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A Test of Hypotheses for Random Graph
Distributions Built From EEG Data

Andressa Cerqueira, Daniel Fraiman, Claudia D. Vargas and Florencia Leonardi

Abstract—The theory of random graphs has been applied in recent years to model neural interactions in the brain. While the
probabilistic properties of random graphs has been extensively studied, the development of statistical inference methods for this class
of objects has received less attention. In this work we propose a non-parametric test of hypotheses to test if a sample of random graphs
was generated by a given probability distribution (one-sample test) or if two samples of random graphs were originated from the same
probability distribution (two-sample test). We prove a Central Limit Theorem providing the asymptotic distribution of the test statistics
and we propose a method to compute the quantiles of the finite sample distributions by simulation. The test makes no assumption on
the specific form of the distributions and it is consistent against any alternative hypothesis that differs from the sample distribution on at
least one edge-marginal. Moreover, we show that the test is a Kolmogorov-Smirnov type test, for a given distance between graphs, and
we study its performance on simulated data. We apply it to compare graphs of brain functional network interactions built from
electroencephalographic (EEG) data collected during the visualization of point light displays depicting human locomotion.

Index Terms—random graphs, non-parametric test of hypotheses, Kolmogorov-Smirnov test, EEG
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1 INTRODUCTION

THE brain consists in a complex network of intercon-
nected regions whose functional interplay is thought

to play a major role in cognitive processes [1], [2], [3].
Based on an elegant representation of nodes (vertices) and
links (edges) between pairs of nodes where nodes usually
represent anatomically defined brain regions while links
represent functional or effective connectivity [4], random
graph theory is progressively allowing to explore properties
of this sophisticated network [5], [6]. Such properties have
been used so far to infer, for instance, about effects of brain
lesion [7], ageing [8], [9], [10] and neuropsychiatric diseases
(for a recent review, see [11]).

From a theoretical point of view, the most famous model
of random graphs is the Erdös-Renyi model [12], [13], where
the edges of the graphs are independent and identically
distributed Bernoulli random variables. Besides its simplic-
ity, this model continues to be actively studied and new
properties are being discovered (see for example [14] and
references therein). A generalization of the Erdös-Renyi
model that has received an increasing attention in recent
years and exhibits non-zero correlations between adjacent
edges is the Stochastic Block Model (SBM) [15].

Notwithstanding the crescent interest of the scientific
community in the graph theory applications, the develop-
ment of statistical techniques to compare sets of graphs or
network data is still quite limited. Some recent works have
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addressed the problem of community detection in SBM [16],
[17], but the testing problem has been even less developed.
As far as we know, the testing problem is restricted only
to the identification of differences in some one dimensional
graph property [6], [18], [19]. At this point it is important to
remark that the number of different graphs with v nodes
grows as fast as 2v(v−1)/2 which in practice is far much
larger than a typical sample size analyzed. This is the reason
why the testing problem is difficult and relevant given that
the graph space has no total order.

In this paper we propose a goodness-of-fit test of hy-
pothesis for random graph distributions. The statistic is
inspired in a recent work by [20] where a test of hypothesis
for random trees is developed. We prove a Central Limit
Theorem providing the asymptotic distribution of the test
statistics and we also propose a method to compute the
quantiles of the finite sample distributions by means of
simulation. The test makes no assumption on the specific
form of the distributions and it is consistent against any
alternative hypothesis that differs from the sample distribu-
tion on at least one edge-marginal. In a simulation study
we show the efficiency of the test and we compare its
performance with the simultaneous testing of the edge-
marginals. We also apply the test to compare graphs built
from electroencephalographic (EEG) signals collected dur-
ing the observation of videos depicting human locomotion.

2 DEFINITION OF THE TEST

Let V denote a finite set of vertices, with cardinal |V | = v,
and let G(V ) denote the set of all simple undirected graphs
over V . We identify a graph g = (V,E) with the indicator
function gij = 1{(i, j) ∈ E}.

Assume g is a random graph with distribution π. Denote
by πij = π(gij = 1) (the marginal distribution over the edge
(i, j)) and let Σ denote the covariance matrix of π. Given
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another probability distribution π′ defined on G(V ), we are
interested in testing the hypotheses

H0 : π = π′ versus HA : π 6= π′ . (1)

Given an i.i.d sample of graphs g = (g1, . . . , gn) with distri-
bution π, define the function g : V 2 → [0, 1], the empirical
mean of g, by

gij =
1

n

n∑
k=1

gkij .

Then for a known distribution π′, the one-sample test statis-
tic of the test is given by

W (g) =
∑
ij

∣∣gij − π′ij ∣∣ . (2)

Assuming the distribution of W under the null hypothesis
is known, the result of the test (1) at the significance level α
is

Reject H0 if W (g) > q1−α , (3)

where q1−α is the (1 − α)-quantile of the distribution of W
under the null hypothesis.

In the same way, given two independent samples g =
(g1, . . . , gn) and g′ = (g′1, . . . , g′m) with distributions π and
π′ respectively, we define the two-sample test statistic

W (g,g′) =
∑
ij

∣∣gij − g′ij
∣∣ . (4)

As in the one-sample test, assuming the distribution of W
under the null hypothesis is known, the result of the test (1)
at the significance level α is

Reject H0 if W (g,g′) > q1−α , (5)

where q1−α is the (1 − α)-quantile of the distribution of W
under the null hypothesis.

Our first theoretical result shows the asymptotic distri-
bution of the test statistics (2) and (4). Let Π = (πij), Π̂ =
(gij) and Π̂′ = (g′ij). Then we can write W (g) = ‖Π̂ − Π‖
and W (g,g′) = ‖Π̂−Π̂′‖, where ‖·‖ denotes the vectorized
1-norm.

Proposition 1. Under H0, for the one-sample test statistic we
have that √

n
(
Π̂−Π

) D−−−−→
n→∞

N(0,Σ) .

Analogously, for the two-sample test statistic we have that√
nm

n+m

(
Π̂− Π̂′

) D−−−−−→
n,m→∞

N(0,Σ) .

Remark 1. From Proposition 1 we can deduce that the test is
consistent against any alternative hypothesis π′ with π′ij 6=
πij for at least one pair ij.

Proposition 1 is of interest when the covariance matrix
Σ is known a priori. In this case the quantiles in (3) and
(5) can be taken from the distribution of the norm ‖ · ‖ of
a multivariate normal random variable with mean 0 and
covariance matrix Σ. In any other situation the asymptotic
result is of little practical use and the quantiles can be
computed by means of simulation for (3) or resampling
for (5). In the sequel we show how this procedure can be

implemented to estimate the quantile q1−α in (3).

Computation of q1−α for the one-sample test (3).

1) For i = 1, . . . , I simulate g(i) = (g(i),1, . . . , g(i),n)
under the null hypothesis H0.

2) Take q1−α as the 1 − α quantile of the empirical
distribution of W (g(1)), . . . ,W (g(I)).

We now present the computation of q1−α in (5) based on
a resampling procedure.

Computation of q1−α for the two-sample test (5).

1) For i = 1, . . . , I take resamples g(i) =
(g(i),1, . . . , g(i),n) and g′(i) = (g′(i),1, . . . , g′(i),m)
from the pooled sample of size n+m.

2) Take q1−α as the 1 − α quantile of the empirical
distribution of W (g(1),g′(1)), . . . ,W (g(I),g′(I)).

Given a distance between graphs, one can obtain dif-
ferent test statistics by using a Kolmogorov-Smirnov test
approach. We show in the sequel that this is the case for
the test statistics (2) and (4), for a particular distance that we
introduce in the sequel. Given the graphs g, g′ ∈ G(V ) we
define

D(g, g′) =
∑
ij

(gij − g′ij)2 .

Now, given a graph g ∈ G(V ) and a sample g =
(g1, . . . , gn), we denote by D̄g(g) the mean distance of
graph g to the sample g; that is

D̄g(g) =
1

n

n∑
k=1

D(g, gk) .

Proposition 2. For the one-sample test statistic we have that

W (g) = max
g∈G(V )

|D̄g(g)− π′D(g, ·) | , (6)

where π′D(g, ·) denotes the mean distance of graph g to a random
graph with distribution π′, given by

π′D(g, ·) =
∑

g′∈G(V )

D(g, g′)π′(g′) .

Analogously, for the two-sample test statistic we have that

W (g,g′) = max
g∈G(V )

|D̄g(g)− D̄g′(g) | . (7)

The proofs of Propositions 1 and 2 are postponed to
Section 5.

3 PERFORMANCE ON SIMULATED DATA

In this section we present the results of a simulation study
in order to evaluate the performance of the test (3). As in
general the covariance structure of the distribution under
the null hypothesis is unknown, we compute the quantiles
of the distribution of W by the simulation procedure de-
scribed in Section 2. In our first figure we show that both
methods of computing the quantiles in (3) produce similar
power functions.

The model we simulate is a SBM with two communities.
To simulate this model, we assign to each vertex a commu-
nity label 1 with probability p ∈ (0, 1) or 2 with probability
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Fig. 1. Power functions of the one-sample test (3) using the quantiles from the finite sample distribution computed by simulation (FSD) and using
the asymptotic distribution given in Proposition 1 (AD), for two different sample sizes. The null model is a SBM on v = 5 nodes with parameter
p = 0.5 and matrix P , given by (8). The y-axis corresponds to 1− e, where e is the type II error of the test, computed as the proportion of times (on
1.000 replications) the test does not reject the null hypothesis when it is false, with parameter p (variable).

1 − p, each vertex assignment independent of any other
assignment. Once the labels have been assigned, we put an
edge between two edges with a probability that depends on
the edges’ labels, given by the matrix

P =

(
0.7 0.5
0.5 0.3

)
. (8)

We take as null hypothesis the SBM model with parameter
p = 0.5 and matrix of edge probabilities P . In this case, the
covariance matrix of the null distribution is given by

Σij,kl =


0, if {i, j} ∩ {k, l} = ∅;
0.25, if ij = kl;

0.01, otherwise.

We first show that the power function of the asymptotic
test does not differ significantly from the power function
obtained when the quantiles are computed by simulation,
see Fig. 1. Therefore the simulation procedure shows to be
efficient even for small sample sizes.

In order to compare our results with classical meth-
ods, we performed simultaneous hypothesis tests on the
edge frequencies. To adjust the p-values for multiple
tests, we used the method of Hommel [21] that controls
the familywise error rate and the method of Benjamini-
Hochberg [22] that controls the false discovery rate, see
[23] for details. The (unadjusted) p-values for the set of
hypotheses under the null model were obtained from the
Binomial distribution with parameters n = 20 and p = 0.5,
that corresponds to the marginal probability on each edge.
The level of significance for the global W test was set to
α = 0.05 and for each correction method we adopted a
level corresponding approximately to a global type I error
α. The resulting power functions for the three approaches
for different graph sizes are shown in Fig. 2.

4 DISCRIMINATION OF EEG BRAIN NETWORKS

The data analyzed in this section were first presented in [24].
A total of sixteen healthy subjects (29.25±6.3 years) with
normal or corrected to normal vision and with no known
neurological abnormalities participated in this study. The
study was conducted in accordance with the declaration of
Helsinki (1964) and approved by the local ethics committee
(Comité de Ética em pesquisa do Hospital Universitário
Clementino Fraga Filho, Universidade Federal do Rio de
Janeiro, 303.416).

The EEG activity was recorded using a BrainNet BNT
36 (EMSA) consisting of twenty Ag/AgCl electrodes at the
following scalp positions according to the 10-20 system: Fp1,
Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6,
O1, Oz, O2. The impedance of each electrode was kept be-
low 5 kΩ. The electrical potential was amplified, bandpass-
filtered (0.50 Hz), and digitized at a 600 Hz sampling rate,
with the mastoid electrodes serving as a reference. Artifacts
such as oculomotor or muscle activity were rejected offline
using a threshold criterion of 50 µV, and additionally by
visual inspection.

The stimulus used in the experiment is composed by 10
white luminous points with black background, that repre-
sent 10 markers of the human body (head, shoulder, elbow,
hand, hip, knee and ankle). The animation of these points
permitted a vivid perception of a walker’s motion (which
we call biological motion). The stimulus has a total length
of 5200ms and is composed by 3 different phases: the visible
phase (0 - 1600ms) represents the individual walking, the
occlusion phase (1600ms - 3900ms) where the luminous
points disappear behind a black wall and the phase of
reappearance (3900ms - 5200ms) where the individual is
again visible and continues walking. A second stimulus
employed in that study consisted on a permuted version
of the point lights, thus destroying the gestalt of the human
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Fig. 2. Power functions of the one-sample test W and the simultaneous testing procedure with Benjamini-Hochberg (BH) and Hommel (HO)
corrections. The null model is a SBM with parameter p = 0.5 and matrix P , given by (8), and the alternative hypothesis is a SBM with parameter p
(variable) and matrix P . The sample size was fixed to n = 20 and the graph sizes are different for the two figures. The y-axis corresponds to 1− e,
where e is the type II error of the test, computed as the proportion of times (on 1.000 replications) the test does not reject the null hypothesis when
it is false, with parameter p.

walker motion. This stimulus is called scrambled motion.
The results presented in this paper only consider the visible
and the occlusion phases of the experiment (0 - 3900ms), this
part of the experiment was done by seven subjects. In order
to have more precise results, we partitioned both phases in
four non-overlapping temporal windows of 333.3 ms (in the
visible phase called V1, V2, V3 and V4 and O1, O2, O3 and
O4 in the occlusion phase). A representation of the stimuli
and the different time windows can be observed in the top
of Fig. 3.

The experiment consisted of 25 biological motion and
25 scrambled motion stimuli presented randomly. A total
of 50 point light animations were displayed (2 conditions
[biological and scrambled motion, 25 repetitions). After
cleaning the data we obtained 132 good trials for the visible
phase and 142 for the occlusion phase of biological motion,
for each temporal window (considering all subjects). In the
same way, we obtained 132 trials for the visible phase and
137 trials for the occlusion phase of the scrambled motion,
for each temporal window.

To construct the brain functional networks, for each
subject, phase and trial of the experiment we first computed
a Spearman correlation between each pair of electrodes
for each temporal window [t, t + 333ms], for values of t
varying every 16.66ms (this corresponds to the interaction
criterion in Fig. 3). The series of correlations for each pair
of electrodes ij (and specific for each subject, phase and
repetition) will be denoted by {ρijt : t = t1, . . . , tn}. For
the construction of the graphs we computed a threshold for
each pair of electrodes ij based on this series of correlations
and we put an edge between these electrodes if the absolute
value of the correlation for a given time t was above this
threshold (this step corresponds to the network criterion in
Fig. 3). That means to say that for each pair of electrodes we

selected a different threshold value, and the selection of this
threshold was done in the following way. Let c be a constant,
0 < c < 1, and let qij1 and qij3 denote the first and third
quartiles of the series of correlations {ρijt : t = t1, . . . , tn}.
For a given time t define

gtij =

{
1, if ρijt ≥ max(c, qij3 ) or ρijt ≤ min(−c, qij1 ) ;
0, otherwise

(9)
In this way, the graph of interactions for time t will be given
by gt = (gtij)1≤i<j≤20.

The rationality of the criterion proposed here is that the
graphs constructed in this way select the edges between
electrodes that behaves similarly from a statistical point
of view, and this is done by imposing the first and third
quartile condition. Each correlation between two electrodes
fluctuates in time, then for a given time t we select the ones
that are too small (less than qij1 ) or large (greater than qij3 ).
It is interpreted as follows, a given interaction grows if the
two brain regions (principally responsible of the signal) are
interacting in an excitatory way feeding back the process,
or the interaction can decrease if there exist an inhibitory
interaction between them. Both changes are captured by our
criterion. The extra condition greater (or less) to the value c
(−c) is just for obtaining statistical significant correlations.
The value chosen for c in this study is 0.5.

We studied graphs at the temporal win-
dows V1–V4 and O1–O4 that corresponds to
t = {1.7, 335, 666.3, 1001.7} (in ms) for the visual phase
and t = {1601.7, 1935, 2268.3, 2601.6} for the occlusion
phase. We first tested the graphs samples corresponding to
visible vs. occlusion windows; that is we tested V1 vs. O1,
V2 vs. O2 and so on, for biological and scrambled motion.
To compute the p-values, we used the resampling scheme
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Fig. 3. First two phases of the stimulus used in the experiment and the steps to obtain the samples of graphs from the EEG signal. EEG activity
was edited for simplicity.

presented in Section 2 for the two-sample W statistic,
for I = 10.000 replications [25]. The estimated p-value is
therefore the empirical proportion of values in the vector
of size 10.000 built up in this way that are greater than
the observed W statistic. The p-values obtained for the
four tests are reported in Table 1. We notice that in both
types of motion the p-values corresponding to the first
windows of visible and occlusion phases are significantly
smaller than the other p-values. The stimulus onset evokes
an event related response [26] in the first window of the
visible phase. This response, also known as visual evoked
potential, is absent in the occlusion phase where there is no

stimulus presentation. As can be observed the W statistic is
able to retrieve this difference from the graphs distributions.

It is important to remark that the test of hypotheses
proposed here does not discriminate which subgraphs in the
graphs contribute more significantly to distinguish the two
conditions under analysis. Therefore, to complement the re-
sults obtained with the test of hypotheses we plotted a sum-
mary graph representing each sample by selecting the 30
more frequent edges. This is a pictorial graph representation
that does not reflect link dependencies that might indicate
significant functional relationship between nodes. However
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Window Biological Scrambled

V1 vs. O1 0.0019 0.0016

V2 vs. O2 0.4294 0.8278

V3 vs. O3 0.1984 0.1249

V4 vs. O4 0.0278 0.6673

TABLE 1
P -value of the test of hypotheses for visible vs. occlusion windows of

biological and scrambled motions.
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Fig. 4. (a) Summary graphs of 30 more frequent edges for V1 (blue
edges) and O1 (red edges), for the biological motion. Black edges
correspond to common edges. (b) Same as (a) for scrambled motion.

it represents the most frequent links thus giving relevant
information on which of them are more representative in
each phase.

Fig. 4(a)-(b) illustrate the graphs corresponding to V1 and
O1 in the biological and scrambled motion conditions for
which the smallest p-values were found, as illustrated in Ta-
ble 1. Although the plots of the 30 most frequent edges in the
first window of the visible and occlusion phases are quite
similar for the biological motion condition, comparatively
less edges seem present in the occipital electrodes (O1, Oz
and O2) and there is a shift towards the right parietofrontal
region in the occlusion period. These results could be taken
as an evidence of the hypothesis raised in [24] that the brain
would implicitly “reenact” the observed biological motion
during the occlusion period. For the scrambled condition,

the 30 most frequent edges in the first window of the
visual phase clearly connect electrodes in the frontal region
whereas the 30 most frequent edges in the first window
of the occlusion phase connect electrodes in the central-
occipital region.

These summary graphs found for biological and scram-
bled motions are roughly in accordance with previous re-
ports of event related potentials (ERP) recorded from hu-
mans viewing point light display (PLD) portraying human
activities. According to these studies, there is a neat ten-
dency of such stimuli to recruit mostly the right occipito-
temporal region, reflecting activity in the Superior Temporal
Sulcus (STS) [24], [27], [28], [29]. This brain region is consid-
ered as an important hub at the interface between the dorsal
and the ventral visual streams [30]. The participation of the
parietal lobe [31], [32], [33] and the premotor cortex [34],
in addition to the STS in the recognition of human motion
PLD is well established. Importantly, confirming results
gathered by Fraiman et al. [6] using a functional network
approach, comparison of the summary graphs of biological
(4a, left) and scrambled (4b, left) stimuli during the visible
window clearly reveal that scrambled PLD fail to recruit
the parieto-occipital network. The links during this period
being concentrated in the frontal regions as compared to
biological PLD activation. Interestingly, a bilateral fronto-
parieto-occipital-temporal activity is reset during the occlu-
sion phase succeeding the scrambled PLD (4b, right). The
reason of such distributed network recruitment during the
occlusion period that succeeds the observation of scrambled
PLD is quite puzzling and deserves further investigation.

Comparing the biological and scrambled conditions dur-
ing the visible phase, [24] found differences both in the
right temporo-parietal and in centro-frontal regions. Using
functional connectivity, [6] confirmed that the left frontal
regions may play a major role when it comes to discrimi-
nating biological from scrambled motions. To confirm these
findings we proceeded to test the corresponding windows
of the biological and scrambled conditions. For the visi-
ble phase the smallest p-value (< 0.03) was obtained for
the third temporal window (time between 668.3ms and
1001.7ms). Graph local differences have been reported in
a more extended time interval form 100ms to 900ms. This
interval covers mostly of the interval V3 were we found
global graphs differences. It is important to remark that
in [6] the authors have a larger sample size (n=16). The
occlusion phase does not report significant results in any of
the tested windows, see Table 2. We emphasize the fact that
this is a more sensible problem compared to the comparison
of visible and occlusion windows, in the sense that the
differences in the stimuli are very subtle. For that reason
it is not surprising that with the actual sample sizes (n=7)
we do not obtain very significant results in this case.

5 PROOFS

Proof of Proposition 1. This is a direct consequence of the
multidimensional Central Limit Theorem (cf. Theorem 11.10
in [35]).

Proof of Proposition 2. We will prove the proposition only
for the one-sample test. The result for the two-sample test
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Window Visible Occlusion

1 0.1014 0.8227

2 0.6621 0.8816

3 0.0295 0.3764

4 0.5910 0.1292

TABLE 2
p-value of the test of hypotheses for biological vs scrambled motion of

visible and occlusion phases.

can be derived analogously. Denote by wg(g) = D̄g(g) −
π′D(g, ·). Observe that in order to maximize |wg(g)| in
G(V ) it is sufficient to maximize wg(g) and −wg(g). We
have that

wg(g) =
1

n

n∑
k=1

D(g, gk)−
∑

g′∈G(V )

D(g, g′)π′(g′) .

The first sum equals

1

n

n∑
k=1

D(g, gk) =
1

n

n∑
k=1

∑
ij

(gij − gkij)2

=
∑
ij

(gij − 2gijgij + gij) .

The second sum is∑
g′∈G(V )

D(g, g′)π′(g′) =
∑

g′∈G(V )

π′(g′)
∑
ij

(gij − g′ij)2

=
∑
ij

(gij − 2gijπ
′
ij + π′ij) .

Therefore we have that

wg(g) =
∑
ij

(2gij − 1)(π′ij − gij) . (10)

As this is a weighted sum, the graph g∗ ∈ G(V ) that
maximizes wg(g) is given by

g∗ij =

{
1, if gij ≤ π′ij
0, otherwise

(11)

Similarly, the graph g∗∗ ∈ G(V ) that maximizes −wg(g) is
given by

g∗∗ij =

{
1, if gij ≥ π′ij
0, otherwise

(12)

Note also that by a direct calculation from (10) and the
definitions (11) and (12) we have that |wg(g)| = | − wg(g)|.
Finally, from (6) and (11) we obtain

max
g∈G(V )

|wg(g)| = wg(g∗) =
∑
ij

|gij − π′ij | = W (g) .

6 DISCUSSION

In this paper we presented a goodness-of-fit non-parametric
test inspired in the recent work by [20] for probability
distributions over graphs. To our knowledge this is the first
nonparametric goodness-of-fit test of hypothesis for random
graphs distributions. We show that the test statistics can

be obtained from a Kolmogorov-Smirnov approach from a
specific distance between graphs, and that it is consistent
against any alternative hypothesis having at least one dif-
ferent marginal distribution over the set of edges. In this
case, the simulations show that our test outperforms the
simultaneous testing of the marginal means with Hommel
and Benjamini-Hochberg correction methods. As in practice
the sample sizes are very small compared with the sample
space (in our simulations we took n = 20 for the sample size
versus 245 of the sample space for graphs with 10 nodes),
our test performs very well even for small differences in the
marginal distributions. In the real EEG dataset, we showed
the potentiality of the W statistic to detect differences in
graphs of interaction built from EEG data even for small
sample sizes.

Although the main focus of this paper is on simple non-
directed graphs, the generalization of the test statistic to
other graph structures is possible. In particular, all the def-
initions and results in Section 2 are valid also for weighted
graphs; that is graphs g ∈ G(V ) such that gij ∈ [−a, a], with
a ∈ R. On the other hand, other possible generalization of
the test is to consider a different distance function between
graphs or to modify the test statistic formula given in
Proposition 2, taking into account the correlation structure
of the set of edges. This would enable the test statistic to be
consistent for different graph distributions having the same
marginals over the edges, but it can not be forgotten that a
modification of the test statistic can result in an increase in
the computational time, which can be prohibited for large
datasets.
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