MAT334 - Análise Funcional - 2013

6ª Lista de exercícios

Espaços de Hilbert II

- 1. Seja $y=(y_n)_n\in\ell_\infty$. Defina $M_y:\ell_2\to\ell_2$ por $M_y(x)=(x_ny_n)_n$. Mostre que M_y é limitado com $\|M_y\|=\|y\|$. Mostre ainda que $M_y^*=M_{\bar{y}}$.
- 2. Sejam H um espaço de Hilbert complexo e $T: H \to H$ linear. Se $< Th, h >= 0, \forall h \in H$, mostre que $T \equiv 0$. O mesmo é válido para espaços reais?
- 3. Mostre que se M é um subespaço invariante por T (isto é, $T(M) \subset M$) então M^{\perp} é invariante por T^* .
- 4. Mostre que se *T* é autoadjunto, então seus autovalores são reais.
- 5. Seja T é autoadjunto. Se μ e λ são autovalores distintos de T então os autoespaços correspondentes são ortogonais.
- 6. Mostre que um operador linear T em um espaço de Hilbert H que satisfaz $< Tx, y> = < x, Ty>, \forall x, y \in H$ é sempre limitado. Sugestão: Teorema do Gráfico fechado
- 7. Verifique que *H* é separável se, e só se, possui uma base enumerável (podendo ser finita).
- 8. Mostre que todo subespaço fechado de ℓ_2 ou tem dimensão finita, ou é isomorfo a ℓ_2 .
- 9. Mostre que se H tem dimensão infinita então B_H não é compacta.