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ABSTRACT

Motivation: A central problem in genomics is to determine the

function of a protein using the information contained in its amino acid

sequence. Variable length Markov chains (VLMC) are a promising

class of models that can effectively classify proteins into families and

they can be estimated in linear time and space.

Results: We introduce a new algorithm, called Sparse Probabilistic

Suffix Trees (SPST), that identifies equivalences between the contexts

of a VLMC. We show that, in many cases, the identification of these

equivalences can improve the classification rate of the classical

Probabilistic Suffix Trees (PST) algorithm. We also show that better

classification can be achieved by identifying representative fingerprints

in the amino acid chains, and this variation in the SPST algorithm is

called F-SPST.

Availability: The SPST algorithm can be freely downloaded from the

site http://www.ime.usp.br/~leonardi/spst/

Contact: leonardi@ime.usp.br

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Efficient family classification of newly discovered protein

sequences is a central problem in bioinformatics (Rust et al.,
2002). Nowadays, the most popular methods for generating a

hypothesis about the function of a protein are BLAST and hidden

Markov models (HMM). These methods, although very useful, are

time-consuming considering the actual size of the databases.

Recently, Bejerano and Yona (2001) applied VLMC in protein

classification. They showed that variable length Markov chains

(VLMC) detects much more related sequences than Gapped-

BLAST and it is almost as sensitive as HMM. A major advantage

of VLMC is that it does not depend on multiple alignments of the

input sequences and it can be estimated in linear time and space

(Apostolico and Bejerano, 2000).

In the present work we affront the problem of protein family

classification creating a model for each protein family F and testing

if each query sequence belongs toF or not. The model is a variation

of VLMC, called sparse Markov chains (SMC). These two models

are a class of stochastic processes that relies on the estimation

of conditional probabilities of symbols in a sequence given the

preceding symbols. The remarkable property of VLMC is that

the number of symbols in the conditional sequence is variable,

and depends on the symbols involved. This property attempts to

capture variable dependencies in different configurations of amino

acids in a protein family. A VLMC model can be represented by a

tree in which each branch corresponds to a conditional sequence of

symbols. For example, a VLMC tree for a set of sequences in the

binary alphabet {0, 1} is illustrated in Figure 1. The conditional

probabilities are associated to each branch, indicating the probab-

ility of the next symbol in a query sequence given that the preceding

symbols match the sequence in the branch. The property of variable

length in the conditional sequences is maintained in SMC. The

difference between SMC and VLMC is that in SMC the conditional

sequences are given by sequences of subsets of amino acids. This

property attempts to identify which positions are more relevant than

others in the configurations of amino acids that define the condi-

tional sequences. The sequences composed by subsets of amino

acids are called sparse.

VLMC was first introduced in Rissanen (1983) as an universal

model for data compression. Rissanen also introduced an estimation

algorithm for this class of models called Context Algorithm (CA).

It was proven in Bülhmann and Wyner (1999) that this algorithm is

consistent. This means that if we suppose that the data were gen-

erated with a VLMC, with a sufficiently large sample the CA will

find the real model. PST is another algorithm to estimate a VLMC

(Ron et al., 1996), and it has the advantage of being computationally

more economical than the CA (Apostolico and Bejerano, 2000). The

PST algorithm was successfully used in protein classification, even

though its performance decreases with less conserved families

(Bejerano and Yona, 2001). For that reason some attempts were

made to use VLMC related models for sparse sequences (Eskin

et al., 2000; Bourguignon and Nicolas, 2004). Although very

attractive, these two methods have the major disadvantage of having

computationally very expensive algorithms.

In this work we introduce a variation in the PST algorithm to

estimate an SMC for sparse sequences, called SPST. Another vari-

ation is introduced to improve theclassificationofPSTandSPST, and

it is called F-SPST.Thepaper is organized as follows. In Section 2 the

formal definitions of VLMC and SMC and a simple example are

given. In Section 3 we introduce the two variations in the PST algo-

rithm and we explain how to classify protein sequences using these

algorithms. In Section 4 we present the experimental results and in

Section 5 we discuss these results and some ideas for future work.

2 THEORY

Let A be a finite alphabet (e.g. the alphabet of twenty amino acids

for protein sequences, or four nucleotides for DNA sequences).
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Let (Xn)n2N be a stationary stochastic process with values Xn 2 A.

We say that the process (Xn) is a variable length Markov chain

(VLMC) if

P½Xn ¼ xn jX0 ¼ x0‚ . . . ‚Xn�1 ¼ xn�1�
¼ P½Xn ¼ xn jXn�‘ ¼ xn�‘‚ . . . ‚Xn�1 ¼ xn�1�‚

where ‘ is a function of the sequence x0, . . . , xn�1; i.e.

‘ : [1
k¼0 A

k!N. This function is called length function and the

finite sequences (xn�‘, . . . , xn�1) are called contexts. As we are

assuming a time homogeneous process, the length function does

not depend on n, so we simply denote the contexts by (x�‘, . . . , x�1).

In a VLMC the set of contexts has the suffix property: this means

that no context is a suffix of another context. This makes it possible

to define without ambiguity the probability distribution of the next

symbol. The suffix property also permits to represent the set of

contexts as a tree. In this tree, each context (x�‘, . . . , x�1) is

represented by a complete branch, in which the first node on top

is x�1 and so on until the last element x�‘ which is represented by

the terminal node of the branch. For example, in Figure 1 the set of

contexts is {00, 10, 1}. A complete description of VLMC can be

found in Bülhmann and Wyner (1999).

We introduce here the definition of an SMC. An SMC is a VLMC

in which some contexts can be grouped together into an equivalence

class. In a SMC the probability transitions are given by

P½Xn ¼ xn jX0 ¼ x0‚ . . . ‚Xn�1 ¼ xn�1�
¼ P½Xn ¼ xn jXn�‘ 2 An�‘‚ . . . ‚Xn�1 2 An�1�‚

where Ai � A for all i ¼ n � ‘, . . . , n�1. This relation induces

a partition of the set of contexts of the corresponding VLMC.

Then, the contexts in an SMC are given by the equivalence classes

denoted by the sequences of subsets (A�‘, . . . ,A�1). A tree

representation for this type of contexts can be seen in Figure 2.

To each node of the tree is associated a conditional probability

distribution over the next symbol given the context represented

by the node. For example, if we want to compute the probability

of the sequence 01001 in the model given by Figure 2 we have

P(01001) ¼ P(0) · P(1 j 0) · P(0 j 01) · P(0 j 10) · P(1 j 00) ¼
9/16 · 7/16 · 3/10 · 9/10 · 7/10.

In this work we propose a variation in the PST algorithm to

identify the equivalence classes given by the sparse contexts

(A�‘, . . . ,A�1). This algorithm is presented in the next section.

3 ALGORITHM

Let p1, p2, . . . , pm be the sample sequences belonging to a protein

family F . For each i¼ 1, . . . ,m we denote pi ¼ pi1‚ . . . ‚pini , where ni
is the length of sequence pi.

Given a sparse context w ¼ (A�‘, . . . ,A�1) and a symbol a 2 A,

we denote by N(w, a) the number of occurrences of context w
followed by symbol a in the sample set. That is,

Nðw‚aÞ ¼
Xm
i¼1

Xni
j¼‘+1

1fpi
j�‘

2A�‘‚...‚pij�1
2A�1‚pij¼ag‚

where 1 is the indicator function that takes value 1 if

pij�‘ 2 A�‘‚ . . . ‚p
i
j�1 2 A�1‚pij ¼ a, or 0 otherwise. We also define

Nðw‚ · Þ ¼
X
a2A

Nðw‚aÞ:

Given a sparse context w ¼ (A�‘, . . . ,A�1) and symbols a1,

a2 2 A we denote by a1w and a2w the sparse contexts ({a1},

A�‘, . . . ,A�1) and ({a2}, A�‘, . . . ,A�1), respectively. We also

denote by [a1, a2]w the sparse context ({a1, a2}, A�‘, . . . ,A�1).

Using this notation we define the operator Dw (a1, a2) as the

logarithm of the ratio between the estimated probability of the

sequences in the model that has the contexts a1w and a2w as

equivalent and the model that distinguishes the two contexts as

different. That is,

Dwða1‚a2Þ ¼ log
Y
a2A

P̂Pða j ½a1‚a2�wÞNð½a1‚a2�w‚aÞ

P̂Pða j a1wÞNða1w‚aÞP̂Pða j a2wÞNða2w‚aÞ

¼
X
a2A

Nð½a1‚a2�w‚aÞ log
Nð½a1‚a2 �w‚aÞ
Nð½a1‚a2�w‚ · Þ

� �

�
X
a2A

Nða1w‚aÞ log
Nða1w‚aÞ
Nða1w‚ · Þ

� �

�
X
a2A

Nða2w‚aÞ log
Nða2w‚aÞ
Nða2w‚ · Þ

� �
:

Note that N([a1, a2]w, a) ¼ N(a1w, a) + N(a2w, a) and

N([a1, a2] w, ·) ¼ N(a1w, ·) + N(a2w, ·).

Fig. 1. A tree representation of a VLMC over the alphabet A ¼ {0, 1}. The

branches represent the sequences that are relevant to predict the next symbol

in a sequence, and the probability distribution associated to each branch gives

the probability of having 0 or 1 given that the preceding symbols match the

sequence in the branch. For example, the probability of having symbol 0 in

any position of a query sequence given that the preceding symbols are 0 and 1

respectively is P(0j10) ¼ 0.9.

Fig. 2. A sparse tree over the alphabet A ¼ {0, 1}. The set of contexts of

the associated VLMC is {00, 01, 10, 11}, and the equivalence classes are

{00, 01} and {10, 11}. This means that P(Xn ¼ xn jXn�2 ¼ 0, Xn�1 ¼ 0) ¼
P(Xn ¼ xn jXn�2 ¼ 0, Xn�1 ¼ 1) and P(Xn ¼ xn jXn�2 ¼ 1, Xn�1 ¼ 0) ¼
P(Xn ¼ xn jXn�2 ¼ 1, Xn�1 ¼ 1), for all xn 2 A.
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Using the preceding definitions we can specify how the SPST

algorithm works. The free parameters that must be specified by

the user are the maximum depth of the tree, Lmax, the minimum

number of times that a sparse context has to be seen in the sample to

be considered, Nmin, and a cutoff parameter that establishes the

equivalence between two contexts, rmax. The SPST algorithm

works as follows. It starts with a tree T consisting of a single

root node. At each step, for every terminal node in T labeled by

a sparse sequence w with depth less than L and for every symbol

a 2 A, the child a is added to node w if N(aw,·) � Nmin. Then,

for every pair of children of w, a1 and a2, we test the equivalence of
the contexts a1w and a2w using the D operator. That is, we compute

Dw(a1, a2) for every pair of symbols (a1, a2) 2 A2 added to node w,
and choose the minimum between all the pairs. If this minimum is

smaller than rmax, the corresponding nodes are merged together into

a single node. This procedure is iterated with the new set of children

of w until no more nodes can be merged. Taking the minimum

of Dw(a1, a2) between all the possible pairs (a1, a2) ensures the

independence of the order in which the tests are performed. To

conclude the construction of the tree we assign to each node a

transition probability distribution. This distribution gives the prob-

ability of a symbol in A given the sparse context between the node

and the root of the tree. The transition probabilities are estimated

using the maximum likelihood estimates. That is, given a sparse

context w ¼ (A�‘, . . . ,A�1), the estimated probability of a symbol

a 2 A given the context w is given by

P̂PðXn ¼ a jXn�‘ 2 An�‘‚ . . . ‚Xn�1 2 An�1Þ ¼
Nðw‚aÞ
Nðw‚ · Þ

Given a sparse context w ¼ (A�‘, . . . ,A�1) we denote by w0 the
sparse context (A�‘+1, . . . ,A�1) and by jwj the length of context w.
Summarizing the steps of the SPST algorithm, we have the

following:

SPST-Algorithm (Nmin, rmax, Lmax)

(1) Initialization: let T be a tree consisting of a single root node,

and let

�SS ¼ fa : a 2 A and Nða‚ · Þ � Nming

(2) Iteration: while �SS 6¼ ; do

(a) Remove u of �SS and add u to T. Then remove all sparse

contexts w 2 �SS such that w0 ¼ u0 and add them to T. Note
that the contextw is of the formaiu

0 for some symbolai2A.

Let C denote the set of contexts added to T in this step.

(b) Compute

r ¼ min fDu0 ðai‚ajÞ : aiu0‚aju0 2 Cg‚

and

ðai� ‚aj�Þ ¼ argminfDu0 ðai‚ajÞ : aiu0‚aju0 2 Cg:

(c) If r < rmax merge ai� and aj� in a single node. Replace

the contexts ai�u
0 and aj�u

0 in C by the context ½ai� ‚aj� �u0.
(d) Repeat steps (b) and (c) until no more changes can be

made in C.

(e) For each sparse context w 2 C, if jwj < Lmax then add

the set {aw : a 2 A and N (aw, · ) � Nmin} (if any) to �SS.

(3) Estimation of the transition probabilities: assign to each node
in T, associated with a sparse context w, the transition prob-

ability distribution over A given by

Nðw‚aÞ
Nðw‚ · Þ : a 2 A

� �
:

3.1 Application of the SPST algorithm to classify

protein sequences

Given a protein family F and a new sequence of amino acids p ¼
p1, . . . , pn, we want to know if p belongs to F or not. To answer this

question we first construct a model for the family F using the

sequences already classified into the family. Then we compute a

score, and depending on this value we classify the sequence p as

belonging to the family F or not. The model constructed for the

family F is an SMC model obtained by estimating the sparse con-

texts and the transition probabilities given by the SPST algorithm, as

explained above. There is no restriction about the minimum number

of sequences needed to estimate an SMC, because SPST will only

estimate the next symbol probability conditioned on sequences that

appear a minimum number of times in the sample. But it is also true

that with a very small family the estimation of the probability

distributions could be very poor. For that reason we only test the

SPST algorithm with families containing more than 10 sequences,

as explained in the next section.

Given a query sequence p, its score in the estimated SMC model

for F is given by

SðpÞ ¼ 1

n
log ½�PPðpÞ�‚

where �PP is the smoothed probability distribution derived from P̂P.
That is

�PPðpÞ ¼
Yn
i¼1

ðð1� jAjgminÞP̂Pðpi jwðp1‚ . . . ‚pi�1ÞÞ þ gminÞ‚

where w(p1, . . . , pi�1) is the sparse context corresponding to the

sequence p1, . . . , pi�1. The parameter gmin is a smoothing parameter

to avoid zero probabilities, and therefore, a �1 score.

Sometimes the region of high similarity between the sequences in

a protein family is considerably smaller than the length of the

sequences. This is because a protein sequence can be composed

by several domains, performing different functions in the cell. Then,

computing the score S over the entire sequence pmay not be appro-

priate. For this reason we propose a change in the computation of the

score S and called it S0. In this case we fix an integer M, and for

sequences with length n > M we compute the score S0(p) by

S0ðpÞ ¼ max
j¼0‚...‚n�M

1

M
log ½�PPðpj+1 · · · pj+MÞ�

� �
:

In the case n � M, the score is computed using S as before. The

algorithm that implements the score S0 is called F-SPST.

4 IMPLEMENTATION

In order to test our algorithm and to compare it with PST published

results (Bejerano and Yona, 2001) we use protein families of the

Pfam database (Bateman et al., 2004) release 1.0. This database

contains 175 families derived from the Swiss-Prot 33 database

F.G.Leonardi
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Table 1. Performance comparison between PST, SPST and F-SPST.

Family Size Percentage of true pos. No. PST Percentage of true pos. No. SPST Percentage of true pos. No. F-SPST

detected by PST false positives detected by SPST false positives detected by F-SPST false positives

7tm_1 515 93.0 36 96.3 19 97.7 12

7tm_2 36 94.4 2 97.2 1 100.0 0

7tm_3 12 83.3 2 100.0 0 100.0 0

AAA 66 87.9 8 90.9 6 93.9 4

ABC_tran 269 83.6 44 85.9 38 89.2 29

actin 142 97.2 4 97.2 4 99.3 1

adh_short 180 88.9 20 89.4 19 92.8 13

adh_zinc 129 95.3 6 91.5 11 95.4 6

aldedh 69 87.0 9 89.9 7 92.8 5

alpha-amylase 114 87.7 14 91.2 10 94.7 6

aminotran 63 88.9 7 88.9 7 90.5 6

ank 83 88.0 10 86.8 11 86.6 11

arf 43 90.7 4 93.0 3 93.0 3

asp 72 83.3 12 90.3 7 91.7 6

ATP-synt_A 79 92.4 6 94.9 4 97.5 2

ATP-synt_ab 180 96.7 6 96.7 6 98.3 3

ATP-synt_C 62 91.9 5 95.2 3 95.2 3

beta-lactamase 51 86.3 7 90.2 5 94.1 3

bZIP 95 89.5 10 90.5 9 93.7 6

C2 78 92.3 6 92.3 6 96.2 3

cadherin 31 87.1 4 87.1 4 93.6 2

cellulase 40 85.0 6 85.0 6 90.0 4

cNMP_binding 42 92.9 3 92.9 3 95.2 2

COesterase 61 91.7 5 90.0 6 93.3 4

connexin 40 97.5 1 97.5 1 100.0 0

copper-bind 61 95.1 3 96.7 2 98.4 1

COX1 80 83.8 13 85.0 12 85.0 12

COX2 109 98.2 2 98.2 2 98.2 2

cpn10 57 93.0 4 98.3 1 98.3 1

cpn60 84 94.0 5 94.0 5 95.2 4

crystall 53 98.1 1 98.1 1 98.1 1

cyclin 80 88.8 9 86.3 11 91.3 7

Cys-protease 91 87.9 11 89.0 10 94.5 5

cystatin 53 92.5 4 90.6 5 90.6 5

Cys_knot 61 93.4 4 93.4 4 93.4 4

cytochrome_b_C 130 79.2 27 90.8 12 87.7 16

cytochrome_b_N 170 98.2 3 97.1 5 98.2 3

cytochrome_c 175 93.7 11 94.3 10 95.4 8

DAG_PE-bind 68 89.7 7 89.7 7 89.7 7

DNA_methylase 48 83.3 8 83.3 8 93.8 3

DNA_pol 46 80.4 9 82.6 8 82.6 8

dsrm 14 85.7 2 85.7 2 85.7 2

E1-E2_ATPase 102 93.1 7 95.1 5 96.1 4

efhand 320 92.2 25 92.2 25 92.2 25

EGF 169 89.4 18 88.8 19 89.4 18

enolase 40 100.0 0 97.5 1 100.0 0

fer2 88 94.3 5 95.5 4 97.7 2

fer4 152 88.2 18 90.1 15 91.5 13

fer4_NifH 49 95.9 2 98.0 1 98.0 1

FGF 39 97.4 1 100.0 0 100.0 0

Families are ordered alphabetically, and correspond to the first 50 families with more than 10 sequences in the Pfam database, version 1.0. The number of sequences in each family is

given in the secondcolumn.Theother six columns, two for each algorithm, indicate thepercentageof true positivesdetectedwith respect to the size of each family and the number of false

positives, when using the equivalence number criterion. Thismethod sets the threshold at the point where the number of false positives equals the number of false negatives. PST results

where taken from (Bejerano andYona, 2001).The set of parameters to train theSPSTandF-SPSTalgorithmswhere:L¼20,Nmin¼3,gmin¼0.001 and rmax¼3.8.The value ofMused in

the F-SPST algorithm was M ¼ 80 for all families.
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(Boeckmann et al., 2004). We selected the first 50 families

(in alphabetical order) that contain more than 10 sequences. For

each family in this set, we trained an SMC model with the SPST

algorithm. We used four-fifths of the sequences in each family for

training, and then we applied the resulting model to classify all the

sequences in the Swiss-Prot 33 database. To establish the family

membership threshold we used the equivalence number criterion

(Pearson, 1995). This method sets the threshold at the point where

the number of false positives (the number of non-member proteins

with score above the threshold) equals the number of false negatives

(the number of member proteins with score below the threshold),

i.e. it is the point of balance between selectivity and sensitivity.

A member protein that scores above the threshold (true positive)

is considered successfully detected. The quality of the model is

measured by the percentage of true positives detected with respect

to the total number of proteins in the family.

Table 1 shows the classification rates obtained with the SPST and

F-SPST algorithms, together with the published results obtained

with the PST algorithm. We also show the number of false positives

for each algorithm. Because of the way of establishing the family

membership threshold, the percentage of false positives is equal to

100% minus the percentage of true positives (with respect to the

total number of sequences in the family). For example, in the case of

family 7tm_1, the percentage of true positives detected by the

F-SPST algorithm is 97.7%, so the percentage of false positives

is 2.3%. This gives 12 sequences erroneously classified as members

of the 7tm_1 family. Figure 3 summarizes the classification rates of

Table 1 in two scatter-plots.

It was shown in Bejerano and Yona (2001) that the performance

of the PST algorithm can be improved increasing the number of

nodes in the tree. In the case of SPST and F-SPST, this fact depends

on the values of the parameters L andNmin. In this work we study the

performance of the F-SPST algorithm as a function of the other

user-specific parameters rmax, gmin and M. Five families of Table 1

were randomly chosen and the SMCmodels were estimated varying

the value of the corresponding parameter. The performance of the

F-SPST algorithm was not significantly affected in the case of gmin

and M. The reader can see these results in the Supplementary

Material for this paper. In Figure 4 we show the results for rmax.

The implementation of the SPST algorithm described in this

paper was coded in ANSI C and compiled using gcc. The run

time spent training a model on a AMD (Athlon) 851 Mhz PC,

for a protein family in the Pfam 1.0 database, varies between 2 s

and 49 min. The computation of the scores for all sequences in the

Swiss-Prot 33 database takes on average 1 min 40 s for the SPST

algorithm and 1 min 5 s for the F-SPST algorithm.

5 DISCUSSION

The results presented in this paper strongly suggest that the SPST

and F-SPST algorithms can improve the classification rates obtained

with the PST algorithm. This probably owes to the fact that the

sparse model mimics well the sparse nature of relevant domains in

the amino acid chains. Another very interesting feature of SPST

appears when comparing nodes in the estimated trees with the

classes obtained by grouping the amino acids according to their

physical and chemical properties. For instance, the estimated tree

for the ATPase family associated with various cellular activities

(AAA) family has as a sparse node the set of amino acids {I, V, L}.
This set corresponds exactly with the group of aliphatic amino acids

(Fig. 5).

Fig. 3. Scatter-plots of performances from PST, SPST and F-SPST

protein classification methods. Above: SPST versus PST. Below: F-SPST

versus PST.

Fig. 4. Performance evaluation of the F-SPST algorithm as a function of the

user-specific parameter rmax. The x-axis shows the values of this parameter

used to estimate the model. The evaluation was made for five randomly

chosen families.

F.G.Leonardi
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In Figure 4 we see that the performance of F-SPST as a function

of the parameter rmax decreases when the value of rmax increases.

This is due to the fact that when rmax increases, the number of nodes

in the tree decreases (more nodes are merged), and an under-fitted

model is obtained. But it is important to note that for all values of

rmax inferior to 50, the performance of F-SPST for the five families

is maintained over 90%.

Actually we do not know which conditions must be satisfied by

the stochastic process in order for the SPST algorithm to be

consistent. We know that in the simple tree configuration of

Figure 2 the SPST algorithm is consistent, but in the general

case it is not. For space limitations we can not present in an appro-

priate way these facts, but we will discuss the important issue of

consistency of the SPST algorithm in a forthcoming paper.

ACKNOWLEDGEMENTS

The author thanks her advisors, A. Galves and H. Armelin, for

illuminating discussions during the preparation of this paper,

P.-Y. Bourguignon for making his manuscript available for her
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