5.10
%Let $V$ be a finite-dimensional vector space and let $T\in\mathcal{L}(V)$ be an operator with distinct eigenvalues $\lambda_1,\dots,\lambda_m$. If $v_1,\dots,v_m$ are eigenvectors respectively associated to $\lambda_1,\dots,\lambda_m$, then $v_1,\dots,v_m$ are linearly independent.

Eigenvectors corresponding to distinct eigenvalues are linearly independent.

\emph{Proof.}
%As in Lecture~\ref{sec:diagonalization},
Apply $T - \lambda_m I$ to a null linear combination, and use induction on $m$.

\item

If $V$ is finite-dimensional then $T \in \cL(V)$ has at most $\mydim V$ distinct eigenvalues.

\emph{Proof.}
A LI family has at most $\mydim V$ vectors.

\item

A subspace $U$ of $V$ is said to be \emph{invariant under $T$} if $Tu\in U$ for any $u\in U$.

Examples:
$\{\0\}$, $V$, $\myker T$, $\myrange T$, $\myrange T^2$.

%\item
%
%If $U$ is invariant under $T$, then the \emph{restriction} $T_{|_U}$ is an operator in $\cL(U)$.

\item

%, and $T^{-m} = (T^{-1})^m$
We define $T^0 = I$, $T^{m+1}=T^m T$.
\\
For $p \in \cP(\F)$ and $T \in \cL(V)$, we define $p(T)=a_n T^n + \dots + a_2 T^2 + a_1 T + a_0 I \in \cL(V)$.

\item

Factoring polynomials: $(pq)(T) = p(T)q(T)$. In particular, $ p(T)q(T) = q(T)p(T) $.

\emph{Proof.}
Expanding and using the distributive property works for $T$ as it does for $z$.

\item

%5.26

Let $\B = v_1,\dots,v_n$ be a basis for $V$ and $T \in \cL(V)$.
These are equivalent:
\\
(a) $ [T]_\B $ is upper-triangular;
\\
(b) $ Tv_j \in \myspan(v_1,\dots,v_j) $ for $j=1,\dots,n$;
\\
(c) $ \myspan(v_1,\dots,v_j) $ is invariant under $T$ for $j=1,\dots,n$.

\emph{Proof.}
(b$ \Rightarrow $c)
For $v = \alpha_1 v_1 + \cdots + \alpha_j v_j$, $Tv \in \myspan(v_1) + \dots + \myspan(v_1,\dots,v_j)$.

\item

%5.21

If $V$ is complex finite-dimensional, and $T \in \cL(V)$, then $T$ has an eigenvalue.

\emph{Proof without determinant.}
Since $\mydim \cL(V)=n^2$, the family $I,T,T^2,\dots,T^{n^2}$ is LD.
Hence there is a linear combination
$\alpha_0 I + \alpha_1 T + \alpha_2 T^2 + \dots + \alpha_k T^kv = \0$ with $\alpha_k = 1$.
Now the polynomial $\sum_{j=0}^k \alpha_j z^j$ can be factorized as $(z-\lambda_1)\cdots(z-\lambda_k)$, so $(T-\lambda_1 I)\cdots(T-\lambda_k I)=\0$, and thus one of the factors is not injective.

\item

If $V$ is complex finite-dimensional, then $[T]_\B$ is upper-triangular for some basis $\B$.

%Let $V$ be a \textbf{complex finite-dimensional} vector space and let $T\in\mathcal{L}(V)$. Then,  there exists a basis $\B$ of $V$ such that $[T]_{\B}$ is upper-triangular.

\emph{Proof.}
We prove by induction on $n$.
Take $\lambda$ as an eigenvalue.
Subspace $U = \myrange (T - \lambda I) \ne V$ is invariant because $ T u = (T-\lambda I)u + \lambda u $.
For the restriction $T_{|_U}$, by induction there is a basis $u_1,\dots,u_k$ for $U$ such that $Tu_j \in \myspan(u_1,\dots,u_j)$ for $j=1,\dots,k$.
Complete it to a basis $u_1,\dots,u_k,v_{k+1},\dots,v_n$ for $V$.
Now $Tv_j = \lambda v_j + u$ for $u \in U$, so $Tv_j \in \myspan(u_1,\dots,u_k,v_j)$, hence $[T]_\B$ is upper triangular.

\emph{Counter-example.}
$T(x,y)=(-y,x)$ on $\R^2$ cannot be made upper-triangular.

\end{itemize}
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\section{Decomposition into eigenspaces}

Main reference:
Axler \S5.C

%\end{document}

Assume the dimension of $V$ is finite, denoted $n$.

%Auxiliar material:
%Treil \S4, with $A \in \cL(V)$ denoting an operator.

\begin{itemize}

\item

$T\in\mathcal{L}(V)$ is \emph{diagonalizable} if there exists a basis $\B$ of $V$ such that $[T]_{\B}$ is diagonal.

\item

%5.36

The \emph{eigenspace} of $T$ corresponding to $\lambda \in \F$ is defined as
\[
E(\lambda,T) = \myker(T - \lambda I).
\]

\item

%5.38

Let $\lambda_1,\dots,\lambda_m \in \F$ denote distinct eigenvalues of $T$.
Then
\[
E(\lambda_1,T) + \dots + E(\lambda_m,T)
=
E(\lambda_1,T) \oplus \dots \oplus E(\lambda_m,T)
.
\]

\emph{Proof.}
Check that $u_1 + \dots + u_m = \0$, $ u_j \in E(\lambda_j,T) $ only has the trivial solution.

%. Each $u_j$ is either $\0$ or a $\lambda_j$-eigenvector. But since eigenvectors are LI, they can only be $\0$.

\item

Let  $\lambda_1,\dots,\lambda_m$ be all distinct eigenvalues of $T$. The following are equivalent: 

\begin{enumerate}
\item $T$ is diagonalizable;
\item $V$ has a basis $u_1,\dots,u_n$ consisting of eigenvectors of $T$;
\item There are invariant one-dimensional $U_1,\dots,U_n$ such that $V = U_1 \oplus \dots \oplus U_n$;
\item $V= E(\lambda_1,T) \oplus \cdots \oplus E(\lambda_m,T)$;
\item $\mydim E(\lambda_1,T) + \dots + \mydim E(\lambda_m,T) = n$.
\end{enumerate}

\emph{Proof.}
(1 $ \Leftrightarrow $ 2) by definition of $[T]_{\B}$.
\\
(2 $ \Rightarrow $ 3)
Take $U_j = \myspan(u_j)$.
Then $U_1+\dots+U_n=V$, and the sum is direct.
\\
(3 $ \Rightarrow $ 2)
Take $u_j \in U_j \setminus \{\0\}$ eigenvector.
$\{u_1,\dots,u_n\}$ spans $V$, so it is a basis.
\\
(2 $ \Rightarrow $ 4) If eigenvectors span $V$, we have $E(\lambda_1,T) \oplus \dots \oplus E(\lambda_m,T) = V$.
\\
(4 $ \Rightarrow $ 2) Let $\A_j$ be a basis for $E(\lambda_j,T)$ and take $\A = \A_1,\dots,\A_m$. Since $\myspan \A = V$, it contains a basis for $V$, and its elements are all eigenvectors.
\\
(4 $ \Leftrightarrow $ 5) Property of direct sum.

\item

If $T$ has $n$ distinct eigenvalues, then $T$ is diagonalizable.

\emph{Proof.}
There are $n$ linearly independent eigenvectors, which thus form a basis.

\item	

We define the \emph{determinant of an operator} $T \in \cL(V)$ by $\mydet T = \mydet [T]_\B$ for some basis $\B$.
The \emph{trace} is defined as $\mytrace T = \mytrace [T]_\B$.
The definitions do not depend on the choice of basis because similar bases have the same trace and determinant.

\item

We define the \emph{characteristic polynomial of an operator} $T \in \cL(V)$ by $p_T(z) = \mydet(T - z I)$.
A number $\lambda \in \F$ is an eigenvalue if and only if it is a root of $p_T$.
In this case, we define its \emph{algebraic multiplicity} as its multiplicity as a root of $p_T$, and its geometric multiplicity as $\mydim \myker (T - \lambda I)$.

\item

If $V$ is a complex vector space, then $T \in \cL(V)$ has $n$ eigenvalues counting algebraic multiplicity.
Moreover, $\mydet T=\prod_{j=1}^n\lambda_j$ and $\mytrace T=\sum_{j=1}^n\lambda_j$.


\end{itemize}
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