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Abstract

In this work we propose a model selection criterion to estimate the points of in-
dependence of a random vector, producing a decomposition of the vector distribution
function into independent blocks. The method, based on a general estimator of the
distribution function, can be applied for discrete or continuous random vectors, and
for iid data or dependent time series. We prove the consistency of the approach under
general conditions on the estimator of the distribution function and we show that the
consistency holds for iid data and discrete time series with mixing conditions. We also
propose an efficient algorithm to approximate the estimator and show the performance
of the method on simulated data. We apply the method in a real dataset to estimate
the distribution of the flow over several locations on a river, observed at different time
points.
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1 Introduction

The discharge of water flowing in a river or a channel is measured using stream gauges. Let
Xu denote the flow recorded at the uth gauging station (u = 1, . . . , d) and X the random
vector X = (X1, . . . , Xd) containing the d records. Let us suppose this random vector is
observed on different days, and denote by X(i) = (X i

1, . . . , X
i
d) the vector observed at the ith

day. Time series are one of the most popular tools to model the process {X(i) : 1 ≤ i ≤ n},
where X(i) ∈ Rd. In general, the number of parameters to be estimated is polynomial in the
dimension d, and this could be large in comparison to the sample size n, leading to overfitting.
In examples such as the water discharge presented above, the river dynamics may generate
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independence in the behavior of some points of its course. In this case, a hydroelectric dam or
a interbasin transfer can cause independence among observations taken before and after these
man-made interventions. For instance, we can consider that (X1, . . . , Xu) is independent of
(Xu+1, . . . , Xd); therefore we can model the first u gauges and the rest separately. Thus,
we reduce the dimension of the problem in such a way that we can work with independent
processes in u and d − u dimensions, respectively. It could also occur that (X1, . . . , Xu),
(Xu+1, . . . , Xv), and (Xv+1, . . . , Xd) are independent, giving rise to spaces with even smaller
dimensions. The aim of this work is to propose a method to determine the greater possible
decomposition of the vector X into independent subvectors.

Inference about independence has historically been addressed by means of hypothesis
testing. Tests for independence between random variables have been extensively discussed
in the literature by different authors. Contingency tables for categorical data and tests based
on correlation coefficients, like Pearson’s, Kendall’s and Spearman’s, are some of the most
popular methods to deal with independence. Current approaches to general independence
testing include distance based methods such as distance correlation, as presented in Székely
and Rizzo (2009) or in Székely et al. (2007). Also kernel-methods have been proposed,
including the Hilbert-Schmidt Information Criterion considered in Gretton and Gyorfi (2010)
and Gretton et al. (2005). A different approach can be obtained by testing correlations on
multiscale graphs, such as found in Shen et al. (2019). Copula functions have also been used
to test for independence, as in Dugué (1975), Deheuvels (1981) or Genest and Rémillard
(2004), among others.

These are some of the many existing references that use hypothesis testing to discover
or study independence. However, to the best of our knowledge, the estimation of points of
independence, as proposed in this work, has not received much attention, aside from the
work presented in Castro et al. (2018). In the later, the authors consider this problem in
order to detect recombination hotspots in Single Nucleotide Polymorphisms (SNPs) data,
assuming that the random vector takes values in Ad, where A is a finite alphabet and the
observations are independent. In this paper we consider a more general setting where the
random vectors assume values in Rd and are not necessarily independent.

The paper is organized as follows. In Section 2 we define the estimator of the independent
blocks and state the main theoretical results. In Section 3 we introduce an efficient binary
splitting algorithm to approximate the estimator and state its convergence under the same
conditions as the exact criterion. In Section 4 we show the results of the estimators on
simulated data and in Section 5 we apply the method to a real dataset of water flow in the
São Francisco River in Brazil.

2 Independent block estimator

Let X ∼ F be a multivariate random vector taking values in Rd. For u, v with 1 ≤ u < v < d,
consider the following subvectors of X

X1:u = (X1, . . . , Xu) , Xu:v = (Xu+1, . . . , Xv) , Xv:d = (Xv+1 . . . , Xd),

and let F1:u, Fu:v and Fv:d denote the cumulative distribution functions of X1:v, Xu:v and
Xv:d, respectively. We say that U = {u1, . . . , uk}, with 1 ≤ u1 < . . . < uk < d, is a set of
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independence for F if X1:u1 , Xui:ui+1
(i = 1, . . . , k − 1), Xuk:d are independent. Note that if

U is a set of independence for F , any smaller set Ũ ⊂ U is also a set of independence for
F . Moreover, if U and V are sets of independence for F , U ∪ V is a set of independence for
F too. This suggests to define U∗(F ) as the biggest set of independence for F , in the sense
that any other set of independence is included in U∗(F ). The aim of this work is to estimate
U∗(F ) on the basis of {X(i) : 1 ≤ i ≤ n}, a stationary random process with X(i) ∼ F .
This is a model selection problem, a core topic in data science. As explained in Massart
(2007), the main objective of model selection is to construct a data-driven criterion to select
a model among a given list of candidates. Once a model is chosen, it can be used to produce
accurate estimations of some parameters of interest. In the present setting, each modelMU

postulate that U is a set of independence for F . These models are nested, in the sense that
if Ũ ⊂ U , then MU ⊂ MŨ . Through the estimation of U∗(F ) we can determine which is
the smallest model that generates our data. Typically, the larger is the postulated model,
the more flexible it is to describe the data, risking to lead to overfitting. To avoid this type
of phenomena, a penalization term is added to a given empirical minimum contrast that can
be used to choose a parsimonious model. To be more precise, given F and U = {u1, . . . , uk},
define the U -product of F by

FU(x1, . . . , xd) = F1:u1(x1, . . . , xu1)
k−1∏
i=1

Fui:ui+1
(xui+1, . . . xui+1

) Fuk+1:d(xuk+1, . . . , xd). (1)

For instance, if U = {1, 4} and d = 5, we are considering the product of the marginal
distribution of the subvectors (X1), (X2, X3, X4) and (X5). For U = ∅, define FU = F . We
can measure the discrepancy between F and its U -product considering

`(U, F ) = sup
x∈Rd
|FU(x)− F (x)|. (2)

Note that U is a set of independence for F if and only if FU ≡ F , which means that
`(U, F ) = 0. Since U∗ = U∗(F ) is the maximal set of independence for F , there exists α > 0
such that

`(U, F ) = 0 if U ⊆ U∗(F ), while `(U, F ) > α if U 6⊆ U∗(F ). (3)

This characterization of U∗ suggests that it can be estimated by looking at the biggest set
that minimizes an empirical version of `(U, F ). In this work, the empirical version will be
defined through a plug–in procedure while the penalization term will take care of choosing
the biggest set, as indicated in what follows.

Given Xn = {X(i) : 1 ≤ i ≤ n}, a sample of the process with stationary distribution F ,

let F̂Xn denote any estimator of F . For instance, a distribution-free consistent estimator of
F is given by the empirical distribution, defined by

F̂Xn(x) =
1

n

n∑
i=1

I{X(i)≤x}. (4)

However, if a model is postulated for F , other estimators can be used; for instance, if F
is assumed to be a Gaussian distribution with parameters µ and Σ = {σi,j}, Fu:v is also a
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normal distribution but in Rv−u, with mean µu:v = E(Xu:v) = (µu, . . . , µv−1)
t and variance-

covariance matrix Σu:v = cov(Xu:v). In such a case, FU is also a multivariate Gaussian
distribution in Rd with parameters µ and ΣU , where ΣU stands for the U -block matrix
obtained by replacing the coefficients σi,j in Σ with zero whenever i ≤ u < j, for some
u ∈ U . Thus, we can use a Gaussian distribution with estimated parameters in lieu of the
empirical distribution, defined in (4).

Consider

PL(U,Xn) = `(U, F̂Xn) + λn (|U |+ 1)−1, (5)

where |U | denotes the cardinal of the set U . In this way, we have combined an empirical
version of `(U, F ) with a penalization term, giving rise to the new objective function to be
minimized. Define

Ûn = arg min
U⊆{1,...,d−1}

PL(U,Xn). (6)

That is, Ûn satisfies

PL(Ûn,X
n) ≤ PL(U,Xn) , for all U ⊆ {1, . . . , d− 1}.

The following result establishes the consistency of Ûn as far as the penalization term and
the convergence rate of F̂Xn satisfy certain conditions.

Theorem 1 Assume that

supx∈Rd |F̂Xn(x)− F (x)| ≤ an , eventually almost surely as n→∞. (7)

If λn → 0 and an/λn → 0, then Ûn = U∗ eventually almost surely when n→∞.

Remark 2 The convergence of Ûn to U∗ established in Theorem 1 does not require the pro-
cess to be in a stationary regime. It holds as far as the empirical distribution F̂Xn converges
uniformly to the limit distribution F at a certain rate an, related to the penalization factor
λn as indicated in this theorem.

Adler and Brown (1986) studied the tail behavior of the suprema of the centered empirical
distribution in the iid case, giving rise to the following result.

Corollary 3 Assume that {X(i) : i ≥ 1} are iid and consider the empirical distribution F̂Xn

defined in (4) to estimate F . Take λn = cn−ξ, with ξ ∈ (0, 1/2). Then, Ûn = U∗ eventually
almost surely when n→∞.

As discussed in Adams et al. (2010), even if the uniform consistency of the centered
empirical distribution for the non iid case can be deduced for general ergodic sampling
schemes, distribution-free probability bounds like those required in (7) cannot be obtained
without further constrains. That is to say, besides the iid case, universal rates can not be
established in general. However, specific rates can be deduced for particular cases. For
instance, assume now that X is a discrete random vector, that is X ∈ Ad, with A a finite
alphabet and let {X(i) : i ≥ 1} be a stationary and ergodic mixing process with marginal
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distribution F . For i ≤ j denote by X(i:j) the cylinder (projection) X(i:j) = {X(k) : i ≤ k ≤
j}. Denote also by xk1, with k ≥ 1, a sequence of length k of vectors in Ad. Then the process
{X(i) : i ≥ 1} satisfies a mixing condition with rate {ψ(`)} ↓ 0 as `→∞ if for each k,m and
each xk1 ∈ Ak, xm1 ∈ Am with P(X(1:m) = xm1 ) > 0 we have∣∣P(X(n:(n+k−1)) = xk1 |X(1:m) = xm1 )−P(X(n:(n+k−1)) = xk1)

∣∣ ≤ ψ(`)P(X(n:(n+k−1)) = xk1), (8)

for n ≥ m+ `. Csiszár (2002) obtained a result on the rate of convergence for the empirical
probabilities in a stationary stochastic process with exponential mixing sequence. Based on
this approach we can prove the following result.

Corollary 4 Assume {X(i) : i ≥ 1} satisfies the mixing condition (8) with ψ(`) = δ` for

some 0 < δ < 1. Consider the empirical distribution function F̂Xn(x) defined in (4) to

estimate F (x) = P(X ≤ x). Then Ûn defined in (6), with λn = cn−ξ, ξ ∈ (0, 1/2), satisfies

Ûn = U∗ eventually almost surely when n→∞.

3 Efficient computation by binary splitting

To calculate the estimator in (6) we need to compute the function PL(U,Xn) over all possible
subsets U ⊆ {1, 2, . . . , d − 1}. The number of subsets is exponential in d so the complex-
ity of the exhaustive search algorithm is O(2dT ), where T is the time needed to compute
PL(U,Xn). Observe that T could also depend on d, but at most linearly. In any case, the
problem becomes computationally infeasible even for moderate values of d. To overcome
this computational problem, in this section we introduce a more efficient divide and conquer
algorithm to approximate the estimator given by 6, with time complexity O(d2T ). At each
step, we include an independence point in the estimation of U∗(F ), as far as it improves the
behavior of the penalized discrepancy defined in (5). To be more precise, let

PL(U,Xn
u:v) = `(U, F̂Xn

u:v
) + λn (|U |+ 1)−1,

for all 1 ≤ u ≤ v ≤ d and U ⊆ {u, . . . , v − 1}, where |U | denotes the cardinal of the set U ,
as defined before. Consider

h(u :v,Xn
u:v) = arg min

i∈u:v
{PL({i},Xn

u:v)}, (9)

where, by convention, we set PL({v},Xn
u:v) = PL(∅,Xn

u:v), with v the biggest element in u :v.

The binary splitting algorithm constructs a binary tree with nodes indexed by sub-
intervals of 1 : d, such that the set of terminal nodes of the tree is a partition of 1 : d and
the end points of these intervals correspond to the estimated points of independence in Ûbin

n .
The algorithm works as follows.

1. Initialize Ûbin
n = ∅ and I = 1:d (the root of the tree).

2. Compute h(I,Xn
I ). If h(I,Xn

I ) < max(I) add h(I,Xn
I ) to Ûbin

n and two leaves to node
I in the tree, with labels I1 = I ∩ {i : i ≤ h(I,Xn

I )} and I2 = I ∩ {i : i > h(I,Xn
I )}.
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3. Repeat step 2 for the new terminal nodes in the tree, until no more leaves are added.

The final estimated set of points of independence Ûbin
n is the set of right extremes of the

terminal nodes in the tree (excluding the root and the end d of the entire interval).
Even if this algorithm is an approximation to the minimum in (6), we can show that the

estimated set Ûbin
n converges to U∗(F ) eventually almost surely, under the same conditions

of Theorem 1.

Proposition 5 Under the same assumptions of Theorem 1, Ûbin
n = U∗ eventually almost

surely when n→∞.

To prove Proposition 5 we use the characterization of U∗(F ) given in (4). The proofs of
the results presented in this section are given in Section 7.

4 Simulations

In this section we study the behavior of the proposed estimators through experiments on
synthetic data, in which we can evaluate the ability of the proposed methods to recover the
correct set of independence. In the sequel, we use exhaustive and binary to refer to the
estimators defined by (6) and in Section 3, respectively.

In order to measure the difference between the estimates and the target set we use the
Hausdorff distance. This distance is defined for two non-empty sets A,B ⊂ {1, . . . , d − 1}
and is given by

ρH(A,B) = max{ρ(A||B), ρ(B||A)},

where ρ(B||A) = supb∈B infa∈A |a− b| and ρH(∅, A) = d− 1.
In the sequel we show the results of the estimation procedures for the sets of independence

in two scenarios, under independence and dependence of the time series, respectively. The
data is generated in a stationary regime, as described in the following sub-sections.

4.1 Gaussian independent scenario

In this case, {X(i) : 1 ≤ i ≤ n} are iid random vectors distributed as X = (X1, . . . , X5) ∈ R5,
with centered multivariate Gaussian distribution and the set of points of independence is
U∗ = {2, 3}; i.e., the subvectors (X1, X2), (X3) and (X4, X5) are independent components
of the vector X. We consider the correlation structure Σρ given by

Σρ =


1 ρ 0 0 0
ρ 1 0 0 0
0 0 1 0 0

0 0 0 1 3/
√

10

0 0 0 3/
√

10 1

 ,

where ρ stands for the correlation between X1 and X2. For any ρ, (X3, X4, X5) has the
same joint distribution. Moreover, the marginal distribution of X1 and X2 is also the same.
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Figure 1: Performance of binary and exhaustive algorithms for the three scenarios considered.

However, in the simulation study we consider three different correlation values between X1

and X2: (i) ρ = 1/
√

10, (ii) ρ = 2/
√

10 and (iii) ρ = 3/
√

10. It is worth noticing that
the criterion is location-scale invariant, in the sense that the estimators remain the same if
the variables are linearly transformed. In particular, the variable can be standardized, thus
in the simulations we use unit variance random variables and the matrices Σρ are also the
covariance matrices of the random vectors in each scenario.

For each Σρ considered, we generate Nrep = 1000 data sets of different size (n=50,
100, 200, 300, 500, 1000, and 2000). Additionally, for each data set, using the empirical

cumulative distribution function F̂Xn defined in (4), we compute both Ûn, the estimator

defined in (6) and Ûbin
n , obtained by means of the binary splitting algorithm presented in

Section 3. The penalty term was chosen accordingly to Corollary 3 with c = 1 and ξ = 0.4,
that is, we use the penalty λn = n−0.4.

Figure 1 shows the mean value among the replications of the Hausdorff distance between
each one of these estimators and the true set of independence points, as a function of the
sample size n. The error rate of each procedure, computed as the proportions of replications
where the estimated set differs from the true set of independence, is presented in Figure 2.
It can be seen that both algorithms reach the true set of independence as far as n increases
in the three scenarios. It is worth noticing that as far as the correlation between X1 and
X2 increases, it becomes easier for the algorithms to discover the true set of independence.
In general, we can expect the exhaustive algorithm to perform better than the approximate
binary search algorithm. While this is not totally appreciated in Figures 1 and 2, we see
that the exhaustive algorithm have a better performance when considering a large set of
penalizing constants c and ξ, see for example Figure 1 in the supplementary material to this
article.

The mean processing time (in seconds) for the three scenarios is presented in Figure 3.
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Figure 2: Error rate for binary and exhaustive algorithms in the three scenarios considered.

We observe that the mean speed up of the simulation when using the exhaustive algorithm
is around 1.93 times that of the binary algorithm.
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4.2 Time Series

Now, X(i) = (X i
1, . . . , X

i
5) is generated combining different kinds of time series, giving rise

to two data generating processes. Following the standard notation used in time series, we
use Yi to denote a 2-variate process satisfying

Yi = A1Yi−1 + A2Yi−2 + Ui + θ1Ui−1, (10)

where Ui is a two-dimensional sequence of uncorrelated and centered Gaussian process with
covariance matrix ΣU, Ai ∈ R2×2, for i = 1, 2, and θ1 ∈ R. This is a unified representa-
tion of many of the most popular time series models. For instance, when A2 = 0, Yi ∼
VARMA(1,1); on the other hand, if A2 = 0 and θ1 = 0, Yi ∼ VAR(1) while Yi ∼ VAR(2)
when θ1 = 0.

Finally, we consider the univariate AR(1) processes Ti ∈ R, satisfying

Ti = γ1 Ti−1 + εi, (11)

where now εi stands for an iid sequence of centered Gaussian random variables with variance
σ2. In the sequel we describe the data generating process considered for the non iid samples.

Model 1: In this case, X(i) = (X i
1, X

i
2, X

i
3, X

i
4, X

i
5), where

• (X i
1, X

i
2) ∼ VAR(2), in the sense that satisfies (10), with θ1 = 0,

A1 =

(
−0.3 −0.4
0.6 0.5

)
, A2 =

(
−0.1 0.1
−0.2 0.05

)
, ΣU =

(
0.25 0

0 0.25

)
.

• X i
3 ∼ AR(1), in the sense that satisfies (11), with γ = 0.5 and σ2 = 9.

• (X i
4, X

i
5) ∼VAR(1), in the sense that satisfies (10), with A2 = 0, θ1 = 0,

A1 =

(
0.5 0.4
0.1 0.8

)
, ΣU =

(
1 0.6

0.6 1

)
.

These processes are generated independently and, therefore, in the present case, we have
that U∗ = {2, 3}. To know the extent of dependence between the components of the sub-
vectors (X i

1, X
i
2) and (X i

4, X
i
5) we performed a simulation with n = 10,000 time steps and

computed the empirical correlation between the variables, obtaining

Cor(X i
1, X

i
2) = −0.25 and Cor(X i

4, X
i
5) = 0.90 .

Model 2: Now, X(i) = (X i
1, X

i
2, X

i
3, X

i
4, X

i
5), with

• (X i
1, X

i
2) ∼ VARMA(1,1), in the sense that satisfies (10), with A2 = 0, θ1 = 0.9,

A1 =

(
0.5 −0.6
0.7 0.3

)
, ΣU =

(
1.3 0.91
0.91 1.3

)
.
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• (X i
3, X

i
4) ∼ VAR(1), with the same parameters used in the last two coordinates of

Model 1.

• X i
5 ∼AR(1), with the same parameters used in third coordinate of Model 1.

As in the previous model, these processes are generated independently and, therefore, we
have now that U∗ = {2, 4}. As before, we also computed the empirical correlation between
the variables in the sub-vectors, obtaining

Cor(X i
1, X

i
2) = 0.32 and Cor(X i

3, X
i
4) = 0.90 .
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Figure 4: Performance of binary and exhaustive algorithms for Models 1 and 2.

Figure 4 shows the comparison between binary and exhaustive algorithms for these two
models and Figure 5 presents the error rate of each algorithm for the models considered.
Again, these rates are computed as proportion of replications in which the estimated set
differs from the true set of independence. Mean time spent in seconds for each algorithm
is shown in Figure 6. As in the Gaussian independent scenarios, both algorithms reach the
true set of independence as n increases in the two models.

5 Independent blocks in the São Francisco River

Rivers are constantly moving and there are many factors, both natural and human-induced
that cause streams to change, for instance, runoff from rainfall and snow melt, ground-water
discharge from aquifers, river-flow regulation for hydropower and navigation, surface-water
withdrawals and transbasin diversions, irrigation, among others.
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Figure 5: Error rate for binary and exhaustive algorithms in Models 1 and 2.
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Figure 6: Mean processing time (in seconds) for Models 1 and 2 using binary and exhaustive
algorithms.

In this section we study the volumetric discharge in the São Francisco River in Brazil
by taking into account measurements at d = 10 gauges located along the course of the river
(they are numbered according to the order in which they appear on the river). The São
Francisco River is the longest river that runs entirely in the Brazilian territory, with a length
of 2,914 kilometers. Its headwaters originates in the Canastra mountain range, in central
part of Brazil, and runs north towards the northeast Brazilian region. Figure 7a shows the

11



(a) (b)

Figure 7: (a) Geographic border of Brazil and its states limits. The rectangle highlights the
area where the São Francisco River is located; (b) A zoom of the boxed area in (a), containing
the São Francisco River. Red points represent the ten stream flow gauges considered in our
analysis, numbered in increasing order from bottom to top.

river’s course within Brazil and Figure 7b points out where the gauges are located. We
retain our attention solely to the monthly mean of stream flows at 10 stations located along
the course of São Francisco River registered between January 1977 and January 2016. This
data form the X(i) vector described above. Therefore our aim is to determine the set of
independence among the stream gauges.

The course of the river can be divided into four sections: the high part (where stations
1 and 2 are located), from its source to Pirapora city; the upper middle part (stations 3, 4,
5, 6, and 7), from Pirapora to Sobradinho dam, the navigable part; the lower middle part
from Sobradinho dam to Itaparica dam (station 8); and the low part, from Itaparica dam
to the river mouth (stations 9 and 10). The flow of the river at different points can also be
affected by the period of the year. The wet season, which holds nearly 60% of the yearly
precipitation, begins in November and goes until January, while the dry season is from June
to August.

We consider n = 358 observations consisting of monthly averages of the registered data,
in m3/s. Both the exact and the binary splitting algorithms with λn = n0.25 estimated the

same set of independence Ûn = Ûbin
n = {7}. It is important to note that this finding can be

explained by the fact that between stations 7 and 8 is located the Sobradinho hydroelectric
dam, the biggest along the course of the São Francisco River. Figure 8 shows boxplots of the
stream measurements at the considered gauges and the point of independence given by our
approach. We observe that at point 7 there is a qualitative change of regime in the boxplots,
and this can be due to the effect of the hydroelectric in the flow of the river, showing that
the independence obtained by the algorithm can be in some sense expected at this point.

One characteristic of this dataset is that it is not stationary by nature, that means in
our context that data on each month can have a different distribution. But even in this
case, the method can still be effective to detect the common points of independence, that is,
the points of independence shared by all the distributions. To investigate more about this

12
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Figure 8: Stream flows measured at the ten stations in the São Francisco River. The red
dotted line represents the point at which both the exact and the binary algorithms estimated
a point of independence for the random vector.

issue, we applied both algorithms to the subsets of the data corresponding to each month,
using the same tuning parameters. As expected, both algorithms estimated more points of
independence, but in general the point 7 was detected in the majority of the months. Due
to space limitations, the results for the different months are compiled in the supplementary
material to this article.

6 Discussion

In this paper we introduced a model selection approach to detect independent blocks in
multivariate time series. The method is based on a penalized criterion and on a general
estimator of the cumulative distribution function. We proved the convergence to the true
set of points of independence, in a iid scenario and in a dependent mixing setting for discrete
processes. We also introduced a more efficient binary splitting algorithm to be used when
the computation of the exact estimator is computationally time demanding. We proved
that the approximation given by this algorithm also converges to the true set of points of
independence. These results could be extended to other scenarios, as for example the case
of dependent gaussian processes or more general continuous processes. In these cases, the
penalization factor λn should be chosen depending on the rate of convergence of the selected
estimator for the distribution function F .

From the simulations we concluded that both estimators have a very good performance,
even for relatively small sample size, and the performance is better when higher is the
correlation between the dependent variables. It is worth noticing that the simulations were
implemented with a fixed value for the penalty λn and it remains as an open problem how to
select the tuning parameter λn in an efficient way. In the supplementary material we included
a simulation study considering different values for the penalizing constant and we can see
that, as expected, the exact algorithm seems to outperform the binary search algorithm on

13



a larger set of penalizing constants.
In this work we focused on the identification of a block structure, but we think our

method is sufficiently general to be possibly adapted to other interesting structures of a
random vector, as for example the identification of the interaction graph in a graphical
model or Markov random field.
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7 Proofs of theoretical results

In the sequel, we use F̂n in lieu of F̂Xn , F̂n,u:v for its u : v marginal distribution and F̂n,U for
its U -product.

Proof of Theorem 1: We show that, eventually almost surely as n→∞,

PL(U∗,Xn) < PL(U,Xn) , for all U ⊆ {1, . . . , d− 1} , (12)

which means that Ûn = U∗. In order to do so, note that

|`(U, F̂Xn)− `(U, F )| ≤ sup
x∈Rd
|F̂n,U(x)− FU(x)|+ sup

x∈Rd
|F̂n(x)− F (x)|.

On the other hand, supx∈Rd |F̂n,u:v(x) − Fu:v(x)| ≤ supx∈Rd |F̂n(x) − F (x)|. Thus, under
condition (7), eventually almost surely as n→∞,

|`(U, F̂Xn)− `(U, F )| ≤ |U |an + an ≤ d an. (13)

Now, to prove (12), first consider U which is not contained in U∗: U 6⊂ U∗. In such a case,
`(U, F ) > α > 0. Therefore, using (13), we get that

PL(U,Xn)− PL(U∗,Xn) = `(U, F̂Xn)− `(U∗, F̂Xn) + λn
{

(|U |+ 1)−1 − (|U∗|+ 1)−1
}

≥ −d an + α− d an + λn
{

(|U |+ 1)−1 − (|U∗|+ 1)−1
}
.

Since α > 0 and both λn and an converge to zero, eventually almost surely as n → ∞, we
get that

PL(U,Xn)− PL(U∗,Xn) > 0 . (14)

14



If U∗ = ∅, no other case should be considered. If not, take U such that U is strictly
contained in U∗, that is U ⊂ U∗. Therefore, `(U, F ) = `(U∗, F ) = 0 and thus,

PL(U,Xn)− PL(U∗,Xn) = `(U, F̂Xn)− `(U∗, F̂Xn) + λn
{

(|U |+ 1)−1 − (|U∗|+ 1)−1
}

≥ −2d an + λn
{

(|U |+ 1)−1 − (|U∗|+ 1)−1
}
.

Finally, since U ⊂ U∗, we have that |U |+ 1 ≤ |U∗| and thus

1

|U |+ 1
− 1

|U∗|+ 1
≥ 1

d∗(d∗ + 1)
>

1

d(d+ 1)
.

Since d an/λn → 0, we conclude that, for n large enough, 1
d(d+1)

> 2an
λn

, which implies that

PL(U,Xn)− PL(U∗,Xn) > 0 ,

eventually almost surely as n→∞. �

Proof of Corollary 3: Adler and Brown (1986) proved that

P (
√
n sup

x∈Rd
|F̂n(x)− F (x)| > λ) ≤ Cλ2(d−1)e−2λ

2

,

for all λ > 0 and n large enough (n > nλ). Therefore, if 0 < δ < 1/2, we have that

P (
√
n sup

x∈Rd
|F̂n(x)− F (x)| > nδ) ≤ Ce−2{n

2δ−δ(d−1) lnn} = C−2γnn ,

where γn = n2δ

lnn
− δ(d− 1). Since γn →∞, there exists n1 such that for n > n1, γn > 1 and

thus
P (
√
n sup

x∈Rd
|F̂n(x)− F (x)| > nδ) < Cn−2,

which shows that
∑∞

n=1 P (supx∈Rd |F̂n(x) − F (x)| > nδ−1/2) < ∞. This guarantees that

condition (7) is satisfied with an = nδ−
1
2 , for any δ < 1/2. Finally, given ξ ∈ (0, 1/2)

and choosing δ < 1/2 − ξ, we conclude that an and λn = cn−ξ fulfills the conditions of
Theorem 1. �

Proof of Corollary 4: According to Csiszár (2002, Theorem 1), there exists a constant C
(depending on the size of the alphabet Ad) such that eventually almost surely as n→∞

|F̂Xn(x)− F (x)| ≤

√
C log2 n

np(x)
,

for all x with p(x) = P(X = x) ≥ C log2 n/n. Define

pmin = inf{p(x) : x ∈ Ad and p(x) > 0} .

Then for all x ∈ Ad we have

|F̂Xn(x)− F (x)| ≤

√
C log2 n

npmin

.
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If we take λn = cn−ξ, with ξ ∈ (0, 1/2) we have that λn → 0 and an/λn → 0 as n → ∞
and we are in the hypothesis of Theorem 1. Then, Ûn = U∗ eventually almost surely when
n→∞. �

Proof of Proposition 5: First consider the case U∗(F ) = ∅. Then by (3) we have that
`(U, F ) > α for all U 6= ∅, in particular for all U with a single point. By the same arguments
used in the proof of Theorem 1 that lead to (14) we obtain that h(1 :d,Xn) = d eventually

almost surely as n → ∞ and therefore Ûbin
n = U∗(F ). Now suppose there is at least one

point of independence in U∗(F ). Consider the candidate sets U having a single point, that
is U = {u}. By (3) we have that `({u}, F ) = 0 for all u ∈ U∗(F ) while `({v}, F ) > α for
all v /∈ U∗(F ). One more time, by the same arguments used in the proof of Theorem 1 we
have that eventually almost surely h(1 : d,Xn) = u for some u ∈ U∗(F ). Now the criterion
is repeated in the sub-intervals 1 : u and (u + 1) : d. Note that if u ∈ U∗(F ) we have
that U∗(F ) ∩ (1 :u) = U∗(F1:u), that is, the points of independence of the marginal F1:u are
exactly the points in the intersection U∗(F )∩(1 :u) (and the same is true for the complement
(u + 1) : d). Then the criterion can be consistently iterated on both sub-intervals 1 : u and
(u+ 1):d, with F replaced by the marginals F1:u and F(u+1):d, respectively. If the set U∗(F )

is finite, by this iterative procedure Ûbin
n will converge almost surely to U∗(F ). �

8 Data Availability Statement

In this work we consider information provided by the Brazilian National Water Agency
(Agência Nacional de Águas, in Portuguese), see Sistema Nacional de Informações sobre
Recursos Hı́dricos (2019). Its database is publicly available and stores daily meteorologi-
cal and hydrological measurements, such as river levels, flows, rainfall, climatology, water
quality, and sediment. The data analysed in Section 5, corresponding to monthly mean of
stream flows at 10 stations located along the course of São Francisco River, are available as
supplementary material to this article and can also be found on https://www.ime.usp.br/

~gpeca/data/sao_francisco_river.csv.
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