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Exponential Inequalities for Empirical
Unbounded Context Trees

Antonio Galves and Florencia Leonardi

Abstract. In this paper we obtain non-uniform exponential upper bounds
for the rate of convergence of a version of the algorithm Context, when the
underlying tree is not necessarily bounded. The algorithm Context is a well-
known tool to estimate the context tree of a Variable Length Markov Chain.
As a consequence of the exponential bounds we obtain a strong consistency
result. We generalize in this way several previous results in the field.

Mathematics Subject Classification (2000). 62M09, 60G99.

Keywords. Variable memory processes, unbounded context trees, algorithm
Context.

1. Introduction

In this paper we present an exponential bound for the rate of convergence of
the algorithm Context for a class of unbounded variable memory models, taking
values on a finite alphabet A. From this it follows a strong consistency result for the
algorithm Context in this setting. Variable memory models were first introduced
in the information theory literature by Rissanen [11] as a universal system for data
compression. Originally called by Rissanen finite memory source or probabilistic
tree, this class of models recently became popular in the statistics literature under
the name of Variable Length Markov Chains (VLMC) [1].

The idea behind the notion of variable memory models is that the probabilis-
tic definition of each symbol only depends on a finite part of the past and the length
of this relevant portion is a function of the past itself. Following Rissanen we call
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context the minimal relevant part of each past. The set of all contexts satisfies the
suffix property which means that no context is a proper suffix of another context.
This property allows to represent the set of all contexts as a rooted labeled tree.
With this representation the process is described by the tree of all contexts and a
associated family of probability measures on A, indexed by the tree of contexts.
Given a context, its associated probability measure gives the probability of the
next symbol for any past having this context as a suffix. From now on the pair
composed by the context tree and the associated family of probability measures
will be called probabilistic context tree.

Rissanen not only introduced the notion of variable memory models but he
also introduced the algorithm Context to estimate the probabilistic context tree.
The way the algorithm Context works can be summarized as follows. Given a
sample produced by a chain with variable memory, we start with a maximal tree
of candidate contexts for the sample. The branches of this first tree are then
pruned until we obtain a minimal tree of contexts well adapted to the sample.
We associate to each context an estimated probability transition defined as the
proportion of time the context appears in the sample followed by each one of
the symbols in the alphabet. From Rissanen [11] to Galves et al. [10], passing by
Ron et al. [12] and Bühlmann and Wyner [1], several variants of the algorithm
Context have been presented in the literature. In all the variants the decision to
prune a branch is taken by considering a cost function. A branch is pruned if
the cost function assumes a value smaller than a given threshold. The estimated
context tree is the smallest tree satisfying this condition. The estimated family of
probability transitions is the one associated to the minimal tree of contexts.

In his seminal paper Rissanen proved the weak consistency of the algorithm
Context in the case where the contexts have a bounded length, i.e., where the tree
of contexts is finite. Bühlmann and Wyner [1] proved the weak consistency of the
algorithm also in the finite case without assuming a priori known bound on the
maximal length of the memory, but using a bound allowed to grow with the size of
the sample. In both papers the cost function is defined using the log likelihood ratio
test to compare two candidate trees and the main ingredient of the consistency
proofs was the chi-square approximation to the log likelihood ratio test for Markov
chains of fixed order. A different way to prove the consistency in the finite case
was introduced in [10], using exponential inequalities for the estimated transition
probabilities associated to the candidate contexts. As a consequence they obtain
an exponential upper bound for the rate of convergence of their variant of the
algorithm Context.

The unbounded case as far as we know was first considered by Ferrari and
Wyner [8] who also proved a weak consistency result for the algorithm Context in
this more general setting. The unbounded case was also considered by Csiszár and
Talata [3] who introduced a different approach for the estimation of the proba-
bilistic context tree using the Bayesian Information Criterion (BIC) as well as the
Minimum Description Length Principle (MDL). We refer the reader to this last
paper for a nice description of other approaches and results in this field, including
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the context tree maximizing algorithm by Willems et al. [14]. With exception of
Weinberger et al. [13], the issue of the rate of convergence of the algorithm es-
timating the probabilistic context tree was not addressed in the literature until
recently. Weinberger et al. proved in the bounded case that the probability that
the estimated tree differs from the finite context tree generating the sample is
summable as a function of the sample size. Duarte et al. in [6] extends the orig-
inal weak consistency result by Rissanen [11] to the unbounded case. Assuming
weaker hypothesis than [8], they showed that the on-line estimation of the context
function decreases as the inverse of the sample size.

In the present paper we generalize the exponential inequality approach pre-
sented in [10] to obtain an exponential upper bound for the algorithm Context
in the case of unbounded probabilistic context trees. Under suitable conditions,
we prove that the truncated estimated context tree converges exponentially fast
to the tree generating the sample, truncated at the same level. This improves all
results known until now.

The paper is organized as follows. In section 2 we give the definitions and
state the main results. Section 3 is devoted to the proof of an exponential bound
for conditional probabilities, for unbounded probabilistic context trees. In section 4
we apply this exponential bound to estimate the rate of convergence of our version
of the algorithm Context and to prove its consistency.

2. Definitions and results

In what follows A will represent a finite alphabet of size |A|. Given two integers
m ≤ n, we will denote by wn

m the sequence (wm, . . . , wn) of symbols in A. The
length of the sequence wn

m is denoted by �(wn
m) and is defined by �(wn

m) = n−m+1.
Any sequence wn

m with m > n represents the empty string and is denoted by λ.
The length of the empty string is �(λ) = 0.

Given two finite sequences w and v, we will denote by vw the sequence
of length �(v) + �(w) obtained by concatenating the two strings. In particular,
λw = wλ = w. The concatenation of sequences is also extended to the case in
which v denotes a semi-infinite sequence, that is v = v−1

−∞.
We say that the sequence s is a suffix of the sequence w if there exists a

sequence u, with �(u) ≥ 1, such that w = us. In this case we write s ≺ w. When
s ≺ w or s = w we write s � w. Given a sequence w we denote by suf(w) the
largest suffix of w.

In the sequel Aj will denote the set of all sequences of length j over A and
A∗ represents the set of all finite sequences, that is

A∗ =
∞⋃

j=1

Aj .

Definition 2.1. A countable subset T of A∗ is a tree if no sequence s ∈ T is a suffix
of another sequence w ∈ T . This property is called the suffix property.
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We define the height of the tree T as

h(T ) = sup{�(w) : w ∈ T }.
In the case h(T ) < +∞ it follows that T has a finite number of sequences.

In this case we say that T is bounded and we will denote by |T | the number of
sequences in T . On the other hand, if h(T ) = +∞ then T has a countable number
of sequences. In this case we say that the tree T is unbounded.

Given a tree T and an integer K we will denote by T |K the tree T truncated
to level K, that is

T |K = {w ∈ T : �(w) ≤ K} ∪ {w : �(w) = K and w ≺ u, for some u ∈ T }.
We will say that a tree is irreducible if no sequence can be replaced by a

suffix without violating the suffix property. This notion was introduced in [3] and
generalizes the concept of complete tree.

Definition 2.2. A probabilistic context tree over A is an ordered pair (T , p) such
that

1. T is an irreducible tree;
2. p = {p(·|w); w ∈ T } is a family of transition probabilities over A.

Consider a stationary stochastic chain (Xt)t∈Z over A. Given a sequence
w ∈ Aj we denote by

p(w) = P(Xj
1 = w)

the stationary probability of the cylinder defined by the sequence w. If p(w) > 0
we write

p(a|w) = P(X0 = a | X−1
−j = w) .

Definition 2.3. A sequence w ∈ Aj is a context for the process (Xt) if p(w) > 0
and for any semi-infinite sequence x−1

−∞ such that w is a suffix of x−1
−∞ we have

that
P(X0 = a | X−1

−∞ = x−1
−∞) = p(a|w), for all a ∈ A,

and no suffix of w satisfies this equation.

Definition 2.4. We say that the process (Xt) is compatible with the probabilistic
context tree (T , p̄) if the following conditions are satisfied

1. w ∈ T if and only if w is a context for the process (Xt).
2. For any w ∈ T and any a ∈ A, p̄(a|w) = P(X0 = a | X−1

−�(w) = w).

Define the sequence (αk)k∈N as

α0 :=
∑

a∈A

inf
w∈T

{ p(a|w) },

αk := inf
u∈Ak

∑

a∈A

inf
w∈T ,w�u

{ p(a|w) }.

From now on we will assume that the probabilistic context tree (T , p) satisfies
the following assumptions.
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Assumption 2.5. Non-nullness, that is infw∈T {p(a|w)} > 0 for any a ∈ A.

Assumption 2.6. Summability of the sequence (1−αk), k ≥ 0. In this case denote by

α :=
∑

k∈N

(1 − αk) < + ∞.

For a probabilistic context tree satisfying Assumptions 2.5 and 2.6, the max-
imal coupling argument used in [7], or alternatively the perfect simulation scheme
presented in [2], imply the uniqueness of the law of the chain compatible with it.

Given an integer k ≥ 1 we define

Ck = {u ∈ T |k : p(a|u) �= p(a|suf(u)) for some a ∈ A}
and

Dk = min
u∈Ck

max
a∈A

{ |p(a|u) − p(a|suf(u))| }.

We denote by
εk = min{ p(w) : �(w) ≤ k and p(w) > 0 }.

In what follows we will assume that x0, x1, . . . , xn−1 is a sample of the sta-
tionary stochastic chain (Xt) compatible with the probabilistic context tree (T , p).

For any finite string w with �(w) ≤ n, we denote by Nn(w) the number of
occurrences of the string in the sample; that is

Nn(w) =
n−�(w)∑

t=0

1{Xt+�(w)−1
t = w}.

For any element a ∈ A , the empirical transition probability p̂n(a|w) is defined
by

p̂n(a|w) =
Nn(wa) + 1
Nn(w·) + |A| . (2.7)

where
Nn(w·) =

∑

b∈A

Nn(wb) .

This definition of p̂n(a|w) is convenient because it is asymptotically equivalent
to Nn(wa)

Nn(w·) and it avoids an extra definition in the case Nn(w·) = 0.
A variant of Rissanen’s Algorithm Context is defined as follows. First of all,

let us define for any finite string w ∈ A∗:

∆n(w) = max
a∈A

|p̂n(a|w) − p̂n(a|suf(w))|.

The ∆n(w) operator computes a distance between the empirical transition proba-
bilities associated to the sequence w and the one associated to the sequence suf(w).

Definition 2.8. Given δ > 0 and d < n, the tree estimated with the Algorithm
Context is

T̂ δ,d
n = {w ∈ Ad

1 : Nn(aw·) > 0, ∆n(a suf(w)) > δ for some a ∈ A and

∆n(uw) ≤ δ for all u ∈ A
d−�(w)
1 with Nn(uw·) ≥ 1},
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where Ar
1 denotes the set of all sequences of length at most r. In the case �(w) = d

we have A
d−�(w)
1 = ∅.

It is easy to see that T̂ δ,d
n is an irreducible tree. Moreover, the way we defined

p̂n(·|·) in (2.7) associates a probability distribution to each sequence in T̂ δ,d
n .

The main result in this article is the following

Theorem 2.9. Let (T , p) be a probabilistic context tree satisfying Assumptions 2.5
and 2.6 and let (Xt) be a stationary stochastic chain compatible with (T , p). Then
for any integer K, any d satisfying

d > max
u/∈T ,�(u)≤K

min {k : ∃w ∈ Ck, w � u}, (2.10)

any δ < Dd and any

n >
2(|A| + 1)

min(δ, Dd − δ)εd
+ d

we have that

P(T̂ δ,d
n |K �= T |K) ≤ 4 e

1
e |A|d+2 exp



−(n − d)
[min( δ

2 , Dd−δ
2 ) − |A|+1

(n−d)εd
]2ε2dC

4|A|2(d + 1)



 ,

where
C =

α0

8e(α + α0)
.

As a consequence we obtain the following strong consistency result.

Corollary 2.11. Under the conditions of Theorem 2.9 we have

T̂ δ,d
n |K = T |K ,

eventually almost surely as n → +∞.

3. Exponential inequalities for empirical probabilities

The main ingredient in the proof of Theorem 2.9 is the following exponential upper
bound

Theorem 3.1. For any finite sequence w, any symbol a ∈ A and any t > 0 the
following inequality holds

P( |Nn(wa) − (n − �(w))p(wa)| > t ) ≤ e
1
e exp

[
−t2C

(n − �(w))�(wa)

]
,

where
C =

α0

8e(α + α0)
. (3.2)

As a direct consequence of Theorem 3.1 we obtain the following corollary.
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Corollary 3.3. For any finite sequence w with p(w) > 0, any symbol a ∈ A, any
t > 0 and any n > |A|+1

tp(w) + �(w) the following inequality holds

P
(
|p̂n(a|w)−p(a|w)| > t

)
≤ 2 |A| e 1

e exp



−(n − �(w))
[t − |A|+1

(n−�(w))p(w) ]
2p(w)2C

4|A|2�(wa)



 ,

where C is given by (3.2).

To prove Theorem 3.1 we need a mixture property for processes compatible
with a probabilistic context tree (T , p) satisfying Assumptions 2.5 and 2.6. This
is the content of the following lemma.

Lemma 3.4. Let (Xt) be a stationary stochastic chain compatible with the proba-
bilistic context tree (T , p) satisfying Assumptions 2.5 and 2.6. Then, there exists
a summable sequence {ρl}l∈N, satisfying

∑
l∈N

ρl ≤ 1 +
2α

α0
, (3.5)

such that for any i ≥ 1, any k > i, any j ≥ 1 and any finite sequence wj
1, the

following inequality holds

sup
xi
1∈Ai

|P(Xk+j−1
k = wj

1 | X i
1 = xi

1) − p(wj
1)| ≤

∑j−1

l=0
ρk−i−1+l . (3.6)

Proof. First note that

inf
u∈A∞

P(Xk+j−1
k = wj

1 | X i
−∞ = u0

−∞xi
1) ≤ P(Xk+j−1

k = wj
1 | X i

1 = xi
1)

≤ sup
u∈A∞

P(Xk+j−1
k = wj

1 | X i
−∞ = u0

−∞xi
1).

where A∞ denotes the set of all semi-infinite sequences u0
−∞. The reader can find

a proof of the inequalities above in [7, Proposition 3]. Using this fact and the
condition of stationarity it is sufficient to prove that for any k ≥ 0,

sup
x∈A∞

|P(Xk+j−1
k = wj

1 | X−1
−∞ = x−1

−∞) − p(wj
1)| ≤

∑j−1

l=0
ρk+l.

Note that for all pasts x−1
−∞ we have

∣∣P(Xk+j−1
k = wj

1 | X−1
−∞ = x−1

−∞) − p(wj
1)

∣∣

=
∣∣∣
∫

u∈A∞

[
P(Xk+j−1

k = wj
1 | X−1

−∞ = x−1
−∞)

− P(Xk+j−1
k = wj

1 | X−1
−∞ = u−1

−∞)
]
dp(u)

∣∣∣

≤
∫

u∈A∞

∣∣P(Xk+j−1
k = wj

1 | X−1
−∞ = x−1

−∞)

− P(Xk+j−1
k = wj

1 | X−1
−∞ = u−1

−∞)
∣∣ dp(u).



264 A. Galves and F. Leonardi

Therefore, applying the loss of memory property proved in [2, Corollary 4.1] we
have that

∣∣P(Xk+j−1
k = wj

1 | X−1
−∞ = x−1

−∞) − P(Xk+j−1
k = wj

1 | X−1
−∞ = u−1

−∞)
∣∣ ≤

j−1∑

l=0

ρk+l,

where ρm is defined as the probability of return to the origin at time m of the
Markov chain on N starting at time zero at the origin and having transition prob-
abilities

p(x, y) =






αx, if y = x+1,
1 − αx, if y=0,
0, otherwise.

(3.7)

This concludes the proof of (3.6). To prove (3.5), let(Zn) be the Markov chain
with probability transitions given by (3.7). By definition, we have

∏

l≥1

(1 − ρl) =
∏

l≥1

l∑

j=1

P(Zl = j|Zl−1 = j − 1)P(Zl−1 = j − 1)

≥
∏

l≥1

αl−1

l−2∏

i=0

αi

∏

l≥0

α2
l .

From this, using the inequality x ≤ − ln(1 − x) ≤ x
1−c which holds for any

x ∈ (−1, c], it follows that
∑

l≥1

ρl ≤
∑

l≥0

log αl ≤
∑

l≥0

1 − αl

α0
.

This concludes the proof of the lemma. �

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let w be a finite sequence and a any symbol in A. Define
the random variables

Uj = 1{Xj+�(w)
j = wa} − p(wa),

for j = 0, . . . , n− �(wa). Then, using [4, Proposition 4] we have that, for any p ≥ 2

‖Nn(wa) − (n − �(w))p(wa)‖p

≤
(
2p

n−�(wa)∑

i=0

n−�(wa)∑

k=i

‖E(Uk | U0, . . . , Ui) ‖∞
) 1

2

≤
(
2p

n−�(wa)∑

i=0

n−�(wa)∑

k=i

sup
u∈Ai+�(wa)

|P(Xk+�(w)
k = wa | X

i+�(w)
0 = u) − p(wa)|

) 1
2

≤
(
2p �(wa)(n − �(w))

2(α + α0)
α0

) 1
2
.
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Then, as in [5, Proposition 5] we also obtain that, for any t > 0,

P(|Nn(wa) − (n − �(w))p(wa)| > t) ≤ e
1
e exp

[ −t2C

(n − �(w))�(wa)
]
,

where
C =

α0

8e(α + α0)
. �

Proof of Corollary 3.3. First observe that
∣∣∣ p(a|w) − (n − �(w))p(wa) + 1

(n − �(w))p(w) + |A|

∣∣∣ ≤ |A| + 1
(n − �(w))p(w)

.

Then, for all n ≥ (|A| + 1)/tp(w) + �(w) we have that

P
( ∣∣p̂n(a|w) − p(a|w)

∣∣ > t
)

≤ P
( ∣∣∣

Nn(wa) + 1
Nn(w·) + |A| −

(n − �(w))p(wa) + 1
(n − �(w))p(w) + |A|

∣∣∣ > t − |A| + 1
(n − �(w))p(w)

)

Denote by t′ = t − (|A| + 1)/(n − �(w))p(w). Then

P
( ∣∣∣

Nn(wa) + 1
Nn(w·) + |A| −

(n − �(w))p(wa) + 1
(n − �(w))p(w) + |A|

∣∣∣ > t′
)

≤ P
(∣∣Nn(wa) − (n − �(w))p(wa)

∣∣ >
t′

2
[(n − �(w))p(w) + |A|]

)

+
∑

b∈A

P
(∣∣Nn(wb) − (n − �(w))p(wb)

∣∣ >
t′

2|A| [(n − �(w))p(w) + |A|]
)
.

Now, we can apply Theorem 3.1 to bound above the last sum by

2 |A| e 1
e exp



−(n − �(w))
[t − |A|+1

(n−�(w))p(w) ]
2p(w)2C

4|A|2�(wa)



 ,

where
C =

α0

8e(α + α0)
.

This finishes the proof of the corollary. �

4. Proof of the main results

Proof of Theorem 2.9. Define

Oδ,d
n =

⋃

w∈T
�(w)<K

⋃

uw∈T̂ δ,d
n

{∆n(uw) > δ}, and U δ,d
n =

⋃

w∈T̂ δ,d
n

�(w)<K

⋂

uw∈T |d

{∆n(uw) ≤ δ}.
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Then, if d < n we have that

{T̂ δ,d
n |K �= T |K} = Oδ,d

n ∪ U δ,d
n .

The result follows from a succession of lemmas.

Lemma 4.1. For any n > 2(|A|+1)
δεd

+ d, for any w ∈ T with �(w) < K and for any
uw ∈ T̂ δ,d

n we have that

P(∆n(uw) > δ) ≤ 4 |A|2 e
1
e exp

[
−(n − d)

[ δ
2 − |A|+1

(n−d)εd
]2ε2dC

4|A|2(d + 1)
]
,

where C is given by (3.2).

Proof. Recall that

∆n(uw) = max
a∈A

|p̂n(a|uw) − p̂n(a|suf(uw))|.

Note that the fact w ∈ T implies that for any finite sequence u with p(u) > 0 and
any symbol a ∈ A we have p(a|w) = p(a|uw). Hence,

P(∆n(uw) > δ) ≤
∑

a∈A

[
P
(
|p̂n(a|w) − p(a|w)| >

δ

2
)

+ P
(
|p̂n(a|uw) − p(a|uw)| >

δ

2
)]

.

Using Corollary 3.3 we can bound above the right-hand side of the last inequality
by

4 |A|2 e
1
e exp



−(n − d)
[ δ
2 − |A|+1

(n−d)εd
]2ε2dC

4|A|2(d + 1)



 ,

where C is given by (3.2). �

Lemma 4.2. For any n > 2(|A|+1)
(Dd−δ)εd

+ d and for any w ∈ T̂ δ,d
n with �(w) < K we

have that

P(
⋂

uw∈T |d

{∆n(uw) ≤ δ}) ≤ 4 |A| e 1
e exp



−(n − d)
[Dd−δ

2 − |A|+1
(n−d)εd

]2ε2dC

4|A|2(d + 1)



 ,

where C is given by (3.2).

Proof. As d satisfies (2.10) there exists ūw ∈ T |d such that p(a|ūw �= p(a|suf (ūw))
for some a ∈ A. Then

P(
⋂

uw∈T |d

{∆n(uw) ≤ δ}) ≤ P(∆n(ūw) ≤ δ).

Observe that for any a ∈ A,

|p̂n(a|suf(ūw)) − p̂n(a|ūw)| ≥ |p(a|suf(ūw)) − p(a|ūw)|
− |p̂n(a|suf(ūw)) − p(a|suf(ūw))| − |p̂n(a|ūw) − p(a|ūw)|.
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Hence, we have that for any a ∈ A

∆n(ūw) ≥ Dd − |p̂n(a|suf(ūw)) − p(a|suf(ūw))| − |p̂n(a|ūw) − p(a|ūw)|.
Therefore,

P(∆n(ūw) ≤ δ) ≤ P
( ⋂

a∈A

{ |p̂n(a|suf(ūw)) − p(a|suf(ūw))| ≥ Dd − δ

2
}

)

+P
( ⋂

a∈A

{ |p̂n(a|ūw) − p(a|ūw)| ≥ Dd − δ

2
}

)
.

As δ < Dd and n > 2(|A|+1)
(Dd−δ)εd

+ d we can use Corollary 3.3 to bound above the
right-hand side of this inequality by

4 |A| e 1
e exp



−(n − d)
[Dd−δ

2 − |A|+1
(n−d)εd

]2ε2dC

4|A|2(d + 1)



 ,

where C is given by (3.2). This concludes the proof of the lemma. �

Now we can finish the proof of Theorem 2.9. We have that

P(T̂ δ,d
n |K �= T |K) = P(Oδ,d

n ) + P(U δ,d
n ).

Using the definition of Oδ,d
n and U δ,d

n we have that

P(T̂ δ,d
n |K �= T |K) ≤

∑

w∈T
�(w)<K

∑

uw∈T̂ δ,d
n

P(∆n(uw) > δ)+
∑

w∈T̂ δ,d
n

�(w)<K

P(
⋂

uw∈T |d

∆n(uw) ≤ δ).

Applying Lemma 4.1 and Lemma 4.2 we can bound above the last expression by

P(T̂ δ,d
n |K �= T |K) ≤ 4 e

1
e |A|d+2 exp



−(n − d)
[min( δ

2 , Dd−δ
2 ) − |A|+1

(n−d)εd
]2ε2dC

4|A|2(d + 1)



 ,

where C is given by (3.2). We conclude the proof of Theorem 2.9. �

Proof of Corollary 2.11. It follows from Theorem 2.9, using the first Borel-Cantelli
Lemma and the fact that the bounds for the error estimation of the context tree
are summable in n for a fixed d satisfying (2.10) and δ < Dd. �

5. Final remarks

The present paper presents an upper bound for the rate of convergence of a version
of the algorithm Context, for unbounded context trees. This generalizes previous
results obtained in [10] for the case of bounded variable memory processes. We
obtain an exponential bound for the probability of incorrect estimation of the
truncated context tree, when the estimator is given by Definition (2.8). Note that
the definition of the context tree estimator depends on the parameter δ, and this
parameter appears in the exponent of the upper bound. To assure the consistency
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of the estimator we need to choose a δ sufficiently small, depending on the transi-
tion probabilities of the process. Therefore, our estimator is not universal, in the
sense that for any fixed δ it fails to be consistent for any process having Dd < δ.
The same happens with the parameter d. In order to choose δ and d not depending
on the process, we can allow these parameters to be a function of n, in such a way
δn goes to zero and dn goes to +∞ as n diverges. When we do this, we loose the
exponential property of the upper bound.

As an anonymous referee has pointed out, Finesso et al. [9] proved that in the
simpler case of estimating the order of a Markov chain, it is not possible to obtain
pure exponential bounds for the overestimation event with a universal estimator.
The above discussion illustrates this fact.
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